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Abstract—Network based methods are suitable for the 

analysis of large number of financial time series and the better 

understanding of their interdependencies. Known approaches to 

reveal the underlying information about the complex structure 

of these interdependencies include network-wise and vertex-

wise measures of the topology, as well as filtering techniques 

relying on minimum spanning trees, planar graphs, or spectral 

analysis. The aim of this study is to review relevant graph 

theoretical and statistical models and techniques for generating 

and examining the properties of financial networks, obtained by 

computing time series correlations or causality relationships. In 

particular, this study reviews literature discussing the time 

evolution of the observed phenomena from a network 

perspective, as well as applications in economy and finance, 

ranging from risk and diversification, through policy making 

and better understanding crisis impact, to forecasting. The 

information synthesized in this paper can be useful to gain 

further insights into this relatively new research area.  

 
Index Terms— causality, degree stability, financial networks, 

time-varying graphs, topology  

 

I. INTRODUCTION 

RAPH theory proposes useful mathematical tools 

applicable in various fields, including computer science, 

transportation and communication networks, biology 

and social sciences. In the field of finance and economics, 

there exist a growing body of literature that studies how 

graphs can be applied for modelling and forecasting. A 

network-based approach would be a natural tool for studying 

a large number of pairwise relationships between different 

financial assets, potentially depicting patterns and 

characteristics of an entire market or economy that cannot be 

observed if only considering a small number of time series of 

historical data. Graph representations are suitable for 

analyzing companies’ stocks [1], [2] (e.g. all stocks of an 

index like S&P 500 or Dow Jones, highly capitalized 

European stocks, specific industries), but also the 

relationships between debt instruments [3], currencies [4] and 

cryptocurrencies [5], commodities [6], or also a mixture of 

different asset classes. The purpose can be modelling of 

information dissemination [7]; analyzing the influence of 

stock returns on another stocks [2], [8]; understanding the 

propagation of volatility and market shocks [9], [10], and also 

economic forecasting on the basis of existing data and the 

current market state. As discussed in the following, many 

well-known methods  
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originating from the graph theory can be utilized in the 

context of financial networks. In this paper we review some 

of the most popular analytical approaches and methods 

considered in the financial networks literature from 2000 to 

2020. The strength of relationships between financial assets 

is typically measured by computing correlations, lagged 

cross-correlations [11], [12], or causality. Sect. II provides a 

general framework for constructing a graph using this 

information. Sect. III discusses the literature considering 

Minimum Spanning Trees as a modelling tool. The vertex 

degree distributions of financial networks, and how they 

differ from random graphs, is discussed in Sect. IV. Sect. V 

outlines the applicability of Granger causality and other 

causality measures for identifying directional relationships, 

and in the Sect. VI some conclusions are discussed. 

 

II. NETWORK-BASED REPRESENTATION OF FINANCIAL 

MARKETS 

A weighted graph 𝐺 = 𝛤(𝑉𝐺 , 𝐸𝐺) is a structure of vertices 

(also called nodes) from the vertex set denoted 𝑉𝐺 =
 {𝑣1, 𝑣2, … , 𝑣𝑛}, connected by edges from the edge set 

denoted 𝐸𝐺 =  {𝑒(𝑣𝑖 , 𝑣𝑗 , 𝑤) ∶  𝑣𝑖 , 𝑣𝑗 ∈ 𝑉𝐺} , where 𝑤 is the 

edge weight. An edge 𝑒(𝑣𝑖 , 𝑣𝑗 , 𝑤)  belongs to  𝐸𝐺 if and only 

if the vertices 𝑣𝑖 and 𝑣𝑗 are connected. The graph 𝐺 is directed 

(a digraph) if an edge has a beginning vertex and an end 

(target) vertex; otherwise the graph is undirected i.e. 𝑒(𝑣𝑖 , 𝑣𝑗)  

and 𝑒(𝑣𝑗 , 𝑣𝑖) is the same edge. Constructing a financial 

network does not require parallel directed edges, for instance 

if 𝑣𝑘 and 𝑣𝑙  are two stocks and edge weights correspond to 

correlations [1] between price returns, it is sufficient to create 

one single edge between 𝑣𝑘 and 𝑣𝑙 , in order to represent this 

information. Correlation based graphs are discussed in [1], 

[4], [11], [13]-[19]. On the other hand, unlike correlation, 

causality [2, 8-10, 20] is a directed measure of dependency, 

hence directed edges can be used to designate whether 𝑣𝑘 

influences 𝑣𝑙, or vice versa (for more details, see Sect. V).  

Most of the research known from the literature in this field 

relies on computing the correlation or measuring the causality 

between the log-return (1) of prices or realized volatility (2) 

time series, corresponding to different financial assets.   

 

𝑟𝑖,𝑡 = log(𝑥𝑖,𝑡) −  log (𝑥𝑖,𝑡−1)      (1) 
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Fig. 1. Log-returns of TSLA (Tesla, Inc.) closing prices for the period 

between 29-Jun-2010 and 18-Nov-2020, calculated using Eq. (1).   

 

Log-returns and volatilities can obviously be calculated 

from the price of any financial asset: Foreign exchange [15], 

[21]; American stocks [1], [7], [13]; Korean stocks [22]; 

European Government bonds are discussed in [3]; 

Cryptocurrencies [5], [23]; Oil prices [6]; Furthermore, a 

single network can represent a market or an economy over a 

long period of time, but it is also possible to create time-

varying graphs for smaller consecutive overlapping or non-

overlapping periods of time [9], [2]. This approach is 

appropriate when the objective is to analyze how the network 

changes in response to a financial crisis, and what is the time-

evolving behavior of interdependencies between different 

assets.  

III. TOPOLOGY AND SPANNING TREES  

Analysis and comparison of financial graphs can involve 

various techniques to examine connectivity, vertex degrees, 

central regions and important vertices, presence of clusters 

and homogeneity, surviving edges and vertices, as well as 

network robustness. The obtained networks can be highly 

complex, and a natural and straightforward approach is to 

analyze their spanning trees. The Minimum Spanning Trees 

(MSTs) [24] are a well-known graph theoretical tool, popular 

for constructing power line, or road networks, in computer 

science, and more recently in the context of financial 

networks. A MST is a tree of 𝑛 − 1 edges connecting all 𝑛 

vertices of a weighted graph, whose sum of the edge weights 

is as small as possible. There exist several algorithms for 

extracting MSTs, such as Kruskal’s algorithm [25] and 

Prim’s algorithm [26], which can be applied on a graph 

obtained as described in the previous section.  

The analysis of pairwise relationships between assets, as 

discussed in Section II, would initially produce a fully 

connected weighted graph, hence, from this point of view, 

extracting MSTs can be considered as a filtering procedure 

[14], which highlights relevant relationships between assets 

[15]. Weak correlations or causal relationships are simply 

excluded from the resulting trees, as they correspond to edges 

with large weights. For instance, for the case of correlation-

based trees, we can apply one of the following formulas in 

order to transform the correlation coefficient 𝜌 into an edge 

weight:  

 

𝑤𝑖,𝑗 =  √2(1 − 𝜌𝑖,𝑗)       (3) 

 

𝑤𝑖,𝑗 = 1 −  |𝜌𝑖,𝑗|         (4) 

 

For both (3) and (4), 𝑖 and 𝑗 correspond to two vertices/assets. 

Weights obtained using (3) can be interpreted as distances, 

as emphasized in [15] and [1], which means that strongly 

correlated time series would be represented by vertices which 

are close to each other, hence retained by the MST filtering 

procedure (e.g. Kruskal’s algorithm). On the other hand, (4) 

would lead to preserving strongly anti-correlated pairs as 

well, as correlation 𝜌 close to −1 also represents a 

meaningful relationship between the random variables (it is 

convenient to mention here the possibility of short selling in 

financial markets). For the case of causality, a similar 

approach can be used if the strength of the causal relationship 

is measured.   

Existing real-world relationships between assets are more 

easily observable when using MSTs, and high-degree vertices 

in the center can be interpreted as important and influential 

assets [12]. Furthermore, clusters of closely related assets can 

be observed in the MSTs, as a result from the connectedness 

of vertices which are similar in terms of correlation/causality. 

For example, the analysis of the foreign exchange market 

performed in [4] shows that currencies of countries within 

geographically close regions are represented by nodes which 

are linked to each other and clustered together in the 

Minimum Spanning Trees. As can be expected, another 

finding, known from of [14], [4] and [17] is that the obtained 

trees are economically relevant, and major economic 

countries with stable economies tend to occupy central 

positions within the MST clusters, having higher vertex 

degrees.  

These properties of MSTs are still relevant for the stock 

markets [13], [14], [1], [16], both for return-based and 

volatility-based networks, where highly capitalized 

companies are cluster centers. However, it is interesting 

whether the overall tree structure varies depending of the 

sampling frequency of the data. From a financial perspective, 

the period between data snapshots mainly depends on the type 

of business, for example in portfolio allocation and 

management the frequency is typically low (e.g. one data 

point per day or a longer period), human-driven trading and 

hedging of derivative instruments relies on intraday data, and 

in the case of market making and low latency trading 

millisecond/nanosecond timestamps are usual. In particular, 

for high frequencies, the market liquidity and intensity of 

quotes become important and decreasing cross-correlation for 

smaller time intervals (known as the Epps effect [27]) can be 

observed. An analysis of the stock market (NYSE) has been 

performed in [1], where the authors find that MST-based 

hierarchy of stocks changes for different sampling 

frequencies. The multi-cluster structure observed at lower 

frequencies tends to disappear, and the star-like structure (see 

also Sect. IV) of the trees emerges for smaller time-intervals. 

According to the MSTs obtained in [1], intra-sector 
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correlation weakens faster than inter-sector correlation, when 

shrinking the sampling time window. The analysis given in 

[28] shows that the clustered structure of correlation-based 

MSTs can be preserved even at 5-minute sampling, by 

applying convenient filtering methods, such as removing the 

dominant "market mode" by zeroing the largest eigenvalue of 

the correlation matrix (see [28] for more details). Intraday 

lagged correlation patterns are discussed in detail [29] for the 

case of Bonferroni corrected networks [30], indicating to 

what extent the network topology could change between 

small time intervals during the trading day. Nonetheless, the 

network edges are largely persistent throughout the trading 

day, which is consistent with the findings of [28]. An analysis 

of MST structure depending on intraday volatility is 

performed in [22], for the case of Korean stock markets. The 

authors revealed that the normalized tree length (NTL), which 

measures the closeness among the components of network, 

decreases in periods of high volatility. Higher maximum 

vertex degree have also been observed during market stress 

periods, which is consistent with shorter tree lengths and 

network shrinkage, as this holds true for both intraday and 

low-frequency data.  

 
Fig. 2. Example from [23] of a correlation-based Minimum Spanning Tree 

(MST) obtained from the log-returns of 100 highly capitalized NASDAQ 

stocks, for the period between 16-Dec-2017 and 30-Apr-2019. Vertex labels 
correspond to stock symbols (tickers).  

 

A natural approach to analyze and compare the obtained 

networks, either trees or not, is to study the distribution of 

their vertex degrees, which is discussed in more detail in Sect. 

IV. Apart from in-degree/out-degree centrality [2], [31] and 

network diameter, there exist several centrality measures 

popular in network analysis, applicable as well in the context 

of financial graphs. The closeness centrality [27], [32], which 

is suitable for connected directed graphs (see for example 

Sect. V for the case of causality graphs), is the average path 

length of the shortest paths between a vertex and all other 

vertices in the graph. The harmonic centrality (5), which is a 

slight modification of closeness centrality ([27] and the 

references therein), is the harmonic mean of distances 

between every pair of distinct vertices. These are natural 

measures of the level of connectedness of a market, as for 

example, higher harmonic centrality corresponds to a more 

densely connected market [9], [2]. If we denote with 

𝑑(𝑣𝑖 , 𝑣𝑗) the distance between vertices 𝑣𝑖 and 𝑣𝑗, the 

harmonic centrality is defined as follows:  

 

ℎ𝑐(𝑣𝑖) =  ∑
1

𝑑(𝑣𝑖,𝑣𝑗)𝑖≠𝑗          (5) 

 

The normalized betweenness centrality [8], [33] and [22] is 

useful to determine important vertices within the network, 

which can be considered as information/shock transmission 

mediums. It is computed by counting the number of shortest 

paths between a pair of vertices (𝑣𝑗 , 𝑣𝑘) that pass through a 

given vertex 𝑣𝑖, denoted 𝑝𝑗𝑘(𝑣𝑖), and the total number of 

shortest paths 𝑝𝑗𝑘 between (𝑣𝑗 , 𝑣𝑘): 

 

𝑏𝑐(𝑣𝑖) =  
1

𝑁2−3𝑁+2
 ∑ ∑

𝑝𝑗𝑘(𝑣𝑖)

𝑝𝑗𝑘 
𝑘>𝑗𝑗  , 𝑖 ≠ 𝑗 ≠ 𝑘   (6) 

 

According to [27], "…the intuition behind betweenness is 

that if a large fraction of shortest paths passes through vx, 

then vx is an important junction point of the network". 

Another measure, applicable for evaluating relative node 

importance, is the PageRank centrality [34], based on 

eigenvalues of the graph’s adjacency matrix [27]. Other 

potentially interesting measures for the importance of a 

vertex are the Katz centrality [35] and the Bonacich centrality 

[36].  

All these network measures and statistics can be useful for 

investigating the behaviour of time-varying graphs, and to 

compare networks obtained over time windows of different 

length. Advantages of comparing graphs corresponding to 

different time periods includes: the possibility of 

implementing and improved filtering in the context of 

diversification and portfolio management [19], [14]; 

evaluation of risk spillovers using volatility-based networks 

[37], [9], and [32]; better understanding of market shocks 

global impact and precisely measuring the changes of the 

network topology during periods of market turbulence [38], 

[39], and [7]. Vertex-wise centrality measures can be applied 

on a sequence of networks estimated on a rolling window of 

historical data, in order to produce time series that describe 

the time evolution of the influence of specific assets (e.g. 

company stocks, currencies), or the average importance of 

entire economic sectors as well. Furthermore, time series can 

be used to describe the properties of an entire network using 

network-wise measures, for instance how the diameter, 

average/maximum degrees [22] and density change pre, 

during and post-crisis, and to what extent the interactions 

between network core and periphery vary in time, which 
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facilitates to figure out how the available information may be 

used for forecasting. From this perspective, it might be also 

interesting to study the edge survival ratios [40], with the 

purpose to examine the network stability over long periods 

(or also, at the occurrence of market shocks), and the 

robustness of the model and results [37], [9] and [2]. 

Moreover, the above is applicable for the comparison of 

different markets (e.g. European, US and APAC stock 

markets) and the time-evolution patterns of different asset 

classes.  

IV. VERTEX DEGREES AND DEGREE STABILITY 

In a network where vertices represent different companies’ 

stocks, a high vertex degree i.e. a densely connected vertex 

indicates that the corresponding company is highly influential 

to other companies [12]. This interpretation can easily be 

generalized to other financial assets. Whether a specific value 

of the degree can be considered high, obviously depends on 

the network, for instance, in [17], which analyses the 

currency market, vertices with degrees higher than two are 

considered to be central, but in the case of stock correlation 

networks of hundreds of nodes, the maximum degrees can 

reach values between 10 and more than 100 [1], [13], [14], 

[16], [18], [19], depending on the network size. Unlike the 

randomly growing graphs introduced by P. Erdos and A. 

Rényi [41], for which the degree distribution has a Poissonian 

form, many real-world networks growing via preferential 

attachment exhibit power-law distributed vertex degrees [42], 

according to the following formula:  𝑃𝐷(𝑘) → 𝑐𝑘−𝛼 where 𝛼 

is the scaling parameter, and 𝑐 is a normalization constant. A 

network following power-law in terms of vertex degrees is 

called a scale-free network, and this effect has been observed 

for various financial graphs, incl. stock correlation networks. 

In practice, this means that while the network grows, its 

diameter remains almost constant (the so called small world 

property). The typical values of 𝛼 vary between 2 and 3 for 

correlation-based MSTs [43], [16], and can decrease to values 

lower than 1.8 during crisis periods [40]. Smaller value of 𝛼 

correspond to shrinking network diameters, and inversely, 

larger diameters / values of 𝛼 are observed in calm market 

conditions.  

The authors of [16] compared fixed-size graph generated 

using two random simulation models (uncorrelated 

multivariate Gaussian returns time series and one-factor 

model representing market and stock returns), and a stock 

correlation graph derived from the daily closing prices of 

1071 stocks continuously traded at the NYSE over a 12-years 

period. They extracted the minimum spanning trees (see also 

the previous section) from three networks and investigated 

their topologies and node degree distributions. In the case of 

the multivariate Gaussian model, the observed distribution of 

degrees tends to a Poissonian form, and the obtained tree has 

only a few nodes with a degree greater than a few units, which 

also means that long files of vertices are observed. The one-

factor model produces a star-like tree structure with power-

law distributed degrees and one single central vertex. 

However, both random simulation models considered in [16], 

cannot capture the complexity of the real-world tree, where 

the degree distribution is confirmed to follow a power law, 

but there are several high-degree nodes in the center and more 

complex hierarchy is observed. Indeed, if we consider degree 

as a measure of the importance of a vertex, real-world 

networks exhibit a more structured hierarchy of the stocks’ 

importance, which cannot be reproduced using the considered 

simulation models.  

The time-varying degree of vertices gives us information 

about whether the network topology is stable over time and 

how often structural changes can be observed. An analysis of 

the degree stability is carried out in [13], where the authors 

constructed return-based and volatility based minimum 

spanning trees (MSTs) from 93 highly capitalized stocks 

traded over a 12 years’ period. They noted that the volatility 

based networks are more stable if Spearman rank-order 

correlation coefficient is used instead of Pearson correlation 

coefficient, since the probability density functions of 

volatility time series are highly skewed, unlike the case of 

returns. For both return and volatility MSTs they considered 

a rolling time window, computed series of time-varying 

degrees for all vertices (i.e. the importance of different 

stocks), and measured autocorrelation functions (ACFs) of 

the obtained series. The results of [13] indicate that volatility 

networks and MSTs are less stable over time compared to the 

case of returns, since the ACF values are significantly lower 

for degree series calculated on the basis of the volatility 

MSTs. Furthermore, the degrees of stocks have a slowly 

changing dynamics, with long range memory of 

approximately 3 calendar years for return based MSTs and 6 

years for volatility MSTs. It should be noted that this analysis 

can be extended to larger networks (for example, a large 

number of stocks), different markets and assets, and different 

periods. The Kolmogorov-Smirnov (KS) test can also be 

performed to compare the degree distributions of different 

MSTs, hence to quantify the difference between their 

structures, as suggested in [28].   

In addition to studying the empirical distribution of the 

degrees for various financial graphs, the concept of vertex 

degree can also be used in the graph construction process, in 

order to control the topology and the formation of clusters and 

cliques. An algorithm, called Proportional Degree (PD) is 

introduced in [18] in such a way that the vertex degrees in the 

obtained graphs are proportional to the importance of stocks.  

If the similarity between two assets is the Pearson correlation 

or the Mutual information between their corresponding log-

return (volatility) series, the sum of similarities between a 

particular asset and all other assets in the dataset, i.e. the sum 

of the edge weighs between this asset and its first degree 

neighbors (in the case of a fully connected undirected graph 

as described in Section II) can be represented as an asset 

importance. The PD algorithm is an iterative procedure which 

starts with an empty graph and allows the creation of edges 

between vertices only if their current degree is less than a 

boundary value proportional to their estimated importance. In 

other words, the networks generated using this algorithm 

would not contain densely connected vertices with small 

importance compared to all other vertices. As consequence, 

the properties of the obtained graphs will differ from fully 

connected graphs, MSTs [13], [1], asset graphs [44], planar 

graphs [45], [46], and [47], etc... In the particular case of 

networks where vertices correspond to companies’ stocks, the 

quality criterion of the results could be to observe stocks 

belonging to the same industrial sector to be clustered 
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together in the network. According to the analysis conducted 

in [18], the Proportional Degree algorithm produces more 

homogeneous maximal 3-cliques and 4-cliques from the 

perspective of sectoral classification, compared to planar 

graphs obtained using the planar maximally filtered graphs 

(PMFG) method [45], [47].  Furthermore, the networks 

obtained using the PD algorithm are more robust with respect 

to removing random edges compared to PMFG-based 

networks, and have better partitioning properties.  

V. LEAD-LAG RELATIONSHIPS, CAUSALITY AND DIRECTED 

GRAPHS 

The analytical approaches for studying topological 

properties and degree distributions discussed above are 

generally applicable for different types of graphs, including 

planar graphs, directed graphs, MSTs, and they do not depend 

on the exact model for creating edges in function of time 

series information. Correlation-based networks are widely 

used, but they do not take into account relationships such that 

an asset influences, but is not influenced by, another one. 

From a network perspective, it is necessary to use directed 

edges, as a directed edge between a pair of assets (e.g. 

currencies) 𝑈 and 𝑉 will only be created if a lead-lag / causal 

relationship is detected. For instance, if the cross-correlation 

between two series is highest at 𝑙𝑎𝑔 ≠ 0, the next step would 

be to identify whether the time-lagged values of the series 𝑉 

are those that have influence on 𝑈, or the opposite, i.e. what 

is the sign of the lag, and finally, to create an edge [48], [49], 

and [50]. Unlike cross-correlation and partial correlation [51] 

computations, which provide a direct estimate for the strength 

of linear lead-lag relationship between stochastic processes 

[21], a causality test gives information on the predictive 

power of one process to another. Formally, let {𝑟𝑈,𝑡}
0≤𝑡≤𝑇

 and 

{𝑟𝑉,𝑡}
0≤𝑡≤𝑇

 be the log-returns of 𝑈 and 𝑉. Let us denote by 

Ω𝑈,𝑡 , Ω𝑉,𝑡  the information sets of all returns known at 𝑡 for 𝑈 

and 𝑉 respectively. The null hypothesis (7) means that 

knowledge of the past time-lagged information relevant to 𝑉 

does not improve the prediction ability for the future values 

of 𝑈.  

 

𝐻0: 𝔼(𝑟𝑈,𝑡  | Ω𝑈,𝑡−1) =  𝔼(𝑟𝑈,𝑡  | Ω𝑈,𝑡−1, Ω𝑉,𝑡−1)   (7) 

 

On the other hand, if the null hypothesis is rejected, i.e. 

taking into account the information for 𝑉 available between 

0 and 𝑡 − 1 changes the expectation of 𝑟𝑈,𝑡 

 

𝐻1: 𝔼(𝑟𝑈,𝑡  | Ω𝑈,𝑡−1) ≠ 𝔼(𝑟𝑈,𝑡  | Ω𝑈,𝑡−1, Ω𝑉,𝑡−1)   (8) 

 

we say that 𝑉 causes 𝑈 (𝑉 → 𝑈). It is sufficient for 𝑟𝑉,𝑡−1 to 

have a statistically significant impact on 𝑟𝑈,𝑡 (i.e. at 𝑙𝑎𝑔 = 1) 

to assume that a causal relationship exists, but notice that 𝑟𝑈,𝑡 

can be influenced as well by older values 𝑟𝑉,𝑡−𝑘 , 𝑘 > 1 . 
Granger causality [20], along with the Vector Autoregressive 

Model (VAR) [52], [39] are the baseline used for the 

inference of causal networks in finance [2], [34], [8], [33], 

[9], and [32]. However, it is important to note that the 

relationships between time series in finance are very complex 

and it is useful to consider non-linear models for testing 

causality.  

 Unlike cross-correlation and Granger causality, the Mutual 

information [53], is a measure based on the Kullback–Leibler 

divergence, able to capture both linear and non-linear 

dependencies. Transfer entropy [54], can be seen as an 

improvement of Mutual Information, which uses appropriate 

transition probabilities computations in order to better 

"distinguish information that is actually exchanged from 

shared information due to common history and input signals". 

Rényi Transfer Entropy is also a model-free measure capable 

to detect non-linear interactions, discussed in [55] in the 

context of detecting spillovers of rare events (market 

drawdowns) at the network-wide level. Causation Entropy 

and an algorithm for causal network inference (called oCSE) 

has been developed in [56], as an improvement of the 

Conditional Mutual Information and the Transfer Entropy. 

According to the authors, some remaining problems need to 

be addressed, in order to make this measure applicable in a 

wider practical context. A discussion of alternative 

approaches to detect causality and measures with good 

properties can be found in [57], [58], and [38].  

 

 

 
Fig. 3. Example from [59] of a Directed Acyclic Graph (DAG) with retained 

only the vertices with deg (𝑣) ≥ 20, extracted from a log-return based 
causality graph of S&P500 stocks for the period 01-Oct-2019 to 31-Dec-

2019. Vertex labels correspond to stock tickers; edge labels correspond to 
estimated lags of the causal relationships.  

 

Causality networks, similarly to correlation-based 

networks, can be useful for identifying the vertices which 

play a role of information diffusion mediums [33]. In the 

context of transmission of market shocks and measuring 

systemic risks, causality inference allows to explain the 

volatility of an asset by taking into account not only its own 

past volatilities, but the past volatility series of other assets, 

as well (see [37] and [60]). This is applicable not only on an 

individual vertex level, but also for network clusters and 

industrial sectors in the case of company stocks, allowing to 

find risk spillover propagators. Power-law tail-exponents of 

the in and out degrees, as discussed in the previous section, 



PROCEEDINGS OF THE TECHNICAL UNIVERSITY OF SOFIA, ISSN: 1311-0829, VOL. 71, NO. 1, YEAR 2021 

 
6 

can be further analyzed from the perspective of time-varying 

causality graphs. Jump growth of node degrees of global 

stock market indices networks have been observed after the 

stock market crash in Asian-Pacific region (Jan 2008), after 

announcements of significant losses (HSBC in Jan 2007, 

Deutsche Bank in Feb 2016), during the period of the 

subprime mortgage crisis and debt crises (Greece in Apr 

2010, EU in Sep 2011), and after the Brexit vote (Jun 2016) 

[8]. According to [9] and [32], this information can improve 

the forecasting of returns and volatility, and moreover, the 

predictability of extreme risk in the economy and to help 

constructing early indicators. The time evolution and stability 

of volatility spillover networks was studied in [2] and [9] by 

calculating the surviving ratios of edges. The topological 

properties and core-periphery interactions are susceptible to 

change during market distress and crisis, which were 

analyzed [8]-[10], [31], [60], and [61]. 

VI. CONCLUSION 

Graph theory, combined with probability and statistics, can 

provide useful tools for large-scale analysis of financial data. 

This study discusses models and methods for constructing 

correlation or causality based financial networks, and also 

explores their fundamental properties. Furthermore, the 

literature reviewed in this paper considers some sophisticated 

methods for filtering and analyzes some networks depending 

on the context of application and the type of input data used 

(e.g. asset class, sampling frequency, volume and time 

horizon). Taking into account this variety of methods can lead 

to the identification of potentially useful new tools and clues 

in what direction to expand the research. Given the wide 

range of practical contexts and applicable analytical methods, 

as a future work we consider to perform more comparisons 

between existing methods and models, using different data 

sets. In addition, we believe a good direction would be to 

investigate further the clustering behavior within financial 

networks which evolve over time.  
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