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Overview of PCA-based statistical process monitoring

methods for time-dependent, high-dimensional data

Bart De Ketelaere∗, Mia Hubert†, Eric Schmitt ‡

Abstract

High-dimensional and time-dependent data pose
significant challenges to Statistical Process Moni-
toring. Dynamic Principal Component Analysis,
Recursive PCA and Moving Window PCA have
been proposed to cope with high-dimensional and
time-dependent features. We present a compre-
hensive review of this literature for the practitioner
encountering this topic for the first time. We
detail the implementation of the aforementioned
methods, and direct the reader towards extensions
which may be useful to their specific problem. A
real data example is presented to help the reader
draw connections between the methods and the
behavior they display. Furthermore, we highlight
several challenges that remain for research in this
area.
Keywords: autocorrelation, non-stationarity,
principal component analysis
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1 Introduction

Quality control charts are a widely used tool, de-
veloped in the field of statistical process monitor-
ing (SPM) to identify when a system is deviating
from typical behavior. High-dimensional, time-
dependent data frequently arise in applications
ranging from health care, industry, IT, and econ-
omy. These data features challenge many canoni-
cal SPM methods, which lose precision as the di-
mensionality of the process grows, or are not well-
suited for monitoring processes with a high degree
of correlation between variables. In this paper, we
present an overview of foundational principal com-
ponent analysis-based techniques currently avail-
able to cope with these process types, and indi-
cate some advantages and disadvantages. A wide
range of scenarios encountered in SPM have moti-
vated the development of many control chart tech-
niques, which have been improved and reviewed
over the course of the last forty years. Bersimis
et al. (2006) give an overview of many multivariate
process monitoring techniques, such as the mul-
tivariate EWMA and multivariate CUSUM, but
provides minimal coverage of techniques for high-
dimensional processes. Barceló et al. (2010) com-
pare the classical multivariate time series Box-
Jenkins methodology with a partial least squares
(PLS) method. The latter is capable of monitoring
high-dimensional processes, but more methods for
a broader range of time-dependent process scenar-
ios are not covered. In discussing the monitoring of
multivariate processes, Bisgaard (2012) highlights
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principal components analysis (PCA), partial least
squares, factor analysis and canonical correlation
analysis as applicable monitoring methods. These
methods and their extensions have the property
that they are capable of handling high-dimensional
process data, and time-dependence. All of them
project the high-dimensional process onto a lower
dimensional subspace, and monitor the process
behavior with respect to it. Woodall and Mont-
gomery (2014) provide a survey of multivariate
process monitoring techniques as well as motiva-
tions for their use. The authors also provide clear
insights into possible process types and which mon-
itoring methods might be suitable, and offer com-
mentary on popular performance measures, such
as the average run length and false discovery rate.
Other books and papers devote more attention to
PCA process monitoring. Kourti (2005) describes
fundamental control charting procedures for la-
tent variables, including PCA and PLS, but does
not discuss many of the main methods for time-
dependent data nor their extensions. Kruger and
Xie (2012) includes a chapter covering the mon-
itoring of high-dimensional, time-dependent pro-
cesses, but focuses on one method only. Qin (2003)
provides a review of fault detection, identification
and reconstruction methods for PCA process mon-
itoring. He mentions the challenges of monitor-
ing time-dependent processes, but restricts his pri-
mary results to cases where the data is not time-
dependent. However, to the best of our knowledge,
an overview directly focusing on the range of avail-
able control chart techniques concerned with high-
dimensional, time-dependent data has not yet been
written with directions for practical use.
We assume that we have observed a large num-

ber, p, of time series xj(ti), (1 6 j 6 p) during
a calibration period t1, t2, . . . , tT . As time contin-
ues, more measurements become available. SPM
aims to detect deviations from typical process be-
havior during two distinct phases of process mea-
surement; called Phase I, and Phase II. Phase I is
the practice of retrospectively evaluating whether
a previously completed process was statistically

in control. Phase II is the practice of determin-
ing whether new observations from the process
are in control as they are measured. Two types
of time-dependence are autocorrelation, and non-
stationarity. Autocorrelation arises when the mea-
surements within one time series are not indepen-
dent. Non-stationarity arises when the parameters
governing a process, such as the mean or covari-
ance, change over time. While it can be advanta-
geous to include process knowledge, such as infor-
mation about normal state changes, for the sake of
focus we will assume no such prior knowledge.
When no autocorrelation is present in the data,

and the process is stationary, control charts based
on PCA have been successfully applied in pro-
cess monitoring settings with high-dimensionality.
These methods operate by fitting a model on a
T × p calibration data matrix XT,p, where the i-
th row in the j-th column contains the i-th mea-
surement of the j-th time series xj(ti) for 1 6

i 6 T . The number of rows of XT,p thus refers
to the number of observed time points, and the
number of columns to the number of time-series
measured in the system. The calibration data
are chosen to be representative of typical behav-
ior of the system. A new observation at time t,
x(t) = (x1(t),x2(t), . . . ,xp(t))

′, is compared to
the data in XT,p, and evaluated by the control
chart to determine whether it is typical. This is
called Static PCA because the fitted model re-
mains static as new observations are obtained.
Therefore, it will not adjust as underlying pa-
rameter values change (non-stationarity), and no
attempt is made to model relationships between
observations at different time points (autocorrela-
tion). One can identify autocorrelation in a process
by examining autocorrelation and cross-correlation
functions of the data, as we shall do below. Non-
stationarity can be assessed on univariate data us-
ing the augmented Dickey-Fuller test for a unit
root. In high-dimensional data, a compromise is to
perform this test on each of the scores of a Static
PCA model.
Three classes of approaches have been proposed
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to extend PCA methods to cope with time depen-
dent data. These are Dynamic PCA (DPCA), Re-
cursive PCA (RPCA), and Moving Window PCA
(MWPCA). DPCA was developed to handle auto-
correlation, whereas RPCA and MWPCA are able
to cope with non-stationary data. No method is
currently proposed for settings when both auto-
correlation and non-stationarity are present. Al-
though existing methods may provide acceptable
monitoring in some contexts, this is nonetheless
an area for further research.

2 Introducing the NASA

bearings data set

Throughout this paper, the NASA Prognostics
Center of Excellence Bearing data set (Lee et al.,
2007) will be used to illustrate the behavior of the
methods on data with autocorrelation and non-
stationarity. As shown in Figure 1, the data consist
of measurements of eight sensors (p = 8), with each
sensor representing either the x or y-axis vibration
intensities of a bearing. Four bearings are moni-
tored at intervals of approximately 15 minutes, and
a vibration signal of about a second is recorded to
describe the ”stability.” These raw data are then
compressed into a single feature for each sensor.
The resulting observations are 8-dimensional vec-
tors of bearing vibration intensities spaced at ap-
proximately 15 minute intervals. These are paired,
such that the first two sensors correspond to the
first bearing and so on. Figure 1 shows that there
are two variables, belonging to the seventh and
eighth sensors corresponding to the fourth bearing
(plotted in light orange), which begin to deviate
from typical behavior shortly after the 600th ob-
servation. Later in the experiment, a catastrophic
failure for all of the bearings is observed.

The NASA process shares many similarities with
a multi-stream process (MSP). An MSP results in
multiple streams of output for which, from the
perspective of SPM, the quality variable and its
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Figure 1: Data series depicting the autocorrelated,
non-stationary NASA ball bearing data set. Sen-
sors 7 and 8 are plotted in light orange. Other
sensors are plotted in dark blue.

specifications are identical across all streams. An
MSP may also be defined as a continuous process
where multiple measurements are made on a cross-
section of the product (Epprecht et al., 2011). The
NASA process has features of both of these defi-
nitions. It resembles the first in the sense that
each of the bearings may be seen as having sim-
ilar specifications to one another, with the aver-
age vibrations tending to be slightly different (but
this can be adjusted so that they have the same
mean), and the displayed variance being similar.
The NASA process resembles the second defini-
tion in the sense that multiple measurements are
made on a cross-section of the process; namely, all
of the bearings are measured by two sensors. We
detect some correlation between the streams, but
as Epprecht and Simões (2013) note, this violates
the assumption, made by most MSP methods, that
none is present. Given these process features, PCA
and its extensions are a possible monitoring solu-
tion. Runger et al. (1996) applied PCA to MSPs,
and note that this approach models the correlation
structure between process variables. PCA is also
capable of monitoring more general multivariate
processes consisting of outputs that do not have
identical properties, which may be the case when

3



the second MSP definition is more appropriate,
and multiple measurements are made on a cross-
section. An additional advantage of PCA is that it
is capable of modeling high-dimensional processes,
which can pose problems for many MSP methods
requiring an invertible covariance matrix.
Histograms, correlations, and pairwise scatter-

plots of vibration intensity measurements from
sensors (1 and 2) placed on a typical bearing and
sensors (7 and 8) on a deviating bearing are pre-
sented in Figure 2 for the first 120 observations,
since these exhibit behavior characteristic of the
in-control process. The corresponding autocorrela-
tion functions (ACFs) up to fifty lags are depicted
in Figure 3. The autocorrelation is presented as
light-orange bars, while a limit to identify lags with
high autocorrelation is expressed as a dark-blue
line. During this early period, the pairs of sen-
sors are only mildly correlated, with autocorrela-
tion only exceeding the dark blue line indicating
the 97.5 percentile limits for a few lags. For com-
parative purposes, the descriptive plots and auto-
correlation functions are also shown for observa-
tions between t = 600 and t = 1000 in Figures 4
and 5. In the plots for the later time period, we
see that sensors seven and eight become highly cor-
related as failure occurs. An advantage of multi-
variate control charts is that they take the change
in the correlation between variables into account
when determining if a system is going out of con-
trol. Furthermore, since non-stationarity has be-
gun to develop, the ACFs now report very high
order autocorrelation.
Earlier observations will be used to fit models,

but control charts will also be used to assess these
observations. In our context, we will consider this
monitoring Phase I because it could be used by
the practitioner to gain a better understanding of
the behavior of this process from historical data.
For the purposes of this paper, we will consider
the later observations to be absent from the his-
torical observations the practitioner could access
for Phase I monitoring, and thus monitoring these
later observations will constitute Phase II.
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Figure 2: Histograms, scatterplots and correla-
tions of sensors 1, 2, 7 and 8 during the first 120
measurements.
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Figure 3: ACFs of sensors 1, 2, 7 and 8 during the
first 120 measurements.

3 Static PCA

3.1 Method

Principal components analysis defines a linear re-
lationship between the original variables of a data
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Figure 4: Histograms, scatterplots and correla-
tions of sensors 1, 2, 7 and 8, during the time
period between t = 600 and t = 1000.
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Figure 5: ACFs of sensors 1, 2, 7 and 8 during the
time period between t = 600 and t = 1000.

set, mapping them to a set of uncorrelated vari-
ables. In general, Static PCA assumes to have ob-
served an (n×p) data matrixXn,p = (x1, . . . ,xn)

′.
Let 1n = (1, 1, . . . , 1)′ be of length n. Then

the mean can be calculated as x̄ = 1
n
X ′

n,p1n

and the covariance matrix as S = 1
n−1

(Xn,p −
1nx̄

′)′(Xn,p − 1nx̄
′). Each p-dimensional vector x

is transformed into a score vector y = P ′(x − x̄)
where P is the p × p loading matrix, contain-
ing columnwise the eigenvectors of S. More pre-
cisely, S can be decomposed as S = PΛP ′. Here,
Λ = diag(λ1, λ2, . . . , λp) contains the eigenvalues
of S in descending order. Throughout this paper,
PCA calculations will be performed using the co-
variance matrix. However, it is generally the case
that the methods discussed can also be performed
using the correlation matrix R by employing dif-
ferent formulas.

It is common terminology to call y the scores
and the eigenvectors, P , the loading vectors. In
many cases, due to redundancy between the vari-
ables, fewer components are sufficient to represent
the data. Thus, using k < p of the components,
one can obtain k-dimensional scores by the follow-
ing:

y = P ′

k(x− x̄) (1)

where Pk contains only the first k columns of P .
To select the number of components to retain in
the PCA model, one can resort to several meth-
ods, such as the scree plot or cross-validation. For
a review of these, and other methods, see e.g. Valle
et al. (1999) and Jolliffe (2002). In this paper,
the number of components will be selected based
on the cumulative percentage of variance (CPV),
which is a measure of how much variation is cap-
tured by the first k PCs:

CPV(k) =

∑k
j=1 λj∑p
j=1 λj

100%.

The number of PCs is selected such that the CPV
is greater than the minimum amount of variation
the model should explain.

Control charts can be generated from PCA mod-
els by using the Hotelling’s T 2 statistic and the
Q-statistic, which is also sometimes referred to as

5



the Squared Prediction Error (SPE). For any p-
dimensional vector x Hotelling’s T 2 is defined as:

T 2 = (x− x̄)′PkΛ
−1
k P ′

k(x− x̄) = y′Λ−1
k y

where Λk = diag(λ1, λ2, . . . , λk) is the diagonal
matrix consisting of the k largest eigenvalues of S.
The Q-statistic is defined as:

Q = (x− x̄)′(I − PkP
′

k)(x− x̄) = ||x− x̂||2

with x̂ = PkP
′

k(x − x̄). The Hotelling’s T 2 is
the Mahalanobis distance of x in the PCA model
space, and the Q-statistic is the quadratic orthog-
onal distance to the PCA space. Assuming tempo-
ral independence and multivariate normality of the
scores, the 100(1−α)% control limit for Hotelling’s
T 2 is

T 2
α =

k(n2 − 1)

n(n− k)
Fk,n−k(α). (2)

Here, Fk,n−k(α) is the (1− α) percentile of the F -
distribution with k and n − k degrees of freedom.
If the number of observations is large, the con-
trol limits can be approximated using the (1 − α)
percentile of the χ2 distribution with k degrees of
freedom, thus T 2

α ≈ χ2
k(α). The simplicity of cal-

culating this limit is advantageous. The control
limit corresponding to the (1−α) percentile of the
Q-statistic can be calculated, provided that all the
eigenvalues of the matrix S can be obtained (Jack-
son and Mudholkar, 1979):

Qα = θ1

(
zα
√
2θ2h2

0

θ1
+ 1 +

θ2h0(1− h0)

θ21

)2

where

θi =

p∑

j=k+1

λi
j for i = 1, 2, 3 and h0 = 1−

2θ1θ3
3θ22

and zα is the (1−α) percentile of the standard nor-
mal distribution. Another way of obtaining cut-
offs for the Q-statistic based on a weighted χ2 dis-
tribution is detailed in Nomikos and MacGregor
(1995). An advantage of this approach is that it is

relatively fast to compute. During Phase I the T 2

and Q-statistic are monitored for all observations
x(ti) = (x1(ti), . . . ,xp(ti))

′ with 1 6 i 6 T . It is
important to note that fitting the PCA model to
this data will result in a biased model with possi-
ble inaccurate fault detection if faults are present,
since they can bias the fit. If faults are present,
it is advised to fit a robust PCA model and refer
to the monitoring statistics it produces. Phase II
consists of evaluating contemporary observations
xt = x(t) using the T 2 and Q statistic based on
the outlier-free calibration set.

An intuitive depiction of Static PCA is given in
Figure 6. This figure will serve as a basis of com-
parison between the DPCA, RPCA and MWPCA
techniques that are discussed in the following sec-
tions. Variables are represented as vertical lines of
dots measured over time. The light-red rectangle
contains the observed data during the calibration
period that is used to estimate the model that will
be used for subsequent monitoring. The dark-blue
rectangle is the new observation to be evaluated.
The two plots show that at time t + 1 (right) the
same model is used to evaluate the new observa-
tion in dark blue as in the previous time period, t
(left).
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Figure 6: A schematic representation of Static
PCA at times t (left) and t+1 (right). The model
is fitted on observations highlighted in light-red.
The new observation, highlighted in dark-blue, is
evaluated.
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PCA is well suited for monitoring processes
where the total quality of the output is properly
assessed by considering the correlation between all
variables. However, if a response variable is also
measured and the relationship of the process vari-
ables to it is of primary interest, the technique of
partial least squares (PLS) is preferred to PCA.
Like linear regression, it is used to model the lin-
ear relation between a set of regressors and a set
of response variables, but like PCA it projects the
observed variables onto a new space, allowing it to
cope with high-dimensional data. Control charts
may be implemented for PLS, in much the same
way as they are for PCA. Kourti (2005) provides
a comparison of PCA and PLS, as well as some
references for PLS control chart literature.
Static PCA requires a calibration period to fit

a model. However, it is well known that PCA is
highly susceptible to outliers. If outliers are in-
cluded in the data used to fit a monitoring model,
the detection accuracy can be severely impaired.
Robust PCA methods, such as ROBPCA (Hu-
bert et al., 2005), have been designed to pro-
vide accurate PCA models even when outliers are
present in the data. A robust PCA method can
be used to identify outliers in the calibration data
for removal or examination. Once these are re-
moved, the resulting robust PCA model can be
used as the basis for subsequent process monitor-
ing. ROBPCAmay be performed using the robpca
function in the LIBRA toolbox (Verboven and Hu-
bert, 2005), or the PcaHubert function in the R

package rrcov (Todorov and Filzmoser, 2009).
In addition to outliers, future observations with

missing data and observations with missing data
during the calibration phase present challenges for
process monitoring. In the context of PCA con-
trol charts, a number of options for addressing
these issues exist. The problem of future obser-
vations with missing data is typically addressed
by using the process model and non-missing ele-
ments of the new observation, xnew, to correct for
the missingness of some of its elements. Examples
of algorithms using this approach at various levels

of complexity are discussed in Arteaga and Ferrer
(2002). They conclude that a method referred to as
trimmed score regression (TSR) has the most ad-
vantages, in terms of accuracy and computational
feasibility, of the methods they considered. TSR
uses information from the full score matrix Y from
the calibration data, the loadings in P correspond-
ing to the non-missing variables in xnew and xnew

itself, to estimate the ynew. In the event that the
calibration data has missing values, one does not
have access to existing estimates of P and Y to use
for missing data corrections. Walczak and Massart
(2001) propose a method for missing data imputa-
tion based on the expectation maximization (EM)
algorithm. Serneels and Verdonck (2008) make this
method robust, allowing missing data imputation
to proceed even when the calibration data set is
contaminated by outliers. An implementation is
available in the rrcovNA package (Todorov, 2013)
in R (R Core Team, 2014).

3.2 Static PCA applied to the

NASA data

In this subsection we apply Static PCA to the
NASA data. Before constructing control charts,
we performed ROBPCA on the first 120 observa-
tions that we use to fit the PCA model. No signifi-
cant outliers were detected, so we fit a PCA model
on that data without removing observations. No
data was missing in this data set, so missing data
methods were not employed. It is common in many
fields to perform preprocessing. The type of pre-
processing is typically determined by the type of
process being monitored, with chemometrics, for
instance, giving rise to many preprocessing ap-
proaches specific to that context. In the case of
the NASA data, no special preprocessing is neces-
sary. Since all of the sensors are measuring vibra-
tion in the same units, standardizing the data is
not strictly necessary, but it will be performed for
all of the methods considered since the adaptive
methods will perform it automatically.
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Static PCA applied to the NASA bearing data
set generates the control chart in Figure 7 and ACF
plot in Figure 8. We plot the logarithm of the T 2

and Q-statistics in these and subsequent charts as
solid light-orange lines, and the control limit in
solid, dark-blue lines. The first 120 observations
are used to fit the underlying model, as we do not
observe any large change in the vibration inten-
sity of any of the sensors during this period, and
this will also allow us to evaluate the estimated
model against the well-behaved data observed be-
fore t = 120. Therefore, we differentiate between
Phase I, which takes place when t 6 120 and Phase
II. A vertical line divides these two periods in Fig-
ure 7. Five components are retained in accordance
with the CPV criterion. We see that failure of the
system is detected before catastrophic failure oc-
curs, at around t = 120 by the Q-statistic, and
at around t = 300 by the T 2-statistic. Since we
did not detect any major outliers using ROBPCA
during Phase I, it is not surprising that few obser-
vations exceed the cut-offs during this early period
and that later during Phase II when the issue with
the fourth bearing develops we find a failure. Fig-
ure 8 shows there is room to reduce the variability
of the statistics by accounting for autocorrelation.
Examining the first score, we see that the auto-
correlations are fairly low, but when the number
of lags is less than ten or more than thirty, many
exceed the cutoff. The second component exhibits
even stronger autocorrelation. Reducing the auto-
correlation will more strongly justify the assump-
tion that the control chart statistics are being cal-
culated on i.i.d. inputs.
It is desireable that a model of the data be in-

terpretable. One way to interpret PCA is by ex-
amining the loadings it produces. In some cases,
this reveals a logical structure to the data. Table 1
presents the loadings of the Static PCA model of
the NASA data. In the case of this data set, a clear
structure is not revealed by the loadings. The first
component loads most heavily on sensors 1, 2, and
5. It is understandable that the sensors 1 and 2
might be correlated since they both measure the
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Figure 7: Static PCA control charts for the entire
NASA data set. The first 120 observations are used
to fit the underlying model.
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Figure 8: ACFs of the first two scores of Static
PCA applied to the NASA data set for t 6 120.

first bearing, but sensor 5 measures the third bear-
ing. The remaining components are similarly am-
biguous, with none corresponding to an intuitive
structure. One way to improve interpretabilty of
PCA models is to employ a rotation, such as the
varimax. However, doing so is not necessary to
achieve desirable fault detection properties. The
last three components differ from the first two in
that some of the values of the loadings are so small
that they are effectively zero (these are left blank
in the table). The omission of relatively unimpor-
tant variables from components increases the inter-
pretability of them. Two similar procedures for ac-
complishing this are Sparse PCA (Zou et al., 2006)
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and SCoTLASS (Jolliffe et al., 2003). These meth-
ods are designed to return a PCA model which fits
the data well, while giving many variables small or
zero loadings on the components where they are
relatively unimportant.

Table 1: Loadings of the Static PCA model of the
NASA data.

Component
1 2 3 4 5

S
en
so
r

1 -0.471 0.231 -0.173 0.264
2 -0.430 0.306 -0.341 0.403
3 -0.249 0.175 -0.194 -0.400 -0.359
4 -0.259 0.110 -0.320 -0.570
5 -0.467 -0.615 0.205 0.301 -0.240
6 -0.368 -0.464 -0.418 0.269
7 -0.236 0.422 0.788 -0.128 -0.276
8 -0.233 0.198 0.212 0.807

As a byproduct of PCA, one can construct a
contribution plot, showing the contribution of each
variable to the control statistics for a given obser-
vation (Miller et al., 1998). The contributions of
the jth variable to the T 2 and the Q-statistic of an
observation x is the jth element of the vectors:

T 2
contr = (x− x̄)′PkΛ

− 1/2
k P ′

k (3)

Qcontr = (x− x̄)′(I − PkP
′

k).

These contributions can be plotted as bars with
the expectation that variables which made a large
contribution to a fault can be identified by higher
magnitude bars. This does not necessarily lead to
precise identification of the source of the fault, but
it shows which variables are also behaving atypi-
cally at the time of occurrence. In Figure 9, we dis-
play contribution plots for observations before the
fault (t = 100) and after (t = 1200). Comparing
the two plots, we see that both statistics are much
less influenced by the observation from t = 100
than from t = 1200. Focusing on the contribution
plots for later observation, we see that the plot
for the Q-statistic is ambiguous, but that the con-
tribution plot for the T 2-statistic clearly indicates

sensors 7 and 8 as the primary sources for this
observation’s deviation on the model space. Inter-
preting these plots, the practitioner would likely
investigate the fourth bearing more closely. When
many variables are being monitored, the contribu-
tion plot can become difficult to interpret. Hierar-
chical contribution plots are a way of overcoming
this issue (Qin et al., 2001). Qin (2003) provide fur-
ther detail on extensions to the contribution plot
and fault reconstruction.

0

2

4

6

0

2

4

6

1 2 3 4 5 6 7 81 2 3 4 5 6 7 8

t=
1
0
0

t=
1
2
0
0

T
2 − statistic Q−statistic

T
2 − statistic Q−statistic

Figure 9: Contribution plots showing the contri-
bution of each sensor to the T 2 and Q-statistics
for observations at t = 100 and t = 1200.

4 Dynamic PCA

4.1 Method

One approach for addressing autocorrelation is to
perform first-order differencing. This can diminish
the effects of autocorrelation, but it is problematic
in the context of process monitoring. Problems
arise when detection of some fault types, such as
step faults, is desired. In the case of step faults,
differencing will reveal the large change that takes
place when the fault first occurs, but subsequent
faulty observations will appear normal since they
are in control relative to one another. As a result,
an operator interpreting the control chart may be
led to believe that the first faulty observation was
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an outlier, and the process is back in control. Dy-
namic PCA was first proposed in Ku et al. (1995)
as a way to extend Static PCA tools to autocor-
related, multivariate systems. The authors note
that previously, others had taken the approach of
addressing autocorrelated data by fitting univari-
ate ARIMA models to the data and analyzing the
residuals which ignores cross-correlation between
the variables. Attempts were made to improve
the results by estimating multivariate models us-
ing this approach, but this quickly proves to be
a complex task as p grows, due to the high num-
ber of parameters that must be estimated and the
presence of cross-correlation.

DPCA combines the facility in high dimensions
of PCA with the ability to cope with autocorrela-
tion of ARIMA. The approach of Ku et al. (1995)
is that in addition to the observed variables, the
respective lagged values up to the proper order can
also be included as input for PCA estimation. For
example, an AR(1) process will require the inclu-
sion of lagged values up to order one.

Given data observed up to time T , XT,p, DPCA
with one lag models the process based on a ma-
trix including one lag, X̃T−1,2p, which has twice
as many variables and one fewer row as a re-
sult of the lagging. More generally for an AR(l)

process, we obtain X̃T−l,(l+1)p, where the ith row

of X̃T−l,(l+1)p is (x(ti+l),x(ti+l−1), . . . ,x(ti)) with
i = 1, . . . , T − l. As new observations are mea-
sured, they are also augmented with lags as in the
rows of X̃T−l,(l+1)p, and compared to the model
estimated by DPCA. In estimating the linear re-
lationships for the dimensionality reduction, this
method also implicitly estimates the autoregressive
structure of the data, as e.g. illustrated in Tsung
(2000). For addressing the issue of moving average
(MA) terms, it is well known that an MA process
can be approximated by using a high enough or-
der AR process. As functions of the model, the T 2

and Q-statistics now will also be functions of the
lag parameters. If the outlier detection methods
discussed in Section 3.1 are of interest, they can

be applied after including the appropriate lags.

DPCA is characterized intuitively in Figure 10,
where a model estimated from observations in the
light-red window is used to evaluate whether the
newly observed observation and the correspond-
ing lagged observations, in dark-blue, deviate from
typical behavior. Note that because the assump-
tion is that the mean and covariance structures
remain constant, it is sufficient to use the same
model to evaluate observations at any future time
point.
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Figure 10: A schematic representation of DPCA
with one lag at times t (left) and t+ 1 (right).

Ku et al. (1995) demonstrate that their proce-
dure accounts for the dynamic structure in the raw
data, but note that the score variables will still be
autocorrelated and possibly cross-correlated, even
when no autocorrelation is present. Kruger et al.
(2004) prove the scores of DPCA will inevitably
exhibit some autocorrelation. They show that the
presence of autocorrelated score variables leads to
an increased rate of false alarms from DPCA pro-
cedures using Hotelling’s T 2. They claim that the
Q-statistic, on the other hand, is applied on the
model residuals, which are assumed to be i.i.d., and
thus this statistic is not affected by autocorrelation
of the scores. They propose to remedy the presence
of autocorrelation in the scores through ARMA fil-
tering. Such an ARMA filter can be inverted and
applied to the score variables so that unautocorre-
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lated residuals are produced for testing purposes.
Another possibility is to apply an ARMA filter on
the process data, but in cases where the data is
high-dimensional, it is generally more practical to
work on the lower-dimensional scores.
Luo et al. (1999) propose that the number of

false alarms generated using DPCA methods can
be reduced by applying wavelet filtering to isolate
the effects of noise and process changes from the
effects of physical changes in the sensor itself. This
approach does not specifically address problems
of autocorrelations and non-stationarity, but the
authors find that results improve when a DPCA
model is applied to autocorrelated data that has
been filtered.
Another approach to reduce the autocorrelation

of the scores was introduced and explored by Rato
and Reis (2013a) and Rato and Reis (2013c).
Their method DPCA-DR proceeds by compar-
ing the one-step ahead prediction scores (com-
puted by means of the Expectation-Maximization
algorithm) with the observed scores. The result-
ing residuals are almost entirely uncorrelated, and
therefore suitable for monitoring. Statistics based
on this approach are typically better behaved than
those produced by both Static and conventional
DPCA, sometimes significantly so.

4.2 Choice of parameters

A simple way to select the number of lags manu-
ally is to apply a PCA model with no lags and
examine the ACFs of the scores. If autocorre-
lation is observed, then an additional lag can be
added. This process can be repeated until enough
lags have been added to sufficiently reduce the au-
tocorrelation. However, this approach is extremely
cumbersome due to the number of lags that it may
be necessary to investigate, and similarly if there
are many components, there will be many ACFs to
inspect. Ku et al. (1995) provide an algorithm to
specify the number of lags which follows from the
argument that a lag should be included if it adds
an important linear relationship. Beginning from

no lags, their algorithm sequentially increases the
number of lags and evaluates whether the new lag
leads to an important linear relationship for one of
the variables. This method explicitly counts the
number of linear relationships. When a new lag
does not reveal an important linear relationship,
the algorithm stops and the number of lags from
the previous iteration is used. The number of lags
selected is usually one or two and all variables are
given the same number of lags.

Rato and Reis (2013b) propose two new, comple-
mentary methods for specifying the lag structure.
The first is a more robust method of selecting the
common number of lags applied to all variables
than the Ku et al. (1995) approach. It also in-
creasingly adds lags, but the algorithm stops after
l lags, if, roughly said, the smallest singular value
of the covariance matrix of the extended data ma-
trix X̃ is significantly lower than the one using
l− 1 lags. Intuitively, this corresponds to the new
lag not providing additional modeling power. The
second method begins from the previous one, and
improves it by also reducing the number of lags for
variables which do not require so many, thereby
giving a variable determined lag structure. The
authors show that this better controls for autocor-
relation in the data, and leads to better behaviors
of the test statistics.

4.3 DPCA applied to the NASA

data

DPCA control charts for the NASA data are shown
in Figure 11. Parameter values for DPCA and the
adaptive methods are presented in Table 2. For
DPCA, this is the number of lags; for RPCA, the
forgetting factor η; and for MWPCA, the window-
size H. All models select the number of latent
variables (LV) such that the CPV is at least 80%.
The number of components used at the last eval-
uation of the system is included for each setting.
Typically, the number of latent variables varies at
the beginning of the control chart and then stabi-
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lizes to the value that is shown.

Table 2: Parameter values (PV) used in the NASA
data example for all time-dependent methods.

Low High
Method LV PV LV PV
DPCA 8 1 39 20
RPCA 2 0.9 2 0.9999

MWPCA 1 40 1 80

Proposals for automatically selecting the param-
eter of each of the methods are available, but a
consensus does not exist on which is best for any
of the three. Thus, for each method, we select
low and high values for the parameter of interest
to illustrate how this influences the performance.
Nonetheless, we still note that automatic methods,
such as those discussed for selecting the number of
lags for DPCA, should be considered within the
context facing the practitioner.
When DPCA is applied, the number of com-

ponents needed to explain the structure of the
model input grows. For one lag, 8 components
are needed, while for 20 lags 39 components are
taken. This has the shortcoming that data sets
with few observations may not be able to support
such a complex structure. Figure 11 shows the re-
sults of DPCA control charts fitted on the first 120
observations. Again, we consider the period when
t 6 120 as Phase I monitoring, and at later points
Phase II monitoring takes place. When l = 1, the
ACF of the first score (see Figure 12) exhibits au-
tocorrelation at lags below ten and above twenty,
as we saw in the case of Static PCA (see Figure 8).
The second score of Static PCA showed autocor-
relations exceeding the cut-off for almost all lags,
but we now see that almost none exceed the cut-
off. However, when 20 lags are used, we notice that
in the right plot of Figure 11 the monitoring statis-
tics are clearly autocorrelated. The ACFs of the
first two scores, shown in Figure 12, confirm that
autocorrelation is a major problem. This is an il-
lustration of the trade-off between adding lags to

manage autocorrelation and the issue that simply
adding more can actually increase autocorrelation.
A choice of the number of lags between 1 and 20
shows the progression towards greater autocorre-
lation.
It is possible to apply a contribution plot to a

DPCA model, as we did for Static PCA. However,
DPCA tends to use many more variables due to
the inclusion of lags. This can make interpreta-
tion more difficult. A subspace approach for au-
tocorrelated processes, such as the one proposed
by Treasure et al. (2004), may be used to increase
interpretability, though the authors note that the
detection performance remains comparable to that
of DPCA.
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Figure 11: DPCA control charts for the NASA
data set using 1 (top) and 20 (bottom) lags.
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Figure 12: ACFs of the first two scores of DPCA
applied to the NASA data set when using 1 (upper)
and 20 (lower) lags for t 6 120.

5 Recursive PCA

5.1 Method

Besides being sensitive to autocorrelation and
moving average processes, Static PCA con-
trol charts are also unable to cope with non-
stationarity. If a Static PCA model is applied to
data with a non-stationary process in it, then is-
sues can arise where the mean and/or covariance
structure of the model become misspecified be-
cause they are estimated using observations from
a time period with little similarity to the one be-
ing monitored. DPCA provides a tool for ad-
dressing autoregressive and moving average struc-
tures in the data. However, it is vulnerable to
non-stationarity for the same reason as Static
PCA. Differencing is a possible strategy for coping
with non-stationarity, but it suffers from the same
shortcoming as in the situation when the data is
autocorrelated (see Section 4.1). In response to
the need for an effective means of coping with non-
stationarity, two approaches have been proposed:
RPCA, and MWPCA. Both of these attempt to
address non-stationarity by limiting the influence
of older observations on estimates of the mean and
covariance structures used to assess the status of

observations at the most recent time point.

The idea of using new observations and expo-
nentially downweighting old ones to calculate the
mean and covariance matrix obtained from PCA
was first investigated by Wold (1994) and Gal-
lagher et al. (1997). However, both of these ap-
proaches require all of the historical observations
and complete recalculation of the parameters at
each time point. A more efficient updating ap-
proach was proposed in Li et al. (2000), which
provided a more detailed treatment of the basic
approach to mean and covariance/correlation up-
dating that is used in the recent RPCA literature.
A new observation is evaluated when it is obtained.
If the T 2 or Q statistics exceed the limits because
the observation is a fault or an outlier, then the
model is not updated. However, when the obser-
vation is in control, it is desirable to update the es-
timated mean and covariance/correlation from the
previous period. The approach of Li et al. (2000)
was inspired by a recursive version of PLS by Dayal
and MacGregor (1997b). This RPLS algorithm is
supported by a code implementation in the coun-
terpart paper (Dayal and MacGregor, 1997a).

More precisely, assume that the mean and co-
variance of all observations up to time t have been
estimated by x̄t, and St. Then at time t+1 the T 2

and Q-statistic are evaluated in the new observa-
tion xt+1 = x(t+1) = (x1(t+1), . . . ,xp(t+1))′. If
both values do not exceed their cut-off value, one
could augment the data matrix Xt,p with observa-
tion xt+1 as Xt+1,p = [X ′

t,p xt+1]
′ and recompute

the model parameters while using a forgetting fac-
tor 0 6 η 6 1. In practice, updating is not per-
formed using the full data matrix, but rather a
weighting is performed to update only the param-
eters. Denoting nt as the total number of obser-
vations measured at time t, the updated mean is
defined as:

x̄t+1 = (1−
nt

nt + 1
η)xt+1 +

nt

nt + 1
η x̄t,
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and the updated covariance matrix is defined as:

St+1 = (1−
nt

nt + 1
η)(xt+1 − x̄t+1)(xt+1 − x̄t+1)

′

+
nt

nt + 1
η St.

This is equivalent to computing a weighted mean
and covariance of Xt+1,p, where older values are
downweighted exponentially as in a geometric pro-
gression. Using a forgetting factor η < 1 allows
RPCA to automatically give lower weight to older
observations. As η → 1, the model forgets older
observations more slowly. The eigenvalues of St+1

are used to obtain a loading matrix Pt+1. Cal-
culating the new loading matrix can be done in
a number of ways that we touch upon when dis-
cussing computational complexity. Updating with
correlation matrixes involves similar intuition, but
different formulas. In order to lower the compu-
tational burden of repeatedly updating the mean
and covariances, one strategy has been to reduce
the number of updates, see He and Yang (2008).
Application of the outlier detection and missing
data methods discussed in Section 3.1 is problem-
atic in the case of RPCA since those techniques
are based on Static PCA and the number of obser-
vations used to initialize RPCA may be too short
to apply them reliably. However, if the calibration
data is assumed to be a locally stationary real-
ization of the process, then it may be possible to
apply them. These integration of such methods
into adaptive PCA monitoring methods remains
an open field in the literature.
RPCA is characterized intuitively in Figure 13,

where a model estimated from observations in the
light-red region is used to evaluate whether the
newly observed observation, in dark blue, deviates
from typical behavior. In this characterization, ob-
servations in the light-red region are given dimin-
ishing weight by a forgetting factor to reflect the
relative importance of contemporary information
in establishing the basis for typical behavior. As
the choice of the forgetting factor varies, so does
the weighting. Furthermore, new observations are

later used to evaluate future observations because
under the assumption that the monitored process
is non-stationary, new data is needed to keep the
model contemporary. When an observation is de-
termined to be out-of-control based on the T 2 or
Q-statistic, then the model is not updated.
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Figure 13: A schematic representation of Recur-
sive PCA with a forgetting factor η < 1, at times
t (left) and t + 1 (right). The observations used
to fit the model are assigned lower weight if they
are older. This is represented by the lightening of
the light-red region as the observations it covers
become relatively old.

Updating the control limits is necessary as the
dimensionality of the data could vary, and the un-
derlying mean and covariance parameters of the
PCA model change. In order to do so for the T 2,
it is only necessary to recalculate T 2

α = χ2
kt
(α) for

the newly determined number of PCs, kt. Further-
more, since Q(α) is a function of θi which are in
turn functions of the eigenvalues of the covariance
matrix, once the new PCA model has been esti-
mated, the Q-statistic control limit is updated to
reflect changes to these estimates. This is illus-
trated in the top (and bottom) plots of Figure 14,
which shows RPCA control charts of the NASA
data for low and high values of the forgetting pa-
rameter η. Here, we see that the cut-off of the T 2-
statistic experiences small, sharp steps up as the
number of components increases and down if they
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decrease. This is also the case for the cut-off of
the Q-statistic, although the fluctuations are the
result of the combined effects of a change in the
number of components and the covariance struc-
ture of the data. The time at which the major
fault is detected is clearly visible in the chart of
the Q-statistic as the time point at which the con-
trol limit stops changing from t = 637.
In order to differentiate between outlier obser-

vations and false alarms, a rule is often imposed
that a number of consecutive observations must
exceed the control limits before an observation is
considered a fault (often 3 is used). Choi et al.
(2006) propose that an effective way of using ob-
servations which may be outliers, or may prove to
be faults is to implement a robust reweighting ap-
proach. Thus, when an observation exceeds the
control limit, but is not yet determined to be a
true fault in the process, they propose to use a
reweighted version of the observed vector x, where
each component of x is downweighted according
to its residual to the current model. The intention
of this approach is to prevent outliers from influ-
encing the updating process, while still retaining
information from them instead of completely dis-
carding them.

5.2 Choice of parameters

Selecting a suitable forgetting factor in RPCA is
crucial. Typically, 0.9 6 η 6 0.9999 since for-
getting occurs exponentially, but lower values may
be necessary for highly non-stationary processes.
In Choi et al. (2006), RPCA is augmented using
variable forgetting factors for the mean and the
covariance or correlation matrix. This allows the
model to adjust the rate of forgetting to suit a pro-
cess with non-stationary. First, they define mini-
mum and maximum values of the forgetting factors
that can be applied to the mean and covariance,
respectively. Then, they allow the forgetting factor
to vary within those bounds based on how much
the parameter has changed since the previous pe-
riod relative to how much it typically changes be-

tween periods.

Computational complexity is an important con-
cern faced by algorithms which perform frequent
updates. Updating the mean is relatively straight-
forward, since doing so is only a rank-one mod-
ification. Updating the covariance matrix and
then calculating the new loading matrix proves to
be more involved. It is possible to proceed us-
ing the standard SVD calculation, but this is rel-
atively slow, with O(p3) time, and hence other
approaches to the eigendecomposition have been
proposed. Kruger and Xie (2012) highlight the
first order perturbation [O(p2)] and data projec-
tion method [O(pk2)] as particularly economical.
When p grows larger than k, the data projection
approach becomes faster relative to first order per-
turbations. However, the data projection approach
assumes a constant value of k, and this is not a re-
quirement of the first order perturbation method.
When updating is performed in blocks, fewer up-
dates are performed for a given period of monitor-
ing which in turn reduces the computational cost.

5.3 RPCA applied to the NASA

data

We apply two RPCA models to the NASA data.
The first has a relatively fast forgetting factor of
0.9. This implies that it quickly forgets obser-
vations and provides a more local model of the
data than our second specification, which uses a
slow forgetting factor of 0.9999. Both are initi-
ated using a Static PCA model fitted on the first
120 observations, which according to our explo-
ration of the NASA data, are stationary. Then,
we apply the updating RPCA model to those data
to obtain Phase I results. In this sense, Phase I
serves as a validation set that the model is capa-
ble of monitoring the process when it is in control
without producing a high false detection rate. We
then proceed to apply the model to the observa-
tions after t = 120 constituting Phase II. We note
that in practice, if the initializing period cannot be
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assumed stationary, then a fitting/validation ap-
proach based on continuous sets of data should be
used to fit the model, with the validation set serv-
ing to prevent overfitting. Results for these two
monitoring models are shown in Figure 14. Since
the model with η = 0.9 (top) is based on a small
set of observations, it is more local, but also less
stable. This translates into a control chart with
many violations of the control limit. Both the T 2

and Q-statistics detect failure before the end of
the calibration period. In contrast, the model with
η = 0.9999 (bottom) detects the failure at about
t = 600 using the Q-statistic, and t = 300 using
the T 2-statistic. The times of these detections are
later than for Static PCA and DPCA because the
RPCA model with η = 0.9999 is stable enough
to produce a reliable model of the process, but
adaptive enough that it adjusts to the increasingly
atypical behavior of the fourth bearing during the
early stages of its failure. This increased time to
detecting the failure is a shortcoming of RPCA in
this context, but the results also illustrate how it
is capable of adapting to changes in the system.
If these changes are natural and moderate, such
adaptation may be desirable. Fault identification
techniques are compatible with PCA methods for
non-stationary data. The only restriction is that
the model used for monitoring at the time of the
fault should be the one used to form the basis of
the contribution plot.

6 Moving Window PCA

6.1 Method

MWPCA updates at each time point while re-
stricting the observations used in the estimations
to those which fall within a specified window of
time. With each new observation, this window
excludes the oldest observation and includes the
observation from the previous time period. Thus,
for window size H, the data matrix at time t is
Xt = (xt−H+1,xt−H+2, . . . ,xt)

′, and at time t + 1
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Figure 14: RPCA control charts for the NASA
data set using η = 0.9 (top) and η = 0.9999 (bot-
tom).

it is Xt+1 = (xt−H+2,xt−H+3, . . . ,xt+1)
′. The up-

dated x̄t+1 and St+1 can then be calculated using
the observations in the new window. In a sense,
the MWPCA windowing is akin to RPCA using a
fixed, binary forgetting factor. While completely
recalculating the parameters for each new win-
dow is straightforward, and intuitively appealing,
methods have been developed to improve on com-
putational speed (see for example Jeng (2010)). As
was the case for RPCA, the model is not updated
when an observation is determined to be out-of-
control. A good introduction to MWPCA can be
found in Kruger and Xie (2012, chap. 7). In par-
ticular, it includes a detailed comparison of the
difference in computation time between a complete
recomputation of the parameters versus an up- and
down-dating approach. Both have O(p2) time com-
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plexity, but in most practical situations, the adap-
tive approach works faster. The outlier detection
and missing data methods discussed in Section 3.1
can be applied to the window of calibration data
used to initialize the MWPCA model since it is as-
sumed to be acceptably locally stationary enough
to perform Static PCA modelling on.
MWPCA is characterized intuitively in Fig-

ure 15, where a model estimated from observa-
tions in the light-red window is used to evaluate
whether the new observation, in dark-blue, devi-
ates from typical behavior. In this characteriza-
tion, at each new time point, the oldest observa-
tion is excluded from the light-red window, and
the observation of the previous period is added in
order to accommodate for non-stationarity. The
length of the window, H, is selected based on
the speed at which the mean and covariance pa-
rameters change, with large windows being well
suited to slow change, and small windows being
well suited for rapid change.
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Figure 15: Moving Window PCA with window
length H = 10 at times t (left) and t+ 1 (right).

6.2 Choice of parameters

One challenge in implementing MWPCA is to se-
lect the window length H. This can be done using
expert knowledge, or examination of the process by
a practitioner. Chiang et al. (2001) provide a rough

estimate of the window size needed to correctly es-
timate the T 2-statistic based on the convergence
of the χ2 distribution to the F distribution that
recommends minimum window sizes greater than
roughly ten times the number of variables. For
the Q-statistic, this window size is something of
an absolute minimum, and a higher size is likely
necessary. Inspired by Choi et al. (2006), He and
Yang (2008) propose a variable MWPCA approach
which changes the length of the window in order to
adapt to the rate at which the system under mon-
itoring changes. Once the window size is selected,
the additional complication that there is not yet
enough observed data may arise. One approach to
address this is to simply use all of the data until
the window can be filled and then proceed with
MWPCA. Another, proposed in Jeng (2010), is a
combination of MWPCA with RPCA such that for
the early monitoring period, RPCA is used since it
is not obliged to consider a specific number of ob-
servations. Then, once enough observations have
been recorded to fill the MWPCA window, MW-
PCA is used. Jin et al. (2006) also propose an ap-
proach for combining MWPCA with a dissimilarity
index based on changes in the covariance matrix,
with the objective of identifying optimal update
points. Importantly, they also discuss a heuristic
for the inclusion of process knowledge into the con-
trol chart that is intended to reduce unnecessary
updating and to prevent adaptation to anticipated
disturbances.
Jin et al. (2006) elaborate on the value of re-

ducing the number of updates in order to reduce
computational requirements and reduce sensitivity
to random perturbations. He and Yang (2011) pro-
pose another approach aiming to reduce the num-
ber of updates based on waiting for M samples to
accumulate before updating the PCA model. This
approach is intended to be used in a context where
slow ramp faults are present. In their paper, He
and Yang (2011) propose a procedure for selecting
the value of M .
Wang et al. (2005) propose a method for quickly

updating the mean and covariance estimates for
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cases where the window size exceeds three times
the number of variables, and of using a V -step-
ahead prediction in order to prevent the model
from adapting so quickly that it ignores faults
when they are observed. This approach proceeds
by using a model estimated at time t to predict
the behavior of the system at time t+V and eval-
uate whether a fault has occurred. The intention
is to ensure that the model does not overly adapt
to the data and will be able to detect errors which
accumulate slowly enough to pass as normal obser-
vations at each time point. As the authors point
out, using a longer window will also make the fault
detection process less sensitive to slowly accumu-
lating errors. One advantage of the V -step-ahead
approach is that it can operate with a smaller data
matrix than a longer window would require, so
computational efficiency can be gained. However,
the trade off is that the number of steps ahead
must be chosen in addition to the choice of the
window length.

6.3 MWPCA applied to the NASA

data

Figure 16 displays the results of control charts
for MWPCA models. These were fitted on the
last H observations of the Phase I data (since an
MWPCA model is only based on H observations),
and then re-applied to the Phase I observations.
As for RPCA, applying a model to observations
that are not consecutive with the endpoint of the
calibration period is plausible for the NASA pro-
cess because the early observations are station-
ary. Then Phase II observations are monitored
using the model. Window sizes of H = 40 and
80 were used to parameterize models, correspond-
ing to one-third and two-third of the size of the
calibration set. MWPCA shows slightly more sta-
bility during the Phase I monitoring when H = 80,
reinforcing what was observed when RPCA was
applied; that forgetting observations too quickly
can lead to too rapidly varying models and in-

consistent process monitoring. We can see that
the results for the model with H = 80 convinc-
ingly detects the fault based on the Q-statistic at
about the same time as the RPCA model with
η = 0.9999 (t = 600), but the T 2-statistic remains
more or less in control as well until about t = 600.
Thus, the monitoring statistics of MWPCA with
H = 80 are somewhat more consistent with each
other than those of RPCA with η = 0.9999. Al-
though the monitoring statistics become very large
after t = 600 for the MWPCA model with H = 40,
there tend to be more detections prior to this time
point, indicating that the model is less stable than
the one obtained with H = 80. In this respect, the
results are similar to those of RPCA with η = 0.9.
Although we find in this case that MWPCA with a
slower forgetting factor of H = 80 performs better
than with H = 40, we also note that it has dif-
ferent performance than Static PCA, since it con-
vincingly detects the fault only at around t = 600.
This could be desireable for the reason that before
t = 600 the vibrations in bearing four are not so
great that they necessarily justify stopping the ma-
chine, but beyond this time point, the vibrations
begin to increase rapidly.

7 Discussion

Control charts based on Static PCA models have
been widely used for monitoring systems with
many variables that do not exhibit autocorrela-
tion or non-stationary properties. DPCA, RPCA,
and MWPCA provide methodologies for address-
ing these scenarios. To summarize, a rubric of
the situations where these methods are applica-
ble is provided in Table 3. However, while exten-
sions have sought to make them as generally im-
plementable as Static PCA, a number of challenges
have not yet been resolved.

An area for further research lies in investigat-
ing the performance of models mixing DPCA and
R/MWPCA to handle autocorrelation and non-
stationarity simultaneously. Presently, works have
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Figure 16: MWPCA control charts for the NASA
data set using H = 40 (top) and H = 80 (bottom).

Table 3: Applicability of different PCA methods
to time-dependent processes.

Non-Stationarity
No Yes

Auto cor-
relation

No Static PCA R/MWPCA
Yes DPCA ?

focused on examining the performance of methods
intended for only one type of dynamic data, but
combinations of the two remain unexplored.

Among the most important questions is how to
choose the optimal values of the parameters used
by DPCA, RPCA and MWPCA. We have focused

on illustrating the properties of these algorithms as
their parameters vary by using low and high values.
However, in practice an optimal value for monitor-
ing is desired. Often, the determination of these
parameters is left to the discretion of an expert on
the system being monitored. Automatic methods
have been described, but no consensus exists on
which is the best, and further research is particu-
larly needed in the area of automatic methods for
RPCA and MWPCA parameter selection.
Currently, a weakness of DPCA is that if an ob-

servation is considered out-of-control, but as an
outlier rather than a fault, then the practitioner
would normally continue monitoring, but ignoring
this observation. However, doing so destroys the
lag structure of DPCA. Therefore, a study on the
benefits of reweighting the observation like in Choi
et al. (2006), or removing the observation and re-
placing it with a prediction would be a useful con-
tribution.
Methods for addressing the influence of outliers

during the calibration phase exist, see e.g. Hubert
et al. (2005); Jensen et al. (2007), as well as for dur-
ing online monitoring (see Chiang and Colegrove
(2007), Choi et al. (2006), and Li et al. (2000)).
These methods address the problem of how to
best make use of information captured in outliers,
and approaches range from excluding them com-
pletely to downweighting the influence exerted by
such observations. Which approach is preferable,
and whether different types of outliers should be
treated differently are still open questions. Simi-
larly, approaches for missing data imputation for
PCA that can be applied when the calibration data
is incomplete have also been proposed (Walczak
and Massart (2001) and Serneels and Verdonck
(2008)), but little has been done to explore the
performance of these methods in the PCA process
monitoring setting, or when the data is autocorre-
lated.
Further research is also warranted in the area

of fault isolation. The contribution plot, residual-
based tests, and variable reconstruction are three
well-studied approaches for solving this prob-
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lem (Kruger and Xie, 2012; Qin, 2003). Recently,
some new methods for fault isolation based on
modifications to the contribution plot methodol-
ogy have been proposed (see Elshenawy and Awad
(2012)). However, these methods cannot isolate
the source of faults in many complex failure set-
tings; a task which becomes more difficult still
when the data is time-dependent. Improvements
on the classical contribution plot or entirely new
methods would be a valuable addition to the PCA
control chart toolbox. Woodall and Montgomery
(2014) cover some control chart performance met-
rics, such at the average run length and false dis-
covery rate (FDR), and elaborate on challenges
faced by these metrics in real-data applications.
They propose that the FDR may be more appro-
priate for high-dimensional cases, but state that
further research is necessary to draw firm conclu-
sions. This advice is especially relevent for PCA
control chart methods, since they are often applied
to high-dimensional data, and the FDR should
be investigated as an option for measuring perfor-
mance.

We make the code and data on which our results
in this paper are based available upon request.
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