Sensors 2008, 5, 4-37

Sensors

ISSN 1424-8220
© 2005 MDPI
http://www.mdpi.org/sensors

Overview of Sensors and Needs for Environmental Monitoring
Clifford K. Ho', Alex Robinson, David R. Miller and Mary J. Davis

Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185, USA. Tel: (505) 844-2384,
Fax: (505) 844-7354.

* Author to whom correspondence should be addressed. E-mail: ckho@sandia.gov

Received: 31 August 2004 / Accepted: 01 December 2004 / Published: 28 February 2005

Abstract: This paper surveys the needs associated with environmental monitoring and long-
term environmental stewardship. Emerging sensor technologies are reviewed to identify
compatible technologies for various environmental monitoring applications. The
contaminants that are considered in this report are grouped into the following categories:
(1) metals, (2) radioisotopes, (3) volatile organic compounds, and (4) biological
contaminants. United States regulatory drivers are evaluated for different applications (e.g.,
drinking water, storm water, pretreatment, and air emissions), and sensor requirements are
derived from these regulatory metrics. Sensor capabilities are then summarized according to
contaminant type, and the applicability of the different sensors to various environmental
monitoring applications is discussed.
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Introduction

Environmental monitoring is required to protect the public and the environment from toxic
contaminants and pathogens that can be released into a variety of media including air, soil, and water.
Air pollutants include sulfur dioxide, carbon monoxide, nitrogen dioxide, and volatile organic
compounds, which originate from sources such as vehicle emissions, power plants, refineries, and
industrial and laboratory processes. Soil and water contaminants can be classified as microbiological
(e.g., coliform), radioactive (e.g., tritium), inorganic (e.g., arsenic), synthetic organic (e.g., pesticides),
and volatile organic compounds (e.g., benzene). Pesticide and herbicides are applied directly to plants
and soils, and incidental releases of other contaminants can originate from spills, leaking pipes,
underground storage tanks, waste dumps, and waste repositories. Some of these contaminants can
persist for many years and migrate through large regions of soil until they reach water resources,
where they may present an ecological or human-health threat.

The United States Environmental Protection Agency (U.S. EPA) has imposed strict regulations on
the concentrations of many environmental contaminants in air and water. However, current monitoring
methods are costly and time-intensive, and limitations in sampling and analytical techniques exist. For
example, Looney and Falta [1] report that the Department of Energy (DOE) Savannah River Site
requires manual collection of nearly 40,000 groundwater samples per year, which can cost between
$100 to $1,000 per sample for off-site analysis. Wilson et al. [2] report that as much as 80% of the
costs associated with site characterization and cleanup of a Superfund site can be attributed to
laboratory analyses. In addition, the integrity of the off-site laboratory analyses can be compromised
during sample collection, transport, storage, and analysis, which can span several days or more.
Clearly, a need exists for accurate, inexpensive, long-term monitoring of environmental contaminants
using sensors that can be operated on site or in situ. However, the ability to deploy and use emerging
sensors for these applications is uncertain due to both cultural and technological barriers.

The purpose of this report is to assess the needs of long-term environmental monitoring applications
in the U.S. and to summarize the capabilities of emerging sensor technologies (with an emphasis on
Sandia-developed sensor technologies). A market survey is presented that elucidates the costs, drivers,
and potential benefits of using in-situ sensors for long-term environmental monitoring. Regulatory
metrics for different environmental monitoring applications are then presented to provide requirements
for the sensor technologies. Emerging sensor technologies that are being developed at Sandia National
Laboratories are then evaluated that can be used to monitor environmental contaminants, particularly
for long-term environmental stewardship. We limit our focus to four categories of contaminants:
(1) metals, (2) radioisotopes, (3) volatile organic compounds, and (4) biological contaminants. For
each contaminant, we seek portable sensors that can provide rapid responses (relative to current
methods and technologies), ease of operation (for field use), and sufficient detection limits.

Market survey

In 2001, U.S. companies generated $213 billion in environmental industry revenue, with a growth
of 2.1% and exports representing 11% of this figure [3]. Overall, the environmental industry is in a
state of evolution. The U.S. environmental remediation/industrial services markets have topped out
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and are projected to decline. A decline in hazardous waste management funding continues with a trend
that began in 1993. Returns on investment in hazardous waste remediation technologies have been low
for some time and the DOE continues to be the largest funding source within the U.S. for the site
remediation market.

A 15% growth in the overall environmental industry is forecasted as the combination of two major
groups. The first group is comprised of energy and water that is projected to experience growth
ranging from 19% to over 250% during the first decade of the 21* century [3]. The second group
consists of compliance, remediation and waste management that are projected to decline 13% to 49%
during the same timeframe. The first group is driven by economics and basic human needs while the
second group is driven by regulations and enforcement.

The two best performing environmental industry segments are also the best performers over the past
decade: clean energy systems/power (+16%) and process/pollution prevention technology (+9%).
Clean energy systems/power ($10.0 b) accounted for 65% of the overall market growth in dollars.
Process and pollution prevention technology have annual revenues of $1.3 billion. Continued growth
of clean energy/power and process/pollution prevention technologies are projected.

Instrument technology is a $3.8 billion dollar industry and has experienced an annual growth rate of
approximately 4%. The U.S. water industry — made up of water utilities ($30.9 b), wastewater
treatment works ($28.8 b), and water equipment/chemicals ($20.3 b) accounts for 38% of the
environmental industry revenues. Solid waste management ($40.8 b), air pollution control equipment
($18.3 b) and consulting/engineering ($18.0 b) are also major contributors to the environmental
industry revenue stream.

In the present DOE Environmental Management (EM) market, technology investments are not
occurring on a scale that is likely to make major cost and schedule differences. EM is focusing its
resources on actual clean-ups and site closures and not on technology innovations. Low interest in
technologies increases the difficulty in finding willing investors. Investors are likely to be wary of any
growth potential in a market that has an environmental connotation. However, technologies that have a
specific need that saves money can be successful. Technological improvements in excavation,
transportation, disposal, analytical services, robotics, sample preparation, field sampling, and
monitoring are examples of areas where technological improvements could be successful [4].

Data Quality Objectives (DQOs) must be considered as part of technology development and a focus
should be made on the most urgent problems, such as situations where contaminants are in contact
with groundwater. Regulator involvement in new technology development and acceptance of
technologies is also very important [4].

Science and technology needs include methods of detection, analysis, remote sensing, and data
transmission. A technology-needs analysis determined that the most important needs for analytical
capabilities were the use of fieldable instrumentation for organic compounds in water/soil/air and for
Resource Conservation and Recovery Act (RCRA) metals in water/soil [4]. It was further noted that a
leap in technology would occur when the performance of the field instruments more closely
approaches that of laboratory-based instruments. A potential application in long-term monitoring and
stewardship is in the area of performance monitoring of water to address current technical
uncertainties [5]. Additionally, information is needed to determine if ambient conditions change
significantly enough over the long term to diminish the effectiveness of the remedy.
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Based on information gathered in equipment user surveys, an analysis of the market for
environmental field instrumentation determined that field instrumentation has been expanding due to
cost savings from on-site analysis and improved regulatory and customer acceptance of on-site
methods [6]. The environmental field instrument market is expected to enjoy an average growth of 7%
annually for the foreseeable future. The market will expand with technology developments and
increasing regulatory acceptance. However, given the current regulatory environment, field
instruments may never completely replace laboratory analysis, and therefore never realize its
maximum market potential.

Remediation opportunities will wane and be replaced with smaller, longer-term opportunities
related to post-closure monitoring and long-term stewardship. This should open doors to new
instruments and measurement technologies and remote information management systems. The market
consists of many niche applications, which are met by a number of different technologies. The long-
term nature of post-closure monitoring and surveillance will be required at a wide variety of nuclear
sites, uranium mill tailing sites, low-level and mixed-waste burial grounds, and hazardous waste sites
that may create new areas for application. This market overlaps with other markets, such as for
chemical industry process monitoring. Technology developments that can crosscut multiple areas
within the environmental industry have a greater potential for success within the industry.

Long-term stewardship is not unique to the DOE. The EPA is currently determining its stewardship
responsibilities through its Federal Facilities Restoration and Reuse Office. Both EPA Region IV and
X have released policy documents on the use of institutional controls at Federal facilities. However,
the specific ways in which long-term institutional control issues are implemented vary considerably at
state and local offices. The Department of Defense (DoD) conducts cleanup activities at more than
10,000 sites, nearly 2,000 military installations and more than 9,000 formerly used defense properties.
The Department of Interior (Dol) is responsible for overseeing approximately 13,000 former mining
sites, some of which have been abandoned by the original owners. The nation’s commitment is also
not limited to federal properties. For example, sanitary and hazardous landfills, industrial facilities,
and former waste management operations likely require long-term monitoring that will be funded by
state and local governments.

The DOE conducts its stewardship activities in compliance with applicable laws, regulations, and
inter-agency agreements. In general the DOE is required to implement some land-use controls at waste
disposal facilities in perpetuity. Groundwater-monitoring timeframes are expected to be 30 years or
greater. Costs of post-cleanup stewardship activities are currently unknown. However, a DOE Office
of Inspector General audit found that the “DOE groundwater monitoring activities were not being
conducted economically as they could have been since some sites had not adopted innovative
technologies and approaches to well installations, sampling operations, and laboratory analysis.” The
report concluded that in part this occurred because innovative groundwater monitoring techniques
were either unavailable or had not been effectively disseminated, evaluated for applicability at other
sites and implemented” [7]. In summary, the development of sensors for long-term groundwater
monitoring may fill a niche that could have a wide-ranging application for long-term environmental
monitoring.
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Regulatory requirements, standards and policies

Drinking water

National Primary Drinking Water Regulations apply to public water systems and are legally

enforceable standards. These primary standards are intended to protect public health by limiting the

levels of contaminants that can be found in drinking water. Although these standards are applicable to

public water systems (i.e., at the tap), they are often applied by remediation regulators in the aquifer

(i.e., at the monitoring wellhead). The following tables (Tab. 1 to Tab. 6) summarize the drinking

water standards imposed by the U.S. Environmental Protection Agency (EPA). Additional information

regarding potential health impacts and sources of contamination can also be found at their web site

(http://www.epa.gov/safewater/mcl.html).

Table 1. EPA national primary drinking water standards for microorganisms.

Maximum Contaminant Maximum Contaminant Level

Contaminant Level Goal (mg/L) (mg/L)
Cryptosporidium zero See footnote*
Giardia lamblia zero See footnote*
Heterotrophic plate count n/a See footnote*
Legionella zero See footnote*
Total Coliforms (including fecal coliform and E. Coli) zero 5.0%**
Turbidity n/a See footnote*
Viruses (enteric) zero See footnote*

*EPA's surface water treatment rules require systems using surface water or ground water under the direct influence of surface water to (1)

disinfect their water, and (2) filter their water or meet criteria for avoiding filtration so that the following contaminants are controlled at the

following levels:

Cryptosporidium (as of1/1/02 for systems serving >10,000 and 1/14/05 for systems serving <10,000) 99% removal.

Giardia lamblia: 99.9% removal/inactivation.

Viruses: 99.99% removal/inactivation.

Legionella: No limit, but EPA believes that if Giardia and viruses are removed/inactivated, Legionella will also be controlled.

Turbidity: At no time can turbidity (cloudiness of water) go above 5 nephelolometric turbidity units (NTU); systems that filter must ensure
that the turbidity go no higher than 1 NTU (0.5 NTU for conventional or direct filtration) in at least 95% of the daily samples in any month.
As of January 1, 2002, turbidity may never exceed 1 NTU, and must not exceed 0.3 NTU in 95% of daily samples in any month.

HPC: No more than 500 bacterial colonies per milliliter.

Long Term Enhanced Surface Water Treatment (Effective Date: January 14, 2005): Surface water systems or (GWUDI) systems serving
fewer than 10,000 people must comply with the applicable Long Term 1 Enhanced Surface Water Treatment Rule provisions (e.g.,
turbidity standards, individual filter monitoring, Cryptosporidium removal requirements, updated watershed control requirements for
unfiltered systems).

Filter Backwash Recycling: The Filter Backwash Recycling Rule requires systems that recycle to return specific recycle flows through all
processes of the system's existing conventional or direct filtration system or at an alternate location approved by the state.

**More than 5.0% samples total coliform-positive in a month. (For water systems that collect fewer than 40 routine samples per month,
no more than one sample can be total coliform-positive per month.) Every sample that has total coliform must be analyzed for either
fecal coliforms or E. coli if two consecutive TC-positive samples, and one is also positive for E.coli fecal coliforms, system has an acute
MCL violation.
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Table 2. EPA national primary drinking water standards for disinfectants.

Contaminant

Maximum Contaminant Level Goal (mg/L)

Maximum Contaminant Level (mg/L)

Chloramines (as Cl,) MRDLG=4* MRDL=4.0**
Chlorine (as Cl,) MRDLG=4* MRDL=4.0**
Chlorine dioxide (as CIOy) MRDLG=0.8* MRDL=0.8**

*Maximum Residual Disinfectant Level Goal (MRDLG) - The level of a drinking water disinfectant below which there is no known or expected

risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

*Maximum Residual Disinfectant Level (MRDL) - The highest level of a disinfectant allowed in drinking water. There is convincing evidence

that addition of a disinfectant is necessary for control of microbial contaminants.

Table 3. EPA national primary drinking water standards for disinfection byproducts.

Maximum
Maximum Contaminant Level Goal Contaminant Level
Contaminant (mg/L) (mg/L)
Chlorite 0.8 1.0
Haloacetic acids (HAAS) n/a* 0.060
Total Trihalomethanes (TTHMs) n/a* .08

*Although there is no collective MCLG for this contaminant group, there are individual MCLGs for some of the individual contaminants:

e Trihalomethanes: bromodichloromethane (zero); bromoform (zero); dibromochloromethane (0.06 mg/L). Chloroform is regulated with this

group but has no MCLG.

e Haloacetic acids: dichloroacetic acid (zero); trichloroacetic acid (0.3 mg/L). Monochloroacetic acid, bromoacetic acid, and dibromoacetic

acid are regulated with this group but have no MCLGs.

Table 4. EPA national primary drinking water standards for inorganic chemicals.

Contaminant Max. Contaminant Level Goal (mg/L) Max. Contaminant Level (mg/L)
Antimony 0.006 0.006
Arsenic 0* 0.010 (as of 01/23/06)
Asbestos 7 million fibers per liter 7 million fibers per liter
(fiber >10 micrometers)
Barium 2 2
Beryllium 0.004 0.004
Cadmium 0.005 0.005
Chromium (total) 0.1 0.1
Copper 1.3 Action Level=1.3**
Cyanide (as free cyanide) 0.2 0.2
Fluoride 4.0 4.0
Lead zero Action Level=1.3**
Mercury (inorganic) 0.002 0.002
Nitrate (measured as Nitrogen) 10 10
Nitrite (measured as Nitrogen) 1 1
Selenium 0.05 0.05
Thallium 0.0005 0.002

*MCLGs were not established before the 1986 Amendments to the Safe Drinking Water Act. Therefore, there is no MCLG for this

contaminant.

**Lead and copper are regulated by a Treatment Technique that requires systems to control the corrosiveness of their water. If more than
10% of tap water samples exceed the action level, water systems must take additional steps. For copper, the action level is 1.3 mg/L, and

for lead is 0.015 mg/L.
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Table 5. EPA national primary drinking water standards for organic chemicals.

10

Contaminant

Max. Contaminant Level Goal (mg/L)

Max. Contaminant Level (mg/L)

Acrylamide zero Treatment Technology*
Alachlor zero 0.002
Atrazine 0.003 0.003
Benzene zero 0.005
Benzo(a)pyrene (PAHSs) zero 0.0002
Carbofuran 0.04 0.04
Carbon zero 0.005
tetrachloride

Chlordane zero 0.002
Chlorobenzene 0.1 0.1
2,4-D 0.07 0.07
Dalapon 0.2 0.2
1,2-Dibromo-3-chloropropane (DBCP) zero 0.0002
o-Dichlorobenzene 0.6 0.6
p-Dichlorobenzene 0.075 0.075
1,2-Dichloroethane zero 0.005
1,1-Dichloroethylene 0.007 0.007
cis-1,2-Dichloroethylene 0.07 0.07
trans-1,2-Dichloroethylene 0.1 0.1
Dichloromethane zero 0.005
1,2-Dichloropropane zero 0.005
Di(2-ethylhexyl) adipate 0.4 0.4
Di(2-ethylhexyl) phthalate zero 0.006
Dinoseb 0.007 0.007
Dioxin (2,3,7,8-TCDD) zero 0.00000003
Diquat 0.02 0.02
Endothall 0.1 0.1
Endrin 0.002 0.002
Epichlorohydrin zero Treatment Technology*
Ethylbenzene 0.7 0.7
Ethylene dibromide zero 0.00005
Glyphosate 0.7 0.7
Heptachlor zero 0.0004
Heptachlor epoxide zero 0.0002
Hexachlorobenzene zero 0.001
Hexachlorocyclopentadiene 0.05 0.05
Lindane 0.0002 0.0002
Methoxychlor 0.04 0.04
Oxamyl (Vydate) 0.2 0.2
Polychlorinated zero 0.0005
biphenyls (PCBs)

Pentachlorophenol zero 0.001
Picloram 0.5 0.5
Simazine 0.004 0.004
Styrene 0.1 0.1
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Contaminant Max. Contaminant Level Goal (mg/L) Max. Contaminant Level (mg/L)
Tetrachloroethylene zero 0.005
Toluene 1 1
Toxaphene zero 0.003
2,4,5-TP (Silvex) 0.05 0.05
1,2,4-Trichlorobenzene 0.07 0.07
1,1,1-Trichloroethane 0.20 0.2
1,1,2-Trichloroethane 0.003 0.005
Trichloroethylene zero 0.005
Vinyl chloride zero 0.002
Xylenes (total) 10 10

*Each water system must certify, in writing, to the state (using third-party or manufacturer's certification) that when acrylamide and
epichlorohydrin are used in drinking water systems, the combination (or product) of dose and monomer level does not exceed the levels
specified, as follows:

e Acrylamide = 0.05% dosed at 1 mg/L (or equivalent).
® Epichlorohydrin = 0.01% dosed at 20 mg/L (or equivalent).

Table 6. EPA national primary drinking water standards for radionuclides.

Contaminant Max. Contaminant Level Goal Max. Contaminant Level
Alpha particles zero 15 picocuries per Liter (pCi/L)
Beta particles and photon emitters zero 4 millirems per year
Radium 226 and Radium 228 (combined) zero 5 pCilL
Tritium zZero 20,000 pCi/L
Uranium zero 30 ug/L (as of 12/08/03)

Storm water monitoring

Under the National Pollutant Discharge Elimination System (NPDES) regulations, all facilities
which discharge pollutants from any point source into waters of the United States (US) are required to
obtain a permit. The NPDES storm water regulations cover the following classes of storm water
dischargers: operators of municipal separate storm sewer systems (MS4s); industrial facilities in any of
eleven identified categories that discharge to an MS4 or to a water of the US; and operators of certain
construction activities. Storm water regulations are implemented by the EPA or authorized states.

NPDES permits may be issued as individual or general permits. In either case, NPDES permits
generally require the development of a storm water pollution prevention plan, implementation of best
management practices, and monitoring and reporting of storm water discharge data. Most industrial
facilities elect coverage under a general permit because the permitting process is designed to be more
efficient.

EPA has developed a multi-sector general permit (MSGP) for storm water dischargers, providing
both general requirements and sector-specific requirements. The specific requirements apply to each of
30 industrial sectors and their associated subsectors. The current MSGP was published in the Federal
Register on October 30, 2000 [8]. Authorized states may use alternative permits and/or may impose
additional requirements.

Three types of monitoring may be required under the MSGP: visual examination, analytical
monitoring, and compliance monitoring. Visual examinations are intended to provide a simple,

inexpensive evaluation of storm water quality. Analytical monitoring is required for only specified
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subsectors, those which EPA has determined have a high potential to discharge a pollutant at
concentrations of concern. For each of the identified subsectors, EPA has defined the parameters to be
monitored and has established benchmark concentrations for each parameter. Analytical monitoring is
required on a quarterly basis in year two of the permit; if these results exceed a benchmark value, a
second round of analytical monitoring is required in year. Any time a benchmark concentration is
exceeded, the facility must review their storm water pollution prevention plan to reduce pollutant
loads.

Compliance monitoring is performed on an annual basis for certain storm water discharges subject
to effluent guidelines. Some EPA regions require quarterly monitoring. The applicability of
compliance monitoring is limited to the following discharges: landfill discharges; coal pile runoff;
contaminated runoff from phosphate fertilizer manufacturing facilities; runoff from asphalt paving and
roofing emulsion production areas; material storage pile runoff from cement manufacturing facilities;
and mine dewatering discharges from crushed stone, construction sand and gravel, and industrial sand
mines.

The MSGP analytical and compliance monitoring requirements are limited to discrete sampling
events at specified intervals. Grab sampling is required. Authorized states may impose more extensive
monitoring requirements.

National pretreatment program monitoring

Under the NPDES permitting program, EPA established the National Pretreatment Program to
address “indirect discharges” into waters of the United States. Indirect discharges are discharges from
industrial facilities to publicly owned treatment works (POTWs). The National Pretreatment Program
requires dischargers to treat or control pollutants in their wastewater prior to discharge to the POTW.
(The POTW is required to obtain an NPDES permit as a direct discharger.)

Under the General Pretreatment Regulations [9], all large POTWs, and some smaller POTWs with
significant industrial discharges, must establish local pretreatment programs. The local pretreatment
programs impose national pretreatment standards and requirements, as well as any more stringent local
requirements.

EPA has established two general requirements for industrial dischargers prohibiting “interference”
and “pass through.” These requirements are designed to prevent damage to the treatment works and
environmental harm downstream. In addition, EPA controls the discharge of 126 “priority pollutants,”
including metals and toxic organics.

Categorical pretreatment standards limit the discharge of specific pollutants; they are national
standards for indirect dischargers in specific industrial categories. These standards are further
categorized into pretreatment standards for existing sources (PSES) and pretreatment standards for
new sources (PSNS). Currently, 32 industrial categories are subject to pretreatment standards. The
standards may be expressed as concentration-based or mass-based, or both, depending upon the
operational characteristics of the industry. Significant industrial users (SIUs) are required to monitor,
at a minimum, on a semi-annual basis. Confirmatory sampling by the regulatory authority is required
annually. Depending upon factors such as effluent variability, effluent impacts, and compliance
history, the SIU may be required to sample more frequently.
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Table 7. Pretreatment standards for manufacturers of organic chemicals, plastics, and synthetic fibers
[10].

Environmental Protection Agency

BAT efflusnt limits-
tions and NSP31
Effiwent characterstics I'a.‘fgxirrurr r.1a§c1:|,r'1
rany e

onedzy | Jenbly
Anthracene ... 47 18
Benzene ... 134 57
Benzo{a)anthracene ... 47 18
3.4-Benzoflvoranthene 42 20
Benzo{klflucranthene . i 19
Benzo{a)pyrens ... 20
Biz(2-ethylh=uyl} phthalate ... 5
Carbon Tetrachlonde ... 142
Chlorebenzens ... 142
Chloresthane .. 110
Chiloreform ... 111
Chrysene ... 18
Di-n-butyl phthalate ... 20
1,2-Dichlorobenzens ... 104
1.3-Dichlorcbenzens . 0 142
1,4-Dichlorcbenzens ... 0 142
1,1-Dichlorcethane ... 52 22
1,2-Dichloroethane .. . 574 180
1,1-Dichlorcethylene ... . a0 22
1,2-rans-Dichloroethylen [l 25
1.2-Dichlorcpropane ... T94 198
1,2-Dichlorcpropylene . T84 198
Drethy phihalate ... 113 48
2.4-Dimethylphenal . A7 19
Dimethyl phthalate ....... a7 18
4,6-Dinitro-o-cresol . 277 T
2, 4-Cinitrephenc! ... 424 1,207
Ethylbenzens .. 3a0 142
Fluoranthene ... 54 22
Fluorene ... 27 18
Hexachlorobenzens .. 794 108
Hexachlorobutadiens .. 3380 142
Hexachlorosthane . 724 184
Methyl Chioride ... 205 110
Methylene Chioride 170 38
Maphthalzne ... . a7 18
Nifrobenzens ... 6,402 2,237
2-Mitrophenol 231 5
4-Nitrophenol ... 578 162
Phenanthrene ... a7 19
Phenol ... 47 189
Pyrene o 43 20
Tetrachlorosthylens 164 52
Toluens ... 74 28
Total Chromium ...... 2,770 1.110
Total Copper .......... 3.380 1,450
Total Cyanide ... 1.200 420
Total Lead ... 620 320
Tota 3,880 1,680
Tota 2,610 1,050
1,2.4- 724 188
1.1, chloroethane ... 58 22
1,1, 2-Trichloroethane .. 127 32
Trichloroethylene . . k] 28
Vinyl Chloride 172 a7

AN units are micrograms per liter.

2Total Zing for Rayon Fioer Manufacture that uses the wis-
cose process and Acrylic Fibers Manufacture that uses the
zine chlorde'solvent process is 6.7898 pgl and 3,325 pgll for
maximum for any one day and maximurn for moenthly average,
respectively.

The type of industry regulated under the pretreatment program is wide-ranging, including grain
mills, feedlots, electroplating facilities, iron and steel manufacturers, and fertilizer manufacturers. For
many industries, the monitoring required is limited to several effluent characteristics, such as
biological effluent demand, total suspended solids, and pH. For other industries monitoring of a select
set of priority pollutants, such as a specified subset of metals, is required. In a few instances,
monitoring of all priority pollutants is required. Pretreatment standards for indirect discharges from
manufacturers of organic chemicals, plastics, and synthetic fibers are provided in Table 7.
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Ambient air quality

A number of substances are identified as hazardous air pollutants (now termed “toxic air pollutants”
by EPA) under the Clean Air Act and are regulated under the National Emission Standards for
Hazardous Air Pollutants program. The American Conference of Governmental Industrial Hygienists
(ACGIH) established airborne concentration limits called Threshold Limit Values (TLV) of various
hazardous air pollutants. The TLVs are believed to represent conditions under which nearly all
workers could be exposed day after day without adverse health effects. The TLVs are based on
information from industrial experience and experimental studies on humans and animals. Table 8 lists
a few hazardous air pollutants (HAP) and the associated ACGIH TLVs. Additional information on
these compounds can be found from the following web sites:

o www.epa.gov/ttn/atw/hlthef/benzene.html
o www.epa.gov/ttn/atw/hlthef/xylenes.html
o www.epa.gov/ttn/atw/hlthef/tri-ethy.html

Table 8. Threshold Limit Values for several hazardous air pollutants [11].

Threshold Limit Value (ppm)

Hazardous Air 15-Minute Short-Term
Pollutant 8-Hour Time Weighted Average Exposure Limit
Benzene 0.5 25
Xylenes 100 150

Trichloroethylene 50 100

In 1998, the City of Albuquerque adopted a policy for regulating emissions from industries. An
analysis for each relevant HAP at a site is performed to determine if the emissions from the stack
result in an exceedance of the ACGIH TLV for any of the relevant substances. If the ACGIH TLV at
the stack is exceeded, the concentration of that substance must be analyzed at the “fence line” (i.e.,
property boundary). The concentration at the fence line should not exceed 1/ 100" the ACGIH TLV.
For any HAP that has uncontrolled emissions which result in an exceedance of the ACGIH TLV at the
stack and 1/100™ of the ACGIH TLYV at the fence line, air-pollution controls will be required to reduce
the concentrations to 1/100™ the TLV at the fence line. An air quality permit will also be required to
ensure proper operation of the control equipment.

Additional air quality standards have been compiled from 20.11.1 NMAC - Title 20, Environmental
Protection - Chapter 11, Albuquerque/Bernalillo county Air Quality Control Board - Part 1 General
Provisions (see Table 9).
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Table 9. Enforceable standards for various air pollutants.

15

Pollutant Goals Enforceable Standards
Albuquerque New Mexico State Federal Primary Federal Secondary
Carbon Monoxide (CO)
8-hour average - 8.7 ppm 9.0 ppm 9.0 ppm
1-hour average 13 ppm 13.1 ppm 35 ppm 35 ppm
Nitrogen Dioxide (NO,)
24-hour average .062 ppm 10 ppm - -
Annual arithmetic mean .053 ppm .05 ppm 053ppm 053 ppm
Ozone (03)
1-hour average .120 ppm - 120 ppm 120 ppm
Sulfur Dioxide (SO,)
24-hour average .10 ppm 10 ppm -—- 140 ppm
3-hour average - .5 ppm
Annual arithmetic mean .004 ppm 02 ppm .03 ppm -
Particulate Matter (PM;)
24-hour average 150 pg/m® — 150 pg/m® -
Annual arithmetic mean - - --- 50 ug/m?
Lead (Pb)
Quarterly arithmetic mean 1.5 pg/m® - | 1.5 pg/m® ‘ 1.5 ug/m®
Hydrogen Sulfide
1-hour average .003 ppm .010 ppm | - ‘
Total Reduced Sulfur
2 hour average - .003 ppm - -
1-hour average .003 ppm - --- -
Particulate Matter (TSP)
24-hour average 150 pg/m® 150 pg/m® --- -
7-day average - 110 ug/m® -
30-day average --- 90 pg/m? --- ---
Annual geometric mean 60 pg/m’ 60 ug/m® --- ---

Sensor technologies for environmental monitoring

The purpose of this section is to identify and describe sensor technologies (with an emphasis on

Sandia-developed technologies) that may be applicable to monitoring various contaminants described

in the previous sections. The technologies are organized according to analyte, which include trace

metals, radioisotopes, volatile organic compounds, and biological pathogens. The sensor technologies

are described briefly, and then tables summarizing features and specifications (e.g., sensitivity, size,

speed, etc.) of each sensor technology are presented in Table 10 through Table 13 in the section

"Summary and specifications of sensor technologies".
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Trace metal sensors

-Nanoelectrode array

Nanoelectrode arrays have been fabricated to identify and quantify dissolved metals [12-13].
Signals from the electrodes are obtained by monitoring current and voltage during application of an
electrical potential. Approximately 1 million individual electrodes can be placed on a 1 square inch
substrate using electron-beam lithography or chemical vapor deposition. The sensing electrodes are
integrated with the reference electrode, eliminating the need for buffers and permitting non-
contaminating sensing in ultra-pure water. The small electrode size coupled with a very high density
produces a signal with up to 10° times better signal-to-noise ratio than standard electrodes. Using
multiple electrodes, coatings, and electrochemical techniques, target analytes can include toxic
industrial chemicals and metals, such as trichloroethylene, methyl-t-butyl ether, arsenic, lead, and

chromium.

-Laser-induced breakdown spectroscopy (LIBS)

As its name implies, LIBS uses a laser to rapidly heat a very small area (usually solid or liquid),
generating a plasma from the atomic constituents present at the focal point. Radiative relaxation of the
plasma is then observed using sensitive spectroscopic instrumentation (see Figure 1). LIBS is also
known as Laser Spark Spectroscopy (LASS).

Figure 1. Stand-off LIBS probe head. Laser ablation energy and spectroscopic collection occurs
through fiber optics.

LIBS can be used for rapid analysis of hazardous metals and other inorganic contaminants in water,
soil, and mixed waste sites [14-15]. It can be used to detect almost all elements, though certain metals
exhibit orders of magnitude greater emission. Detection limits are a function of each specific metal,
and the spectroscopic and detector hardware. Low ppb levels are typical. Contaminants targeted in
Sandia projects include As, Be, Hg, Se, Pb, Cd, Cu, Zn, Ag, Cr, Fe, and Mn. Recently, a LIBS system
was set up for measuring metal emissions in the waste streams of a thermal treatment facility [16].
Currently, a field deployable LIBS system is configured at Sandia-Livermore employing an image
intensified CCD array, which provides sufficient signal intensity for single laser pulse LIBS. Delivery
of the laser light to remote location via a fiber-optic cable has been performed. Spectral emission
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likewise can be readily be transported over hundreds of feet for analysis [15]. LIBS can be extended to
biodetection by looking for rapid, temporal increases in the presence and/or ratios of Ca, Na, K.

-Miniature chemical flow probe sensor

The miniature chemical flow-probe sensor can detect metals, especially copper. See “Miniature
chemical flow probe sensor” below for details (page 19).

Radioisotope sensors

RadFET (Radiation field-effect transistor)

The RadFET concept for measuring gamma radiation dose has been around for many years. It is
based on ionizing radiation permanently promoting high mobility electrons into low mobility holes.
This creates an irreversible shift in the FET’s threshold voltage. Sandia has microfabricated miniature
RadFETs [17]. Sensitivities depend in part upon fabrication structure, and range from 0.01 to 5 mV per
rad. An energy spectrometer can be made by fabricating filters of varying threshold energies on
RadFET arrays (Figure 2). With consideration of threshold barriers, RadFETs are universal ionizing
radiation detectors. The sensitivity of RadFETs increases with application of increasing bias voltage.
However Sandia has fabricated designs that are moderately sensitive with no voltage source.
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Figure 2. The 1 mm’ RadFET element fits on a standard TO-18 package header. Over 5000 RadFETs
can be microfabricated on a single 4 inch wafer.

Cadmium zinc telluride (CZT) detectors

CZTs are semiconductor gamma and neutron radiation detectors, producing current flow under the
influence of a gate voltage, upon exposure to high energy radiation. They can be fabricated in arrays to
perform imaging or spectroscopy [18] (see Figure 3). While these are promising and sensitive sensors,
their performance, and thus calibration, degrades with cumulative exposure. Long term performance is
hard to track, as damage may be progressive with radiation energy levels [19]. Sandia performed
experiments to improve the fabrication process for industry (see also Figure 3). Commercial sensors
and spectrometers are available from EV Products or AmpTek.
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Figure 3. The 1 cm’ CZT array sits on a dip package on a circuit board for a handheld gamma

radiation spectrometer.

-Low-energy pin diodes beta spectrometer

A handheld low-energy beta spectrometer was assembled at Sandia for detecting tritium
contamination using commercially available pin photodiodes from Hamamatsu [20]. The system works
by measuring current pulses generated in the diode when beta particles strike. Electronic circuits
convert each signal to a voltage pulse whose amplitude is proportional to the energy of the particle.

-Thermoluminescent dosimeter (TLD)

A thermoluminescent dosimeter is a crystal that absorbs energy from radiological exposure, semi-
permanently promoting electrons into semiconductor holes. Upon heating the crystal, the trapped
energy is released in the form of light. A TLD reader uses a photodetector to convert the signal into a
radiation dose reading. Commonly used crystals are calcium fluoride-manganese and lithium fluoride.
Sandia has fabricated TLDs with crystals implanted in Teflon to improve sensitivity [21-22]. Thin
crystals can be used to measure low energy radiation, while thick crystals measure total exposure.
Filters and different crystal types can also be used for energy discrimination.

-Isotope identification gamma detector

An isotope identification gamma detector was developed in conjunction with the Defense Threat
Reduction Agency, Northrup Grumman, Applied Research Associates, and DOE/NNSA laboratories.
This was designed as a portal instrument to find and identify unconventionally transported nuclear
weapons and radiological dispersal devices.

-Neutron generator for nuclear material detection

A small neutron generator is being developed for use in probing for the presence of nearby nuclear
materials [23]. The meter-tall instrument interrogates nuclear material by "pinging" it with neutrons to
incite the release of secondary particles. These particles, which are indicative of their atomic source,
are then detected. The smaller prototype will be tested soon.

-Non-sandia radiation detectors

Commonly used gamma radiation detectors include high purity germanium (require liquid
nitrogen), and scintillation crystals such as thallium-doped sodium iodide (low energy resolution).
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Geiger counters were one of the first radiation detectors available, and the first to provide quantitative
measurements of radiation. They use very simple electronics and cover a wide radiation range, but
they are bulky compared to some of the sensors described above.

Commercial options: Radiation Experiments and Monitors (REM) makes a commercial radiation
FET sensor with a sensitivity of —10 mV/rad when biased to +20V. TLDs can be purchased from
Teledyne Isotopes. CZT detectors can be purchased from Mitsubishi Electric and Communication
Electronics, Inc. (Ann Arbor, MI). Geiger counters can be purchased from Mineralab (Prescott, AZ).

Volatile organic compound sensors

-Evanescent fiber-optic chemical sensor

An evanescent wave is the energy that penetrates a dielectric interface when electromagnetic
radiation undergoes total internal reflection. This wave can interact with matter within the penetration
depth. By using specialized coatings as the fiber-optic cladding, chemical species can be preferentially
concentrated from a matrix into the evanescent interaction zone. Polymer optical wave guides have
been used for sensing organic compounds in aqueous solutions at low ppm levels [24]. pH
measurements can be made using sol-gel coatings. For sensing applications, near infrared (NIR)
spectroscopy is used for quantitative measurements. With excellent light transmission in this region,
sensing can be performed over great distances. However, the spectroscopic signal from mixtures must
be deconvolved using multivariate analysis.

-Grating light reflection spectroelectrochemistry

Grating light reflection spectroscopy (GLRS) is a technique for spectroscopic analysis and sensing.
A transmission diffraction grating is placed in contact with a liquid sample to be analyzed, and an
incident light beam is directed onto the grating. At certain angles of incidence, some of the diffracted
orders are transformed from traveling waves to evanescent waves. This occurs at a specific wavelength
that is a function of the grating period and the complex index of refraction of the sample. The intensity
of a diffracted order is also dependent upon the sample’s complex index of refraction. The real part of
the theoretical equations correspond to the speed of light in the material, and the imaginary part
corresponds to light absorption. This technique was used at Sandia in combination with
electrochemical modulation of a gold-coated metallic spectroscopic grating for the detection of trace
amounts of aromatic hydrocarbons [25]. The grating was configured as the working electrode in an
electrochemical cell containing water plus trace amounts of TNT and a dye. Cyclic electrochemical
modulation produced lower limits of detection, 50 parts per million and 50 parts per billion,
respectively.

-Miniature chemical flow probe sensor

This down-hole probe is designed to measure organic analytes diffusing through a semi-permeable
membrane [15]. The analytes react with a reagent, forming spectrally distinct products. Absorption
bands from a flash lamp are then observed with a spectrometer system, using fiber-optics to carry the
light in both directions. Target analytes can be volatile organic compounds in air or water (particularly
chlorinated halocarbons), or dissolved metals (copper gives particularly strong response).
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-SAW chemical sensor arrays

An acoustic sensor is typically used by measuring a decrease in its active resonant frequency that is
related to trace mass loading on the active surface (Figure 4). Polymers, sol-gels, and high surface area
coatings are often applied to enhance mass absorption/adsorption, and to provide a degree of chemical
class selectivity. Acoustic sensors used at Sandia include flexural plate wave (FPW) sensors, quartz
crystal microbalances (QCM), and surface acoustic wave (SAW) sensors. By placing coatings of
various chemical properties on a 6-SAW array, chemical speciation and quantification of vapors have
been performed [26]. In one test the responses of these materials to each of 14 different analytes,
representing the classes of saturated alkane, aromatic hydrocarbon, chlorinated hydrocarbon, alcohol,
ketone, organophosphonate, and water, was evaluated. The results revealed a qualitative "chemical
orthogonality" of the films useful for pattern recognition analysis. SAWs are the most sensitive of the
above-mentioned acoustic sensors, and a number of technological advances have been made to
facilitate their use in other chemical systems. Perhaps the most important of these advances is an ASIC
(application specific integrated circuit) that converts DC power to the required high frequency
impulse, and a reverse conversion for monitoring the frequency shift as a proportional DC shift [27].
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Figure 4. Four SAW sensor elements aligned vertically on an application specific integrated circuit.
One delay line is left uncoated to compare frequency shifts of the other polymer or sol-gel coated
lines.

-MicroChemLab (gas phase)

The gas phase MicroChemLab is a miniature gas chromatography (GC) system originally designed
for chemical warfare agent detection for national security needs. Due to the high versatility of GC it
has widespread utility. The MicroChemLab can likewise be configured for a variety of applications,
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including quantification of organic compounds from natural gas to explosives to derivatized biological
fatty acids. The main components typically consist of a microfabricated hotplate preconcentrator (PC),
a micromachined silicon gas chromatography column (uGC), and a surface acoustic wave (SAW)
sensor array [28]. The PC uses absorbent sol-gels, polymers, or a high surface area adsorbent solid
phase. The low heat capacity membrane is then heated to hundreds of degrees in milliseconds to
desorb collected analyte. This serves as the injection mechanism for the pGC. The nGC separates the
injected chemicals in elution time through differing retention capacities with the polymer coated wall
or solid packing materials. The chemicals are then detected in order by the SAW sensor.

To address the different nature of the various applications, several variations in components exist.
For highly volatile compounds (methane, carbon dioxide) an injection loop is commonly used. A
Sandia microfabricated version does not yet exist. A variety of sensors are also in various stages of
development, each with advantages and disadvantages. These include a thermal conductivity detector,
micro-pellistor array, gold nanowire sensor, and a nitrogen-phosphorous detector.

-Gold nanoparticle chemiresistors

Gold nanoparticle chemiresistors rely on the general ohmic sensing principles behind other
chemiresistors with a few differences. In this sensor, the gold nanoparticles are electrically connected
through conductive polymer linkages. While the conduction system is structurally bound in a second,
nonconductive polymer, polymer swell minimally affects the resistive measurement. A more stable,
reproducible, and sensitive signal is obtained from the direct interaction of analytes with the
polarizable polymer links. Thus, films can be significantly thinner and detect lesser concentrations. To
date, the sensors have measured pH and other ion concentrations in liquids (personal communication,
D. Wheeler, Sandia National Laboratories, April 1, 2004). Outside researchers have primarily focused
on gas phase VOCs, which is the next target of the Sandia sensor.

-Electrical impedance of tethered lipid bilayers on planar electrodes

This sensor consists of a very thin layer of lipid bilayers. VOCs adsorbing or absorbing into the
layer changes ion mobility in the structure. This may offer orders of magnitude increase in sensitivity
over existing polyelectrolyte coated capacitive chemiresistors. The large increase in sensitivity arises
from molecular recognition elements, like antibodies that bind the analyte molecules.

-MicroHound

The MicroHound is a complete analytical system consisting of a chemical preconcentration system
and a miniature Ion Mobility Spectrometer (IMS) [29]. Designed primarily for explosives, it can be
modified for detecting semi-volatile organic compounds in air. The preconcentration system draws
large volumes of air through a mesh screen that selectively adsorbs explosives. The screen is then
rapidly heated to desorb the chemicals as a pulse into the inlet of the IMS. The IMS ionizes chemicals
at the time-gated entrance of a drift tube. The ions are electrostatically driven against a counter-
flowing inert gas to a sensing electrode. lons are separated from each other in the drift tube according
to size, with smaller chemicals arriving first. Identification and quantification are determined by drift
time and peak size, respectively.
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-Hyperspectral imaging

Multiple infrared images of the same location (microscopic or macroscopic) are obtained using
different filters. Thus, a color spectrum of each pixel is obtained. These multidimensional images can
be processed for quantitative species mapping [30]. This is a stand-off method and could be used from
a UAV or satellite for surface soil monitoring. These methods have also been used for biological and
biomedical applications [31].

-Chemiresistor array

The chemiresistor sensor is a chemically sensitive resistor comprised of a conductive polymer film
deposited on a micro-fabricated circuit [32]. The chemically-sensitive insulating polymer is dissolved
in a solvent and mixed with conductive carbon particles. The resulting ink is then deposited and dried
onto thin-film, parallel, non-intersecting platinum traces on a solid substrate (chip). When chemical
vapors come into contact with the polymers, the chemicals absorb into the polymers, causing them to
swell. The swelling changes the physical conformation of the conductive particles in the polymer film,
thereby changing the electrical resistance across the platinum-trace electrodes, which can be measured
and recorded using a data logger or an ohmmeter. The swelling is reversible if the chemical vapors are
removed, but some hysteresis can occur at high concentration exposures. The amount of swelling
corresponds to the concentration of the chemical vapor in contact with the chemiresistor, so these
devices can be calibrated by exposing the chemiresistors to known concentrations of target analytes.

The architecture of the microsensor integrates an array of chemiresistors with a temperature sensor
and heating elements [33]. The chemiresistor array has been shown to detect a variety of VOCs
including aromatic hydrocarbons (e.g., benzene), chlorinated solvents (e.g., trichloroethylene (TCE),
carbon tetrachloride), aliphatic hydrocarbons (e.g., hexane, iso-octane), alcohols, and ketones (e.g.,
acetone). The on-board temperature sensor comprised of a thin-film platinum trace can be used to not
only monitor the in-situ temperature, but it can also be used in a temperature control system. A
feedback control system between the temperature sensor and on-board heating elements can allow the
chemiresistors to be maintained at a fairly constant temperature, which can aid in the processing of
data when comparing the responses to calibrated training sets. In addition, the chemiresistors can be
maintained at a temperature above the ambient to prevent condensation of water, which may be
detrimental to the wires and surfaces of the chemiresistor.

A robust package has been designed and fabricated to house the chemiresistor array [34]. This
cylindrical package is small (~ 3 cm diameter) and is constructed of rugged, chemically-resistant
material. Early designs have used PEEK (PolyEtherEtherKetone), a semi-crystalline, thermoplastic
with excellent resistance to chemicals and fatigue. Newer package designs have been fabricated from
stainless steel (Figure 5). The package design is modular and can be easily taken apart (unscrewed like
a flashlight) to replace the chemiresistor sensor if desired. Fitted with Viton O-rings, the package is
completely waterproof, but gas is allowed to diffuse through a GORE-TEX® membrane that covers a
small window to the sensor. Like clothing made of GORE-TEX", the membrane prevents liquid water
from passing through it, but the membrane “breathes,” allowing vapors to diffuse through. Even in
water, dissolved VOCs can partition across the membrane into the gas-phase headspace next to the
chemiresistors to allow detection of aqueous-phase contaminants. The aqueous concentrations can be
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determined from the measured gas-phase concentrations using Henry’s Law. Mechanical protection is
also provided via a perforated metal plate that covers the chemiresistors. The chemiresistors are
situated on a 16-pin dual-in-line package that is connected to a weatherproof cable, which can be of
any length because of the DC-resistance measurement. The cable can be connected to a hand-held
multimeter for manual single-channel readings, or it can be connected to a multi-channel data logger
for long-term, remote operation.

Figure 5. Stainless-steel waterproof package that houses the chemiresistor array. Left: GORE-TEX"™
membrane covers a small window over the chemiresistors. Right: Disassembled package exposing the
16-pin dual-in-line package and chemiresistor chip.

Biological sensors

-Fatty acid methyl esters (FAME) analyzer

This method uses microhotplates and micro-chromatography columns (pGC) from the
MicroChemlLab to analyze whole biological cells [35]. A liquid sample is placed on the hotplate along
with a methylating agent. When the hotplate is thermally ramped (to 500°C in tens of milliseconds) the



Sensors 2005, 5 24

cells are lysed with proteins in the lipid bilayer forming semi-volatile FAMEs. This also served as the
injection mechanism into a pGC, where the FAMEs were separated for identification and
quantification. The ratios of the FAMEs can be used to distinguish bacteria at the gram-type, genera,
and even species level with high-resolution instrumentation. Sandia work aimed at miniaturizing half-
million dollar bench scale instrumentation down to a handheld, battery-powered instrument with
minimal sample preparation. Target analytes include biological warfare agents, food contaminants, and
other toxic pathogens.

-iDEP (insulator-based dielectrophoresis)

This technique uses an electric field applied across a microfabricated array of insulating posts [36].
The polypropylene device selectively preconcentrates particles based on their polarizability and size
(Figure 6). It can be used to preconcentrate proteins for analysis in the liquid MicroChemLab or other
systems for fingerprint identification of pathogens.

Figure 6. Electric field gradients created between microfabricated posts separate fluorescently tagged
live and dead E. coli while dielectrophoretically concentrating them in zones.

-Bio-SAW sensor

Acoustic sensors are typically used by measuring a decrease in their resonant frequency that is
related to mass loading. Biological detection can be performed by applying specific antibody coatings
to the active surface of the acoustic device (Figure 7). Anthrax spores can be detected in a few
minutes, and other biological threats can be detected using other antibody coatings [37]. An array of
sensors with different coatings would provide increased versatility.

-uProLab

This LDRD Grand Challenge system is being designed for preconcentration and analysis of
proteins and peptides using MIMS (molecular integrated microsystems) [38]. This architecture will
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take the advantages inherent in system miniaturization to a higher level of performance. At the same
time, simplicity of production is sought. Successes to date include cast-in-place fluidic structures and
coatings, and the ability to preconcentrate protein and peptide signatures 1000 fold using
programmable switchable polymers and electrokinetic trapping.

-MicroChemLab (Liquid)

The liquid MicroChemLab is the counterpart to the gas-phase MicroChemLab above [39]. It is a
hand-portable, low-power instrument designed to detect a broad range of chemical and biological
agents in less than five minutes. The detector uses capillary electrophoresis with three analysis trains:
1) DNA analysis to identify bacteria and viruses, 2) immunoassays to identify bacteria, viruses, toxins,
and 3) protein signatures to identify toxins. Fluid handling is contained to micromachined channels on
a single board, and driven by high voltage, but low power, electrokinetic forces. Sample
preconcentration and injections occur through manipulation of the electrophoretic fields without the
use of valves. Fluorescent detection occurs using a diode laser. The system has been designed to have
manufacturable, replaceable modules with simplicity for a non-technical end-user.

Figure 7. A miniaturized biosensor is shown consisting of a shear horizontal surface acoustic wave
sensor coated with a molecular recognition layer. Highly specific coatings are used for biological
warfare agent detection and medical diagnostics.
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Summary and specifications of sensor technologies

The following tables (Tab. 10 to Tab 13) summarize specifications for the sensor technologies
described in the previous sections. In many cases, rigorous specifications are not available because of
limited studies. In these cases, estimates are provided based on the judgment of the principal

investigators.

Table 10. Summary of specifications for trace metal sensors.

Sensor Specifications
Technology Sensitivity Selectivity | Stability Speed Size Power User Cost
Interface
A) low ppb elemental long- seconds 1 square inch personal Sensor:
Nanoelectro in non- term dip probe computer
de Array complex
mixtures
B) low ppb elemental long- ms with fiber-optics; mW per personal system:
Laser- term intensified-CCD, lengths of pulse computer $50-
Induced minutes with 100+ meters 150K
Breakdown scanning possible
Spectroscop spectrc_)meters
y or signal
averaging
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The advancement of the LIBS technology would be focused on developing a continuous LIBS
sensor for water-monitoring applications. Ideally, the sensor would be able to simultaneously detect
the nine RCRA metals plus arsenic at low ppb levels. The development of holographic diffraction
gratings would increase the speed and efficiency of the LIBS ability to simultaneously detect these
trace metals.

For the CZT sensors, a low-level effort is needed to adapt these sensors for water applications. A
significant challenge will be to detect alpha-emitting contaminants since the radiation is attenuated
rapidly. A continuous CZT sensor with spectrometry would need to be adapted for aqueous
environments.

The MicroChemLab device requires additional development to detect VOCs in aqueous
environments. Sampling, analysis, and parameter optimization (e.g., polymer selection) for target
VOCs need to be pursued. With preconcentration, the sensitivity of these devices can be in the ppb
range, but repeatability and drift are significant issues with MicroChemLab.

The ion mobility spectrometer implemented in the MicroHound shows promise for detecting semi-
volatile compounds such as pesticides and halogenated contaminants at low concentrations. Sampling
methods would need to be developed to introduce aqueous samples to the IMS. Separation is based on
the different “drift” times of the different ions through the IMS tube, but additional separation could be
obtained by adding a chromatography column at the inlet. A great deal of research invested in the
MicroHound project can be leveraged for applications in water monitoring and ambient-air monitoring
(e.g., new materials and designs for the IMS drift tube).

The Bio-Saw sensor, and other continuous, real-time biological sensors, still require significant
research and development before they can be applied to environmental monitoring applications. Bio-
assay test kits are available that can provide detection of biological agents, but these require manual
operation and interfacing.

Of the sensors identified in Table 16, we believe that LIBS (for trace metals) and ion-mobility
spectrometry (for semi-volatiles) show the most promise in terms of capabilities, adaptability, and
potential impact. Both have the capability to detect concentrations at or below regulatory levels, and
the ability to detect trace metals and semi-volatiles is needed in a number of environmental
applications ranging from drinking-water to ambient-air monitoring.

A primary consideration that still remains to be addressed is the performance of these sensors in
each of the field applications. Features such as sensitivity, stability, selectivity, speed, size, and cost
need to be tested and evaluated under actual operating conditions. Harsh and fluctuating environmental
conditions can degrade the performance of many of these sensors. Nevertheless, a market analysis
presented in the beginning of this report indicates that a wide-ranging (and commercially viable) need
can be filled by the successful development and application of these sensors to environmental
monitoring applications. The sensor technologies identified in Table 15 and Table 16 appear to be the
strongest candidates that can be further developed and adapted to address these needs.
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