
 Open access  Proceedings Article  DOI:10.1109/CIP.2010.5604136

Overview of spectrum sensing for cognitive radio — Source link 

Erik Axell, Geert Leus, Erik G. Larsson

Institutions: Linköping University, Delft University of Technology

Published on: 14 Jun 2010

Topics: Cognitive radio, Detector and Energy (signal processing)

Related papers:

 A survey of spectrum sensing algorithms for cognitive radio applications

 Cognitive radio: brain-empowered wireless communications

 Eigenvalue-based spectrum sensing algorithms for cognitive radio

 NeXt generation/dynamic spectrum access/cognitive radio wireless networks: a survey

 A Survey of Dynamic Spectrum Access

Share this paper:    

View more about this paper here: https://typeset.io/papers/overview-of-spectrum-sensing-for-cognitive-radio-
1vlz99vetc

https://typeset.io/
https://www.doi.org/10.1109/CIP.2010.5604136
https://typeset.io/papers/overview-of-spectrum-sensing-for-cognitive-radio-1vlz99vetc
https://typeset.io/authors/erik-axell-5e1vo2d4he
https://typeset.io/authors/geert-leus-4qrj67kt1j
https://typeset.io/authors/erik-g-larsson-3preehvldq
https://typeset.io/institutions/linkoping-university-1gig5b28
https://typeset.io/institutions/delft-university-of-technology-2b85q0ia
https://typeset.io/topics/cognitive-radio-r99rvqjd
https://typeset.io/topics/detector-2b69t42r
https://typeset.io/topics/energy-signal-processing-19mp6q12
https://typeset.io/papers/a-survey-of-spectrum-sensing-algorithms-for-cognitive-radio-2yszzmaw22
https://typeset.io/papers/cognitive-radio-brain-empowered-wireless-communications-9m6gu0vz1z
https://typeset.io/papers/eigenvalue-based-spectrum-sensing-algorithms-for-cognitive-5dpf0iym1x
https://typeset.io/papers/next-generation-dynamic-spectrum-access-cognitive-radio-15rldiyn0b
https://typeset.io/papers/a-survey-of-dynamic-spectrum-access-489lezppjk
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/overview-of-spectrum-sensing-for-cognitive-radio-1vlz99vetc
https://twitter.com/intent/tweet?text=Overview%20of%20spectrum%20sensing%20for%20cognitive%20radio&url=https://typeset.io/papers/overview-of-spectrum-sensing-for-cognitive-radio-1vlz99vetc
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/overview-of-spectrum-sensing-for-cognitive-radio-1vlz99vetc
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/overview-of-spectrum-sensing-for-cognitive-radio-1vlz99vetc
https://typeset.io/papers/overview-of-spectrum-sensing-for-cognitive-radio-1vlz99vetc


  

  

Linköping University Post Print 

  

  

Overview of Spectrum Sensing for Cognitive 

Radio 

  

  

Erik Axell, Geert Leus and Erik G. Larsson 

  

  

  

  

N.B.: When citing this work, cite the original article. 

  

  

  

©2010 IEEE. Personal use of this material is permitted. However, permission to 

reprint/republish this material for advertising or promotional purposes or for creating new 

collective works for resale or redistribution to servers or lists, or to reuse any copyrighted 

component of this work in other works must be obtained from the IEEE. 

Erik Axell, Geert Leus and Erik G. Larsson, Overview of Spectrum Sensing for Cognitive 

Radio, 2010, The 2nd International Workshop on Cognitive Information Processing. 

  

Postprint available at: Linköping University Electronic Press 

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-54529 
 

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-54529


Overview of Spectrum Sensing for Cognitive Radio

Erik Axell†, Geert Leus‡ and Erik G. Larsson†

†Department of Electrical Engineering (ISY), Linköping University, 581 83 Linköping, Sweden
‡Faculty of Electrical Engineering, Delft University of Technology, Mekelweg 4, 2628CD Delft, The Netherlands

Abstract—We present a survey of state-of-the-art algorithms
for spectrum sensing in cognitive radio. The algorithms discussed
range from energy detection to sophisticated feature detectors.
The feature detectors that we present all have in common that
they exploit some known structure of the transmitted signal.
In particular we treat detectors that exploit cyclostationarity
properties of the signal, and detectors that exploit a known
eigenvalue structure of the signal covariance matrix. We also
consider cooperative detection. Specifically we present data fusion
rules for soft and hard combining, and discuss the energy
efficiency of several different sensing, sleeping and censoring

schemes in detail.
Index Terms—spectrum sensing, cognitive radio, signal detec-

tion

I. INTRODUCTION

Spectrum is a scarce resource, and licensed spectrum is

intended to be used only by the spectrum owners. Cognitive

radio is a new concept of reusing licensed spectrum in an

unlicensed manner [1], [2]. The motivation for cognitive

radio is various measurements of spectrum utilization, that

show unused resources in frequency, time and space [3], [4].

The introduction of cognitive radios will inevitably create

increased interference and thus degrade the quality of service

of the primary system. The impact on the primary system, for

example in terms of increased interference, must be kept at

a minimal level. To keep the impact at an acceptable level,

secondary users must sense the spectrum to detect whether it

is available or not. Secondary users must be able to detect

very weak primary user signals [5], [6], [7]. Spectrum sensing

is one of the most essential components of cognitive radio.

In the following we will present some topics in spectrum

sensing for cognitive radio, that have been of great interest in

recent research. We will highlight some fundamental problems

and present techniques for signal detection.

II. MODEL

As a preliminary, we set up the model for signal detection.

Assume that y is a received vector of length N , that consists

of a signal plus noise. That is

y = x + w,
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where x is a signal vector, and w is a noise vector. The noise

w is assumed to be i.i.d. zero-mean complex Gaussian with

variance σ2. That is, w ∼ CN(0, σ2I).
We wish to detect whether there is a signal present or not.

That is, we want to discriminate between the following two

hypotheses:

H0 : y = w,

H1 : y = x + w.
(1)

The optimal (uniformly most powerful) Neyman-Pearson test

is to compare the log-likelihood ratio to a threshold. That is

Λ � log

(
P (y|H1)

P (y|H0)

)
H1

≷
H0

η.

Clearly, the log-likelihood ratio depends on the distribution of

the signal to be detected.

III. ENERGY DETECTION

Initially we will present one of the simplest signal models,

for which the optimal detector is the energy detector [8].

We assume that the signal to be detected does not have any

known structure that could be used for detection. Thus, we

assume that the signal is also zero-mean circularly symmetric

complex Gaussian x ∼ CN(0, γ2I). Then, under H0, y|H0 ∼
CN(0, σ2I) and under H1, y|H0 ∼ CN(0, (σ2 + γ2)I). The

log-likelihood ratio is

log

(
P (y|H1)

P (y|H0)

)
= log

⎛

⎝
1

πN (σ2+γ2)N exp(− ‖y‖2

σ2+γ2 )

1
πN σ2N exp(− ‖y‖2

σ2 )

⎞

⎠ .

By removing all constants that are independent of the received

vector y, we obtain the optimal Neyman-Pearson test

Λe � ‖y‖2 =
N−1∑

i=0

|yi|
2

H1

≷
H0

ηe. (2)

Hence, the optimal detector, in the Neyman-Pearson sense, is

in this case the energy detector also known as radiometer [8].

In essence the energy detector measures the received energy

during a finite time interval, and compares it to a predeter-

mined threshold. The performance of the energy detector is

well known, cf. [9], and can be written in closed form. The

probability of false alarm PFA is given by

PFA � Pr(Λe > ηe|H0) = 1 − Fχ2

2N

(
2ηe

σ2

)
, (3)

where Fχ2

2N

(·) denotes the cumulative distribution function of

a χ2-distributed random variable with 2N degrees of freedom.
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Thus, given a false alarm probability, we can derive the

threshold η from

ηe = F−1
χ2

2N

(1 − PFA)
σ2

2
. (4)

The probability of detection is given by

PD � Pr (Λe > ηe|H1) = 1 − Fχ2

2N

(
2ηe

σ2 + γ2

)
. (5)

The energy detector is universal in the sense that it can detect

any type of signal, and does not require any knowledge about

the signal to be detected. On the other hand, for the same

reason it does not exploit any potentially available knowledge

about the signal. Moreover, the noise power needs to be known

to set the decision threshold (4).

IV. FUNDAMENTAL LIMITS ON DETECTION

Cognitive radios must be able to detect very weak primary

user signals [5]. However, there are some fundamental limits

for detection in low SNR. For example, to set the decision

threshold of the energy detector (4), the noise variance σ2

must be known. If the knowledge of the noise variance is

imperfect, clearly the threshold will be erroneous. It is well

known that the performance of the energy detector quickly

deteriorates if the noise variance is imperfectly known (cf. [6],

[10]). Due to uncertainties in the model assumptions, robust

detection is impossible below a certain SNR level, known as

the SNR wall [10], [11]. It was shown in [10] that errors

in the noise power assumption introduces SNR walls to any

moment-based detector. This was further extended in [11] to

any model uncertainties, such as assuming perfect white and

stationary noise, flat fading, ideal filters and infinite precision

A/D converters. These results hold for detectors with imperfect

assumptions. However, it is possible to circumvent, or at least

mitigate the problem of SNR walls by taking the imperfections

into account. For example, it was shown in [11] that noise

calibration improves the detector robustness. Exploiting some

known features of the signal to be detected can also improve

the detector performance and robustness.

V. FEATURE DETECTION

If the signal to be detected is perfectly known, the optimal

detector is a matched filter (cf. [9]). In practice the signal is

never perfectly known, but there is some knowledge about the

signal. It is usually known what kind of primary users that

are to be detected, and the transmitted signals are to some

extent determined by standards and regulations. Thus, some

features of the signal to be detected are usually known. In the

following, we will describe some detectors exploiting known

features of the signal, both to improve performance and to

circumvent the problem of model uncertainties, for example

imperfectly known noise variance.

A. Cyclostationarity

Most man-made signals show periodic patterns related to

symbol rate, chip rate, channel code or cyclic prefix, that can

be appropriately modeled as a cyclostationary random process

[12]. A discrete-time zero-mean stochastic process yt is said to

be second-order cyclostationary if its time-varying covariance

function R(t, T ) � E
[
yty

∗
t+T

]
is periodic in t (cf. [13], [12]).

Hence, R(t, T ) can be expressed by a Fourier series

R(t, T ) =
∑

α

Rα
y (T )ejαt, (6)

where the sum is over integer multiples of fundamental fre-

quencies and their sums and differences. The Fourier coeffi-

cients depend on the time lag T and are given by

Rα
y (T ) =

1

T0

T0−1∑

t=0

R(t, T )e−jαt. (7)

The Fourier coefficients Rα
y (T ) are also known as the cyclic

covariance with cyclic frequency α. The process yt is said to

be cyclostationary if there exists an α such that Rα
y (T ) > 0.

The cyclic spectrum of the signal y is the Fourier coefficient

Sy(α, ω) =
∑

T

Rα
y (T )e−jωT .

The cyclic spectrum is the density of correlation for cyclic

frequency α. Knowing some of these cyclic characteristics

of a signal, one can construct detectors that exploit the

cyclostationarity of the signal [13], [14], [15], [16], [17] and

benefit from the spectral correlation.

There has been a huge interest in detection of OFDM

signals recently. One reason is that many of the current

and future technologies for wireless communication, such

as WiFi, WiMAX, LTE and DVB-T, use OFDM signalling.

Therefore it is reasonable to assume that cognitive radios

must be able to detect OFDM signals. Another reason is

that OFDM signals exhibit well known spectral correlation

properties [18]. The IEEE 802.22 WRAN standard is intended

for cognitive radio-based reuse of spectrum that is allocated

to digital TV broadcasts. Cyclostationarity-based detectors

for detection of the OFDM-based digital TV-signals for the

IEEE 802.22 WRAN standard were proposed e.g. in [19],

[20]. Another cyclostationary-based detector of OFDM-signals

based on multiple cyclic frequencies was proposed in [21]. We

will return to the detection of OFDM signals in Section V-B.

B. Autocorrelation

Many communication signals contain redundancy, intro-

duced for example to facilitate synchronization, by channel

coding or to circumvent intersymbol interference. This redun-

dancy occurs as non-zero average autocorrelation at some time

lag T . For example, consider an OFDM signal with a cyclic

prefix of length Nc and informative data of length Nd. Then,

the average autocorrelation of the OFDM signal is non-zero at

time lag Nd, owing to the fact that some of the data is repeated

in the cyclic prefix of each OFDM symbol. In the sequel of

this section we assume that the signal is an OFDM signal,

although the described detectors are valid for all signals that

show a non-zero average autocorrelation at some known time

lag. Assume that the signal y contains N � K(Nc+Nd)+Nd
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samples. As a preparation, let

ri � y∗
i yi+Nd

, i = 0, . . . , K(Nc + Nd) − 1. (8)

Furthermore, we know that if E [ri] �= 0, then

E
[
ri+k(Nc+Nd)

]
�= 0, k = 1, . . . , K − 1, and analogously

if E [ri] = 0, then E
[
ri+k(Nc+Nd)

]
= 0. That is, ri and

ri+k(Nc+Nd) will have identical statistics, and be independent

(since the noise and signals are independent). Thus, we define

Ri �
1

K

K−1∑

k=0

ri+k(Nc+Nd), i = 0, . . . , Nc + Nd − 1.

A detector that exploits the autocorrelation property of OFDM

signals was proposed in [22]. The detector of [22] uses the test

statistic

max
τ∈{0,...,Nc+Nd−1}

∣∣∣∣∣

τ+Nc−1∑

i=τ

ri

∣∣∣∣∣ . (9)

The variable τ can be viewed as the synchronization mismatch,

or equivalently the time when the first sample is observed.

The statistic (9) only takes one OFDM symbol at a time into

account. A slight generalization of this test statistic, that uses

the whole signal and not only one symbol, is to sum the

variables Ri instead of ri. Then, the test is

Λmax ac � max
τ∈{0,...,Nc+Nd−1}

∣∣∣∣∣

τ+Nc−1∑

i=τ

Ri

∣∣∣∣∣
H1

≷
H0

ηmax ac.

Another autocorrelation-based detector was proposed in [23].

This detector uses the empirical mean of the autocorrelation

normalized by the received power, as test statistic. More

precisely, the test proposed in [23] is

Λac �
1

N−Nd

∑N−Nd−1
i=0 Re(ri)

1
N

∑N−1
i=0 |yi|2

H1

≷
H0

ηac.

The detector proposed in [22] requires knowledge about the

noise variance to set the decision threshold, while the detector

proposed in [23] does not require any knowledge about the

noise variance.

C. Covariance Matrix Eigenvalues

In this section, we will explain methods that use the eigen-

value structure of the signal covariance matrix. The concept

of using the covariance matrix eigenvalues for detection is

currently an ongoing research area. There are several variations

on this theme, and we describe a selection of recent methods

in order to convey the key concepts behind the approach.

Assume that the signal x is zero-mean Gaussian. More

specifically x ∼ CN(0,Rx), where Rx is the N × N
covariance matrix of x. Then, the hypothesis test (1) can be

written

H0 : y ∼ CN
(
0, σ2I

)
,

H1 : y ∼ CN
(
0,Rx + σ2I

)
.

(10)

Let Ry be the covariance matrix of the received vector y,

Ry � E
[
yyH

]
. Typically x is correlated, so that Rx has

large eigenvalue spread. This is the case for example in a

typical MIMO system [24], or for an OFDM signal. Then,

under H0, all eigenvalues of Ry are equal to σ2. However,

under H1 the eigenvalues of Ry are equal to δi + σ2, i =
0, . . . , N −1, where δi are the eigenvalues of Rx. Thus, if we

sort the eigenvalues of Ry in descending order, there will be a

significant difference between the “smallest” eigenvalues and

the “largest” ones. Detectors exploiting the eigenvalue spread

of the signal covariance matrix were proposed e.g. in [24],

[25], [28], and will be briefly described in the following.

Consider K vectors y[k] received in a sequence. Define the

sample covariance matrix

R̂y �
1

K

K−1∑

k=0

y[k]y[k]H .

Let λi, i = 0, . . . , N−1, be the eigenvalues of R̂y . There were

two eigenvalue-based detectors proposed in [24], that uses the

test statistics
maxi λi

minj λj
(11)

and
1
N

∑N−1
i=0 λi

mini λi
(12)

respectively. These eigenvalue-based detectors were shown

to perform well when the signal to be detected is highly

correlated.

A similar test statistic was recently proposed in [25]:

maxi λi

1
N

∑N−1
i=0 λi

. (13)

It was shown in [25] that, under some circumstances, the

detector (13) outperforms the detector (11) in terms of asymp-

totic error exponents. Similar tests were recently also proposed

in [26], [27].

It was shown in [28], that the generalized likelihood ratio

(GLR) for the hypothesis test (10) when all parameters (σ2 and

Rx) are completely unknown, so that Ry under H1 is treated

as an unstructured and unknown positive definite matrix, is

1
N

∑N−1
i=0 λi

(∏N−1
i=0 λi

)1/N
. (14)

This test is equivalent to the sphericity test of [29]. The

sphericity test of [29] tests if the covariance matrix of a

multivariate normal distribution is proportional to the identity

matrix, or equivalently if all the eigenvalues of the sample

covariance matrix are equal or not. The GLR detector (14)

and the max/min-ratio detector (11) were compared in [28].

Simulations of a MIMO system where the number of transmit

antennas was larger than the number of receive antennas,

and the signal was assumed to be Gaussian, showed that the

max/min-ratio (11) performs almost as well as the GLR (14).

VI. COOPERATIVE DETECTION

One way of reducing the receiver sensitivity requirements

is by using cooperative sensing. The concept of cooperative
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sensing is to use multiple sensors and combine their measure-

ments to one common decision. This is in essence a way of

getting diversity gains.

A. Soft Combining

Assume that there are M sensors. Then, the hypothesis test

(1) becomes

H0 : ym = wm, m = 0, . . . , M − 1,

H1 : ym = xm + wm, m = 0, . . . , M − 1.

Assume that the received signals at all sensors are independent.

Let z =
(
yT

0 yT
1 . . .yT

M−1

)T
. Then, the log-likelihood ratio is

Λcoop � log

(
P (z|H1)

P (z|H0)

)
= log

(
M−1∏

m=0

P (ym|H1)

P (ym|H0)

)

=

M−1∑

m=0

log

(
P (ym|H1)

P (ym|H0)

)
=

M−1∑

m=0

Λ(m),

(15)

where Λ(m) � log
(

P (ym|H1)
P (ym|H0)

)
is the log-likelihood ratio for

the mth sensor. That is, if the received signals for all sensors

are independent, the optimal fusion rule is to sum the log-

likelihood ratios.

Consider the case when the noise vectors wm are inde-

pendent wm ∼ CN(0, σ2
mI), and the signal vectors xm are

independent xm ∼ CN(0, γ2
mI). Then, the log-likelihood ratio

(15) is written

Λce =

M−1∑

m=0

log

⎛

⎝
1

πN (σ2
m

+γ2
m

)N exp(− ‖ym‖2

σ2
m

+γ2
m

)

1
πN σ2N

m

exp(− ‖ym‖2

σ2
m

)

⎞

⎠ .

Removing all constants that are independent of z yields

Λce =

M−1∑

m=0

‖ym‖
2 γ2

m

σ2
m (σ2

m + γ2
m)

. (16)

The statistic ‖ym‖
2

is the soft decision from an energy

detector at the mth sensor, as shown in (2). Thus, the optimal

cooperative detection scheme is to use energy detection for

the individual sensors, and combine the soft decisions by the

weighted sum (16). This result was also shown in [30], for

the case when σ2
m = 1, and thus γ2

m is equivalent to the

SNR experienced by the mth sensor. Clearly, if both the noise

power and signal power are equal for all sensors, we can

ignore the weight factor and just sum the soft decisions. The

cooperative gain under that assumption was analyzed in [31].

It was shown in [31], that correlation between the sensors

severely decreases the cooperation gain. The main source

of correlation between users is shadow fading. Multipath

fading is uncorrelated at very small distances, on the scale

of half a wavelength, and can easily be avoided. Hence the

correlation is mainly distance dependent, and the cooperation

gains are limited by the distance separation of the cognitive

users. From a detection perspective a large distance separation

between users is desired. However, if cognitive users should

be able to communicate without disturbing the primary system

they must be sufficiently near to one another. Thus, there

is a distance trade off between detection performance and

cognitive communication. The effect of untrusted users was

also analyzed. The conclusion of [31] is that if one out of

M sensors is untrustworthy, the sensitivity of each individual

sensor must be as good as that achieved with M trusted users.

B. Hard Combining

So far we have considered optimal cooperative detection.

That is, all users transmit soft decisions to a fusion center,

which combines the soft values to one common decision. This

is equivalent to the case where the fusion center has access

to the received data for all sensors, and performs optimal

detection based on all data. This requires potentially a huge

amount of data to be transmitted to the fusion center. The

other extreme case of cooperative detection is that each sensor

takes its own decision, and transmits only a binary value to

the fusion center. Then, the fusion center combines the hard

decisions to one common decision.

In the following we will describe the AND, OR, and voting

rules (cf. [32]) for combining of hard decisions. Assume that

the individual statistics Λ(m) are quantized to one bit, such

that Λ(m) = 0, 1 is the hard decision from the mth sensor.

Here, 1 means that a signal is detected and 0 means that the

channel is available.

The AND rule decides that a signal is detected if all sensors

have detected a signal. That is, the cooperative test using the

AND rule decides on H1 if

M−1∑

m=0

Λ(m) = M.

The OR rule decides on signal presence if any of the sensors

reports signal detection. Hence, for the OR rule the cooperative

test decides on H1 if

M−1∑

m=0

Λ(m) ≥ 1.

Finally, the voting rule decides that a signal is present if at

least V of the M sensors have detected a signal, for 1 ≤ V ≤
M . The test decides on H1 if

M−1∑

m=0

Λ(m) ≥ V.

Taking a majority decision is a special case of the voting rule,

for V = M/2. The AND-logic and the OR-logic are clearly

also special cases of the voting rule for V = M and V = 1
respectively.

C. Energy Efficiency

As the number of cooperating users grows, the energy

consumption of the cognitive radio network increases, but the

performance generally saturates. Hence, techniques have been

developed to improve the energy efficiency in cognitive radio

networks. Throughout this subsection, we will assume that

the different cognitive radios take conditionally independent
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observations, and we will use PD and PFA to denote the global

probability of detection and false alarm, respectively.

A first simple technique to save energy is on-off sensing or

sleeping, where every cognitive radio will randomly turn off

its sensing device with a probability µ, the sleeping rate. This

can be applied in many different settings and we will come

back to it later on.

Another popular approach is censoring [33]. In such a

system a cognitive radio m will only send a sensing re-

sult if it is deemed informative, and it will censor those

sensing results that are uninformative. In [34], it has been

shown that the optimal local decision rule under a global

communication constraint is a censored local log-likelihood

ratio Λ(m) where the censoring region consists of a single

interval. More specifically, a radio will not send anything when

η
(m)
1 ≤ Λ(m) < η

(m)
2 and it will send Λ(m) otherwise. Note

that in the Bayesian framework, optimality is in terms of the

global probability of error PE = Pr(H0)PFA+Pr(H1)(1−PD),
and the communication rate constraint is

Pr(H0)

M−1∑

m=0

Pr(Λ(m) is sent |H0)

+ Pr(H1)

M−1∑

m=0

Pr(Λ(m) is sent |H1) ≤ κ. (17)

Whereas in the Neyman-Pearson framework, optimality is in

terms of the global probability of detection PD subject to a

global probability of false alarm constraint PFA ≤ α, and the

communication rate constraint is

M−1∑

m=0

Pr(Λ(m) is sent |H0) ≤ κ.

Furthermore, it has been proven in [34] that if the communi-

cation rate constraint κ is sufficiently small and either Pr(H1)
(in the Bayesian framework) or the probability of false alarm

constraint α (in the Neyman-Pearson framework) is small

enough, then the optimal lower threshold η
(m)
1 is given by

η
(m)
1 = 0. For the Neyman-Pearson framework, this result has

been generalized in [35] to a communication rate constraint

per radio:

Pr(Λ(m) is sent |H0) ≤ κm,

in which case the upper threshold η
(m)
2 can be directly

determined from κm and no joint optimization of the set of

upper thresholds {η
(m)
2 }M−1

m=0 is required.

Next to communication rate constraints, it is also possible

to consider the global cost of sensing and transmission, which

is given by

C =

M−1∑

m=0

Cs,m + Ct,mPr(Λ(m) is sent), (18)

where Cs,m and Ct,m are respectively the cost of sensing

and transmission for cognitive radio m. Note that both these

costs can be different for every cognitive radio, since they

could be using different hardware or software for sensing and

transmission, and they might have different distances to the

fusion center, meaning that they will have to use different

transmission powers. Under a constraint on C, it can again

be shown that the optimal local decision rule is a censored

local log-likelihood ratio Λ(m) where the censoring region

consists of a single interval, and this for the Bayesian as well

as the Neyman-Pearson framework [36]. Furthermore, even if

a digital transmission is considered, the optimal local decision

rule is a quantized local log-likelihood ratio Λ(m), where every

quantization level corresponds to a single interval and where

one of the quantization levels is censored [36].

In [37], the above censoring approach has been adopted

for energy detection and binary digital transmission. In other

words, the local decision is based on the locally collected

energy Λ
(m)
e = ‖ym‖2, and the radio will not send anything

when η
(m)
e,1 ≤ Λ

(m)
e < η

(m)
e,2 , and it will send a 0 when

Λ
(m)
e < η

(m)
e,1 and a 1 when Λ

(m)
e ≥ η

(m)
e,2 . Assuming that the

SNR γ2
m/σ2

m is the same for all radios, and the OR combining

rule is used, [37] then gives expressions for the communication

rate, and the global probabilities of false alarm and detection.

In [38] and [39], the idea of [37] has been combined with

sleeping and the global cost of sensing and transmission has

been optimized w.r.t. the sleeping rate µ and the thresholds

η
(m)
e,1 and η

(m)
e,2 , subject to a global probability of false alarm

constraint PFA ≤ α and a global probability of detection

constraint PD ≥ β. Note that the considered global cost of

sensing and transmission is now given by (18) multiplied by

1 − µ. The first interesting result from [38] and [39] is that

the optimal lower threshold is again given by η
(m)
e,1 = 0 if the

feasible set is not empty. In [38], it is assumed that the system

is highly underutilized, i.e., Pr(H0) ≫ Pr(H1) (similar results

hold for Pr(H0) ≪ Pr(H1)), whereas in [39], the more general

case has been treated. Note that although [38] and [39] have

considered the same thresholds η
(m)
e,1 and η

(m)
e,2 for all radios

(optimal when all the SNRs γ2
m/σ2

m, sensing costs Cs,m, and

transmission costs Ct,m are the same), it can be generalized

to the case they are not the same. To conclude, the results

show that the optimal sleeping rate and censoring probabilities

grow with the number of cognitive radios, but the censoring

probabilities saturate fairly rapidly. Hence, the thresholds η
(m)
e,2

can be designed independent of the number of cognitive radios.

VII. CONCLUDING REMARKS

Due to space limitations, there are several lines of work that

we were unable to treat in this survey. If the transmitted signals

have an unknown structure, blind detection algorithms based

on information theoretic criteria (Akaike, MDL) can be used

[40]. If the spectral properties of the signal to be detected are

known, but the signal has otherwise no usable features that can

be efficiently exploited, then filterbank-based detectors may be

preferable [41]. One special class of filterbanks that has certain

optimality properties is that consisting of the Slepian windows

[1], [42].

Finally, even though many of the spectrum sensing methods

have similar performance, they may differ significantly in
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terms of implementation complexity. Much effort is currently

being made to develop implementation-friendly algorithms and

evaluate them in practical scenarios, see for example [43].
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