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Abstract. Substantial uncertainties still exist in the scientific

understanding of the possible interactions between urban and

natural (biogenic) emissions in the production and transfor-

mation of atmospheric aerosol and the resulting impact on

climate change. The US Department of Energy (DOE) Atmo-

spheric Radiation Measurement (ARM) program’s Carbona-

ceous Aerosol and Radiative Effects Study (CARES) carried

out in June 2010 in Central Valley, California, was a compre-

hensive effort designed to improve this understanding. The

primary objective of the field study was to investigate the

evolution of secondary organic and black carbon aerosols

and their climate-related properties in the Sacramento urban

plume as it was routinely transported into the forested Sierra

Nevada foothills area. Urban aerosols and trace gases expe-

rienced significant physical and chemical transformations as

they mixed with the reactive biogenic hydrocarbons emitted

from the forest. Two heavily-instrumented ground sites – one

within the Sacramento urban area and another about 40 km

to the northeast in the foothills area – were set up to charac-

terize the evolution of meteorological variables, trace gases,

aerosol precursors, aerosol size, composition, and climate-

related properties in freshly polluted and “aged” urban air.

On selected days, the DOE G-1 aircraft was deployed to

make similar measurements upwind and across the evolv-

ing Sacramento plume in the morning and again in the after-

noon. The NASA B-200 aircraft, carrying remote sensing in-

struments, was also deployed to characterize the vertical and

horizontal distribution of aerosols and aerosol optical prop-

erties within and around the plume. This overview provides:

(a) the scientific background and motivation for the study, (b)

the operational and logistical information pertinent to the ex-

ecution of the study, (c) an overview of key observations and

initial findings from the aircraft and ground-based sampling

platforms, and (d) a roadmap of planned data analyses and

focused modeling efforts that will facilitate the integration of

new knowledge into improved representations of key aerosol

processes and properties in climate models.

1 Introduction

The strategy of the US Department of Energy for improving

the treatments of atmospheric aerosol processes and proper-

ties in global climate models involves building up from the

microscale with observational validation at every step (Ghan

and Schwartz, 2007). Particular emphasis is placed on im-

proving the scientific understanding of the possible inter-

actions between various urban (anthropogenic) and natural

(biogenic) emissions in aerosol formation and evolution of

aerosol properties over a range of meteorological and chem-

ical environments via an integrated approach of field, lab-

oratory, and modeling studies. The Carbonaceous Aerosols

and Radiative Effects (CARES) field campaign conducted

in June 2010 in Sacramento, California, was a comprehen-

sive effort designed to contribute toward accomplishing this

goal. This paper provides an overview of the CARES project,

and presents: (a) the scientific background and motivation

for the field campaign, (b) the operational and logistical in-

formation pertinent to the execution of the campaign, (c)

an overview of key observations and initial findings from

the aircraft and ground-based sampling platforms, and (d)

a roadmap of planned data analyses and focused modeling

efforts that will facilitate the integration of new knowledge

into improved representations of key aerosol processes and

properties in regional and global climate-chemistry models.

Field observations show that ambient aerosol can be com-

posed of a wide variety of compounds, including sulfate, ni-

trate, ammonium, sea salt, crustal species from soil dust, and

carbonaceous materials (e.g., Murphy et al., 1998; Seinfeld

and Pandis, 1998). Primary carbonaceous aerosols include

black carbon (BC) particles mixed with varying amounts

of organic compounds that are directly emitted from fossil

fuel combustion, cooking, industrial processes, and biomass

burning (agricultural burning and natural wildfires). Sec-

ondary carbonaceous aerosols, more commonly referred to

as secondary organic aerosols (SOA), are those formed in the

atmosphere via homogeneous nucleation, condensation, and

heterogeneous reactions of myriad gas-phase oxidation prod-

ucts from numerous volatile and semi-volatile organic com-

pounds of both anthropogenic and biogenic origins. Analy-

ses of ambient aerosols in urban and rural areas have shown

that carbonaceous compounds may constitute up to 90 % of

the dry non-refractory submicron particle mass (Kanakidou

et al., 2005; Zhang et al., 2007).

Depending on their size and composition, aerosol parti-

cles can efficiently scatter and absorb solar radiation and

serve as cloud condensation nuclei (CCN), thereby affecting

climate (Forster et al., 2007). Significant progress has been

made in the past two decades in representing the various in-

organic and carbonaceous species in state-of-the-art aerosol

models that include treatments for trace gas photochemistry,

aerosol microphysics, aerosol thermodynamics, gas-particle

mass transfer, and heterogeneous chemistry (e.g., Wexler and

Seinfeld, 1991; Jacobson, 2002; Zhang et al., 2004; Bauer et

al., 2008; Zaveri et al., 2008). However, substantial uncer-

tainties still exist in our understanding of the evolution of

organic and black carbon aerosols of both anthropogenic and

biogenic origins and the associated optical and CCN activa-

tion properties. The CARES campaign was particularly mo-

tivated by three inter-related science questions:

1. How do anthropogenic and biogenic precursors interact

to form SOA?

2. How rapidly does BC mix with other species (especially

SOA), and what are the relative contributions of conden-

sation and coagulation to BC mixing state evolution?
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3. What are the effects of aerosol mixing state and organic

(primary and secondary) species on the associated opti-

cal and CCN activation properties?

During summer, the Sacramento urban plume transport is

controlled by consistent, thermally-driven upslope winds that

draw polluted air to the northeast, into the Sierra Nevada

foothills area rich in biogenic emissions (Dillon et al.,

2002). As a result, the anthropogenic BC, primary organic

aerosols (POA), SOA, and reactive trace gases from the

Sacramento urban area undergo significant photochemical

ageing as they mix with biogenic SOA precursors such as

isoprene, monoterpenes, and related species. Some of these

aged aerosols and trace gases could be transported back into

the urban area by nighttime downslope flows. In this way, the

Sacramento plume forms a natural chemical reactor useful

for studying evolution of various carbonaceous and related

aerosols. The CARES campaign observational strategy was

designed to take advantage of this flow pattern by setting up

two observation sites – one located within the Sacramento

urban area, referred to as the “T0 site”, and another located

about 40 km to the northeast in Cool, CA, a small town in the

foothills area, referred to as the “T1 site” (Fig. 1). Compre-

hensive measurement suites deployed at the T0 and T1 sites

provided continuous information on the evolution of mete-

orological variables, trace gases, aerosol size, composition,

optical properties, solar radiation, and CCN activation prop-

erties during the entire campaign period from 2–28 June. The

ground measurements were complemented by a similar set

of airborne measurements onboard the DOE Gulfstream-1

(G-1) aircraft, with flight plans involving sampling upwind,

within, and outside of the evolving Sacramento urban plume

in the morning and again in the afternoon. The NASA B-200

King Air aircraft, equipped with remote sensing instruments,

was also deployed to characterize the vertical and horizon-

tal distribution of aerosol optical properties and provide the

vertical context for the G-1 and ground measurements.

The DOE CARES campaign overlapped temporally with

the CalNex campaign in the Central Valley and Southern Cal-

ifornia regions in May and June 2010. CalNex was sponsored

by the National Oceanic and Atmospheric Administration

(NOAA) and the California Air Resources Board (CARB),

and it focused on the atmospheric chemistry and meteoro-

logical processes that affect air quality and climate change

issues both in California and nationally. The CalNex sam-

pling platforms included the NOAA WP-3D and Twin Ot-

ter aircraft, the NOAA R/V Atlantis, and two ground sites

in Southern California – one in Bakersfield and another in

Los Angeles. The NOAA Twin Otter aircraft moved its op-

eration from Southern California to Sacramento (McClellan

Airfield) to collaborate with CARES from 14–28 June. It car-

ried a combination of downward-looking ozone/aerosol and

Doppler wind lidars and the scanning University of Colorado

Airborne Multi-Axis DOAS (CU AMAX-DOAS) system to

investigate NOx emission inventories and the 3-dimensional

Fig. 1. Locations of the ground sites “T0” (latitude: 38.6483,

longitude: −121.3493, altitude: ∼ 30 m m.s.l.) and “T1” (latitude:

38.8711, longitude: −121.0228, altitude: ∼ 450 m m.s.l.). Light

blue arrows indicate typical daytime flow pattern in the region dur-

ing summer.

distribution and transport processes of ozone and aerosols in

the Central Valley.

The goal of this overview paper is to provide a coherent de-

scription of the project objectives, a campaign summary, and

a context for mature scientific results that will be reported in

future publications. We begin in Sect. 2 with a brief review

of previous research related to the CARES science questions.

In Sect. 3, we describe the campaign venue, sampling plat-

forms (ground sites, aircraft), and the associated instruments

and measurements. In Sect. 4, we present an overview of the

key observations from the various airborne and ground-based

instruments. In Sect. 5, we conclude with a summary of main

initial findings and a roadmap for future work.

2 Brief review of previous research related to CARES

objectives

2.1 SOA formation and interactions between

anthropogenic and biogenic emissions

Several field studies have shown that SOA forms rapidly in

urban plumes, with most of the SOA mass forming within

the first 12 h (Volkamer et al., 2006; Kleinman et al., 2007;

de Gouw et al., 2008). In contrast, modeling studies us-

ing Raoult’s-Law-based schemes, parameterized using lab-

oratory chamber SOA yield data, significantly under-predict

SOA formation in the ambient urban atmosphere as well as

in the upper troposphere (de Gouw et al., 2005; Heald et al.,

2005; Johnson et al., 2006; Volkamer et al., 2006). In a more

recent study, de Gouw et al. (2009) demonstrated that the

growth of SOA at a suburban site in Mexico City could not

www.atmos-chem-phys.net/12/7647/2012/ Atmos. Chem. Phys., 12, 7647–7687, 2012
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be explained in terms of the measured volatile organic com-

pounds (VOCs) and their chamber-based particulate mass

yields and formation kinetics. Robinson et al. (2007) have

suggested that some SOA mass at urban to regional scales

may be produced by volatilization of high molecular weight

semi-volatile and intermediate volatility organic compounds

(SVOCs and IVOCs) from diesel exhaust primary organic

aerosols (POA), followed by condensation of their oxida-

tion products. Recent modeling efforts incorporating these

and other previously missing SOA sources have begun to

close the gap between predicted and measured SOA levels

(Dzepina et al., 2009; Hodzic et al., 2010; Slowik et al., 2010;

Lee-Taylor et al., 2011). However, comparisons of higher-

order modeling endpoints to measurements, such as organic

aerosol (OA) oxygen-to-carbon ratio (O : C), OA volatility,

and ageing kinetics continue to indicate discrepancies in our

understanding of SOA formation and atmospheric ageing

(Dzepina et al., 2009; Hodzic et al., 2010; Lee-Taylor et al.,

2011).

In addition to these discrepancies, results from field stud-

ies suggest that anthropogenic and biogenic emissions may

somehow interact, resulting in increased overall yields of

SOA. Weber et al. (2007) found that fine-particle water sol-

uble organic carbon (WSOC) in aged urban plumes in the

eastern United States was highly correlated with anthro-

pogenic emissions from fossil fuel combustion. However, the

carbon isotope (14C) analysis of the WSOC samples indi-

cated that roughly 70–80 % of the carbon was of biogenic

(modern) origin. Formation of organosulfate and organic ni-

trate compounds as a result of interactions between anthro-

pogenic pollutants (e.g., sulfate, NOx) and biogenic hydro-

carbons (e.g., isoprene) has been suggested to contribute to

SOA mass (Bruns et al., 2010; Farmer et al., 2010; Sur-

ratt et al., 2008, 2010; Zaveri et al., 2010a). In contrast,

hydrophobic POA formed from fossil fuel combustion may

not readily absorb oxidized (polar) biogenic hydrocarbons,

as was previously assumed in many models, to enhance the

overall SOA yields (Song et al., 2007). Many laboratory

studies have implicated heterogeneous chemistry of semi-

volatile and volatile organic vapors within aqueous inorganic

aerosols as a potential route for SOA formation from bio-

genic precursors (Jang et al., 2003; Kroll et al., 2005; Liggio

et al., 2005, 2007; Limbeck et al., 2003). Also, accretion re-

actions, including aldol condensation, acid dehydration, and

gem-diol condensation can transform volatile organic species

into oligomeric products of low volatility (Gao et al., 2004;

Jang et al., 2003; Kalberer et al., 2004; Tolocka et al., 2004),

potentially increasing SOA mass beyond that predicted by

Raoult’s Law alone. Recent laboratory and field studies (in-

cluding CARES) indicate that biogenic SOA particles may

exist in amorphous solid form, in which case Raoult’s Law

may not even be applicable to calculate gas-particle partition-

ing of organic species on atmospherically relevant timescales

(Vaden et al., 2011a; Virtanen et al., 2010).

One of the key instruments deployed during this and

many previous campaigns for characterizing aerosol chem-

istry is the Aerodyne Aerosol Mass Spectrometer (AMS).

The AMS provides real-time, quantitative, and size-resolved

data on submicron aerosol composition with a time resolu-

tion of a few minutes or faster (Canagaratna et al., 2007).

The HR-ToF-AMS, i.e., AMS built with a high-resolution

time-of-flight mass spectrometer, is further able to determine

the elemental ratios (e.g., oxygen-to-carbon, hydrogen-to-

carbon, and nitrogen-to-carbon ratios) of aerosol-phase or-

ganics (Aiken et al., 2008). In addition, multivariate statis-

tical analysis of AMS mass spectra is able to effectively

determine organic aerosol factors representative of distinct

sources and atmospheric processes (Zhang et al., 2005; Ul-

brich et al., 2009). Recent studies have shown that com-

prehensive analyses of the mass spectra (i.e., chemical in-

formation) and temporal variation profiles of the OA fac-

tors, in conjunction with measurements of aerosol physics,

tracer compounds, secondary aerosol precursors, and meteo-

rological conditions, may reveal insights into organic aerosol

lifecycle processes, such as SOA formation and evolution

(Zhang et al., 2011).

While significant progress has been made on this topic, the

physical and chemical interactions between anthropogenic

and biogenic emissions leading to enhanced SOA forma-

tion remain poorly understood and are not represented well

in regional and global atmospheric models. The CARES

campaign observational strategy was designed to examine

SOA formation at the urban (source) and rural (receptor)

sites when the Sacramento urban plume mixed with biogenic

emissions and when it did not. The comprehensive observa-

tions of precursor gases, aerosol composition, size distribu-

tion, etc. at the two sites and aboard the G-1 aircraft will be

useful in constraining and evaluating SOA models designed

to investigate the various possible physical and chemical in-

teractions between anthropogenic and biogenic SOA precur-

sors.

2.2 Evolution of aerosol mixing state

Amongst all the different types of primary and secondary

aerosols present in the troposphere, BC (the refractory com-

ponent of soot particles) is the most efficient and significant

particulate absorber of solar radiation, and plays an important

role in both regional- and global-scale climate forcing (Ra-

manathan et al., 2001; Jacobson, 2002, 2006; Bond, 2007;

Levy et al., 2008). Freshly emitted soot particles consist of

fractal-like chain agglomerates of primary soot spherules of

10 to 30 nm diameter (Wentzel et al., 2003). Ageing of soot

particles by condensation of hygroscopic species such as sul-

fate, nitrate, and SOA typically leads to a compaction of the

initially non-spherical chain agglomerate structures (Zhang

et al., 2008; Tritscher et al., 2011), although coated yet non-

compacted BC particles have also been observed in urban

plumes (Adachi and Buseck, 2008). The mixing state and

Atmos. Chem. Phys., 12, 7647–7687, 2012 www.atmos-chem-phys.net/12/7647/2012/
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morphology of BC-containing particles is of particular in-

terest from a climate change perspective, as a non-light-

absorbing coating on BC particles can increase the ensemble

averaged absorption cross section of the BC core by up to a

factor of 2 due to the focusing of light by the coating to the

BC core (Lesins et al., 2002; Saathoff et al., 2003; Schnaiter

et al., 2005; Bond et al., 2006; Adachi et al., 2010; Cross et

al., 2010). The coating on BC particles also greatly increases

their scattering cross sections, and the resulting single scat-

tering albedo (i.e., the ratio of scattering cross section to the

sum of scattering and absorption cross sections) is a function

of the BC core size and the coating thickness. Hygroscopic

coatings also dramatically affect the CCN activation proper-

ties and atmospheric lifetime of BC particles (Cantrell et al.,

2001; Mochida et al., 2006; Kuwata et al., 2007; Medina et

al., 2007; Cubison et al., 2008; Furutani et al., 2008; Tritscher

et al., 2011).

Field studies of BC mixing state evolution with single

particle soot photometer (SP2, Baumgardner et al., 2004;

Schwarz et al., 2006; Moteki et al., 2007) reveal that BC par-

ticles tend to be thinly coated in urban areas, and become

“thickly” coated as the urban plume undergoes photochemi-

cal ageing (Schwarz et al., 2008b; Subramanian et al., 2010).

Several modeling studies have examined the roles of con-

densation and coagulation in transforming externally-mixed

BC aerosols into internal mixtures (Fassi-Fihri et al., 1997;

Jacobson, 2001, 2002; Jacobson et al., 1994; Strom et al.,

1992). Recently, Riemer et al. (2008) developed and applied

a stochastic particle-resolved aerosol box-model, PartMC-

MOSAIC, to an idealized urban plume scenario based on Los

Angeles emissions, and the results indicate that BC particles

have a wide range of mixing states after 12 to 24 h of pro-

cessing. In a follow-on study, Zaveri et al. (2010b) found that

aerosol optical, hygroscopic, and cloud activation properties

can be sensitive to the aerosol mixing state even after 1 to

2 days of ageing. While field observations of evolution of

BC mixing state are qualitatively consistent with the results

from particle-resolved modeling studies, a quantitative val-

idation of the detailed theoretical picture of aerosol mixing

state evolution is necessary before a reliable, computation-

ally efficient mixing state framework can be developed for

use in regional and global climate models.

The SP2 instrument, when combined with the state-of-the-

art single particle mass spectrometer (SP-MS) instruments

such as the single particle mass spectrometer (SPLAT II, Ze-

lenyuk et al., 2009), Particle Analysis by Laser Mass Spec-

trometry (PALMS, Murphy and Thomson, 1997; Cziczo et

al., 2006), and Aircraft-Aerosol Time-of-Flight Mass Spec-

trometer (A-ATOFMS, Pratt et al., 2009; Pratt and Prather,

2010), can provide a more complete picture of the differ-

ent particle types and mixing states present in a population

of aerosols. Recent advances in single particle characteriza-

tions have made it possible to extend the analysis of data to

determine aerosol density, optical properties, shape, number

concentrations, and size distributions (Murphy et al., 2004;

Moffet and Prather, 2005; Spencer et al., 2007; Zelenyuk et

al., 2008; Zelenyuk and Imre, 2009; Vaden et al., 2011b)

as well as combining data from other sources (or acquired

while within clouds) to determine composition as a function

of hygroscopicity and CCN activity (Buzorius et al., 2002;

Herich et al., 2009; Kamphus et al., 2010; Zelenyuk et al.,

2010; Hiranuma et al., 2011). Furthermore, offline analy-

ses of field-collected aerosol samples can provide additional

details on the composition, mixing state, and morphology

of individual particles. These offline analytical techniques

range from scanning electron microscopy (SEM) and micro-

spectroscopy (STXM/NEXAFS) studies of individual parti-

cles (Laskin, 2010; Moffet et al., 2010a) to ultra-high resolu-

tion mass spectrometry analysis of individual components in

OA material (Nizkorodov et al., 2011).

The CARES campaign included SP2 and SP-MS instru-

ments as well as particle samplers (for offline analyses) at

both ground sites and onboard the G-1 to characterize the

evolution of aerosol mixing states in the Sacramento plume.

The resulting composite picture of different particle types,

size, composition, and morphology will be useful for con-

straining the particle-resolved aerosol model to evaluating

the roles of condensation and coagulation in the evolution

of aerosol mixing state, with a focus on BC-containing parti-

cles.

2.3 Aerosol optical properties

As already discussed, the optical properties of freshly emit-

ted and aged BC-containing particles can differ significantly.

The mass absorption cross-section (MAC) of uncoated, pure

BC is estimated to be 7.5 ± 1.2 m2 g−1 for radiation of wave-

length λ = 550 nm (Bond and Bergstrom, 2006). Laboratory

studies and the “core-shell” Mie theory calculations show

that ensemble average MAC of coated BC particles is am-

plified by up to a factor of ∼ 2 (Schnaiter et al., 2005; Bond

et al., 2006; Bueno et al., 2011). In addition to BC, organic

compounds such as humic-like substances (HULIS) present

in biomass burning aerosols also contribute to light absorp-

tion in the atmosphere (Mukai and Ambe, 1986; Havers et

al., 1998; Hoffer et al., 2006; Lukacs et al., 2007). While

light absorption by BC particles from diesel and motor vehi-

cle soot typically displays an inverse dependence on wave-

length, light absorbing organic carbon (LAOC) typically dis-

plays much stronger wavelength dependence. This increased

absorption of light at wavelengths shorter than 600 nm causes

the LAOC particles to appear brown (or yellow) (Bergstrom

et al., 2002; Kirchstetter et al., 2004; Andreae and Gelencsér,

2006; Barnard et al., 2008; Gyawali et al., 2012). Further-

more, biomass burning particles composed of a small BC

core (∼ 50 nm) and a thick coating of LAOC species may ex-

perience even larger enhancements in the absorption of light

at wavelengths shorter than 600 nm (Gyawali et al., 2009).

Recent field measurements also indicate secondary

sources of LAOC particulate matter that exhibit some

www.atmos-chem-phys.net/12/7647/2012/ Atmos. Chem. Phys., 12, 7647–7687, 2012
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chemical similarities to HULIS (Duarte et al., 2005; Marley

et al., 2009; Hecobian et al., 2010). While the exact mecha-

nisms for secondary LAOC formation in the ambient atmo-

sphere are not fully understood, laboratory studies show that

chromophores (components of molecules that absorb light)

can form via a variety of heterogeneous chemical reactions,

including ozonolysis of terpenes in the presence of ammo-

nium ions (Bones et al., 2010) and isoprene oxidation in

the presence of acidic solutions (Limbeck et al., 2003). Car-

bonyls such as glyoxal and methylglyoxal, produced from

gas-phase photooxidation of many anthropogenic and bio-

genic VOCs, can also lead to the formation of LAOC mate-

rial via heterogeneous reactions in acidic solutions (Noziere

et al., 2007; Noziere and Esteve, 2005; Sareen et al., 2010),

with amino acids (de Haan et al., 2009a; Noziere et al., 2007),

methyl amines (de Haan et al., 2009b), and ammonium salts

(Noziere et al., 2009; Sareen et al., 2010; Shapiro et al.,

2009).

Thus, along with investigating SOA formation and aerosol

mixing state evolution in the Sacramento urban plume, a

major objective of CARES was to observe the evolution of

aerosol light absorption and scattering in the near-UV and

visible spectral regions as SOA of both anthropogenic and

biogenic origin condensed (or formed via heterogeneous re-

actions) on urban BC particles and other, non-BC contain-

ing particles. Recent studies (Lack et al., 2008; Cappa et

al., 2008) suggest that absorption measurements from filter-

based instruments such as the Particle/Soot Absorption Pho-

tometer (PSAP) are suspect in the presence of OA. Photoa-

coustic and cavity ring-down spectroscopy instruments that

bypass the filter problems and are useful for determining ab-

sorption coefficients in the visible region (Lewis et al., 2008;

Radney et al., 2009). During CARES, the spectral ranges

of these instruments were extended down to λ = 355 nm to

specifically examine the absorption and scattering properties

of OA.

3 Design and measurements

3.1 Campaign venue and geography

The CARES campaign was based in Sacramento, CA, and

took place from 2–28 June 2010. Sacramento is located in

California’s expansive Central Valley, and is the sixth most

populous city in California with a 2009 estimated population

of 490 000. The seven-county Sacramento Metropolitan Area

is the largest in the Central Valley, with an estimated popu-

lation of 2.46 million. The western half of Greater Sacra-

mento is agricultural area while the eastern portion of the

region consists of the Sierra Nevada and its foothills, which

are dominated by coniferous and oak forests. Figure 2 shows

the spatial distribution of total anthropogenic VOCs and bio-

genic isoprene emissions in central California along with

the locations of the T0 and T1 measurement supersites. The

Fig. 2. Emission rates in the Central Valley at 11:00 PDT. Left

panel: sum of all anthropogenic VOCs. Right panel: biogenic iso-

prene.

anthropogenic VOC emissions are from California Air Re-

sources Board (CARB) emission inventory and the biogenic

emissions are calculated online using MEGAN (Model of

Emissions of Gases and Aerosols from Nature; Guenther et

al., 2006).

The climate in Sacramento and the valley area is char-

acterized by damp to wet, cool winters (October through

April) and hot, dry summers (June through August). Sum-

mer heat is often moderated by a sea breeze, locally known

as the “delta breeze”, which comes from the San Francisco

Bay through the Carquinez Strait (a narrow gap in the Coast

Range) into the Sacramento-San Joaquin River Delta. While

transport processes over the entire Central Valley can be

complex (Bao et al., 2008), the local transport of the Sacra-

mento urban plume during the summer is controlled by con-

sistent, thermally-driven upslope winds that draw polluted

air northeast over oak and pine trees in the Blodgett For-

est area in the Sierra Nevada Mountains by late afternoon.

The Sacramento-Blodgett Forest corridor effectively serves

as a mesoscale flow reactor where the daily evolution of

the Sacramento urban plume can be characterized as a La-

grangian air mass transported from the urban core into the

sparsely populated Sierra Nevada Mountains (Dillon et al.,

2002; Murphy et al., 2007). The CARES campaign observa-

tional strategy was designed to take advantage of this natural

flow pattern by setting up the two observation sites – one

located within the Sacramento urban area (site T0) and an-

other located about 40 km to the northeast in Cool (site T1),

a small town in the forested foothills of the Sierra Nevada

Mountains.

3.2 Ground sites and instruments

The T0 site (latitude: 38.6483, longitude: −121.3493, alti-

tude: ∼ 30 m m.s.l.) was located in the campus of Ameri-

can River College, about 14 km northeast of the Sacramento

downtown area. The T1 site (latitude: 38.8711, longitude:
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−121.0228, altitude: ∼ 450 m m.s.l.) was located on the

property of the Northside School in Cool, California, situ-

ated amidst a forested area rich in biogenic emissions. The

aged urban plume typically arrived at the T1 site around mid-

to late-afternoon when ozone and SOA from urban and bio-

genic precursors were near their peak concentrations. The T0

and T1 ground sites thus characterized the diurnal evolution

of meteorological variables, trace gases, aerosol precursors,

and aerosol composition and properties in freshly polluted

and aged urban air, respectively.

Nearly identical sets of measurements were made at

both ground sites. Key measurements included trace gases,

aerosol precursor gases, size-resolved particle concentra-

tion and chemical composition, particle physical properties

(morphology, density, optical properties, hygroscopicity, and

CCN activation), solar radiation measurements, and meteo-

rological measurements. The measurement techniques, un-

certainties, and time resolutions are summarized in Table 1.

Two 40 × 10 ft trailers were set up at each site to house the

instruments. The trailers were placed side by side, with the

aerosol stack (∼ 8 m high) erected between them, and inlet

lines going into both trailers from the same stack. The trailer

aerosol inlet system was based on the NOAA Global Mon-

itoring Division (GMD) Aerosol Observing System (AOS)

tower and inlet design (Delene and Ogren, 2002). The sample

air was pulled through the stack and split into 2 components

– an overall stack flow of ∼ 1000 l min−1 and an aerosol flow

(∼ 120 l min−1) through an internal concentric stainless steel

tube (∼ 5 cm OD). The lower end of the 5-cm tube terminated

in a 5-port manifold, four of which were 3/4 – in stainless

tubes and the fifth a 1/2 – in tube (central flow for tempera-

ture and relative humidity measurements, as well as an aux-

iliary aerosol port for an Aerosol Particle Sizer, APS). Flow

through the system was provided by a stand-alone pump box

external to the trailers. Separate inlet lines were provided for

trace gas and particle instruments. The trace gas inlet lines

were Teflon and the particle inlet lines were made of stain-

less steel. One of the ports was connected to the AOS rack

in one of the trailers. Two of the ports were used to provide

aerosol flow to each of the trailers, respectively. Each inlet

line coming into the trailer was further split (by a 3/4 – in

“Y”) into lines that were wrapped around the internal walls

of the trailer with 1/4 – in pick-off ports strategically placed

for the instrument configuration of each trailer. The return

lines from these sampling manifolds were also attached to

the pump box. The AOS rack had special return lines going

to a carbon-vane pump and a diaphragm pump, respectively

(also contained in the pump box).

The Washington State University mobile laboratory was

also deployed at the T0 site and contained instruments for gas

phase measurements. The inlet consisted of 1/2′′ PFA tubing

that was mounted to a 10-m telescoping meteorology tower

attached to the trailer. A Vaisala WXT-510 weather station

was mounted on the top of the meteorology tower. Approx-

imately 0.5 m below the weather station was the main inlet.

Approximately 32 l min−1 of air was pulled through the in-

let by a diaphragm pump with the flow measured by a TSI

inline flow meter. Each instrument inside the trailer subsam-

pled from this main inlet line. The NOxy instrument had a

dedicated NOy converter inlet that was mounted about 1 m

below the main inlet line.

The trace gas measurements included carbon monoxide

(CO), nitric oxide (NO), total reactive odd nitrogen species

(NOy), and ozone (O3). Nitrogen dioxide (NO2) and sulfur

dioxide (SO2) analyzers were deployed at the T0 site (and

on the G-1). Near surface NO2 mixing ratios and partial ver-

tical column densities (VCD, integral over boundary layer

height) were measured at T1 by the University of Colorado

Ground Multi AXis DOAS instrument (CU GMAX-DOAS,

Volkamer et al., 2009). Proton-Transfer Reaction Mass Spec-

trometers (PTR-MS) were used to measure mixing ratios

of selected volatile organic compounds (VOC) of both an-

thropogenic and biogenic origin. The PTR-MS at T0 was

modified to also characterize the total concentration of semi-

volatile long chain alkanes (> C10) and heavier monoaromat-

ics associated with diesel exhaust vapor emissions. The mod-

ification was to add a second inlet to the PTR-MS to allow

in-situ thermal desorption sampling from a dedicated heat

traced inlet. PTR-MS sampling alternated between thermal

desorption analysis for diesel exhaust species and continu-

ous de-humidified VOC sampling as described in Erickson

et al. (2012). In addition, a gas chromatograph ion trap mass

spectrometer (GC-ITMS) was used at T0 to measure selected

C6–C10 VOCs to determine the abundance of SOA precur-

sors such as monoaromatics emitted in vehicle exhaust and

monoterpene compounds emitted from biogenic sources. Fi-

nally, near-surface concentrations of formaldehyde and gly-

oxal and VCDs were measured by CU GMAX-DOAS at T1

(Sinreich et al., 2010).

Condensation particle counters (CPC) were used to mea-

sure total particle number concentrations for particles larger

than 10 nm diameter, and scanning mobility particle sizers

(SMPS) and aerosol particle sizers (APS) were used to mea-

sure particle size distributions from 10 to 20 000 nm. The

APS was placed directly below the inlet (i.e., at the bottom

of the vertical column) where it drew air at a flow rate of 5

l min−1 of the 120 total l min−1. This placement prevented

any bends in the tubing and thus minimized any inertial im-

paction losses of coarse particles. The “rain hat” on the top

of the inlet stack is estimated to allow particles of at least

30 000 nm, although we did not actually characterize the inlet

system on site for particle losses. An Aerodyne High Reso-

lution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-

AMS), coupled to a thermal denuder (Fierz et al., 2007), was

deployed at each ground site to measure aerosol composition

and volatility distributions of submicron inorganic and or-

ganic aerosols. The HR-ToF-AMS uses an aerodynamic lens

to sample submicron particles (∼ 50–1000 nm) into vacuum

where they are aerodynamically sized, thermally vaporized

on a heated surface (∼ 600 ◦C), and chemically analyzed via
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Table 1. Measurements and Instruments at the T0 and T1 Ground Sites.

Measurement T0 T1 Instrument/Technique Avg.

Time

Accuracy DL PI (Institution)

Meteorology

Wind profile • Wind Profiler, Sodar Berg (PNNL)

Temperature, RH

profile

• • Radiosonde Berg (PNNL)

Temperature

Pressure

Relative humidity

Wind speed

Wind direction

• • Vaisala WXT-510 1 min 0.3 ◦C

0.5 mbar

3 %

0.3 m s−1

3 deg

T0: Jobson (WSU)

T1: Berg (PNNL)

Trace Gases

VOCs • • Ionikon PTR-MS T0: Jobson (WSU)

T1: Knighton (MSU)

SVOCs • GC-ITMS Jobson (WSU)

Formaldehyde

Glyoxal

• CU GMAX-DOAS 15 min 10 % 2 × 1015*

3 × 1014∗

Volkamer

(CU Boulder)

CO • • T0: VUV fluorescence

T1: Teledyne Model

300U

1 min

1 min

2 % 5 ppbv T0: Jobson (WSU)

T1: Dubey (LANL)

CO2-CH4-H2O • Picarro Cavity

Ringdown

Dubey (LANL)

O3 • • UV absorption 1 min 10 % 3 ppbv T0: Jobson (WSU)

T1: Dubey (LANL)

NO • • Chemiluminescence 2 min 2 % 5 pptv T0: Jobson (WSU)

T1: Dubey (LANL)

NO2 • • Photolytic conversion

CU GMAX-DOAS

2 min

15 min

5 %

5 %

5 pptv

5 × 1014∗

T0: Jobson (WSU)

T1: Volkamer

(CU Boulder)

NOy • • Mo converter 2 min 5 % 5 pptv T0: Jobson (WSU)

T1: Dubey (LANL)

SO2 • Thermo Model 43i 1 min 5 % 1 ppbv Song (PNNL)

Aerosol Size & Comp.

Size distribution • • SMPS + CPC:

12.2 nm–710 nm

SMPS + CPC:

8.75–858 nm

2.5 min

5 min

3 % T0: Song (PNNL)

T1: Zhang (UC Davis)

Size distribution • • TSI APS:

520–20 000 nm

1 min T0: Jobson (WSU)

T1: Pekour (PNNL)

Number Concentration • • TSI CPC-3010 1 min Pekour (PNNL)

Composition, volatility • • HR-ToF-AMS +

thermodenuder

5 min 30 % Varies by

species

T0: Song (PNNL)

T1: Zhang (UC Davis)

Single particle size,

composition, density

• • T0: SPLAT II

T1: PALMS

T0: Zelenyuk (PNNL)

T1: Cziczo (PNNL)

Black carbon mass • • DMT SP2 Particle-

by-

particle

35 % 0.3 fg BC Subramanian (DMT)

Water-soluble species • • PILS with autosampler Zhang (UC Davis)

OC/EC • • Sunset OC/EC 1 h Laulainen (PNNL)

Chemical Composition • • TRAC Collector Laskin (EMSL),

Gilles (LBNL)

Chemical Composition • • DRUM Sampler Laskin (EMSL)

Aerosol Morphology • • SEM Collector Mazzoleni (MTU)

Aldehydes and polar

organics & OC/EC

• • Hi-vol Filter 12 h 5 % Kubatova (UND)

Radiocarbon • Hi-vol Filter Gaffney (UArk)
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Table 1. Continued.

Measurement T0 T1 Instrument/Technique Avg.

Time

Accuracy DL PI (Institution)

Radiation

J -NO2 • 4π J -NO2 radiometer 1 s Laulainen (PNNL)

Actinic flux • Diode-Array Spectrora-

diometer

1 s Laulainen (PNNL)

Broadband solar rad

flux

• • Pyranometer

(Eppley PSP)

1 min 4 % Barnard (PNNL)

AOD from narrowband

solar irradiance

• • MFRSR 20 s < 0.01 Barnard (PNNL)

Aerosol extinction pro-

files and AOD from

diffuse solar stray

light

• CU GMAX-DOAS 15 min ∼ 0.01 Volkamer

(CU Boulder)

Optical Properties

Scattering • • TSI Nephelometer

3563 at

450, 550, 700 nm

1 min 0.3 Mm−1 Pekour (PNNL)

Absorption • • PSAP at 470, 532,

660 nm

1 min 0.3 Mm−1 Pekour (PNNL)

Absorption • Athelometer Sedlacek (BNL)

Absorption &

scattering

• • Photoacoustic

instruments

T0: 375, 405, 532, 781,

870, 1047 nm

T1: 355, 405, 532, 781,

870 nm

Varies by

instrument

and λ

T0, T1: Arnott (UNR)

T0, T1: Dubey (LANL)

T0: Cappa (UCD)

Extinction & scattering • • Cavity Ring-down at

355, 405, 532, 1064 nm

Varies by

instrument

and λ

T0, T1: Atkinson

(PSU)

T0: Cappa (UCD)

Hygroscopic growth • • Humidigraph – f (RH) T0: Cappa (UCD)

T1: Cziczo (PNNL)

CCN • • CCN Counter Cziczo (PNNL)

CCN • Size-resolved CCN

Counter

Wang (BNL)

∗ Vertical Column Density (VCD); detection limit in units of molecule cm−2.

70 eV electron impact ionization time-of-flight mass spec-

trometry (Canagaratna et al., 2007). Since aerosol species

must be vaporized to be detected, the HR-ToF-AMS does not

measure refractory materials such as elemental carbon and

dust particles. However, non-refractory (NR) materials in-

ternally mixed with refractory substances can be determined

by the AMS and the presence of significant quantities of re-

fractory particles can be detected via comparison between

aerosol size distributions (from the SMPS or the AMS) and

total mass detected, with appropriate assumptions about the

particle density.

A Particle-Into-Liquid Sampler (PILS, Sooroshian et al.,

2006) with an autosampler was deployed at each site to col-

lect vials every hour for offline analysis of water soluble

aerosol species. A PM1 impactor (BMI) was used upstream

of the PILS, CCN, and HR-ToF-AMS. Droplet Measure-

ment Technologies (DMT) Single Particle Soot Photometers

(SP2, Stephens et al., 2003; Schwarz et al., 2006) were used

to measure single particle and ensemble black carbon mass

loadings along with information on the amount of the parti-

cles’ coatings and cores. Single particle mass spectrometers

SPLAT II (Zelenyuk et al., 2009) and PALMS (Murphy and

Thomson, 1997; Cziczo et al., 2006) were deployed at the T0

and T1 sites, respectively. A number of different impactors

were also deployed at both sites to collect aerosol samples

for offline analysis of particulate matter, ranging from elec-

tron microscopy and micro-spectroscopy studies of individ-

ual particles (Laskin, 2010; Moffet et al., 2010a) to ultra high

resolution mass spectrometry analysis of individual compo-

nents in OA material (Nizkorodov et al., 2011).

High-volume samplers (using brushless motors) equipped

with slotted impactors were used at the T1 site to obtain

sub-micron samples for carbon isotopic characterization us-

ing quartz fiber filters as described previously (Marley et al.,
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2009). Another high-volume semi-volatile aerosol sampler

was deployed at the T0 site from 2–15 June and at the T1 site

from 16–28 June to collect particles of aerodynamic diame-

ter ≤ 2.5 µm (PM2.5) to study distribution of organic reactive

species, particularly acids and aldehydes with respect to to-

tal organic carbon. Samples were collected for 12 h periods,

from 08:00 a.m. to 08:00 p.m., and from 08:00 p.m. to 08:00

a.m. Half of each filter was spiked with recovery standards

consisting of deuterated acids and aldehyde, derivatized us-

ing pentafluorobenzyl hydroxyl amine (PFBHA) in methanol

to stabilize aldehydes, and stored at −20 ◦C in vials closed

with Teflon stopper until the analysis. The other half of the

filter was also stored at −20 ◦C without any modifications.

Aerosol optical properties were measured at multiple

wavelengths with several techniques, including cavity ring-

down spectroscopy for light extinction (CRDS, Smith and

Atkinson, 2001; Radney et al., 2009; Langridge et al., 2011),

photoacoustic spectroscopy for light absorption (PAS, Arnott

et al., 1999; Lack et al., 2006), nephelometer for light scat-

tering (Anderson et al., 1996), and particle soot absorption

photometer (PSAP, Ogren, 2010). These measurements pro-

vide the absorption, scattering, and extinction coefficients as

well as intensive (not dependent on aerosol concentration)

properties such as the single scattering albedo and Ångström

exponents, and depending on the particular operating pro-

cedures, their response to heating and changes in relative

humidity. Additionally, enhancements in light absorption by

aged BC were directly determined at the T0 site (from 15–29

June 2010) by measuring the absolute particulate absorption

with the UC Davis PAS before and after passing the particles

through a thermodenuder (TD). Similar measurements were

also made onboard the R/V Atlantis from mid-May to mid-

June 2010 as part of the CalNex campaign. The extent of

evaporation of semi-volatile species (internally mixed with

BC) depends on the TD temperature and the specific compo-

sition of the particles. Thus, if the coating on the BC particles

causes an increase in the absorption, then thermally denuded

BC particles would absorb less light than non-denuded BC

particles, and the absorption enhancement (Eabs) can be cal-

culated as the ratio of absorption measured before TD to that

measured after TD.

Radiation observations at the ground sites included broad-

band solar fluxes as well as Multi-Filter Rotating Shad-

owband Radiometer (MFRSR, Harrison et al., 1994) mea-

surements of downwelling visible and near-IR solar irradi-

ance at six discrete wavelengths, which provide information

needed to estimate aerosol optical depth and intensive prop-

erties. Partial column integrals over boundary layer height

of aerosol extinction were observed at three wavelengths

(360 nm, 477 nm, 630 nm) as inferred from solar stray light

column observations of oxygen dimer by CU GMAX-DOAS

(Volkamer et al., 2009; Sinreich et al., 2010).

Concentrations of CCN were measured at multiple su-

persaturations (0.07 to 0.5 %) at both sites using Droplet

Measurement Technologies CCN Counters (Model 200-013

and 100-081). The T1 site also included measurement of

size-resolved CCN (SCCN) concentrations and variable rela-

tive humidity nephelometry (commonly referred to as f(RH)

measurement). Finally, atmospheric state observations were

made at the surface and aloft including wind speed and di-

rection, pressure, temperature, and relative humidity at both

sites using several instruments.

3.3 Aircraft payloads

The aircraft component of the CARES field campaign was

based out of McClellan Airfield, located about 4 km north-

west of the T0 ground site. The trace gas and aerosol mea-

surements onboard the G-1 aircraft were similar to those de-

ployed at the ground sites. The techniques, uncertainties, and

time resolutions of all the G-1 measurements are summarized

in Table 2. Trace gas measurements included CO (Kleinman

et al., 2007), NO, NO2, NOy, O3, and SO2 (Springston et al.,

2005). An Ionicon high-sensitivity quadrupole PTR-MS was

used to measure VOCs. Condensation particle counters CPC-

3025 and CPC-3010 (Sem et al., 2002) were deployed to

measure particle number concentrations for optical diameter

(Dp) greater than 3 and 10 nm, respectively. A combination

of Fast Integrating Mobility Spectrometer (FIMS) (Kulka-

rni and Wang, 2006; Olfert et al., 2008), Ultra-High Sensi-

tivity Aerosol Spectrometer-Airborne (UHSAS-A, Cai et al.,

2008), and the Cloud Aerosol Spectrometer (CAS) portion of

the Cloud Aerosol Precipitation Spectrometer (CAPS) probe

(Baumgardner et al., 2001) were used to measure the parti-

cle size distribution for mobility diameters (Dm) between 30

and 70 nm, and geometric diameters (Dg) between 60 and

1000 nm, and 500 and 50 000 nm, respectively.

An Aerodyne HR-ToF-AMS was deployed to measure

non-refractory aerosol components, a DMT SP2 was used

to measure BC number and mass concentrations, and the A-

ATOFMS was used to measure single-particle composition

and mixing state. A PILS with an autosampler was deployed

to collect vials every 3 min for offline analysis of water solu-

ble aerosol species. Automated sampling of aerosol particles

for microscopy and spectromicroscopy analyses was carried

out using a Time-Resolved Aerosol Collector (TRAC, Laskin

et al., 2006). Aerosol optical properties (scattering and ab-

sorption) at three wavelengths (405, 532, and 781 nm) were

measured with an integrated PAS/nephelometer instrument

(DMT PASS3) (Flowers et al., 2010), a TSI 3563 nephelome-

ter (Anderson et al., 1996), and a Radiance Research PSAP

(Ogren, 2010). The aerosol inlet on the G-1 allowed particles

up to 5 µm aerodynamic diameter with close to 100 % trans-

mission efficiency. Meteorological measurements included

temperature, dew point, static pressure, and wind speed and

direction.

The NASA B-200 King Air (B-200) aircraft deployed a

High Spectral Resolution Lidar (HSRL) (Hair et al., 2008;

Rogers et al., 2009) that measures aerosol backscatter ratio,

backscatter and extinction coefficients, and depolarization. It
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Table 2. Measurements and Instruments aboard the DOE G-1 Aircraft during CARES 2010.

Measurement Instrument/Technique Avg. Time Accuracy DL PI (Institution)

Meteorology

Temperature Rosemount 102 1 s ±0.5 ◦C −50 to 50 ◦C Hubbe (PNNL)

Dewpoint temperature General Eastern 1011B chilled-

mirror hygrometer

1 s ±0.5 ◦C −75 to 50 ◦C Hubbe (PNNL)

Static pressure Rosemount 1201F1 1 s 3 mb 400–1060 mb Hubbe (PNNL)

Gust probe, alpha All-Sensor 20-inch-G-4V 0.1 s 0.125 mb 0 to 50 mb Senum (BNL)

Gust probe, beta Rosemount 1221S1 0.1 s 0.35 mb 0 to 35 mb Senum (BNL)

Gust probe, dynamic Rosemount 1221F2 1 s 0.3 mb 0 to 100 mb,

−55 to 71 ◦C

Hubbe (PNNL)

Trace Gases

CO Resonance Limited

VUV-Fluorescence

1 s Springston

(BNL)

SO2 TEI 43S 1 s Springston

(BNL)

O3 TEI 49-100 1 s Springston

(BNL)

NO, NO2, and NOy Research Grade Instruments 1 s Springston

(BNL)

VOCs Ionikon PTR-MS 3.5 s Varies by

species

Varies by

species

Shilling

(PNNL)

Aerosol Size

Number conc. > 3 nm TSI-3025 CPC 1 s 0–105 cm−3 Tomlinson

(PNNL)

Number conc. > 10 nm TSI-3010 CPC 1 s 0–104 cm−3 Tomlinson

(PNNL)

Particle size distribution

(PSD): 30–70 nm

FIMS 1 s Wang (BNL)

PSD: 60–1000 nm UHSAS-A 1 s 0–7200 cm−3 Tomlinson

(PNNL)

PSD: 500–50 000 nm CAPS/CAS 1 s Senum (BNL)

Aerosol Composition

Aerosol composition HR-ToF-AMS (EMSL) 13 s ∼ 30 % 0.1 µg m−3

for org

Shilling

(PNNL)

Single particle composition

and size

ATOFMS Prather

(UCSD)

Black carbon mass DMT SP2 Particle-by-

particle

∼ 35 % 0.3 fg BC Sedlacek

(BNL)

Water soluble aerosol

chemical composition

PILS with autosampler 3 min Varies by

species

0.02–0.28

µg m−3

background

Zhang (UCD)

Aerosol chemical

composition

TRAC Collector Laskin

(EMSL),

Gilles (LBNL)

Optical Properties

Aerosol light scattering TSI 3563 Nephelometer at

450, 550, and 700 nm

1 s 4–7 % 1–104 Mm−1 Hubbe (PNNL)

Aerosol light absorption Radiance Research PSAP at

461, 522, and 648 nm

1 s 20 % 10−1–

104 Mm−1

(log channel);

0–50 Mm−1

(linear channel)

Hubbe (PNNL)

Aerosol light absorption

and scattering

Photoacoustic spectrometer at

405, 532, and 870 nm

Dubey (LANL)
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Table 3. Measurements and Instruments aboard the NASA B-200 King Air Aircraft during CARES 2010.

Parameter Instrument/Technique Averaging Time Uncertaintya PI (Institution)

or Accuracy

Backscatter ratio (532 nm) High Spectral Resolution Lidar 10 s (∼ 1 km) < 5 % Ferrare, Hostetler (NASA)

Backscatter coefficient (532 & 1064 nm) High Spectral Resolution Lidar 10 s (∼ 1 km) 0.16 (Mm-sr)−1 Ferrare, Hostetler (NASA)

Extinction coefficient (532 nm) High Spectral Resolution Lidar 1 min (∼ 6 km) 10 Mm−1 Ferrare, Hostetler (NASA)

Depolarization High Spectral Resolution Lidar 10 s (∼ 1 km) 0.004 Ferrare, Hostetler (NASA)

Aerosol optical depth Research Scanning Polarimeter scene-dependentd 0.02/8 %b Cairns (NASA/GISS)

Mode effective radius Research Scanning Polarimeter scene-dependentd 0.02µm/10 %c Cairns (NASA/GISS)

Mode effective variance Research Scanning Polarimeter scene-dependentd 0.05/50 %c Cairns (NASA/GISS)

Real refractive index Research Scanning Polarimeter scene-dependentd 0.02 Cairns (NASA/GISS)

Imaginary refractive index Research Scanning Polarimeter scene-dependentd 50 % Cairns (NASA/GISS)

a See Hair et al. (2008) for a description of HSRL aerosol measurement uncertainties.
b The appropriate accuracy is whichever value is larger (i.e. lower accuracy at higher optical depths).
c Absolute accuracy applies to accumulation/fine mode and relative accuracy to coarse.
d Scan rate is 1.1885 Hz (0.8414 s), with angular resolution (instrument IFOV) equal to 14 mrad. The time required for scene aggregation is defined by the ratio of
aircraft speed to target distance (see http://data.giss.nasa.gov/rsp air/specs.html).

also carried a digital camera and the GISS Research Scan-

ning Polarimeter (RSP). The latter instrument measures total

and polarized reflectances in nine spectral bands across the

visible and short-wave infrared portion of the electromag-

netic spectrum. From these measurements, column-averaged

aerosol optical (e.g., optical depth) and microphysical (e.g.,

refractive index and size distribution) parameters can be de-

rived. The HSRL and RSP have been deployed together in

several major field campaigns since 2008, in an effort to

assess the potential of the synergistic exploitation of active

and passive sensors in aerosol research (Waquet et al., 2009;

Knobelspiesse et al., 2011; Ottaviani et al., 2011). The un-

certainties and time resolutions of the B-200 measurements

are summarized in Table 3.

As part of the CalNex field program, the NOAA Twin Ot-

ter aircraft moved its operation from Southern California to

Sacramento (McClellan Airfield) to collaborate with CARES

from 14–28 June. The NOAA Twin Otter was configured as

a remote sensing platform carrying an ozone/aerosol lidar,

a Doppler wind lidar, a scanning DOAS system, and sev-

eral radiometers. The nadir-pointing Tunable Ozone Profiler

for Aerosol and oZone (TOPAZ) lidar (Alvarez et al., 2011;

Langford et al., 2011) measured ozone and aerosol backscat-

ter profiles below the aircraft while the downward-looking,

conically-scanned Doppler lidar (Pearson et al., 2009) pro-

vided measurements of horizontal and vertical winds. The

zenith-to-nadir scanning University of Colorado Airborne

Multi-AXis DOAS (CU AMAX-DOAS; Volkamer et al.,

2009) instrument provided reactive trace gas column obser-

vations (i.e., nitrogen dioxide, aerosol extinction, formalde-

hyde and glyoxal) and the radiometers were used to mea-

sure surface albedo and surface skin temperature. These re-

mote sensors were complemented by in situ measurements of

ozone mixing ratio and temperature at flight level. The spec-

ifications for all instruments onboard the NOAA Twin Otter

are listed in Table 4. This unique instrument package enabled

the characterization of the horizontal and vertical structure of

chemically and radiatively important trace gases and partic-

ulates within the boundary layer and lower free troposphere.

The primary objectives of the NOAA Twin Otter deployment

during CARES were the investigation of NOx emission in-

ventories, and the mapping of the 3-D distribution and trans-

port processes of ozone and aerosols in the Central Valley.

3.4 Aircraft flights

The Weather Research and Forecasting (WRF) model (Grell

et al., 2005) was run daily at PNNL to provide 72-h forecasts

of tracer plumes, which were used to guide aircraft opera-

tions and flight planning. The tracer plumes were based on

CO emissions as well as meteorological parameters, using

a horizontal grid spacing of 4 km. The tracers were catego-

rized into 20 sub-regions based on anthropogenic emissions

source region that could impact the CARES sampling do-

main. Each forecast was made using the National Centers

for Environmental Prediction’s 00:00 UTC North American

Mesoscale analysis and corresponding forecasts as initial and

boundary conditions. Tracers were initialized with the previ-

ous day’s forecasted tracer fields at 00:00 UTC. After the

WRF forecast was completed, graphics depicting tracer po-

sitions at the surface and at select altitudes were generated

automatically and made available on the CARES website

(http://campaign.arm.gov/cares/forecast). Figure 3 shows ex-

amples of tracer forecasts (at 16:00 PDT) under southwest-

erly and northwesterly flows, which respectively occurred for

15 and 9 days out of the total 27 days from 2–28 June. More

detailed analysis of the CO tracer forecasts and an analysis

of them to categorize dominant transport scenarios during

CARES can be found in Fast et al. (2012).

Table 5 summarizes pertinent details of all the aircraft

flights carried out during CARES. The G-1 and B-200 air-

craft performed a total of 22 (67.5 h) and 23 (68 h) research

flights, respectively, while the NOAA Twin Otter performed

Atmos. Chem. Phys., 12, 7647–7687, 2012 www.atmos-chem-phys.net/12/7647/2012/
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Table 4. Measurements and Instruments aboard the NOAA Twin Otter Aircraft during CARES 2010.

Parameter Instrument/ Tech-

nique

Avg. Time Vertical/Range

Resolution

Measurement

Precision

Measurement

Accuracy

PI (Institution)

Ozone profiles Differential

Absorption Lidar

10 s

(∼ 600 m)

90 m

(smoothed over

450 m)

5–10 % (up to

30 % for low

SNR)

< 5 % (up to

15 % for low

SNR)

Senff (NOAA/CU

Boulder

Aerosol backscatter

profiles (300 nm)

Differential

Absorption Lidar

10 s

(∼ 600 m)

6 m ∼ 10 % < 30 % Senff (NOAA/CU

Boulder

Boundary layer

height

Differential

Absorption Lidar

10 s

(∼ 600 m)

– ∼ 50 m ∼ 50 m Senff (NOAA/CU

Boulder

Line-of-sight wind

speed profiles (at 4

azimuth angles)

Doppler Lidar 2–6 s

(∼ 240 m)

50 m 0.1 m s−1 up to 0.1 m s−1 Hardesty (NOAA)

Relative aerosol

backscatter profiles

(1.6 µm)

Doppler Lidar 1 s

(∼ 60 m)

50 m Uncalibrated Uncalibrated Hardesty (NOAA)

NO2 vertical

column density

(VCD)

CU Airborne Multi

AXis DOAS

2 s

(∼ 1 km)

– ∼ 10 % (up to

30 % at high so-

lar zenith

angle)

1.5 × 1015

molec cm−2
Volkamer

(CU Boulder)

NO2, HCHO,

CHOCHO vertical

profiles

CU Airborne Multi

AXis DOAS

ascent/descent ∼ 150 m ∼ 10 % Depends on gas

and averaging

time

Volkamer

(CU Boulder)

Aerosol extinction

profiles (360 nm,

477 nm, 630 nm)

CU Airborne Multi

AXis DOAS

ascent/descent ∼ 150 m – ∼ 0.01–

0.03 km−1

(varies at

different

wavelengths)

Volkamer

(CU Boulder)

Ozone (at flight

level)

UV light absorption 10 s

(∼ 600 m)

– 1 ppbv/2 % 1 ppbv/2 % Langford (NOAA)

Temperature (at

flight level)

1 s

(∼ 60 m)

– 0.1 K 0.1 K Senff (NOAA/CU

Boulder

Surface

temperature

IR pyrometer 1 s

(∼ 60 m)

– 0.06 K 0.5 K Senff (NOAA/CU

Boulder

Surface albedo 4-channel UV and

vis irradiance

30 s

(∼ 1.8 km)

– ∼ 5 % ∼ 5 % Volkamer (CU

Boulder)

17 flights (60 h). The G-1 flight plans included several pat-

terns that were designed for a specific purpose or the given

wind flow condition. These patterns can be grouped into 3

basic types of missions: (1) morning or afternoon flight plan

designed to characterize the inflow from the Bay Area under

southwesterly flow; (2) morning and afternoon flight plans

designed to characterize the evolution of the Sacramento ur-

ban plume under southwesterly flow; (3) morning and after-

noon flight plans designed to characterize the evolution of

the Sacramento urban plume under northwesterly flow. A late

morning flight was also conducted on 27 June to character-

ize isoprene emission flux over the Sierra Nevada foothills

region.

The B-200 flew at an altitude of approximately 7 km above

ground, with most flights coordinated with the G-1 to char-

acterize the vertical and horizontal distribution of aerosol op-

tical properties and provide the vertical context for the G-1

and ground measurements. B-200 also sampled over a larger

area than the G-1 so that the G-1 observations could be inter-

preted within the larger spatial context. Figure 4 shows the G-

Fig. 3. Examples of tracer forecasts, based on CO emitted from

Sacramento, shown at 16:00 PDT under southwesterly (left panel)

and northwesterly wind (right panel) flow conditions.

1 and B-200 flight tracks grouped according to the type of the

mission based on the expected transport scenario from WRF

tracer forecast. Additional missions flown by the G-1 and B-

200, not shown here, included coordination with R/V Atlantis

that moved along the Sacramento Deep Water Channel from

San Francisco Bay on 3 June and an intercomparison flight

www.atmos-chem-phys.net/12/7647/2012/ Atmos. Chem. Phys., 12, 7647–7687, 2012
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Table 5. Summary of DOE G-1, NASA-B200, and NOAA Twin Otter aircraft flights in the CARES domain during the month of June 2010.

Date DOE G-1

Takeoff –

Landing

PDT

NASA B-200

Takeoff –

Landing

PDT

NOAA Twin

Otter

Takeoff –

Landing

PDT

Wind Dir Remarks

3 June 12:41–15:07 12:24–15:49 – SW Coordinated with R/V Atlantis; very

low AOD throughout region

5 June – 11:29–13:43 – SW B-200 flew survey over SAC, northern

SJV, and SF/Bay area.

6 June 10:35–13:43

15:35–18:20

09:26–12:24 – SW Very low AOD and shallow PBL.

8 June 08:55–12:12

15:24–18:47

08:54–12:10

14:35–17:56

- SW B-200 legs also over Bay area

10 June 15:36–18:31 14:31–17:56 – NW B-200 flew over SAC and also over

Sierra Nevada mountains for RSP snow

measurements

12 June 08:55–11:59

15:24–18:28

09:08–12:40

15:05–17:50

– NW B-200 legs also over northern SJV

and SF/Bay Area. HSRL observed high

aerosol depolarization associated with

dust.

14 June 09:56–13:10 10:09–13:42

15:18–18:00

– SW Bay Area inflow; B200 flew two flights

and covered regions between SF/Bay

area and SAC. Second B200 flight flew

over NOAA P3 track.

15 June 08:56–12:00

14:51–18:07

09:09–12:23

14:39–18:02

11:52–15:12

16:15–19:15

SW B-200 legs over SF/Bay area, SAC, and

mountains east of SAC. Inflow from

SF/Bay area. Highest AOD over SAC.

18 June 15:38–18:48 15:19–18:53 12:36–15:39

16:40–20:10

SW Intercomparison between G-1, NOAA

WP-3, B-200, and NOAA TO from

Fresno to Bakersfield.

19 June 15:28–18:31 09:46–11:52

15:32–18:33

– SW B-200 also flew over mountains east

of SAC. HSRL observed elevated dust

layer 5–8 km.

21 June 09:02–12:11

15:25–18:44

15:32–18:52 10:05–13:50

15:15–18:40

NW NOAA TO coordinated with OMI

satellite∗

22 June – 14:08–16:16 08:20–11:27

13:39–17:12

W B-200 and NOAA TO flew coordinated

flight for long range transport.

23 June 09:34–12:51

14:24–18:12

09:51–12:01

14:52–17:09

14:40–17:55 SW HSRL observed elevated layers and

clouds over SAC. NOAA TO

coordinated with OMI satellite∗

24 June 09:00–12:16

14:24–18:12

14:56–17:45 09:42–13:15

15:12–18:55

SW Bay Area Inflow; HSRL observed

considerable midlevel clouds over SAC

26 June – – 15:15–19:03 SW

27 June 10:24–13:47 09:19–12:25 09:37–13:32

15:15–19:02

SW Isoprene flux flight to the northeast over

the foothills area: B-200 had leg over

SF/Bay Area. Highest AOD over SAC

region.

28 June 09:23–12:33

14:20–17:42

10:10–13:20

15:56–18:18

10:15–14:06 W MISR Overpass, highest pollution and

AOD day of the campaign. Largest

AOD over SAC, observed SAC plume

in AOD. NOAA TO coordinated with

OMI satellite∗

29 June – – 08:00–11:10

12:29–16:17

Bakersfield NOx emission inventory,

San Francisco, San Joaquin Valley

Total 21 23 17

∗ NO2 tropospheric VCD are measured by the OMI instrument onboard the NASA Aura satellite. Global coverage is achieved within one day.

Atmos. Chem. Phys., 12, 7647–7687, 2012 www.atmos-chem-phys.net/12/7647/2012/
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Fig. 4. DOE G-1, NASA B-200, and NOAA Twin Otter Flight

Tracks during the SW and NW flow periods. The yellow circles

indicate the locations of the T0 and T1 ground sites.

with the NOAA WP-3D on 18 June in the San Joaquin Val-

ley, from Fresno to Bakersfield, CA.

While the NOAA Twin Otter flights were not closely co-

ordinated with the G-1 or the B-200, they were mostly in

the same general area, with some flights extending over a

larger domain (Fig. 4). The main objective was to sample

the greater Sacramento area extensively, including regular

overpasses over the T1 site. The Twin Otter flew morning

and afternoon missions, typically lasting 3–4 h. The morning

flights were generally focused on investigating NOx emis-

sions whereas the afternoon flights were designed to charac-

terize ozone distribution and transport downwind of Sacra-

mento and the Bay Area. Flight altitudes varied from 600 to

5000 m m.s.l. Another objective was the detection and char-

acterization of pollution plumes transported from Asia.

4 Overview of observations

4.1 Meteorological context of CARES

An overview of meteorology during CARES is provided by

Fast et al. (2012). Here we give a brief summary of the mete-

orological conditions that prevailed during the study period.

During late May the Central Valley experienced strong north-

westerly flow and precipitation events, which were likely due

to the lingering effects of the moderate El Nino that occurred

in early 2010. The campaign thus began with cooler than nor-

mal temperatures and intermittent cloudiness through 6 June,

followed by mostly sunny days for the remainder of the cam-

paign. Figure 5 displays the time series of wind direction,

wind speed, temperature (T ), and relative humidity (RH) at

the T0 and T1 sites. The wind direction at both sites during

the daytime was typically southwesterly to westerly, favor-

ing transport of the Sacramento urban plume to the T1 site

area by late afternoon or early evening. For the days labeled

SW, the wind direction at T0 typically shifted to southerly by

18:00 PDT and to southeasterly by midnight, bringing rela-

tively cleaner background air into the urban area. In contrast,

the wind direction at the T1 site typically experienced a re-

versal from westerly (upslope) in the afternoon to easterly

or northeasterly (downslope) at night, gradually recirculat-

ing the air mass in the foothills region back into the valley in

the residual layer by next morning.

Days with synoptic southwesterly (SW) flow were gener-

ally favorable for transporting the urban plume from Sacra-

mento to the T1 site and vicinity. These days include: 2–4,

6–9, 14–15, 17–19, and 23–28 June. The period from 22 to

28 June also experienced a steady buildup of aged pollutants

(particularly of organic aerosols as shown in Sect. 4.3) due

to more pronounced recirculation of pollutants coupled with

warmer temperatures toward the end of June. These condi-

tions resulted in the highest pollution days (25–28 June) at

the end of the campaign. Observations across the cleaner

periods in the beginning of the campaign and the relatively

more polluted periods towards the end will thus provide an

exceptional opportunity to examine aerosol formation and

evolution processes in the same region under a range of en-

vironmental conditions.

The SW wind pattern was interrupted by northwesterly

(NW) flows three times during the campaign: 10–13, 16,

and 20–21 June. During these NW flow events the Sacra-

mento urban plume was transported to the southeast along

San Joaquin Valley, with relatively less mixing with bio-

genic emissions when compared to SW flow events. Con-

versely, the biogenic emissions at and around the T1 site

were not significantly influenced by urban emissions dur-

ing the NW flow periods. This contrasting feature between

the SW and NW flow events will be valuable in investigat-

ing the role of anthropogenic-biogenic interactions in SOA

formation from each source type. The SW and NW flow pe-

riods are respectively identified with green and orange bars

www.atmos-chem-phys.net/12/7647/2012/ Atmos. Chem. Phys., 12, 7647–7687, 2012
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Fig. 5. Time series of standard meteorological variables at the T0

and T1 ground sites. The green-orange bar at the top indicates peri-

ods during which the synoptic wind was either southwesterly (SW)

or northwesterly (NW). Semi-transparent orange shading for the

NW flow periods is also shown over all the plots.

at the top in Fig. 5 (and subsequent figures showing time se-

ries of other variables), with semi-transparent orange shading

shown through all the plots for the NW flow periods.

The wind speeds at both T0 and T1 sites were generally

small (< 4 m s−1), with large values occurring around noon

and the smallest values around midnight. Diurnal variations

in surface temperatures at the T0 and T1 sites were simi-

lar, with highs between 25 and 35 ◦C occurring around 18:00

PDT and lows between 10 and 15 ◦C occurring around 06:00

PDT. Due to the higher elevation of the T1 site, the air was

usually a few degrees (0 to 5 ◦C) cooler at T1 than at T0.

The last three days (26–28 June) were the warmest of the en-

tire campaign, with temperatures at T0 reaching a maximum

of 39 ◦C on 27 June. Relative humidity displayed an oppo-

site diurnal behavior compared to temperature, with highs

between 70 and 90 % occurring at 06:00 PDT and lows of

about 20 % occurring around 18:00 PDT.

4.2 Trace gases observations

Figure 6 shows comparisons of the time series of key trace

gases (SO2, CO, NOy, O3, toluene, and isoprene) observed

at the T0 and T1 sites (SO2 was not measured at T1). The

plots also show the same observations made on the G-1 air-

craft when it flew over or within 2 km (horizontally) of the

T0 and T1 sites. Major sources SO2 from oil refineries are

located around the Carquinez Strait and in San Francisco Air

Basin (total SOx emissions were about 14 000 tons per year

Fig. 6. Comparison of trace gases time series at T0 and T1 ground

sites along with observations onboard the G-1 during overpasses

at the respective sites. The NOy instrument at the T1 site did not

operate until 11 June and the SO2 instrument at the T0 site did not

operate on 27–28 June.

for 2008). As a result, SO2 was routinely transported to the

Sacramento area and into the Central Valley during SW flow

and SO2 mixing ratios of 1.5 to 2 ppbv were observed at T0

during the daytime under these conditions. In contrast, SO2

mixing ratios were nearly zero at the T0 site at night or dur-

ing NW flow. SO2 mixing ratios measured onboard the G-1

during overpasses at T0 were typically equal to or up to 50 %

higher than those measured at the T0 site. Such differences

between ground and airborne observations could be expected

as the SO2 plumes were quite narrow with sharp gradients.

As expected, the T0 urban site experienced significantly

higher CO mixing ratios compared to the T1 site in the ru-

ral foothills area. The minimum values at T0 were generally

around 100 ppbv while they were as low as 80 ppbv at the T1

site. The highs at T0 were typically about 400 ppbv around

noon, with occasional spikes reaching up to 1000 ppbv, likely

due to local vehicular traffic at the site. During the NW flow

periods CO mixing ratios ranging from 400 to 1000 ppbv

were observed around midnight, likely due to transport of

pollution from Interstate I-80 just 2 miles north of the T0

site. The highs at T1 were typically around 200 ppbv, which

occurred in the evening after 18:00 PDT when the diluted

Sacramento plume was transported to the site under SW

winds. CO mixing ratios measured onboard the G-1 were in

Atmos. Chem. Phys., 12, 7647–7687, 2012 www.atmos-chem-phys.net/12/7647/2012/
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very good agreement with those measured at the respective

ground sites during the overpasses, except when the ground

sites experienced spikes due to local emissions. Diurnal be-

havior of NOy mixing ratios at T0 was similar to that of

CO, with lows around 3 ppbv and highs ranging between 20

and 40 ppbv. During the NW flow periods, NOy mixing ra-

tios ranged between 40 and 80 ppbv at midnight. The G-1

based NOy observations were also in good agreement with

the ground sites.

The diurnal behavior of O3 mixing ratios at the T0 and T1

sites were quite similar despite the marked differences in the

precursor trace gas composition and concentrations between

the two sites. The highs ranged between 60 and 80 ppbv, ex-

cept for a peak of nearly 120 ppbv on 28 June. The daily O3

peaks at T0 typically occurred around 15:00 PDT while it

was often delayed by ∼ 3 h at T1 on days when the urban

plume was transported to the site during the SW flow pe-

riods. The lows were typically around 20 ppbv at night and

early morning at both sites throughout the campaign, except

during the NW flow periods when O3 mixing ratios at T0

were nearly zero at midnight due to titration by increased NO

emissions reaching the site. O3 measured aloft during the G-

1 overpasses were in excellent agreement with the respective

ground sites.

The toluene time series is shown here as representative of

primary urban VOC emissions. As expected, its diurnal be-

havior at both sites was similar to that of CO. The highs at T0

ranged from about 0.5 to 1 ppbv under SW flow and from 1.5

to 3 ppbv during NW flow conditions. In contrast, the diurnal

behavior of biogenic isoprene mixing ratios at both the sites

followed that of the surface temperatures. The highs ranged

between 2 and 12 ppbv around 14:00 PDT while the lows

were nearly zero from midnight until dawn. Since the T1 site

was located amidst biogenic emissions, isoprene mixing ra-

tios at T1 were generally about 0.5 to 3 ppbv higher than at

T0. Also, since both toluene and isoprene are primary species

(emitted at the surface) and chemically reactive, their mixing

ratios observed aloft onboard the G-1 were typically about

20 to 50 % lower than at the ground sites during overpasses.

4.3 Aerosol observations

4.3.1 Aerosol composition

Figure 7 shows comparisons of time series of non-refractory

aerosol species concentrations observed with the HR-ToF-

AMS instruments and black carbon mass observed with SP2

instruments at the T0 and T1 sites. The plots also show the

same observations made on the G-1 aircraft during over-

passes at the ground sites. Non-refractory aerosol composi-

tion at both the ground sites and aboard the G-1 was dom-

inated by organics, followed by sulfate, followed by nitrate

and ammonium, while chloride was negligibly small (not

shown). Organic aerosol (OA) displayed a diurnal cycle that

was similar to that of O3 at both sites. Comparisons of the

Fig. 7. Comparison of bulk aerosol species time series at T0 and

T1 ground sites along with observations onboard the G-1 during

overpasses at the respective sites.

estimated and measured aerosol volumes for all three plat-

forms are shown in Fig. S1 (in the Supplement). The esti-

mated volumes were calculated from the AMS species and

BC masses using density of 1.75 g cm−3 for sulfate, nitrate,

and ammonium, 1.53 g cm−3 for chloride, and 1.8 g cm−3 for

BC. While some day-to-day variations in the agreement be-

tween the estimated and measured volumes were observed,

especially for the G-1 on 27 and 28 June, the overall agree-

ments were reasonably good with regression fit slopes of 0.91

for T0, 1.0 for T1 and 1.32 for G-1. Further analysis is needed

to determine the source of discrepancy in the G-1 data for 27

and 28 June.

The peak OA mass concentrations at the T0 site ranged

from 2 to 10 µg m−3 STP (i.e., at standard temperature and

pressure of 273.15 K and 1 atm, respectively) around 15:00

PDT when O3 mixing ratio also reached its daily maximum,

which is consistent with SOA production from photochem-

ical oxidation of anthropogenic and biogenic VOCs. Mini-

mum OA mass concentrations of less than 0.5 µg m−3 STP

typically occurred at or after midnight as the wind direc-

tion shifted to southeasterly, which brought relatively cleaner

background air into the urban area. While the OA mass con-

centrations remained low during the daytime under NW flow

conditions, they were often found to peak around midnight

at the T0 site. CO, NOy, toluene, and BC concentrations also

peaked during these events, suggesting that this was primary

OA emitted along I-80 (possibly from the road work being

performed at night during the campaign period) and brought

to the site with NW winds.
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In contrast, OA mass concentration at the T1 site peaked

at 18:00 PDT or later as the urban plume was transported

to the site during the SW flow periods. Note that the peak

concentrations at T1 were similar to or slightly higher than

those observed at the T0 site even though the urban plume

experienced significant dilution as it was transported to the

T1 site. During this transit the urban plume mixed with in-

creased biogenic emissions, which could have potentially

contributed the additional SOA mass that was observed at

T1. Furthermore, the OA mass concentrations at the T1 site

often remained high at night and experienced a minimum of

∼ 2 µg m−3 STP in the morning. Preliminary WRF simula-

tion results suggest that the aged OA accumulating in the

foothills area at night were frequently recirculated to the

Sacramento urban area within the residual layer the next

morning. Evidence of enriched organic aerosol mass in the

residual layer is presented at the end of this subsection. As

mentioned earlier, the period from 22–28 June experienced a

steady buildup of OA, with mass concentrations aloft reach-

ing more than 25 µg m−3 STP at the end, due to more pro-

nounced recirculation of pollutants in the area coupled with

possibly more SOA formation from increased biogenic emis-

sions due to warmer temperatures. The OA mass concentra-

tions observed onboard the G-1 were in good agreement with

the ground sites values during the overpasses, although they

were a factor of 1.5 to 2.5 higher than observed at T1 during

the 27 and 28 June flights, likely due to strong spatial gra-

dients of OA in the air in the vicinity of that site on those

days.

Sulfate (SO4) mass concentrations typically ranged from

0 to 2 µg m−3 STP at both the ground sites, with highs occur-

ring early afternoon and lows around midnight. Ammonium

(NH4) mass concentrations followed SO4, suggesting it was

mostly in the form of ammonium sulfate or bisulfate. In con-

trast, nitrate (NO3) mass concentrations tended to peak later

in the afternoon and appeared to follow OA mass. SO4 and

NH4 mass concentrations observed onboard the G-1 were

in fairly good agreement with the corresponding values at

both the ground sites during the overpasses, although the G-

1 based SO4 concentrations were sometimes found to be up

to 50 % lower than the ground sites values. In comparison,

NO3 mass concentrations aloft were found to be 50 % higher

than the ground sites values during overpasses.

Lastly, as expected, the T0 site experienced significantly

higher BC mass concentrations than the rural T1 site. The

BC mass concentrations tended to follow the CO mixing

ratios in time. During the SW flow periods, the nighttime

minimum values at both the sites were about 0.02 µg m−3

STP or lower while the daytime maximum values were up to

about 0.3 µg m−3 STP. Interestingly, after 22 June, the daily

minimum BC mass concentrations ranged between 0.05 and

0.07 µg m−3 STP as there was increased recirculation of aged

aerosols and a steady buildup of OA mass concentrations

in the region. The pre- and post-June 22 periods thus pro-

vide opportunities to examine SOA formation and BC mix-

ing state evolution in the same region under significantly

different ageing time scales. BC mass concentrations mea-

sured onboard the G-1 were in very good agreement with

those measured at the respective ground sites during the over-

passes. As discussed earlier, during the NW flow periods BC

mass concentrations usually peaked at the T0 site at mid-

night, with values ranging from 0.5 to 1 µg m−3 STP. These

events provide opportunities to characterize the size distri-

bution, composition, mixing state, and the associated opti-

cal and CCN activation properties of freshly emitted BC and

OA particles. It is worth noting here that the SP2-reported

BC mass is dependent on the BC surrogate used to calibrate

the incandescent signal from SP2 (Laborde et al., 2012). The

SP2 BC mass concentrations reported here for the T0, T1

and G-1 datasets are based on a calibration with Acheson

Aquadag. Kondo et al. (2011) suggest that fullerene soot may

be a better proxy for urban BC; using a fullerene soot cali-

bration could increase our reported BC mass concentrations

by approximately 67 %.

Enhanced concentrations of aged organic aerosols, likely

recirculated from the previous day, were often observed in

the residual layer (Stull, 1988) during the morning flights

over the Sacramento urban area. Figure 8 illustrates such an

occurrence during the morning flight on 15 June. The top

panel shows a map with the G-1 flight tracks (solid lines)

color coded by altitude. The flight started at 08:56 PDT

and consisted of several legs crisscrossing over the T0 site

at ∼ 360 and ∼ 660 m m.s.l. altitudes. A spiral up to about

1300 m m.s.l. was performed at about 09:30 PDT over a lo-

cation between the T0 and T1 sites. The G-1 then flew back

and forth along the foothills from 11:00 PDT to 11:50 PDT,

passing over the T1 site three times. The left portion of the

bottom panel shows the vertical profile of potential temper-

ature obtained during the spiral. Based on the inflections in

this profile, the boundary layer height was estimated at about

590 m m.s.l. and the residual layer height was estimated to

extend up to about 950 m m.s.l., which implies that the G-

1 legs at 360 m m.s.l. were within the boundary layer while

the legs at 660 m m.s.l. were in the residual layer. The right

portion of the bottom panel shows the G-1 flight altitude plot-

ted against local time, with the approximate locations of the

T0 and T1 sites noted at the bottom of the plot along the

time axis. The plot also includes OA and NO3 mass concen-

trations and NOx / NOy ratio along the flight as a function

of local time. NOx / NOy ratios were as high as 0.8 (right

over the urban center) within the boundary layer due to fresh

emissions of NOx in the morning. NOx / NOy ratios were be-

tween 0.2 and 0.3 in the residual layer, which is indicative of

aged pollution. Interestingly, OA mass concentrations in the

boundary layer were only about 2 µg m−3 STP while they

were about 6 µg m−3 STP in the aged residual layer. Simi-

larly, NO3 concentrations were about 0.5 µg m−3 STP in the

boundary layer and about 1.5 µg m−3 STP in the residual

layer.
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Fig. 8. Example of evidence for aged aerosols (enriched in organic

and nitrate) that were often found to be present in the residual layer

in the morning. Top: G-1 flight tracks on the morning of 15 June,

color coded by flight altitude. The dotted white and pink lines rep-

resent forward trajectories of air parcels (see text). Bottom right:

vertical profile of potential temperature at the location of the spiral.

Bottom left: flight altitude, org and NO3 mass concentrations, and

NOx / NOy ratio plotted along the flight track as a function of local

time.

The dotted white and pink lines in the top panel of Fig. 8

represent forward trajectories (computed using WRF fore-

casts) of air parcels that originated over the ocean (at sur-

face level) off the coast of San Francisco on 14 June at 19:00

PDT and 15 June at 02:00 PDT, respectively, such that both

air parcels arrived over the T0 site on June 15 at 10:00 PDT

(i.e., during the time period when G-1 was sampling in the

area). The filled circles along the trajectories mark the lo-

cations of the air parcels at hourly intervals. The air parcel

along the pink trajectory was present within the boundary

layer and had passed over the Sacramento downtown area at

about 08:00 PDT before reaching T0 at 10:00 PDT. In con-

trast, the air parcel along the white trajectory was present in

the residual layer, and it had undergone a recirculation in the

Sacramento Valley at night before arriving over the T0 site

at 10:00 PDT. These results are consistent with the aerosol

composition and NOx / NOy ratio observed in the boundary

and residual layers as discussed above. Detailed analyses of

the chemical composition of the aerosols in the boundary and

residual layers will be conducted, and the potential contri-

butions of the Bay Area and Sacramento emissions and the

ensuing daytime as well as nighttime chemistry in the forma-

tion of these aerosols will be examined in subsequent studies.

4.3.2 Aerosol number concentration and size

distribution

Figure 9 shows time series of aerosol number concentra-

tions above 10 nm diameter (denoted as N>10) measured

by the CPC-3010 instruments at the T0 and T1 sites along

with the CPC-3010 observations onboard the G-1 during the

overpasses above these sites. These number concentrations

are put in context with the time series of SO2 mixing ra-

tio at the T0 site along with the G-1 overpasses at T0. Dur-

ing SW flow periods, the T0 site experienced significant in-

creases in aerosol number concentrations from the nighttime

lows of ∼ 5000 cm−3 to about 35 000 cm−3 (maximum of

45 000 cm−3) between 08:00 and 13:00 PDT. These rapid in-

creases in number concentrations coincided with increases

in SO2 mixing ratios from below detection limit at night to

about 1–2 ppbv, suggesting that these particles were either

nucleated at the T0 site via H2SO4 formation from SO2 pho-

tooxidation, followed by growth to 10 nm and larger sizes,

or they were transported to the T0 site shortly after nucleat-

ing elsewhere, with continued growth during transit. The in-

creases in the number concentrations at the T1 site occurred

almost simultaneously with the T0 site or were sometimes

delayed by 1–3 h, and the daily maximum values reached up

to 20 000 cm−3 (i.e., about a factor of 2 lower than at T0).

Unfortunately, SO2 was not measured at the T1 site, so a

similar comparison could not be made. As the SO2 mixing

ratios were small and mostly below detection limit during

the NW flow periods, the daytime increases in N>10 values

were also significantly reduced at both the sites, with highs

reaching less than 20 000 and 10 000 cm−3 at T0 and T1, re-

spectively. The daily increases in N>10 values at T0 and T1

were also greatly reduced during the period from 25–28 June

despite the high SO2 mixing ratios observed aboard the G-

1 during overpasses. This reduction in N>10 was likely due

to the steady buildup of aged aerosols of larger sizes, which

effectively suppressed new particle formation and survival

of newly formed particles by providing large pre-existing

surface area for H2SO4 condensation and coagulation. The

CPC-3010 number concentrations observed aboard the G-

1 were in excellent agreement with those measured at both

ground sites during the overpasses through the entire cam-

paign.

The G-1 also carried a CPC-3025 which measured the total

number concentrations of particles larger than 3 nm, denoted

as N>3. Figure 10a shows a scatter plot of all the CPC-3025

versus CPC-3010 number concentrations observed aboard

the G-1, with points colored by SO2 mixing ratio that was

also observed aboard the G-1. Note that values of both N>3

and N>10 were generally found to increase with increasing

SO2 mixing ratios, and while the N>3 / N>10 ratios reached

www.atmos-chem-phys.net/12/7647/2012/ Atmos. Chem. Phys., 12, 7647–7687, 2012



7666 R. A. Zaveri et al.: Overview of the 2010 CARES

Fig. 9. Time series of SO2 mixing ratio at T0 site and comparison

of CPC 3010 number concentration (N>10) time series at T0 and

T1 sites along with observations onboard the G-1 during overpasses

at the respective sites.

as high as 4, the high values generally did not coincide with

enhanced SO2 mixing ratios, with some of the highest ratios

corresponding to the lowest SO2 mixing ratios. This result

is reasonable if the increased sulfate formation (and SOA)

caused the large number of newly formed particles to more

rapidly grow larger than 10 nm. Figure 10b shows the same

scatter plot, with points colored by isoprene mixing ratio ob-

served aboard the G-1. Points with isoprene mixing ratios

less than 1 ppbv were removed from the plot for clarity. Note

that the highest N>3 / N>10 ratios corresponded to the highest

isoprene mixing ratios (and the lowest SO2 mixing ratios),

suggesting that biogenic species may have played an impor-

tant role (in the absence of appreciable amounts of SO2) in

new particle formation and their initial growth to detectable

sizes.

Figure 11 shows the time series of aerosol number size dis-

tributions at the T0 and T1 sites. The plot for each site con-

sists of size distribution data from the Scanning Mobility Par-

ticle Sizer (SMPS) and Aerosol Particle Sizer (APS) instru-

ments. The SMPS measures particle mobility diameter (Dm)

ranging from 0.01 to ∼ 0.7 µm while the APS measures par-

ticle aerodynamic diameter (Da) ranging from 0.5 to 20 µm.

Note that the size distribution data from both the instruments

are plotted using the same color scheme but with instrument-

specific color scales that differ by three orders of magnitudes.

Comparison of the number size distributions measured by the

SMPS and APS in the overlap region is illustrated in Fig. S2.

Aerodynamic diameter from APS was converted to geomet-

Fig. 10. Scatter plots of CPC-3025 vs. CPC-3010 number concen-

trations observed on the G-1: (a) the points are colored by the corre-

sponding SO2 mixing ratios; (b) the points are colored by the corre-

sponding isoprene mixing ratios (points with isoprene mixing ratios

< 1 ppbv were removed from the plot for clarity). Grey lines show

slopes of 4 : 1 and 1 : 1.

Fig. 11. Comparison of aerosol number size distributions at T0 and

T1 sites. Note that the color scales for APS and SMPS distributions

differ by three orders of magnitude.

ric diameter by assuming a density of 2.25 g cm−3 for coarse

mode particles, which were found to be sea salt aerosols as

discussed below. Number concentrations from the two instru-

ments appear to agree very well around 0.56 µm geometric

diameter.

The APS data at both ground sites show the appearance

of coarse mode particles on several days (e.g., 8, 14, 15, 18

June) when the wind direction was predominantly southwest-

erly. As discussed in the previous section and shown in Fig. 8
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for 15 June, WRF tracer forecast simulations for these pe-

riods indicated appreciable transport of air from the Pacific

Ocean into Sacramento through the Carquinez Strait, sug-

gesting that the coarse particles were composed of sea salt,

with some dust particles mixed into the air mass along the

way. Indeed, the single particle mass spectrometer data (dis-

cussed in the next subsection) support this hypothesis. The

coarse particles were mostly absent during the NW flow pe-

riods.

Consistent with the N>10 time series shown previously

in Fig. 9, the SMPS data at both ground sites show the ap-

pearance of ∼ 10 nm diameter particles in large concentra-

tions between 08:00 to 10:00 PDT. These particles were then

found to rapidly grow until mid-afternoon, with the particle

composition data indicating this was largely due to conden-

sation of secondary organics and to a lesser extent due to con-

densation of sulfuric acid, nitric acid, and ammonia as shown

previously in Fig. 7. More detailed analysis of carefully se-

lected aerosol growth events should provide valuable infor-

mation for constraining aerosol chemistry and microphysics

models to evaluate and test SOA formation and BC ageing

mechanisms under different conditions. Such studies will be

the subject of subsequent papers.

4.3.3 Aerosol mixing state from SP-MS instruments

A state-of-the-art single particle mass spectrometer (SP-MS)

instrument was deployed at each site and on the G-1 to ob-

tain a more complete picture of the different particle types

and evolution of aerosol mixing states. SPLAT II was located

at the T0 site to continuously measure the size, composition,

and density of individual particles with diameters between 50

to 2000 nm. Each day, SPLAT II characterized the size of ∼ 7

million and composition of ∼ 350 000 particles. It also mea-

sured the aerosol size distribution and number concentrations

of particles with diameters larger than 85 nm (Vaden et al.,

2011b, c). Simultaneous measurements of individual particle

size, density and composition were conducted for 121 000 in-

dividual particles. These measurements were performed 2–3

times per day. In addition, SPLAT II was used to conduct

the first measurements of the kinetics of evaporation, phase,

and morphology for size-selected ambient SOA particles at

ambient temperature (Vaden et al., 2011a).

PALMS was located at the T1 site to sample the relatively

aged urban aerosols. PALMS measured the same quantities

as SPLAT II (i.e., particle size, composition, and density)

on a single particle basis. PALMS is not an automated in-

strument and therefore could not be run unattended. Data

were nonetheless acquired on most field days, with a par-

ticular emphasis on acquisition during aircraft flights and af-

ternoon periods when the Sacramento plume had transited to

the T1 site. PALMS detected individual particles from ∼ 125

to 3000 nm, although it is noteworthy that transmission rate

rapidly dropped at sizes lower than ∼ 200 nm and greater

than ∼ 2000 nm. In total ∼ 100 000 particles were analyzed.

Particular emphasis was placed on collecting PALMS data si-

multaneously with f (RH) measurements to determine the ef-

fect of chemical composition on particle hygroscopicity. An

f(RH) measurement was also made at the T0 site during the

second half of the campaign.

An A-ATOFMS was flown on the G-1 to measure the size-

resolved mixing state of individual particles with diameters

ranging from 70 to 1200 nm. Dual polarity mass spectra were

acquired which allows for the identification of the source and

the extent of atmospheric processing of the particles. Over

all flights, ∼ 60 000 particles were analyzed. Due to particle

transmission efficiencies, most particles that were sampled

ranged from 100 to 1000 nm diameters, with a mode cen-

tered at ∼ 360 nm during most flights. These airborne mea-

surements will be particularly useful in understanding how

the mixing state of different types of particles evolved in the

Sacramento urban plume as it was advected downwind.

Analysis of individual particle mass spectra at all locations

indicates that at any given time there were always a num-

ber of different types of particles with different compositions

and size distributions present. Figure 12 shows the average

fraction of particles observed by A-ATOFMS for each G-1

flight and 12-min averaged fraction of particles observed by

PALMS at the T1 site classified into specific particle types.

The vast majority of aerosol particles characterized during

the study were composed of oxygenated organics mixed with

various amounts of sulfates: from sulfate-dominated parti-

cles to those containing mostly organic species. In addition,

fresh and processed soot particles, biomass burning aerosol,

amines, sea salt (both fresh and processed), and a small

number of mineral dust and other inorganic particles were

present. The relatively larger number fraction of sea salt par-

ticles observed aloft by the G-1 and at both ground sites on 8

and 15 June is consistent with the APS size distribution data

shown previously in Fig. 11.

SPLAT II data for 6 June are shown in Fig. 13 to illus-

trate a more detailed view of the evolution of relative frac-

tions of different particle types in a single day. Early in

the morning aerosol mass loadings and number concentra-

tions were low and most particles were composed of organ-

ics mixed with a significant fraction of sulfate. Larger parti-

cles containing a higher fraction of sulfate were evident from

the size-dependence of particle density. An example of size-

dependent particle density data measured by SPLAT II is il-

lustrated in Fig. 14. In general, density tended to increase

with particle size. For example, during the morning of 6 June,

80 nm particles had a density of ∼ 1.3 g cm−3 while the den-

sity of 200 nm particles was ∼ 1.6 g cm−3.

By around 09:00 PDT, the number concentrations of par-

ticles smaller than 14 nm (measured by SMPS) began to in-

crease, which indicated the growth of newly formed parti-

cles by SOA condensation. As the day progressed and the

emitted VOCs were oxidized, SOA-containing particles in-

creased in size, making it possible to characterize their size,

composition, and density with SPLAT II. By early afternoon

www.atmos-chem-phys.net/12/7647/2012/ Atmos. Chem. Phys., 12, 7647–7687, 2012



7668 R. A. Zaveri et al.: Overview of the 2010 CARES

Fig. 12. Variations in fractions of different particles observed by

ATOFMS aboard the G-1 (upper panel) and by PALMS at the T1

site (lower panel). EC is elemental carbon, BB is biomass burning

particles, V-OC is organic particles containing vanadium, MinMet

is mineral dust and metallic particles.

aerosol composition was dominated by oxygenated organ-

ics mixed with small amount of amines and sulfate (∼ 10 %

volume fraction), and the density of 80 nm to 150 nm parti-

cles was ∼ 1.3 g cm−3. These SOA-dominated particles were

then used to study evaporation kinetics at room temperature

(Vaden et al., 2011a). The results of this study show that

evaporation of these size- and composition selected ambient

organic particles was extremely slow and size-independent,

suggesting that the particles were in a quasi-solid state.

While the single particle data described above provide

valuable information, they are particularly useful when used

in combination with other instruments. Three examples are

noteworthy and are listed among the analyses envisioned in

the next subsection. First, BC concentration, size and coat-

ing state can be obtained by the SP2 instrument which was

deployed at both ground sites and aboard the G-1 during

CARES. The SP-MS data complement the SP2 data by pro-

viding a qualitative measure of the chemical composition

of the coating material internally mixed with the BC. Sec-

ond, biomass burning aerosol was episodically present dur-

ing CARES, particularly during the warmer and drier period

later in the field study. Gas-phase acetonitrile can be used as

a tracer to detect the presence of biomass burning aerosol and

the resulting perturbations to SOA when biomass burning

aerosol was present can be investigated. Finally, SP-MS data

can be used to determine periods of particular interest for

off-line analyses of collected and archived TRAC, DRUM,

and SEM samples to further probe the chemical composition,

mixing state, and morphology of particles.

Fig. 13. Temporal evolution of particle number concentration (up-

per panel) and the corresponding fraction of particles with different

compositions (lover panel) as observed by SPLAT II on 6 June at

the T0 site. SS is sea salt, BB is biomass burning particles.

Fig. 14. Size-dependent particle densities as measured by SPLAT II

on 6 June at 10:00 PDT.

4.3.4 BC mixing state from SP2 instruments

The single particle soot photometer (SP2) measures BC via

laser-induced incandescence and can obtain some useful in-

formation about particle size, relative coating thickness and

mixing-state based on the scattering signal from the both

BC and non-BC containing particles (Stephens et al., 2003;
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Schwarz et al., 2006; Subramanian et al., 2010). The heart

of the SP2 is the laser-induced (1064 nm, Nd:YAG) incan-

descence signal from BC. Incorporation of narrowband and

broadband filters enables the SP2 to be highly selective to-

wards BC. The incandescence intensity is linearly propor-

tional to the BC: more mass leads to stronger incandescence.

In addition to providing data on the BC number density and

mass concentration, since the SP2 is inherently a particle-by-

particle instrument, individual incandescence signals can be

collected and binned to provide a mass equivalent diameter

(MED) size distribution (dNBC/dLogDMED) and mass distri-

bution, (dMBC/dLogDMED). The nominal BC mass detection

range for the SP2 units deployed at CARES was from ∼ 0.2

fg particle−1 to ∼ 250 fg particle−1 – 60 nm to 650 nm MED,

for an assumed particle density of 1.9 g cm−3.

The SP2 is also outfitted with a scattering channel that,

when combined with the incandescence signal, allows the

BC mixing-state to be probed (Moteki and Kondo, 2008;

Subramanian et al., 2010). The cornerstone of this technique

is that a fully coated BC particle must first boil-off its coating

before the BC will incandesce. The time necessary to vapor-

ize this coating is referred to as the lagtime (1τ), which is

the temporal lag of the incandescence signal relative to the

scattering signal – the larger the lagtime the thicker the coat-

ing, although the relationship between these two quantities

is complex. By plotting the observed lagtimes versus the BC

MED, a semi-quantitative picture of the BC mixing-state can

be rendered enabling the evolution of the mixing-state to be

directly probed. As advocated by Moteki and Kondo (2008)

and more recently by Subramanian et al. (2010), due to in-

strument limitations, a demarcation between “thinly” coated

(nascent) BC and “thickly” coated BC is strongly encour-

aged when using the lagtime analysis. For the current study,

this dividing line between thinly and thickly coated BC par-

ticles is 1.25 µs; that is, 1τ > 1.25 µs indicates the presence

of thickly coated BC particles while shorter lagtimes desig-

nate the presence of thinly coated BC particles. In addition to

the lagtime analysis, the complementary analysis technique

of estimating the coating thickness through examination of

the difference between calculated BC core mass equivalent

diameter and an estimate of the coated BC particle diame-

ter determined from the scattering signal amplitude, was also

conducted (Gao et al., 2007; Moteki and Kondo, 2006).

An example of the incandescence-scattering lagtime anal-

ysis as a function of BC mass equivalent diameter is shown

in Fig. 15 for the 28 June morning and afternoon flights.

Contours are normalized number concentrations in an ef-

fort to highlight the differences between the two flights (red

= 0.9/blue = 0.2). Using the linear relationship between

lagtime and coating thickness shown by Subramanian et

al. (2010), the right axis is the estimated coating thickness

outlined above. It is important to note that an SP2-based anal-

ysis of the BC mixing state requires usable signals from both

the scattering and incandescence channels. Despite the fact

that the incandescence signal can probe BC mass equiva-

Fig. 15. The time delay between the observance of the incan-

descence signal peak relative to the peak in the scattering signal

(incandescence-scattering lagtime, 1τ) is plotted as a function of

the BC mass equivalent diameter (MED) for the morning and after-

noon flights conducted on 28 June. Number concentration contours

are normalized to unity (red = 0.9, blue = 0.2) to highlight the dif-

ferences between the two flights. Since the non-refractory coating

must be burned off before the BC core will incandesce, the recorded

lagtime can serve as a proxy for coating thickness – the larger the

lagtime, the greater the coating thickness. The morning ensemble

lagtimes are dominated by thinly coated soot whereas in the after-

noon an increase in the fraction of thickly coated larger diameter

BC core is observed.

lent diameter ranging from nominally 60–600 nm, the limited

range of the scattering channel (∼ 175 nm to 350 nm) limits

this analysis to only those coated BC particles that fall into

the latter range. Examination of the morning flight lagtime

data (top trace in Fig. 15) reveals that the observed distri-

bution is dominated by thinly coated BC particles while the

28 June afternoon flight reveals an increase in the number

of thickly coated BC cores, consistent with BC ageing. Pre-

liminary analysis of the BC mass distributions for the two

flights reveal that the mean mass diameter (MMD) increases

from 137 (±1.2) with a geometric standard deviation (GSD)

of 1.4 (±0.03) for the morning flight to 142 (±1.1) nm with

a (GSD) of 1.4 (±0.03), where the error is 1-σ . Whether this

MMD shift (or alternatively, loss of smaller diameter, thickly
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coated BC particles) is due to instrument limitation(s) or ad-

vection will be the subject of the ensuing analysis on this

G-1 dataset. Additional lines of analysis will include better

quantification of the BC mixing-state (coating thickness) by

correcting the estimated coating thicknesses for host material

loss due to heat transfer from the light absorbing core (Gao et

al., 2007; Moteki and Kondo, 2006) and estimating the ratio

of the coating mass/BC mass as well as examining the light

absorbing properties in the core-shell limit. Towards this end,

preliminary analysis indicates an increase in the coating mass

to BC ratio between the morning and afternoon flights.

4.3.5 Offline analyses of particle samples

Comprehensive analyses of particle samples collected at T0

and T1 ground sites and onboard the G-1 can be performed

using an array of modern, state-of-the-art analytical tech-

niques available at two DOE scientific user facilities (Envi-

ronmental Molecular Sciences Laboratory at Pacific North-

west National Laboratory and Advanced Light Source at

Lawrence Berkeley National Laboratory) and at Michigan

Technological University (Applied Chemical and Morpho-

logical Analysis Laboratory). The primary techniques for

analysis are Computer Controlled Scanning Electron Mi-

croscopy with Energy Dispersed analysis of X-rays (CC-

SEM/EDX) (Li et al., 2003; Laskin et al., 2006) and Scan-

ning Transmission X-ray Microscopy with Near Edge X-ray

Absorption Fine Structure spectroscopy (STXM/NEXAFS)

(Moffet et al., 2010b). These techniques provide informa-

tion on particle morphology, elemental composition, mix-

ing states, and partitioning of oxidation states, which yield

deeper insights into atmospheric ageing of different types of

aerosols. Although particle samples were collected contin-

uously at the ground sites and on many G-1 flights, only a

small subset will be chosen for detailed analysis. The peri-

ods of interest are chosen based on observations from other

collocated instruments and meteorological considerations.

Figure 16 shows examples of SEM images of aerosol par-

ticles collected at the T0 site. The low magnification im-

age (a) includes (i) a large dust particle, (ii) relatively small

spherical particles, (iii) fractal-like soot particles, and (iv)

an irregularly shaped particle. Image (b) shows a close-up

view of a fractal-like BC particle with an open structure (i)

without substantial coating and (ii) with coating. Since SEM

imaging is operated under vacuum, volatile aerosol compo-

nents typically evaporate from the filter. An example of an

evaporated liquid particle is visible in the lower right cor-

ner of image (b). Image (c) shows a compacted, internally

mixed BC particle, and image (d) shows a particle with BC

inclusion. These micrographs highlight the morphological

complexities of freshly emitted and aged BC particles as

well as of the underlying ageing mechanisms that produce

the variation in coating thickness. From these images it is

also evident that coated and compacted internally mixed BC

monomers are larger in size and have higher polydispersity

Fig. 16. FE-SEM images of aerosol particles collected at the T0

site: (a) a low magnification image showing (i) dust particle, (ii)

spherical particle, (iii) fractal-like particles, (iv) irregularly-shaped

particle; (b) fractal-like particle with open structure, (i) soot without

evident coating, (ii) soot with relatively thick coating, ELP – evap-

orated liquid particle; (c) compacted BC particle internally mixed;

(d) particle with BC inclusion. The dark dots are the pores in the

filter.

than monomer distributions in nascent BC. For example, the

geometric mean diameter for thickly coated BC is 68 nm with

a standard deviation of 10 nm (Fig. 16b-(ii)), whereas for

compacted internally mixed soot the geometric mean diam-

eter of the monomers is 42.1 nm and the standard deviation

is 10.2 nm (Fig. 16c), versus a geometric mean diameter of

39.8 nm and a standard deviation of 5.6 nm for nascent soot

(Fig. 16b-(i)). The polydispersity in various mixing states af-

fects the fractal and optical properties of soot. Future studies

will focus on the analysis of the aerosol mixing state and

association with optical properties, the diurnal variation of

fractal properties of soot, the relation between particle mor-

phology type and optical properties, and the elemental com-

position of single particles using EDX analysis.

In addition to information on carbonaceous particle age-

ing, composition, organic coatings, and size resolved mixing

state, spectromicroscopy studies can also provide informa-

tion on sulfur bonding (Hopkins et al., 2008), organic coat-

ings on sea salt (Pratt et al., 2010), and Fe oxidation states

(Moffet et al., 2012). Figure 17 shows characteristic SEM im-

ages and STXM/NEXAFS chemical maps for particles col-

lected during the photochemical aerosol buildup period at

the end of the field campaign (27–29 June). Particles sam-

pled on the morning of 27 June at T0 were primarily com-

posed of inorganic cores surrounded by varying amounts of

organics, whereas particles sampled at T1 on the afternoon

of 28 June were primarily composed of a homogenous inor-

ganic/organic mixed phase. This evidence of photochemical

aging is analogous to observations in Mexico City during the

MILAGRO campaign (Moffet et al., 2010c).
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Fig. 17. SEM (left panel) and STXM (right panel) images show-

ing internal heterogeneity of particles collected in CARES study.

STXM maps derived by singular value decomposition depict or-

ganic dominant phase (green), inorganic dominant phase (blue) and

elemental carbon (red). Images are not from the same sample re-

gion.

CCSEM/EDX and STXM/NEXAFS analyses of TRAC-

collected particles onboard the G-1 on 15 June (a strong SW

flow event) showed the presence of sea salt particles over

Sacramento. Forward trajectories simulated by WRF (Fast et

al., 2012) coupled with Lagrangian particle dispersion model

(Doran et al., 2008) analysis confirmed that the sea salt par-

ticles were transported from the Pacific Ocean/Bay Area. In-

terestingly, these particles were found to be internally mixed

with organics, which were likely SOA species formed in

these particles during the transit from the Bay Area. Surpris-

ingly, these particles had experienced substantial chloride de-

pletion that could not be explained by the known reactivity

of sea salt with nitric and sulfuric acids. This study, recently

published by Laskin et al. (2012), is the first field evidence

that SOA, consisting of weak organic acids, may effectively

react with sea salt particles and displace HCl gas, leaving

behind particles depleted in chloride and enriched in the cor-

responding organic salts.

The microscopy and spectromicroscopy methods dis-

cussed above help visualize particle morphology and inter-

nal structure at the nanometer scale (Laskin, 2010; Moffet

et al., 2010a) and provide valuable chemical information on

elemental composition (SEM/EDX) and organic group func-

tionalities present in particles (STXM/NEXAFS). High reso-

lution Nanospray Desorption Electrospray Ionization (Nano-

DESI) mass spectrometry on field-collected particles can

provide additional detailed information on the molecular

structures of organic aerosol species, but this method ac-

quires integrated signal from an ensemble of particles and

therefore eliminates knowledge of individual particle com-

position (Roach et al., 2010). Thus, analyses of the various

particle samples collected during CARES will include com-

plementary analytical methods that provide comprehensive

information ranging from microscopic details of individual

particles to advanced molecular characterization of complex

molecules comprising particulate matter.

Other types of offline chemical and radio isotopic anal-

yses of ambient aerosol require large amounts of samples,

which were obtained during CARES using several high-

volume samplers. Carbon levels in the submicron particle

samples taken at the T1 site with high-volume samplers were

found to be quite low, and visual examination indicated lit-

tle BC present for most of the study. This result is qualita-

tively consistent with the measurements of BC mass by the

SP2 at the T1 site. Carbon-14 analysis of four samples col-

lected over 12 and 24 h periods at the beginning and end

of the CARES campaign show that 74 ± 0.6 % of the car-

bon was modern, suggesting that there was a significant bio-

genic component in the carbonaceous aerosols. Furthermore,

stable carbon isotopic content (δ13C) for these samples was

found to be −27.5 ± 3.5 ‰ relative to the Pee Dee Belem-

nite standard. This is equal to the global average δ13C for C3

plants such as Ponderosa Pines, which dominate the region

(Ehleringer and Monson, 1993; Cerling and Harris, 1999).

The combined data indicate that a significant amount of the

carbonaceous aerosols at this site were from secondary or-

ganic carbonaceous aerosols, likely produced from oxidation

of isoprene, monoterpenes, and sesquiterpenes by ozone and

OH radicals. Further work on these quartz filter samples is

planned, including examination of natural radionuclides (7Be

and 210Pb) as well as use of integrating sphere methods to ex-

amine the UV-Visible absorption of the terpene-dominated

SOA (Gaffney et al., 2004; Marley et al., 2009).

Another high-volume PM2.5 sampler was deployed at the

T0 site from 2–15 June and at the T1 site from 16–28 June.

Detailed chemical analysis of these samples is also planned,

with a focus on studying the distribution of organic acids and

aldehydes with respect to total organic carbon (Jaoui et al.,

2004).

4.4 Optical properties and radiation observations

4.4.1 In situ aerosol optical properties

In situ aerosol optical properties were measured at multiple

wavelengths at each site with several instruments, including

nephelometer, PSAP, PAS, and CRDS. The flow to the neph-

elometer and PSAP instruments at each site was subjected

to alternating size cutoffs of 1 and 10 µm aerodynamic di-

ameters for 6 min each; the difference between the two gives

the scattering and absorption by super-micron particles. Such

variable size cutoffs were not applied to flows on other instru-

ments. Nephelometer, PSAP, and PAS instruments were also

deployed aboard the G-1. As mentioned earlier, the aerosol

inlet on the G-1 allowed transmission of particles up to 5 µm

aerodynamic diameters, and no additional cutoffs were ap-

plied to the flows to the optical instruments. In this report

we limit the discussion to the nephelometer, PSAP, and PAS

observations at green wavelength to illustrate the behavior

and consistency of the scattering and absorption coefficients

observed on the three different platforms through the entire
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Fig. 18. Comparison of scattering coefficient measured by neph-

elometer at the T0 and T1 sites and onboard the G-1 during over-

passes at the respective sites.

campaign. Detailed analyses of the optical properties at dif-

ferent wavelengths from each instrument and a comparison

of observations from all three instruments will be presented

in separate papers.

Figure 18 shows the time series of scattering coefficients

(Bsp) measured at λ = 550 nm by the nephelometers along

with the surface area size distribution derived from APS mea-

surements at both sites. Also shown are the scattering coef-

ficients observed aboard the G-1 during overpasses at each

site. Coarse mode particles were largely absent at both sites

during the first week of June and later again during the NW

flow periods. During these periods, scattering coefficients for

the 1 µm cutoff channel were rather low and ranged between

2 and 15 Mm−1 while scattering coefficients for the 10 µm

cutoff channel were only about 2 to 5 Mm−1 higher. On days

when the surface area size distributions indicate increased

presence of coarse mode particles, scattering coefficients for

the 10 µm cutoff channels reached as high as 40 to 75 Mm−1

and 20 to 50 Mm−1 at the T0 and T1 sites, respectively, and

were about 2 to 4 times higher than the values for the 1 µm

Fig. 19. Comparison of absorption coefficient measured at λ =

532 nm by PSAP and photoacoustic instruments at the T0 and T1

sites and by PSAP (λ = 522 nm) aboard the G-1 during overpasses

at the respective sites.

cutoff channel at each site. Scattering for both channels at

both sites shows a steady increase after 22 June, which is

consistent with the steady buildup of submicron size aged

aerosols in the region as discussed previously. During this

period, the increase in the scattering in the 10 µm channel

was largely driven by the increase in scattering in the 1 µm

channel. According to the surface area size distribution data

at both sites, about 95 % of the total surface area was present

below 5 µm aerodynamic diameter when a significant coarse

mode was present. Consequently, the scattering coefficients

observed aboard the G-1 were in very good agreement with

or only slightly smaller than the 10 µm cutoff values at both

the ground sites during the overpasses, through all periods of

low and high concentrations of coarse mode particles.

Figure 19 shows time series of absorption coefficients

(Bap) measured by PSAP (Da < 1 µm) and PAS instruments

at λ = 532 nm at both the sites. Also shown are absorption

coefficients measured with the PSAP (λ = 522 nm) aboard

the G-1 during overpasses at each site. The ground sites

PSAP data are 1-min averages, the G-1 PSAP data are 10-s

averages, and the PAS data are 30-min averages. Through the

entire campaign, PSAP absorption coefficients for the 10 µm

cutoff channel (not shown) were nearly identical to the 1 µm

cutoff values, indicating that the coarse mode particles were

largely non-absorbing at λ = 532 nm. The ground sites PSAP

and PAS absorption coefficients are in good agreement. The

PSAP absorption coefficients observed aboard the G-1 are

also in very good agreement with the PSAP and PAS based

values at both ground sites during the overpasses.
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Fig. 20. Comparison of aerosol optical depth derived from MFRSR

observations at T0 and T1 sites.

4.4.2 Ground-based remote sensing observations

A Multi-Filter Rotating Shadowband Radiometer (MFRSR)

was deployed at each ground site to measure the total all-

sky surface downwelling irradiance, and its diffuse and di-

rect components. These were measured at six narrowband

(10 nm, FWHM) wavelengths centered at 415, 500, 615,

673, 870, and 940 nm (visible and near-IR spectral region)

with 20-s temporal resolution. The measured irradiances

were used to obtain column aerosol microphysical and op-

tical properties, such as aerosol optical depth (AOD), sin-

gle scattering albedo (SSA), and asymmetry parameter, g.

The high-temporal resolution MFRSR observations at the

two sites provided the diurnal, day-to-day, and site-by-site

variations of AOD (Fig. 20). For example, the AOD values

(at λ = 500 nm) were observed to range from about 0.025

(which represents very clean air) at the start of the campaign

to about 0.12 towards the end of the campaign. Note that

there were several cloudy-sky periods when AOD values are

not available.

In addition to the AOD values, the MFRSR observations

were used to retrieve aerosol microphysical (e.g., size dis-

tribution, including fine and coarse size modes) and the in-

tensive optical properties (SSA and g) using spectrally re-

solved direct and diffuse irradiances (Kassianov et al., 2007).

The original version of this technique has been developed for

clear sky conditions. Its updated version (Kassianov et al.,

2011) extends the clear-sky aerosol retrievals to partly cloudy

conditions, so that aerosol properties can be determined for

some cloudy sky conditions. Similar to the AOD, the aerosol

size distributions and intensive properties have significant

variations over the course of the campaign. To illustrate this

we show temporal changes in the aerosol size distribution (a

bimodal distribution consisting of fine and coarse modes) re-

trieved at the two sites (Fig. 21). It is notable that the coarse

mode was substantial for several time periods (e.g., during 16

June). In general, the existence of a large coarse mode in the

column, as retrieved from the MFRSR measurements, is con-

sistent with measurements of the coarse mode made by the

Fig. 21. Daily average volume size distributions derived from

MFRSR observations at T0 and T1 ground sites.

APS instruments at the T0 and T1 sites (shown previously in

Fig. 18).

4.4.3 Airborne remote sensing observations

Consistent with the ground sites and G-1 observations, the

HSRL measurements aboard the B-200 showed that aerosol

extinction and AOD (532 nm) were generally quite low dur-

ing CARES; average AOD values (for the layer between 0.1

to 7 km) in and around the Sacramento area were generally

between 0.05 and 0.1. Smaller values were found earlier dur-

ing the mission (e.g., 3 and 6 June); larger (> 0.1) AOD val-

ues were measured later during the mission (e.g., 28 June).

The HSRL measurements also showed that much (30–70 %)

of the AOD was above the top of the planetary boundary

layer (PBL).

The HSRL measurements of aerosol intensive parameters

and aerosol optical depth have also been used to identify
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aerosol types and apportion aerosol optical thickness to the

various aerosol types (Burton et al., 2012). Eight distinct

types with different aerosol intensive properties were iden-

tified. The identification of these types were guided by the

analyses of Cattrall et al. (2005) and Müller et al. (2007) that

provide values of a set of lidar-observed aerosol intensive pa-

rameters corresponding to various aerosol types. The HSRL

aerosol classification results were used to identify smoke

aerosols during the ARCTAS mission (Warneke et al., 2010)

and urban aerosols during the MILAGRO mission (Molina et

al., 2010).

The HSRL data indicate significant variability in the ver-

tical and horizontal distributions of aerosols during CARES.

An example of such aerosol variability is illustrated in Fig. 22

which shows HSRL measurements acquired between 17:45

UT and 18:12 UT on 19 June when the B200 flew from

the Sacramento region northeast over the mountains. Aerosol

backscatter and AOD decreased as the aircraft flew north-

east along the track. The variability of the aerosol intensive

parameters (i.e., aerosol depolarization, depolarization spec-

tral ratio, and backscatter wavelength dependence) is indica-

tive of changes in aerosol type. Over Sacramento, lower de-

polarization and higher backscatter wavelength dependence

is consistent with smaller, spherical particles typically seen

over urban areas; in contrast, over the mountains east of

Sacramento, higher depolarization and smaller backscatter

wavelength dependence is consistent with larger, more non-

spherical particles often associated with dust.

The HSRL data showed a difference in the backscat-

ter color ratio (532/1064 nm) and aerosol depolarization

(532 nm) between the SW and NW flow regimes discussed

in Sects. 4.1 and 4.3.2. These parameters were used to qual-

itatively classify the HSRL aerosol measurements into sev-

eral aerosol types. The NW flow suggests larger, more non-

spherical particles that, based on the prior observations and

the classification scheme, appear like a dusty mix. The SW

flow regime suggests, smaller, more spherical particles that

are more consistent with urban and occasionally maritime

conditions.

4.5 Aircraft observations of Sacramento plume

evolution

To complement the extensive observations at the T0 and T1

sites, the G-1 was deployed on selected days during both SW

and NW flow periods to sample upwind of, within, and out-

side the evolving Sacramento urban plume as it was advected

downwind. Other flight plans included sampling the inflow

from the Bay Area into the Central Valley and characterizing

isoprene emission flux over the forested areas in the Sierra

Nevada foothills. An intercomparison flight with the NOAA

WP-3 was also carried on 18 June in the San Joaquin Valley,

from Fresno to Bakersfield, CA. The G-1 flew at a similar

altitude as the WP-3 while the B-200 and NOAA Twin Ot-

ter flew above both aircraft. Full analysis of all the aircraft

data will be reported in the future. Here we briefly show an

example of the G-1, B-200, and NOAA Twin Otter observa-

tions in the Sacramento urban plume on 28 June as it was

transported under light westerly winds to the foothills area

by late afternoon. Figure 23 shows semi-Lagrangian tracks

of the G-1 flight in the afternoon, with the points color coded

by CO and (isoprene + methyl vinyl ketone + methacrolein)

mixing ratios in the top panels, organic aerosol and BC mass

concentrations in the middle panels, and scattering and ab-

sorption coefficients in the bottom panels. While the flight

began at 14:20 PDT and ended at 17:42 PDT, only the por-

tion of the flight between 15:51 and 16:51 PDT is shown here

for clarity. All flight legs in the valley were performed at an

altitude of ∼ 340 m m.s.l. while the leg over the foothills area

(passing over the T1 site) was performed at ∼ 850 m m.s.l.

due to the higher elevation of the terrain.

The Sacramento urban plume is clearly noticeable from

the enhanced CO mixing ratios, with highs above 250 ppbv

in the plume and lows around 120 ppbv in the surrounding

air. Sum of isoprene and its first generation photooxidation

products – methyl vinyl ketone (MVK) and methacrolein

(MACR) – were around 1 ppbv or less west of T0 and grad-

ually increased to the east, with values between 4 and 8 ppbv

over the foothills. Organics constituted more than 90 % of the

total observed submicron aerosol mass and was significantly

enhanced in the urban plume, with highs over 25 µg m−3

STP and lows ∼ 10 µg m−3 STP in the surrounding air. BC

mass concentrations in the Sacramento plume ranged be-

tween 0.1 and 0.2 µg m−3 STP and were between 0.03 and

0.07 µg m−3 STP in the surrounding air. High BC mass con-

centrations were also observed in the western-most portion

of the flight track, which coincides with Woodland, a rela-

tively small town (population ∼ 50 000) located about 25 km

northwest of Sacramento. The nephelometer scattering coef-

ficient in the plume was as high as 54 Mm−1 STP and the

lows were ∼ 20 Mm−1 STP in the surrounding air. Finally,

PSAP absorption coefficient tracked with BC mass concen-

tration and was as high as ∼ 8 Mm−1 STP; the values in the

surrounding air ranged from ∼ 1 to 3 Mm−1 STP.

Figure 24 shows HSRL measurements of aerosol extinc-

tion profiles and AOD values (at λ = 532 nm) acquired along

a portion of the B200 flight track over the Sacramento re-

gion during the afternoon of 28 June (15:56 PDT to 17:28

PDT). This portion of the B-200 flight track matched that

of the G-1, which acquired comprehensive in situ observa-

tions within these lidar “curtains”. The height of the bound-

ary layer derived from the HSRL data varied between about

1200–2000 m above ground level. The B-200 aerosol extinc-

tion and AOD values were enhanced east of the T0 site and

were largest just south of the T1 site, consistent with the loca-

tion of the plume as identified from in situ G-1 observations.

While the aerosol extinction derived from HSRL measure-

ments appears to be comparable to the estimated in situ ex-

tinction values (sum of scattering and absorption), a detailed

comparison of the two will be the topic of a separate study.
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Fig. 22. (a) Aerosol backscatter (532 nm), (b) aerosol depolarization (532 nm), (c) ratio of aerosol depolarization (532/1064 nm), (d)

backscatter wavelength dependence ((1064/532 nm) measured by the airborne HSRL between 17:45–18:12 UT on 19 June. This portion

of the B200 flight covered about 160 km between the Sacramento area (left) and the mountains east of Sacramento (right). The dark area

in the bottom part of the images represents the ground surface. (e) Aerosol type inferred from the HSRL measurements of aerosol intensive

parameters. (f) AOD apportioned to aerosol type.

Figure 25 depicts ozone profiles observed with the TOPAZ

lidar (Fig. 25a) and NO2 vertical column densities (VCD)

measured with the CU AMAX DOAS (Fig. 25b) along the

NOAA Twin Otter flight track over the Sacramento area

on 28 June for two flight segments from 11:28–12:03 and

13:04–13:52 PDT. The TOPAZ lidar data clearly show the el-

evated ozone concentrations in the Sacramento plume down-

wind to the east of the city. Peak ozone concentrations

in the plume approach 125 ppbv and were measured about

30 km to the east of Sacramento at about 13:40 PDT. Mix-

ing heights were generally between 800 and 1100 m m.s.l.,

except 1500 m m.s.l. or higher within the core of the Sacra-

mento plume. The Twin Otter data were taken about three

hour prior to the G-1 and B-200 observations shown in

Figs. 23 and 24. The Sacramento plume had not yet pro-

gressed as far east as shown by the G-1 and B-200 mea-

surements and was just approaching the base of the Sierra

Nevada Foothills south of the T1 site. Mixing heights were

lower by several hundred meters compared to the B-200

observations, which is consistent with a midday convective

boundary layer that is still growing. The CU AMAX-DOAS

data showed significant variability in the NO2 VCD below

the aircraft. The boundary conditions upwind of Sacramento

are characterized by an elevated yet variable NO2 VCD in

the range 3 to 4 × 1015 molecule cm−2, or 1.2 and 1.7 ppb

NO2 averaged over the mixed air column. Along the west

to east transect passing over the Sacramento urban core, a

distinct increase in the NO2 VCD is observed near the city

center, indicating NOx emissions most likely from mobile

sources. The NO2 VCD reaches peak values above 1 × 1016

molecule cm−2 over the urban core, and decreases to about

half that value about 15 km to the east of Sacramento. No

significant suppression of O3 is observed over the city cen-

ter. Rather, in the area of peak NO2 also O3 increases simul-

taneously and immediately, reflecting hydrocarbon to NOx

ratios that are favorable for fast photochemical O3 produc-

tion in the Sacramento plume. The O3 background levels up-

wind (50 ppb) increase along this flight track to 80 ppb near

the NO2 maximum, and peak O3 exceeds 100 ppb only about

15 km to the east of Sacramento. The NO2 VCDs measured

by CU AMAX-DOAS provide unique column integral data

over mixing height that are insensitive to model errors in

predicting mixing height. The column data facilitate a direct

comparison to model predicted NO2 VCDs, and enable more

direct testing of the NOx emission inventory in the Sacra-

mento area. Accurate NOx emissions are prerequisite for pre-

dicting photochemical O3 production by chemical transport

models. In principle, the combination of the TOPAZ lidar and

CU AMAX-DOAS can also be used to constrain Ox (sum of
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Fig. 23. Semi-Lagrangian G-1 flight tracks on the afternoon of 28

June, with the points color coded by: (a) CO, (b) sum of isoprene,

methyl vinyl ketone (MVK), and methacrolein (MACR), (c) organic

aerosol mass concentration, (d) BC mass concentration, (e) Neph-

elometer scattering coefficient at λ = 550 nm, and (f) PSAP absorp-

tion coefficient at λ = 523 nm.

O3+ NO2), which is a useful metric for characterizing pho-

tochemical formation of SOA.

5 Summary and future directions

The CARES field campaign was designed to examine the in-

teraction between anthropogenic and biogenic emissions in

SOA formation, black carbon ageing, and their effects on the

associated optical and CCN activation properties. The cam-

paign was carried out from 2–28 June 2010, in Central Val-

ley, California, centered on the Sacramento urban area. Two

heavily-instrumented ground sites – one within the Sacra-

mento urban area (site T0) and another in Cool, CA, a small

town about 40 km to the northeast in the foothills area (site

T1) – were set up to characterize the evolution of meteo-

rological variables, trace gases, aerosol precursors, aerosol

size, composition, and optical and CCN activation properties

in freshly polluted and aged urban air. On selected days, the

DOE G-1 aircraft was deployed to make similar measure-

ments upwind and across the evolving Sacramento plume

in the morning and again in the afternoon. The NASA B-

Fig. 24. (a) Aerosol extinction (532 nm) profiles derived from air-

borne HSRL measurements acquired over the Sacramento region

between 15:56 PDT and 17:28 PDT on 28 June. Profiles between

the surface and 3 km altitude are shown. (b) AOD derived from the

HSRL measurements along this same flight track. In both panels the

locations of the T0 and T1 ground sites are indicated by red crosses.

200 aircraft, carrying remote sensing instruments (HSRL and

RSP), was also deployed to characterize the vertical and hor-

izontal distribution of aerosols and aerosol optical properties

within and around the plume. The CARES campaign over-

lapped temporally with the CalNex campaign in the Cen-

tral Valley and Southern California regions in May and June

2010. As part of CalNex, the NOAA Twin Otter aircraft, car-

rying a combination of downward-looking ozone/aerosol and

Doppler wind lidars and a multi-axis DOAS system, moved

its operation from Southern California to Sacramento to col-

laborate with CARES from 14–28 June. The main initial

findings from the CARES campaign are summarized below:

– On approximately 20 days out of a total of 27, the Sacra-

mento urban plume transport was largely controlled by
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Fig. 25. (a) Ozone mixing ratio profiles measured with the TOPAZ

lidar and (b) NO2 vertical column densities measured with the

CU AMAX DOAS system over the Sacramento area on 28 June.

Data are from two flight segments from 11:28–12:03 and 13:04–

13:52 PDT. The ozone profiles extend from near the ground to

1500 m m.s.l. The colored line above the ozone “curtain” plot rep-

resents the ozone in situ measurements at flight level (approx.

2100 m m.s.l.). The locations of the T0 and T1 ground sites are in-

dicated by yellow pushpin markers.

southwesterly winds that drew the polluted air to the

northeast over the forested areas in the Sierra Nevada

foothills where it mixed with biogenic emissions by late

afternoon or early evening. On the remaining ∼ 7 days

(10–13, 16, and 20–21 June), the southwesterly wind

pattern was interrupted by northwesterly flows, which

transported the Sacramento plume to the southeast into

the San Joaquin Valley, where there was relatively much

less mixing with biogenic emissions.

– The period from 22–28 June also experienced a steady

buildup of aged aerosols due to recirculation of air in

the region, coupled with warmer temperatures toward

the end of June. These conditions resulted in the high-

est pollution days at the end of the campaign, from 25–

28 June. Observations across the relatively cleaner and

more polluted periods as well as across the SW and NW

flow regimes thus provide an exceptional opportunity to

examine aerosol formation and evolution processes in

the same region under a range of environmental condi-

tions.

– The urban site T0 experienced significantly higher mix-

ing ratios of the primary emission species such as CO,

NOy, and anthropogenic VOCs compared to the rural

foothills site T1, and the diurnal behaviors of these

species were also similar to each other, as expected.

In contrast, the diurnal behavior of biogenic isoprene

mixing ratios at both the sites followed that of the sur-

face temperatures. The peak mixing ratios ranged be-

tween 2 and 12 ppbv around 14:00 PDT while the min-

imum mixing ratios were nearly zero from midnight

until dawn. Since the T1 site was located amidst bio-

genic emissions, isoprene mixing ratios there were gen-

erally about 0.5 to 3 ppbv higher than at T0. The di-

urnal behavior of photochemically produced O3 at the

T0 and T1 sites were quite similar despite the marked

differences in the precursor trace gas composition and

concentrations between the two sites. The highs ranged

between 60 and 80 ppbv, except for a peak of nearly

120 ppbv on 28 June. The daily O3 peaks at T0 typically

occurred around 15:00 PDT while it was often delayed

by ∼ 3 h at T1 on days when the urban plume was trans-

ported to the site during the SW flow periods.

– Sub-micron non-refractory aerosol composition ob-

served at both the ground sites and aboard the G-1

aircraft was dominated by organics, followed by sul-

fate, followed by nitrate and ammonium, while chloride

was negligibly small. OA concentrations at the ground

sites ranged between < 0.5 and 10 µg m−3 STP and dis-

played a diurnal cycle that was similar to that of O3

at both sites, which is consistent with photochemical

production of SOA from anthropogenic and biogenic

VOCs. OA concentrations typically peaked at the T0

site around 15:00 PDT while it peaked around 18:00

PDT or later at the T1 site as the urban plume was trans-

ported to the foothills area during the SW flow peri-

ods. Enhanced concentrations of aged organic aerosols,

likely recirculated from the foothills area the previous

day, were often observed in the residual layer during the

morning flights over the Sacramento urban area, which

is consistent with preliminary WRF simulation results

presented in Fast et al. (2012). The period from 22–28

June experienced a steady buildup of OA, with concen-

trations reaching more than 25 µg m−3 STP aloft in the

urban plume as it was transported east to the foothills

area on the afternoon of the 28th.

– On selected days during both SW and NW flow peri-

ods, the daytime evolution of key trace gases, aerosol
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composition, mixing state, size distribution, and optical

properties in the Sacramento urban plume was observed

by the G-1 as it sampled upwind of, across, and down-

wind of the drifting plume in the morning and after-

noon. These semi-Lagrangian in situ observations were

complemented by NASA B-200 observations of vertical

profiles of aerosol optical properties, which provided a

more complete picture of the 3-dimensional structure of

the evolving urban plume and the surrounding air. In

the latter half of the campaign, this picture was further

enhanced by NOAA Twin Otter observations of verti-

cal profiles of O3, NO2, HCHO, CHOCHO, and wind

speed in Sacramento and surrounding areas.

– Single particle mass spectrometers (SP-MS) deployed

on the G-1 (A-ATOFMS), at T0 (SPLAT II), and at

T1 (PALMS) also showed that the vast majority of

aerosol particles characterized during the study were

composed of oxygenated organics mixed with various

amounts of sulfates: from sulfate-dominated particles

to those containing mostly organic species. In addi-

tion, fresh and processed soot particles, biomass burn-

ing aerosol, amines, sea salt (both fresh and processed),

and a small number of mineral dust and other inor-

ganic particles were observed. The A-ATOFMS pro-

vided semi-Lagrangian aerial snapshots of particle mix-

ing states in the evolving urban plume. In contrast, the

SPLAT II, which was operated almost continuously for

the entire campaign period, provided a detailed view of

the evolution of relative fractions of different primary

and secondary particle types in a single day, albeit at a

fixed urban site. Size- and composition-selected SOA-

dominated particles were also analyzed using SPLAT

II to study evaporation kinetics at room temperature

(Vaden et al., 2011a). This study is the first to present

field evidence that evaporation of these ambient organic

particles was extremely slow and size-independent, sug-

gesting that the particles were in a quasi-solid state.

– SP2 instruments (outfitted with a scattering channel) de-

ployed on the G-1 and at both the ground sites provided

data on BC number and mass concentrations for par-

ticles between 60 and 600 nm BC mass equivalent di-

ameters as well as coating state data for particles be-

tween ∼ 175 and 350 nm. Preliminary analysis of G-1

SP2 data for 28 June showed an increase in the coat-

ing mass to BC mass ratio in the urban plume between

the morning and afternoon flights. Particles were also

collected using TRAC and DRUM samplers on all three

platforms for offline analyses to further probe the chem-

ical composition, mixing state, and morphology.

– SO2 emitted from oil refineries in the Bay Area ap-

pears to have been routinely transported to the Sacra-

mento area during the SW flow periods. These SO2

plumes were associated with increased number concen-

trations of ultrafine and Aitken mode particles, which

were likely nucleated via H2SO4 formation from SO2

photooxidation, followed by growth to the observed

sizes during transit. The Aitken mode was typically ob-

served at both the ground sites in the morning around

09:30 PDT, followed by continued growth to accumula-

tion mode sizes until mid-afternoon, likely due to con-

densation of photochemically formed SOA species. In

contrast, SO2 mixing ratios were negligibly small and

the Aitken mode aerosol number concentrations were

also significantly lower in the sampling domain during

the NW flow periods.

– Coarse mode aerosols, mostly consisting of sea

salt, were found to be transported from the Pacific

Ocean/Bay Area to the Sacramento area on several

occasions during the SW flow periods. Electron mi-

croscopy and X-ray spectro-microscopy analysis of

TRAC collected particles onboard the G-1 over Sacra-

mento on 15 June (a strong SW flow event) revealed

that the sea salt particles were internally mixed with or-

ganics, which are likely SOA species formed in these

particles during transit from the Bay Area. Surprisingly,

these particles had experienced substantial chloride de-

pletion that could not be explained by the known reac-

tivity of sea salt with nitric and sulfuric acids (Laskin

et al., 2012). This study is the first to present field evi-

dence that SOA, consisting of weak organic acids, may

effectively react with sea salt particles and displace HCl

gas, leaving behind particles depleted in chloride and

enriched in the corresponding organic salts.

– In situ aerosol optical properties were measured at near-

UV and visible spectral regions onboard the G-1 and at

T0 and T1 ground sites with several instruments, includ-

ing nephelometer, PSAP, and PAS. A CRDS instrument

was also deployed at the ground sites. When the coarse

mode particles were present, the scattering coefficients

(λ = 550 nm) reached as high as 40 to 75 Mm−1 and 20

to 50 Mm−1 at the T0 and T1 sites, respectively, and

were about 2 to 4 times higher than the scattering coef-

ficients of submicron particles. In contrast, the scatter-

ing coefficients ranged between 4 and 20 Mm−1 when

the coarse mode particles were largely absent during

first week of June and later again during the NW flow

periods. MFRSR observations at each ground site pro-

vided the diurnal, day-to-day, and site-by-site variations

in column aerosol microphysical and optical properties,

such as aerosol optical depth, single scattering albedo,

and asymmetry parameter. Consistent with the in situ

optical properties measurements, MFRSR AOD values

were observed to range from about 0.025 (representing

very clean air) at the start of the campaign to about 0.12

towards the end of the campaign. Additionally, coarse

aerosol mode size distributions derived from MFRSR
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data were also found to be consistent with the in situ

size distribution measurements at both ground sites.

– Observations of CCN concentrations are also available

at multiple supersaturations (0.07 to 0.5 %) at both

ground sites. The T1 site also included measurement

of size-resolved CCN concentrations and variable rel-

ative humidity nephelometry (commonly referred to as

f (RH) measurement).

The CARES measurements have been processed and up-

loaded into the final ARM data archive (http://campaign.

arm.gov/cares). These measurements comprise a rich data set

for: (1) investigating SOA formation from anthropogenic and

biogenic precursors and the potential interactions between

them; (2) characterizing the time scales of BC ageing and

evolution of its mixing state; and (3) quantifying the roles

of BC mixing state, organics, and coarse mode aerosols on

the observed optical and CCN activation properties. As men-

tioned throughout this paper, several detailed studies using

various CARES data are planned or presently underway and

will be reported via subsequent publications in this special is-

sue and elsewhere as appropriate. Here we briefly summarize

some of the key science questions that can be investigated us-

ing CARES data.

5.1 Secondary organic aerosols

1. Can we reliably infer IVOC (and SVOC) concentrations

in the urban air, how they varied diurnally and scaled

with VOC and CO concentrations, and how did these

aerosol precursor gases correlate with organic aerosol

number and mass concentrations in freshly polluted ur-

ban air?

2. What were the chemical composition, volatility spec-

trum, and hygroscopicity of OA, and how did they

evolve as a function of atmospheric processing time and

photochemical age?

3. Is there evidence for enhanced SOA formation in the ur-

ban plume when it mixed with biogenic emissions (e.g.,

during southwesterly flow conditions) compared to in-

stances when the urban plume did not mix with biogenic

emissions (e.g., during northwesterly flow conditions)?

Can the observed SOA in the aged urban plume be sep-

arated into anthropogenic and biogenic fractions using

carbon isotope analyses and other methods based on

PTRMS observations and positive matrix factorization

of AMS mass spectra?

4. How did the size distribution of aerosols evolve with

SOA formation in the urban plume? Does the SOA con-

densation kinetics appear to be driven by Raoult’s Law

type gas absorption thermodynamics or is it similar to

that of a condensing non-volatile species?

5. What was the role of organic species in the observed

growth of ultrafine particles to CCN and optically active

sizes?

5.2 Aerosol mixing state

1. What was the distribution of BC mass fraction (BC mix-

ing state) as a function of particle size in fresh and aged

urban plumes? How rapidly did POA, BC, SOA, and

inorganics become internally mixed?

2. What were the relative roles of condensation and coagu-

lation processes in shaping the aerosol composition and

size distribution?

3. What were the contributions and mixing states of other

primary emissions such as biomass burning aerosol,

mineral dust and sea salt, and how did these aerosols

evolve?

4. What were the effects of aerosol mixing state on the

ensemble aerosol optical properties, hygroscopicity, and

CCN activity?

5.3 Aerosol optical properties

1. What was the role of changes in BC mixing state and

morphology on enhanced light absorption?

2. Was there increased (by OA over BC) near-UV absorp-

tion? Did OA absorption extend into the visible part of

the spectrum? If so, how did it relate to OA composi-

tion?

3. What were the absolute and relative contributions of

sub-micron and super-micron aerosols to the total

aerosol direct radiative forcing?

4. Which compounds or particle types have the strongest

radiative impacts, and can these be related to specific

emission sources or atmospheric formation processes?

The resulting detailed picture for the evolution of different

types of carbonaceous aerosols and their optical and CCN

activation properties will then help improve the key aerosol

process and property modules that are used in regional and

global climate models. Specific modeling studies that are

planned by CARES participants include:

– Local closures for optical and CCN activation proper-

ties.

– Constrained Lagrangian modeling of SOA formation

and interactions between anthropogenic and biogenic

emissions.

– Constrained Lagrangian modeling of black carbon mix-

ing state evolution.
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– Regional simulations of SOA formation that include

long-range transport of trace gases and aerosols.

– Assessments of new treatments of SOA and aerosol

mixing state on aerosol optical and hygroscopic proper-

ties and their impact on radiative forcing over California

and surrounding regions.

In closing, it is reiterated that the purpose of this early

overview paper is to summarize the scientific objectives, the

platforms and instrumentation, the sampling strategies, and

the key observations collected during the campaign, and de-

velop an initial list of specific science questions that could

be investigated with the CARES data set. It is hoped that this

paper will facilitate further analyses of this remarkably rich

data set as well as stimulate ideas for novel, collaborative

studies.

Supplementary material related to this article is

available online at: http://www.atmos-chem-phys.net/12/

7647/2012/acp-12-7647-2012-supplement.pdf.
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