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Over the last seven decades, applications using members of the Bacillus subtilis

group have emerged in both food processes and crop protection industries. Their

ability to form survival endospores and the plethora of antimicrobial compounds

they produce has generated an increased industrial interest as food preservatives,

therapeutic agents and biopesticides. In the growing context of food biopreservation

and biological crop protection, this review suggests a comprehensive way to visualize

the antimicrobial spectrum described within the B. subtilis group, including volatile

compounds. This classification distinguishes the bioactive metabolites based on their

biosynthetic pathways and chemical nature: i.e., ribosomal peptides (RPs), volatile

compounds, polyketides (PKs), non-ribosomal peptides (NRPs), and hybrids between

PKs and NRPs. For each clade, the chemical structure, biosynthesis and antimicrobial

activity are described and exemplified. This review aims at constituting a convenient

and updated classification of antimicrobial metabolites from the B. subtilis group, whose

complex phylogeny is prone to further development.

Keywords: Bacillus subtilis group, bacteriocins, biocontrol, biosynthetic pathways, lipopeptides, polyketides,

siderophores, volatile

INTRODUCTION

The genus Bacillus comprises 377 species1 (last update in January 2019) of Gram-positive,
rod-shaped bacteria (Gordon et al., 1973). Their ability to form endospores, their diversity in
physiological properties, as well as their capacity to produce numerous antimicrobial compounds
(AMCs) favor their ubiquitous distribution in soil, aquatic environments, food and gut microbiota
of arthropods and mammals (Nicholson, 2002).

Bacteria from the Bacillus subtilis group consist of small vegetative cells (<1µm-wide) for which
the strain B. subtilis subsp. subtilis 168 is considered asmodel organism (Barbe et al., 2009). They are
usually mesophilic and neutrophilic, although some can tolerate high pH. The four original species
of the group (B. subtilis, Bacillus licheniformis, Bacillus pumilus, and Bacillus amyloliquefaciens)
were discovered more than 40 years ago (Gordon et al., 1973; Priest et al., 1987). Since then, the
evolution of their molecular, chemotaxonomic and physiological characterizations led to regular re-
evaluations and (re-)description of numerous novel species and subspecies (see current taxonomy
of the group in Figure 1) (Fan et al., 2017).

1http://www.bacterio.net/bacillus.html
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The potential of B. subtilis group strains to produce a wide
diversity of secondary metabolites mediating antibiosis was
recognized for decades. For any given strain of the B. subtilis
group, it is now estimated that at least 4–5% of its genome
is devoted to antimicrobial compounds (AMCs) production
(Stein, 2005). These molecules are mainly antimicrobial peptides
(AMPs). Their structures are usually cyclic, hydrophobic and
contain peculiar moieties such as D-amino acids (AA) or
intramolecular thioether bonds. In addition to AMPs, volatile
metabolites also constitute a large family of antimicrobials
exhibiting numerous metabolic and functional roles.

Due to the wide diversity of these molecules, their
classification is rather complex and can be based on several
criteria such as their biosynthetic machinery, sources, biological
functions, properties, three-dimensional structure, covalent
bonding pattern or molecular targets (Tagg et al., 1976; Wang
et al., 2015). Here a classification of the B. subtilis group
antimicrobial molecules is proposed, based on their biosynthetic
pathways and their chemical nature as shown in Figure 2.
This review will emphasize the biosynthesis pathway and the
bioactivity of the main clades of AMCs within the B. subtilis
group: i.e., the ribosomal peptides (RPs) (bacteriocins and
enzymes), the polyketides (PKs), the non-ribosomal peptides
(NRPs) and the volatiles. A full overview of this chart is provided
as Supplementary Material (Supplementary Figure S1).

RIBOSOMAL PEPTIDES

Ribosomally synthesized peptides (RPs) are usually derived from
short precursors (ca. 100 AA) and are processed to mature
compounds through post-translational modifications (Oman
and van der Donk, 2009). Various enzymes mediate these
modifications and therefore generate a wide diversity of chemical
structures. Most of these peptides were originally referred to as
“bacteriocins,” characterized as low molecular weight molecules
that exhibit inhibiting growth activities against bacteria closely
related to the producing strain (Klaenhammer, 1988; Chopra
et al., 2015). In addition to bacteriocins, other types of enzymes
exhibiting antagonistic activities are also ribosomally synthesized.
However, those compounds display diverse metabolic activities
such as quorum sensing (QS) mediation, cell lysis or induction of
genetic competence (Schmidt, 2010; Shafi et al., 2017). It should
also be noted that molecules referred to as BLIS (bacteriocins-
like inhibitory substances) include AMPs for which the ribosomal
synthesis has not been confirmed yet (Abriouel et al., 2011).

B. subtilis Group Bacteriocins
It is estimated that 99% of the bacteria and archaea are able to
produce at least one bacteriocin. Historically, lactic acid bacteria
(LAB) were studied as main bacteriocin producers, mostly
because of their long history of safe use in food fermentation
(O’Sullivan et al., 2002). Nisin (Figure 3C), produced by
Lactobacillus lactis subsp. lactis, was approved as a food additive
in the 1960s and has since then been used in over 50 countries
for its antimicrobial activity against Gram-positive pathogens
such as Clostridium spp. and Bacillus spp. (Klaenhammer, 1988;

Delves-Broughton, 1990). However, the search for new bioactive
molecules has rapidly expanded to other bacteriocin-producing
genera, with a particular attention, in the late 1990s, to the GRAS
(generally recognized as safe) Bacillus species whose bacteriocin
antimicrobial spectra were broader than those of LAB (Pedersen
et al., 2002; Riley and Wertz, 2002; Sumi et al., 2015).

The generic biosynthetic pathway of Bacillus species
bacteriocins includes several post-translational modifications,
including the proteolytic cleavage of the leader peptide at the
N-terminal end (McIntosh et al., 2009). The modifications of
active peptides, its secretion and the immunity to the bacteriocin
(as described below) vary depending on the bacteriocin class.

While many classifications have been suggested over the
years, one reasonable way to cope with the diversity of the
Bacillus bacteriocins is to sort them on the basis of their
biosynthetic pathway as previously reported for Streptococcus
spp. and Enterococcus spp. bacteriocins (Nes et al., 2007) and
reviewed in Abriouel et al. (2011). Accordingly, threemain classes
subdivided into several subclasses can be distinguished for the
B. subtilis group. As detailed in Table 1, Class I includes the post-
translationally modified peptides such as the lantibiotics whereas
the non-modified peptides are grouped in Class II; Class III
involved bacteriocins larger than 10 kDa (Abriouel et al., 2011).
Supplementary Table S1 summarizes the different RPs produced
by the strains belonging to the B. subtilis group, as well as their
reported antimicrobial activities.

Class I includes small AMPs (19–38 AA) with extensive
post-translational modifications. Subclasses I.1, I.2, and I.3 have
in common their lantibiotic structure, which refers to inter-
residual thioester bonds made of modified AA residues. As
illustrated in Figure 3, lantibiotics involve 2,3-didehydroalanine
(Dha) and (Z)-2,3-didehydrobutyrine (Dhb), resulting from
the dehydration of serine and threonine residues, respectively.
The intra-molecular addition of Dha or Dhb on a cysteine
residue leads to the respective formation of lanthionine and
methyllanthionine bridges (Willey and Donk, 2007). Subtilin
(Figure 3B), from subclass I.1, is one of the most studied
bacteriocins from the B. subtilis group. Its structure shares several
similarities with nisin A lantibiotics, shown in Figure 3C (Guder
et al., 2000; Abriouel et al., 2011). Peptides from subclass I.4
undergo other types of modifications. For instance, subtilosin A
is a head-to-tail cyclic peptide with unusual inter-residue linkages
(i.e., Cys-Phe bond) (Marx et al., 2001; Kawulka et al., 2004).

Class II bacteriocins include small (<10 kDa), linear and non-
modified peptides, resistant to heat and acido-basic treatments.
They are divided in three subclasses based on a conserved AA
motif near their N-terminus. The YGNGVXC (X is any AA)
motif is associated to pediocin-like peptides from subclass II.1
whereas DWTXWSXL is specific to thuricin-like peptides from
subclass II.2. Subclass II.3 comprises the small non-modified
AMPs without any typical motif in their AA sequence (Abriouel
et al., 2011). Finally, class III bacteriocins consist into large and
heat labile molecules, generally characterized by a phospholipase
activity (Cleveland et al., 2001).

Because of their wide diversity, bacteriocins display different
modes of action such as protoplasm vesicularization, pore
formation or cell disintegration (Sumi et al., 2015). They are
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FIGURE 1 | Timeline emergence of the species from the B. subtilis group. The species are classified following their relatedness to the closest original member of the

group (gray boxes). Heterotypic synonyms are not shown.

FIGURE 2 | Antimicrobial molecules classes from the B. subtilis group. The subdivision between the classes is based on the biosynthetic pathway (i.e., ribosomal

peptides, polyketides, hybrids, non-ribosomal peptides, and volatile compounds).

generally bactericidal with some exceptions that exhibit
bacteriostatic activities (Gautam and Sharma, 2009). For most
class I and II bacteriocins, the target of their activity is the
bacterial envelope due to their amphiphilic or hydrophobic

properties. For instance, lantibiotics from subclass I.1 have a
dual mode of action. On the one hand, they can inhibit the
cell wall synthesis of the targeted bacteria through binding
to lipid II, the major transporter of peptidoglycan subunits
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FIGURE 3 | Lanthionine biosynthesis. General pathway of the lanthionine synthesis (A), structure of subtilin (B) and nisin A (C). Non-modified AA are indicated in teal

whereas dehydrated serine (Dha, dehydroalanine) and threonine (Dhb, dehydrobutyrine) are colored in orange. The lanthionine (Ala-S-Ala, alanine-S-alanine) and

R-methyllanthionine (Abu-S-Ala, aminobutyrate-S-alanine) bridges are shown in purple. The AA of nisin that differ from those in subtilin are highlighted as hatched

circles. Adapted from Cotter et al. (2005) and Spieß et al. (2015).

across the inner cell membrane. On the other hand, lipid II
can be used as a docking molecule to insert the lantibiotic in
the membrane leading to pore formation and ultimately to cell
death as well described in Chatterjee et al. (2005) and Cotter
et al. (2005). This duality has been reported for subtilin, a class
I bacteriocin which is active against a broad range of Gram-
positive bacteria such as Staphylococcus simulans, B. subtilis,
and Bacillus stearothermophilus (Linnett and Strominger, 1973;
Parisot et al., 2008).

Many regulation systems mediate bacteriocin production,
secretion and immunity. Bacteriocin production is usually linked

to particular cellular events such as stress responses. For instance,
subtilin production depends on cell density and is increased
under starvation conditions (Abriouel et al., 2011). Lantibiotic
production is also mediated by QS. For subtilin, it has been
demonstrated that the peptide itself acts as an auto-inducer
of its own production (Kleerebezem, 2004). The export of
bacteriocins is generally ensured by a dedicated membrane-
associated ATP-Binding Cassette (ABC) transporter. For some
lantibiotics, the cleavage of the leader peptide often occurs in a
proteolytic domain present in the ABC transporter as described
in McAuliffe et al. (2001) and Cotter et al. (2005). The immunity
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TABLE 1 | Classification of the B. subtilis group bacteriocins.

Class Class description Subclass Subclass description

I Post-translationally

modified peptides

I.1 Single-peptide, elongated

lantibiotics

I.2 Other single-peptide

lantibiotics

I.3 Two-peptide lantibiotics

I.4 Other modified peptides

II Non-modified

peptides

II.1 Pediocin-like peptides

II.2 Thuricin-like peptides

II.3 Other linear peptides

III Large peptides (>10 kDa)

Adapted from Abriouel et al. (2011).

of the producing strains to its own active bacteriocin(s) can be
achieved by several mechanisms like the secretion of immunity
proteins sequestering the peptide, the bacteriocin re-export
through an ABC transporter system or the alteration of the
targeted peptidoglycans bonds (e.g., modification of the cell
wall or cytoplasmic membrane charge) (Cotter et al., 2005;
Dubois et al., 2009).

B. subtilis Group AMP Enzymes
Among the B. subtilis group, two major types of enzymes
exhibit antagonistic activities (Supplementary Table S1): the
lytic enzymes and those involved in quorum quenching (QQ).
Several strains from the B. subtilis group have indeed been
identified as capable to produce lytic enzymes with biocontrol
potential (Herrera-Estrella and Chet, 1999; Kumar et al., 2012;
Shafi et al., 2017). They include cellulases, glucanases, proteases
and chitinases and are generally referred to as cell wall degrading
enzymes (CWDE) (Ariffin et al., 2006; Alamri, 2015; Caulier et al.,
2018). They are particularly active against fungi since chitin and
glucan are the major constituents of their cell wall where various
glycoproteins are embedded (Bowman and Free, 2006; Geraldine
et al., 2013; Gomaa, 2012).

Quorum quenching is able to silence or block QS which is
generally defined as the cell-to-cell communication mechanism
through the production of signal molecules (Czajkowski and
Jafra, 2009). N-acyl-homoserine lactones (AHLs), composed of
a fatty acid side chain and a homoserine lactone (Figure 4)
are the most characterized signal autoinducers in Gram-negative
bacteria. When a bacterial population proliferates, concentration
of AHLs increases so that all the cells coordinate their metabolic
activities (e.g., biofilm formation, sporulation, virulence factors
or antibiotic production) (Dong et al., 2004). As the QS system
brings ecological advantages to a coordinate population, QQ is
able to counteract QS. Four types of enzymes (i.e., lactonase,
decarboxylase, acylase, and deaminase) are able to inactivate
AHLs, as illustrated in Figure 4 (Czajkowski and Jafra, 2009).
B. subtilis AHL-lactonases have for instance attracted interest for
biocontrol since they affect the growth of deleterious microbial
pest such as Pectobacterium carotovorum subsp. carotovorum
causing potato soft rot (González and Keshavan, 2006).

FIGURE 4 | AHLs structure and its corresponding enzymatic degradations by

QQ. The broken lines show the cleavages sites of four enzymes: (1) lactonase;

(2) decarboxylase; (3) acylase; (4) deaminase. Adapted from Czajkowski and

Jafra (2009).

POLYKETIDES

Among the bioactive compounds produced by microorganisms,
PKs are well known from the human health sector for
their broad spectrum of activity encompassing antibacterial,
immunosuppressive, antitumor and many more antagonistic
abilities. Typical PKSs structures from the B. subtilis group
are presented in Figure 5. They are synthetized from acyl
CoA precursors such as malonate and methyl malonate. Their
biosynthesis depends on multifunctional polyketide synthases
(PKSs). Their structure was first extrapolated from fatty acid
synthases (FASs) that share similarities in terms of chain
extension mechanisms, precursors and overall architecture
design (Smith and Tsai, 2007). As shown in Figure 6A, PKS
are composed of a succession of elongation modules, flanked
by initiation and termination modules. The reactive mechanism
of these three PKS domains is illustrated in Figure 7A and
is well summarized in Hertweck (2009). The initiation module
is composed of two domains: an acyltransferase (AT) domain
that recruits and catalyzes the binding of a monomer substrate
to an acyl carrier protein (ACP) domain. The ACP then acts
as an arm with a second catalytic domain located on the next
elongation module. This domain, a β-ketoacyl synthase (KS),
catalyzes the chain-elongation reaction that occurs through a
decarboxylative Claisen thioester condensation (Cane andWalsh,
1999; Hertweck, 2009). In addition to the three core domains,
auxiliary domains can also be present on elongation modules
(gray domains in Figure 6A). These auxiliary domains mediate
ketoreduction (KR), dehydration (DH), or enoylacyl reduction
(ER) occurring before the chain-elongation reaction. These
modifications considerably enrich the structural complexity and
diversity of mature PKs (Hertweck, 2009). Finally, a termination
module harboring an additional thiosterase (TE) domain
catalyzes themacrolactonization and the release of themature PK
(Cane and Walsh, 1999).

Polyketide synthases have been classified in three canonical
types based on the structural organization of their functional
domains. Type I PKSs involve large multifunctional enzymes
housing several domains linearly arranged and covalently
bonded. Type II PKSs are multienzyme complexes composed
of separate monofunctional enzymes combined during the PK
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FIGURE 5 | Chemical structures of some B. subtilis group polyketides.

Variants from macrolactin and difficidin are presented.

synthesis. Type III PKSs are chalcone synthase-like PKSs that
operate the acid CoA thioesters directly without any ACP
domain (Chen and Du, 2016). Beside these structural differences,
PKSs are classified as iterative or non-iterative depending on
how many KS domains are used in the biosynthetic process.
Within prokaryotes, the non-iterative type I PKSs is the most
represented. They produce PK compounds that harbor a one-
to-one correspondence with the PKS modular architecture. This
conservation of collinearity is used for PKS discovery via genome
mining (Challis, 2008).

Due to the diversity of PKSs, many exceptions and transition
states between the three main types are observed. In some cases,
mixed PKs pathways combine different types of PKSs or can even
be associated with FASs or NRP synthetases (NRPSs) to form PK-
peptide hybrid metabolites such as bacillaene, compactin, fusarin
C or salinosporamide A (Moldenhauer et al., 2007; Hertweck,
2009; Fisch, 2013).

FIGURE 6 | Schematic representation of the modules and domains mediating

PKS and NRP biosynthesis. (A) The domains involved in the PK synthesis are

the acyltransferase (AT), the acyl carrier protein (ACP), the ketosynthase (KS)

and the chain-terminating thiosterase (TE) domains. In gray, the auxiliary

domains can mediate ketoreduction (KR), dehydration (DH), and enoylacyl

reduction (ER) at each elongation step (n). (B) The core domains for NRP

biosynthesis are the adenylation (A), the peptidyl carrier domain (PCP), the

condensation (C), and the final thioesterase (TE) domains. The auxiliary

domains consist in cyclization (Cy), N-methylation (MT), and epimerization (E)

domains.

FIGURE 7 | Polyketides and lipopeptides biosynthesis mechanism. (A) The

AT domain catalyzes the binding of the monomer substrate and the ACP

domain. The KS domain is acetylated on the acyl residue of a polyketide

starter or in elongation and catalyzes the transfer of the substrate subunit

carried by the ACP. (B) The A domain activates an AA chain extension subunit

and its transfer to the PCP carrier domain. The C domain catalyzes the bond

mediating the chain elongation. Adapted from Cane and Walsh (1999) and

Challis and Naismith (2004).
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TABLE 2 | Major classes of polyketides.

Polyketide class Structure description Typical core unit or example structure Reference

Acetogenins Linear 32- or 34-carbon chains with oxygenated

functional groups bearing a terminal γ-lactone ring

Li et al., 2008

Ansamycins Bridge between an aromatic moiety and an

aliphatic chain

Williams, 1975

Enediynes Compounds characterized by a core structure

formed by a double C–C bond conjugated to two

acetylenic groups

Horsman et al., 2009

Macrolides Large macrocyclic lactone ring with one or more

deoxy sugars

Yuan et al., 2012a

Polyenes Poly-unsaturated organic compounds containing at

least three alterning single and double C-C bonds

Hertweck, 2009

Polyethers Polymers containing more than one ether group Hertweck, 2009

Tetracyclines Compounds family characterized by a typical

four-ring system

Rohr, 1992

To date, seven PKs families have been recognized based on
their carbon skeletons and typical structures, as summarized in
Table 2 (Eustáquio et al., 2009). However, to our knowledge, only
three antimicrobial PKs and their variants are produced within
the B. subtilis group: bacillaene, difficidin, andmacrolactin. These
compounds exhibit antibacterial activities through selective
inhibition of protein synthesis (Table 3). Bacillaene is a polyene

PK resulting from a hybrid synthesis by a type I PKS and a
NRPS bae operon (baeJ, baeL, baeM, baeN and baeR) (Chen
et al., 2006; Moldenhauer et al., 2007). Its exhibits antimicrobial
activity against various bacteria (e.g., Myxococcus xanthus or
Staphylococcus aureus) and fungi (e.g., Trichoderma spp. or
Fusarium spp.) (Patel et al., 1995; Um et al., 2013; Müller
et al., 2014). Difficidin, and its oxidized form oxydifficidin,
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TABLE 3 | PKS and hybrids NRPS/PKS produced by strains of the B. subtilis group.

PKS or

hybrids

class∗

Compound Antimicrobial activity∗∗ References

Antibacterial activity Antifungal activity

Macrolides 7-O-malonyl-macrolactin A B. cepaciac, Enterococci faecalisc,

R. solanacearumc, S. aureusc

F. oxysporum f. sp. cubensec Romero-Tabarez et al.,

2006; Yuan et al., 2012a

Macrolides 7-O-succinyl-macrolactin F B. subtilisc, S. aureusc – Jaruchoktaweechai et al.,

2000; Nagao et al., 2001

Macrolides 7-O-succinyl-macrolactin A B. subtilisc, R. solanacearumc,

S. aureusc

F. oxysporum f. sp. cubensec Jaruchoktaweechai et al.,

2000; Yuan et al., 2012a

Macrolides Macrolactin A R. solanacearumc F. oxysporum f. sp. cubensec Yuan et al., 2012a

Macrolides Macrolactin D S. aureusc A. solanic, Pyricularia oryzaec Xue et al., 2008

Macrolides Macrolactin F, G, H, I, J, K,

L, M

B. subtilisc, S. aureusc – Jaruchoktaweechai et al.,

2000; Nagao et al., 2001

Macrolides Macrolactin N E. colic, S. aureusc – Yoo et al., 2006

Macrolides Macrolactin Q B. subtilisc, E. colic, P. aeruginosac,

S. aureusc

– Mojid Mondol et al., 2011

Macrolides Macrolactin S B. subtilisc, E. colic, S. aureusc P. oryzaec Lu et al., 2008

Macrolides Macrolactin T S. aureusc A. solanic, P. oryzaec Xue et al., 2008

Macrolides Macrolactin W B. subtilisc, E. colic, P. aeruginosac,

S. aureusc

– Mojid Mondol et al., 2011

Polyenes Bacillaene A B. thuringiensisc, E. colic, Klebsiella

pneumoniaec, M. xanthusc, P. vulgarisc,

Serratia marcescensc, S. aureusc

Coriolopsis spp.c, Fusarium sp.c,

Pseudoxylaria sp.c, Trichoderma

sp.c, Umbelopsis sp.c

Patel et al., 1995; Um et al.,

2013; Müller et al., 2014

Polyenes Difficidin Actinomyces naeslundiic, Bacteroides

distasonisc, C. perfringensc, E.

amylovorac, E. colic, Eubacterium

limosumc, K. pneumoniaec, P.

vulgarisc, P. aeruginosac,

S. marcescensc, S. aureusc,

Streptococcus faecalisc, X. oryzaec

– Zimmerman et al., 1987;

Chen et al., 2009; Wu

et al., 2015b

Polyenes Oxydifficidin A. naeslundiic, B. distasonisc, C.

perfringensc, E. colic, E. limosumc, K.

pneumoniaec, P. vulgarisc, P.

aeruginosac, S. marcescensc,

S. aureusc, S. faecalisc

– Zimmerman et al., 1987

Hybrids

PKs/NRPs

Kanosamine – C. albicansp, Saccharomyces

cerevisiaep

Janiak and Milewski, 2001;

van Straaten et al., 2013

c Activity of isolated compound confirmed by compound purification or mutant deletion, p putative activity of the compound contained in a broth mixture. ∗ Two PKs

classes are reported in this review (macrolides and polyenes) as well as the hybrids between PKs and NRPs. ∗∗
−, no activity known.

are polyenes synthesized by a type I PKS encoded in the
dif operon. They both inhibit bacterial pathogens such as
Clostridium perfringens, Erwinia amylovora, Escherichia coli or
Xanthomonas oryzae (Zimmerman et al., 1987; Chen et al., 2009;
Aleti et al., 2015; Wu et al., 2015b). Finally, macrolactins and
their 7-O-succinyl- or 7-O-malonyl-derivatives are synthetized
via a type I PKS. They show antibacterial and antifungal activities
against Burkholderia cepacia, Ralstonia solanacearum, S. aureus
or Fusarium oxysporum (Romero-Tabarez et al., 2006; Yoo
et al., 2006; Yuan et al., 2012a). Some macrolactins, such as the
macrolactin A, apparently also displays antiviral properties (e.g.,
against Herpes simplex viruses) (Gustafson et al., 1989).

NON-RIBOSOMAL PEPTIDES

Non-ribosomal peptides form a versatile family of secondary
metabolites with growing interest in many industrial fields

as antibiotics, siderophores, surfactants, pigments, immuno-
suppressors or antitumor molecules (Wang et al., 2014). NRPs
show a broad structural diversity, from linear to cyclic or
branched structures (Kopp and Marahiel, 2007). As illustration,
the Norine database counts almost 1.200 NRP molecules,
including their structure, synthesis and evolution2 (last update in
January 2019) (Caboche et al., 2008).

Two categories of NRPs can be distinguished whether
they are synthetized through a multi-enzyme thio-template
mechanism or not (Sumi et al., 2015). The first ones usually
result in structures with two to ca. 50 residues and other
moieties such as fatty acid chains [i.e., lipopeptides (LPs) and
siderophores] whereas the second ones are generally smaller.
Figure 8 shows the chemical structures of typical NRPS from the
B. subtilis group.

2http://bioinfo.lifl.fr/norine
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FIGURE 8 | Chemical structures of some B. subtilis group NRPs. (A) Lipopeptides. (B) Miscellaneous NRPs.

Thiotemplate NRPs – Lipopeptides
Lipopeptides are usually synthetized through a NRPS sequential
addition of AA residues, either in an iterative or non-
iterative way. Similarly to PKSs, NRPSs have a modular
organization implementing the initiation, elongation, and
termination modules (Figure 6B). Each module is subdivided
in core domains whose catalytic and carrier domains slightly
differ from PKSs, as shown in Figure 7B. The biosynthesis which
was previously summarized in Ongena and Jacques (2008) and
Raaijmakers et al. (2010) starts with an adenylation domain
(A domain) that recruits and phosphorylates an AA monomer
into an aminoacyl adenylate intermediate. The intermediate
is then linked to the corresponding peptidyl carrier protein
or thiolation domain (PCP or T domain) through a thioester
bond. The PCP acts as a bridge and ensures the link with the
condensation domain (C domain) that forms the C–N bond
between the recruited aminoacyl and the peptide acyl chain
in formation. The termination module contains a thioesterase
domain (TE) that catalyzes the release of the final peptide acyl
chain (Ongena and Jacques, 2008; Raaijmakers et al., 2010).
The elongation modules can be supplemented with accessory
domains such as cyclization domain (Cy), epimerization domain
(E) and methylation domain (M). Those domains are able
to modify the growing peptide chain which leads to diverse
mature compounds structure (Cane andWalsh, 1999; Challis and
Naismith, 2004).

Since the LP biosynthetic pathways are highly flexible, the
range of produced LPs is extremely heterogeneous. Among
LPs produced by Bacillus spp., four main families have been
distinguished: kurstakins, surfactins, iturins, and fengycins
(Jacques, 2011). Each family shares the same structural features
based on the nature and organization of the peptide moiety
or fatty acid tail, as summarized in Table 4. Strains from
the B. subtilis group produce surfactins, iturins and fengycins
whereas kurstakins are produced by B. thuringiensis strains
(Béchet et al., 2012). Among the three LP families produced
by B. subtilis, at least eight fengycins, 13 surfactins and 14
iturins variants have been described so far, as detailed in
Supplementary Table S2.

For each LP family, the compounds production is mainly
regulated by environmental factors such as carbon sources,
oxygen availability, pH and temperatures (Yakimov et al., 1995;

TABLE 4 | Classification of the Bacillus spp. lipopeptides.

Family∗ Surfactin Iturin Fengycin Kurstakins

Peptide length Heptapeptide Heptapeptide Decapeptide Heptapeptide

Chiral sequence LLDLLDL LDDLLDL LDDDLDLLLL Not described

FA type β-hydroxy FA β-amino FA β-hydroxy FA β-hydroxy FA or not

FA length 13–15 carbons 14–17 carbons 16–19 carbons 11–14 carbons

Structure Cyclic lactone Cyclic peptide Cyclic lactone Cyclic lactone

∗FA refers to fatty acid.
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Kim et al., 1997; Cosby et al., 1998). Warm temperature (≥37◦C)
and anaerobic conditions increase the production of surfactins
while lower temperatures (25–37◦C) and aerated bioreactors
favor fengycins and iturins family metabolites (Jacques, 2011).
The production of surfactins by B. subtilis is also QS-dependent
and involves ComX and PhrC. These pheromones trigger
complex cascades regulating cell density-dependent processes
such as sporulation and competence (Hamoen et al., 2003;
Ongena et al., 2005).

Iturins and fengycins are mainly known for their strong
antifungal activity against several plant and human pathogenic
fungi (Supplementary Table S2). In addition, iturin-like
mycosubtilin, bacillomycin R, subtulene A and eumycin show
antibacterial properties (Besson et al., 1976; Leclere et al., 2005;
Thasana et al., 2010). Contrary to iturins and fengycins, surfactins
mainly display antiviral and antibacterial activities (Ongena
and Jacques, 2008). Their antiviral activity essentially targets
enveloped viruses (e.g., herpes simplex or porcine epidemic
diarrhea viruses). They also inhibit pathogenic bacteria such as
Legionella pneumophila, Listeria monocytogenes, R. solanacearum
or X. oryzae (Naruse et al., 1990; Yakimov et al., 1995; Sabaté and
Audisio, 2013; Loiseau et al., 2015; Luo et al., 2015). However,
some surfactins are able to control important fungal plant and
human pathogens such as Botrytis cinerea, Candida albicans,
F. oxysporum or Rhizoctonia solani (Jenny et al., 1991; Lee et al.,
2007; Qi et al., 2010; Dimkić et al., 2013; Romano et al., 2013).

The mere composition of LPs, where a peptide moiety is
bound to a lipid tail, gives them an amphiphilic property. This
nature makes them excellent surfactants and plays a significant
role in their biological functions and antimicrobial properties.
Indeed, LPs are able to destabilize the plasma membrane via
a pore forming activity leading to the cell death of the target
microbes. Their antiviral activity is the result of a similar
disintegration of the bi-lipid envelope of virions explaining the
weak LPs activity against plant viruses among which very few are
enveloped (Ongena and Jacques, 2008).

Bacillus spp. LPs have many other biological and ecological
functions as fully documented by Raaijmakers et al. (2010). They
are also known to impact other metabolic mechanisms such as
biofilm formation, motility, virulence, plant root colonization,
and plant defenses. Moreover, it has been suggested that their
participation to the degradation of hydrophobic substrates could
be used for polluted soils bioremediation (Mulligan et al., 2001).
Although some lipopetides have already been exploited as food
biopreservatives or crop protection products, the industrial
interest for LPs in specific applications is unsurprisingly
continuously growing.

Thiotemplate NRPs – Siderophore
Itoic acid is a mono-peptide composed of a 2,3-dihydroxy-
benzoate (DHB) molecule bound to a glycine. It is used
as a precursor by trimodular NRPS machinery to produce
bacillibactin which is obtained after a condensation of three units
of DHB-glycine-threonine (May et al., 2001). The synthesis of the
final hexapeptide is catalyzed by a terminal thioesterase domain
leading to the production of a methylated trilactone ring link to
three catecholates moieties. It is this cyclic structure that enables

the sequestration of the metal atom (Dertz et al., 2006). Itoic acid
and bacillibactin are both catecholic siderophores that chelates
iron reducing its bioavailability. This is limited access to iron that
allows B. subtilis to antagonize the growth of other surrounding
microbes such as, for instance, F. oxysporum f. sp. capsici
(Yu et al., 2011).

Non-thiotemplate NRPs
Bacteria from the B. subtilis group are also able to synthesize
other antimicrobial NRPs through non-thiotemplate mechanism.
Rhizocticins are di- and tri-phosphono-peptides. They are
constituted of a L-2-amino-5-phosphono-3-cis-pentenoic acid
(APPA) linked to an arginine (rhizocticin A). They can
be supplemented with an additional valine (rhizocticin B),
isoleucine (rhizocticine C) or leucine (rhizocticine D). After
their integration into the target microbes, their cleavage by
host cell peptidases releases the fungitoxic L-APPA moiety that
interferes with threonine metabolism in fungal cells. Interes-
tingly, rhizocticin A has also an antagonistic activity against
nematodes such as Caenorhabditis elegans (Kugler et al., 1990).

In addition to rhizocticin compounds, two other dipeptide
NRPs are produced by B. subtilis: bacilysin (also known as
tetaine) and its chlorinated derivative, chlorotetain. They
contain L-alanine (or chlorine-L-alanine) bound to the non-
proteinogenic L-anticapsin (Kenig and Abraham, 1976; Rapp
et al., 1988). Despite their simple composition, these bioactive
compounds display strong antibacterial activity mediated
by the anticapsin moiety that inhibits the glucosamine-6-
phosphate synthase. Its inhibition suppresses the biosynthesis
of peptidoglycans that are the main constituents of bacterial
cell wall (Steinborn et al., 2005; Mahlstedt and Walsh, 2010).
For the fungi, it has been proposed that because anticapsin is
able to inhibit the production of chitin and fungal membrane
mannoproteins, bacilysin and chlorotetain exhibit antifungal
activity against Aspergillus fumigatus or C. albicans (Milewski
et al., 1986; Rapp et al., 1988).

Finally, bacitracin and mycobacillin are two cyclic
polypeptides produced by B. subtilis. Bacitracins are dodeca-
peptides containing a cyclic heptapeptide linked to a thiazoline
ring (Johnson et al., 1945). They are mostly active against
Gram-positive bacteria where they inhibit the bacterial cell-wall
biosynthesis by preventing the lipid carrier from re-entering
in the reaction cycle of peptidoglycan synthesis (Siewert
and Strominger, 1967). Besides this primary mode of action,
bacitracin might also act through other mechanisms affecting
membrane functions, hydrolytic enzymes and/or the biosynthesis
of ubiquinone precursors (Konz et al., 1997). Mycobacillin is an
antifungal cyclic tridecapeptide altering the membrane of fungi
like Aspergillus niger (Majumdar and Bose, 1958). Interestingly,
its biosynthesis is rather peculiar. Although it is catalyzed by
a large NRPS complex, it is divided in three fractions (A, B,
and C) and does not use a thio-template mechanism (Zuber
et al., 1993). Each fraction of the enzymatic complex contains
a single enzyme polypeptide that catalyzes the polymerization
of a first pentapeptide (A), a second nonapeptide (B) and the
final tridecapeptide.
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VOLATILES

Besides RPs, NRPs and PKs, strains from the B. subtilis group
are able to produce a wide diversity of volatile compounds
encompassing important roles especially in soil, one of the major
habitats of this group (Supplementary Figure S1). Volatiles
are notably involved in the bioconversion of the food chain,
in the biogeochemical cycles of essential elements, in many
physiological and metabolic reactions (e.g., nitrification, nitrogen
mineralization, electron acceptor or donor reactions) as well
as in communication signals triggering QS/QQ or defense
mechanisms well reviewed in Effmert et al. (2012). Volatile
compounds are generally classified into inorganic (VICs) and
organic (VOCs) categories.

Volatile Inorganic Compounds (VICs)
Volatile inorganic compounds synthesized by microorganisms
are mainly by-products of primary metabolism. They are
carbonated, hydrogenated, sulfur or nitrogen-containing
compounds such as CO2, CO, H2, HCN, H2S, N2, NH3 and
NO. Nitrogen-containing compounds are mostly released in
aerated upper sediments layers by denitrifying bacteria. In
this process, nitric oxide is enzymatically produced by the
nitric-oxide reductase or the nitric-oxide synthase (Adak et al.,
2002). The range of antimicrobial activities exhibited by VIC
nitrogen-containing compounds from the B. subtilis group is
wide. For instance, NO is able to induce systemic acquired
resistance (SAR) in plants against bacterial pathogens such as
R. solanacearum (Wang et al., 2005). A contrario, ammonia,
a secondary metabolite from the catabolism of the amino acids
L-aspartate, is known to be active against soil-borne Oomycetes
such as Pythium spp. (Howell et al., 1988). Hydrogen cyanide,
derived from the glycine catabolism, shows a direct antagonistic
activity against aerobic microorganisms by inhibiting metal-
containing enzymes such as the cytochrome c oxidase active in
the respiration chain (Cherif-Silini et al., 2016).

Deeper in the soil, under low oxygen concentration, bacteria
tend to produce different VICs such as H2 or H2S. Those
compounds can serve as electron acceptors, AA precursors or
antimicrobial metabolites. Hydrogen sulfide could be produced
by B. subtilis from sulfate reduction or as a by-product of
L-methionine and L-cysteine catabolism via a direct cleavage
of L-methionine or a transamination followed by reductive
demethiolations (Even et al., 2006; Schulz and Dickschat, 2007).
It is known to exhibit antifungal activity against several plant
pathogens such asA. niger or Penicillium italicum but also against
some food-borne bacteria or human pathogens (Fu et al., 2014).
Curiously, it is also known to act as a bacterial defensemechanism
against antibiotics (Shatalin et al., 2011). Interestingly, ammonia
increases the resistance of several Gram-negative and Gram-
positive bacteria to antibiotics too (Bernier et al., 2011).

Volatile Organic Compounds (VOCs)
Volatile organic compounds are small compounds with fewer
than 20 carbon atoms and are characterized by low molecular
mass (100–500 Da), high vapor pressure, low boiling point and
a lipophilic moiety. These features ensure an easy evaporation

and a long distance distribution which is convenient in a
complex matrix like soil (Schmidt et al., 2015). Their diffusion
and production by soil-borne microbes are strongly dependent
on various factors such as nutrient and oxygen availability,
temperature, pH, physiological state of microorganisms, soil
moisture, texture and architecture (McNeal and Herbert, 2009;
Insam and Seewald, 2010; Effmert et al., 2012). The majority of
VOCs derives from glucose oxidation involving glycolysis and the
subsequent cycles such as the tricarboxylic acid cycle (TCA) as
it has been well summarized in Korpi et al. (2009) and Schmidt
et al. (2015). However, their production can also result from
various other pathways such as aerobic heterotrophic carbon
metabolism, fermentations, AA degradation, terpenes synthesis
or sulfur reduction (Peñuelas et al., 2014). Based on previous
reviews presented in Schulz and Dickschat (2007); Peñuelas et al.
(2014) and Audrain et al. (2015), five categories of VOCs can
be distinguished: (1) fatty acids and derivatives, (2) terpenoids,
(3) nitrogen-containing VOCs, (4) sulfur-containing VOCs,
and (5) metalloid- or halogenated-containing VOCs. To date,
about 2,000 compounds produced by almost 1,000 species of
microorganisms have been listed in the mVOC 2.0 database
(Lemfack et al., 2018). According to this database, almost 70%
of recorded Bacillus VOCs are fatty acids derivatives (alcohols,
ketones, alkanes, aldehydes, alkenes, and acids) followed by
sulfur- and nitrogen-containing compounds. Supplementary

Table S3 displays the VOCs produced within the B. subtilis group
and their antimicrobial activity.

Sincemany volatile fatty acids and their derivatives result from
the glucose metabolism, their precursors mostly derive from the
Embden-Meyerhof (glycolysis), Entner-Doudoroff, heterolactic
and homolactic fermentation pathways (Peñuelas et al., 2014).
B. subtilis bacteria, for instance, ferment pyruvate to produce
ketone compounds such as acetoin (3-hydroxy-2-butanone) or
2,3-butanedione under anaerobic conditions (Ryu et al., 2003).
Other intermediates coming from fatty acid biosyntheses or
their β-oxydations are also used as precursors by microbes and
transformed into VOCs through a decarboxylation reaction or
a reduction of their carboxyl group (Schulz and Dickschat,
2007). They provide essential hydrocarbons but also other fatty
acid derivatives. An oxidative deamination of several amino
acids can lead to the production of aldehyde, ketone or alcohol
volatile too. For instance, the degradation of L-phenylalanine or
L-tyrosine can be the first step of the aromatic volatile compounds
synthesis such as benzene or its carbohydrate derivatives. Finally,
benzenoid volatiles can also be synthesized by microbes through
the shikimate pathway that leads to the formation of chorismate,
a natural precursor of aromatic amino acids (Bentley andHaslam,
1990). Degradation of intermediates from the shikimate pathway
or aromatic amino acids can also lead to the production of
benzenoid volatiles (Dickschat et al., 2005).

This wide variety of volatile fatty acids and their derivatives
make them the most important group of VOCs produce by
microbes and represent up to 87% of known antimicrobial VOCs
produced by B. subtilis bacteria (Supplementary Table S3). They
can be divided in two main categories: hydrocarbons (alkanes,
alkenes, alkynes) or carbohydrates (acids, alcohols, aldehydes,
esters, furans, ketones, lactones, benzenoids). Among them,
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benzenoids is the most represented sub-category followed by
alkanes, aldehydes, ketones, acids, and alcohols. Even though
benzenoids could be considered as an individual category, they
can also be seen as fatty acids derivatives because a large majority
of antimicrobial benzenoid volatile produced by B. subtilis harbor
a benzene core linked to a fatty acid derivatives.

There is an important diversity of benzenoids, sometimes
linked with carbohydrate chains containing nitrogen, sulfur
or both. Most of these antimicrobial volatile exert fungicidal
activities but some have been characterized for their antibacterial
or nematicidal abilities, too. Their mode of action is rarely
fully characterized. For instance, morphological abnormalities
on fungal and bacterial cells have been documented after an
exposition to B. subtilis VOCs (Tahir et al., 2017). Volatile
such as 1,3-butadiene or 2,3-butanediol are also known to
induce modifications in the expression of genes linked to
the pathogenicity of R. solanacearum and Pectobacterium
carotovorum (Marquez-Villavicencio et al., 2011; Tahir et al.,
2017). In addition to direct antimicrobial activities, fatty acids
volatile have also several other biological functions. For instance,
acetoin and 2-butanone have the ability to stimulate plant
defenses or to induce plant stress tolerance which then promote
plant growth (Ryu et al., 2003; Ryu et al., 2004; Ryu, 2015).
They are essentially produced by strains of B. amyloliquefaciens,
B. velezensis or B. subtilis (Audrain et al., 2015).

Terpenes and their derivatives (also known as terpenoids
or isoprenoids) are among the most abundant secondary
metabolites found in living systems (Fisher et al., 2001;
Gershenzon and Dudareva, 2007). They originate from two
main precursors: isopentenyl pyrophosphate (IPP) and its allylic
isomer the dimethylallyl pyrophosphate (DMAPP) (Schulz and
Dickschat, 2007). IPP and DMAPP are also the end-products
of the deoxy-xylulose phosphate pathway (DOXP) starting with
pyruvate and glyceraldehyde-3-phosphate originating from the
glucose metabolism (Fisher et al., 2001). Terpenoids can be
synthesized from isoprene molecules too. Julsing et al. (2007)
showed that, in B. subtilis, isoprene is not formed by the
MVA or DOXP pathways but, as in plant systems, might be
a product of the methylerythritol phosphate (MEP) pathway
(Guan et al., 2015).

Isoprenoid compounds are produced by all living organisms
for essential physiological functions such as electron transport,
membrane fluidity, light harvesting, photoprotection, anchoring
of molecules to specific membranes and signaling (Fisher et al.,
2001). The signaling ability is particularly important and is
associated with several antagonistic, mutualistic or multi-trophic
interactions (Shrivastava et al., 2015). More than 25,000 terpenic
compounds have been listed and, for the vast majority, their
biological functions and roles remain unknown (Buckingham,
1997). Volatile terpenes are generally recognized for their ability
to inhibit bacteria (Scortichini and Rossi, 1991), fungi (Hammer
et al., 2003; Dambolena et al., 2008), nematodes (Gu et al., 2007)
or insects (Lee et al., 2003; Justicia et al., 2005). They can be
classified in three categories: isoprene, monoterpenes (C10) and
sesquiterpenes (C15) (Schmidt et al., 2015).

The mode of action of these compounds might be linked
to their lipophilic nature allowing them to destabilize the cell

membrane integrity (Cox et al., 2000; Inoue et al., 2004). To
our knowledge, only two terpenes produced by B. subtilis show
antimicrobial abilities: isoprene and monoterpene α-terpineol
exhibit antagonistic activities against cyanobacteria and
nematodes (Wright and Thompson, 1985; Gu et al., 2007).

Little is known about the biosynthetic pathways of nitrogen-
containing VOCs. Nevertheless, it is accepted that two main
routes can be used: a non-enzymatic amination of acyloins, that
can lead to the formation of pyrazines (Schulz and Dickschat,
2007) or derived from α-aminoketone intermediates resulting
from AA catabolism (Owens et al., 1997; Zhu et al., 2010).

Nitrogen-containing VOCs can be distinguished based on
their cyclization rate. Within non-cyclic compounds, three
groups are identified (amides, amines and imines) while there are
five categories of cyclic compounds (azoles, pyrazines, pyridines,
pyridazines, and pyrimidines). Pyrazines are strongly represented
among microbial volatile and are separated in two classes: lower-
alkylated and higher-alkylated pyrazines (Schulz and Dickschat,
2007). These compounds are characterized by a strong odor
and several B. subtilis coming from the rhizosphere or from
food fermentations have already been recognized as pyrazines
producers (Sugawara et al., 1985; Kosuge and Kamiya, 1962;
Larroche et al., 1999; Leejeerajumnean et al., 2001). Pyrazines
from B. subtilis strains are known to exhibit antifungal and
nematicidal activities (Gu et al., 2007; Chen et al., 2008;
Chaves-López et al., 2015; Haidar et al., 2016). For instance,
tetramethylpyrazine inhibits the growth of Moniliophthora
perniciosa and F. oxysporum f. sp. lactucae. Additionally, it acts on
sporulation and elongation of the germ-tube of B. cinerea (Chen
et al., 2008; Chaves-López et al., 2015). It is interesting to note that
B. subtilis pyrazines can also exhibit antibacterial activities such as
pulcherriminic acid which inhibits the growth of S. aureus, E. coli
and Proteus vulgaris (Coutts et al., 1965). Beside pyrazines, strains
from the B. subtilis group are able to produce other nitrogen
VOCs such as 1H-imidazole,1-ethyl showing antifungal activities
against numerous soil-borne phytopathogens (Lupetti et al.,
2002; Liu et al., 2008; Snelders et al., 2009; Schmidt et al., 2015).

Microbial VOCs containing sulfur (VSCs) derive from
two main pathways originated from inorganic or organic
sources (Schulz and Dickschat, 2007): inorganic sulfate
reduction in methylated inorganic sulfides compounds or,
for some microbial VSCs, originate from catabolism of AA
such as L-methionine or more rarely, L-cysteine (Schulz and
Dickschat, 2007). Some VSCs are produced as secondary
volatiles via the production of hydrogen sulfide or methanethiol.
Indeed, these two compounds are important precursors for
subsequent VSCs synthesis (Schulz and Dickschat, 2007;
Sourabié et al., 2012). Within the B. subtilis group, multiple
VSCs such as dimethyl disulfide (DMDS), dimethyl trisulfide
(DMTS), S-methyl thioacetate or S-methyl butanethioate
have been characterized for their antifungal and nematicidal
activities (Coosemans, 2005; Gerik, 2005; Gu et al., 2007;
Kai et al., 2009; Wang et al., 2009; de Vrieze et al., 2015;
Schmidt et al., 2015; Velivelli et al., 2015; Gotor-Vila et al.,
2017). A putative antibacterial effect of DMDS is not to
exclude. Indeed, DMDS is known to affect the bacterial
cell-to-cell communications through a decrease in the
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amount of N-acyl homoserine lactone (AHL) mediating
QS (Chernin et al., 2011).

Other volatile organic compounds such as halogenated,
metalloids, tellurium or selenium compounds have also been
described. However, at the time of writing, no B. subtilis strains
have been proved to produce these type of VOCs (Schulz
and Dickschat, 2007), although related bacteria, like Bacillus
arsenicoselenatis, have been shown to generate them (Switzer
Blum et al., 1998).

CONCLUSION AND PERSPECTIVES

The B. subtilis group offers a plethora of antagonistic compounds
displaying a broad range of biological functions. This huge
versatility increases the industrial and environmental interest
of B. subtilis strains, especially when considering their range of
action against foodborne or phytopathogenic flora as well as their
history of safe use in food. The present review on known AMCs
from the B. subtilis group proposes a consistent classification
frame based on their biosynthetic pathways (i.e., RPs, PKs, NRPs,
volatiles) and chemical nature.

The present classification suggests to establish systematic
approaches for novel molecules discoveries and characterizations
(biosynthesis, chemical nature and activity). Indeed, most
current publications report antimicrobial activity of partially
purified fractions which can involve mixtures of bioactive
compounds. To assess the activity of an unique compound,
implementations of genetic confirmation such as knockout
strategy are needed. Besides, very few studies have focused on the
putative synergistic effects within these bio-active mixtures. Also,
the concentration of purified or semi-purified compound(s) often
remains uncharacterized or biologically irrelevant. Finally, there
is no doubt that novel AMCs originating from B. subtilis bacteria
remain to be identified, characterized and properly classified.
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