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Abstract—A Screen Content coding (SCC) extension to High
Efficiency Video Coding (HEVC) is currently under development
by the Joint Collaborative Team on Video Coding (JCT-VC),
which is a joint effort from the ITU-T Video Coding Experts
Group and the ISO/IEC Moving Picture Experts Group. The
main goal of the HEVC screen content coding standardization ef-
fort is to enable significantly improved compression performance
for videos containing a substantial amount of still or moving
rendered graphics, text, and animation rather than, or in addition
to, camera-captured content. This paper provides an overview of
the technical features and characteristics of the current HEVC-
SCC test model and related coding tools, including intra block
copy, palette mode, adaptive colour transform, and adaptive
motion vector resolution. The performance of the screen content
coding extension is compared against existing standards in terms
of bit-rate savings at equal distortion.

Index Terms—HEVC, video coding, screen content coding.

I. INTRODUCTION

IN January 2013, the first edition of the High Efficiency

Video Coding standard, also known as HEVC version 1 [1],

was finalized. This work was done by the Joint Collaborative

Team on Video Coding (JCT-VC), which was established

jointly in 2010 by ITU-T Study Group 16 (VCEG) and

ISO/IEC JTC1/SC 29/WG 11 (MPEG). One of the primary

requirements of that standard was that it demonstrates a

substantial bit-rate reduction over the existing H.264/AVC [2]

standard. Both the initial development of HEVC and the

earlier development of H.264/AVC focused on compressing

camera-captured video sequences. Although several different

test sequences were used during the development of these

standards, the camera-captured sequences exhibited common

characteristics such as the presence of sensor noise and an

abundance of translational motion. Recently, however, there

has been a proliferation of applications that use video devices

to display more than just camera-captured content. These

applications include displays that combine camera-captured

and computer graphics, wireless displays, tablets, automotive

displays, screen-sharing, etc. [3]. The type of video content

used in these applications can contain a significant amount of

stationary or moving computer graphics and text, along with

camera-captured content. However, unlike camera-captured

content, screen content frequently contains no sensor noise,

and such content may have large uniformly flat areas, repeated
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patterns, highly saturated or a limited number of different

colours, and numerically identical blocks or regions among

a sequence of pictures. These characteristics, if properly

leveraged, can offer opportunities for significant improvements

in compression efficiency over a coding system designed

primarily for camera-captured content.

During the development of HEVC, decisions as to which

tools to incorporate into the version 1 standard were made

primarily based on their coding performance on camera-

captured content. Several tool proposals showed that the

characteristics of screen-content video can be leveraged to

obtain additional improvements in compression efficiency over

the HEVC version 1 standard under development.

Residual Scalar Quantization (RSQ) and Base Colors and

Index Map (BCIM) [4] were proposed early during the HEVC

development process. Because screen content often has high

contrast and sharp edges, RSQ directly quantized the intra

prediction residual, without applying a transform. BCIM took

advantage of the observation that the number of unique colours

in screen content pictures is usually limited as compared to

camera-captured content. RSQ and BCIM could respectively

be considered early forms of transform skip, which is part

of HEVC version 1, and palette mode, which is described

in Section III-B. Additional modes such as transform bypass

where both the transform and quantization steps are bypassed

for lossless coding, and the use of differential pulse code

modulation (DPCM) for sample-based intra prediction were

proposed in [5].

Because screen content often contains repeated patterns,

dictionary and Lempel-Ziv coding tools were shown to be

effective at improving coding efficiency, especially on pictures

containing text and line graphics [6], [7], [8]. These tools store

a dictionary of previously-coded samples. If a block or coding

unit contains strings of samples that are already contained in

the dictionary, then a pointer to the dictionary can be signalled,

thus avoiding the need to transform and quantize a prediction

residual.

In January 2014, the MPEG Requirements subgroup pub-

lished a set of requirements for an extension of HEVC for

coding of screen content [3]. This document identified three

types of screen content: mixed content, text and graphics with

motion, and animation. Up to visually lossless coding perfor-

mance was specified, for RGB and YUV 4:4:4 video having 8

or 10 bits per colour component. Given the earlier published

drafts of these requirements, along with the existing evidence

that additional tools could improve the coding performance of

HEVC on screen content material, VCEG and MPEG issued a

joint Call for Proposals (CfP) for coding of screen content [9].
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At the next JCT-VC meeting in March 2014, seven re-

sponses to the CfP were evaluated. After identifying the tools

that produced significant improvements in performance for

screen content, several core experiments (CEs) were defined.

The tools included in these CEs were: intra block copying

extensions, line-based intra copy, palette mode, string match-

ing for sample coding, and cross-component prediction and

adaptive colour transforms. After evaluating the outcome of

the CEs and related proposals, the HEVC Screen Content

Coding Draft Text 1 [10] was published in July 2014.

This paper gives an overview of the tools and coding perfor-

mance associated with this new HEVC screen content coding

extension. At the time of this writing, the current version of the

text is Draft 2 [11]. Section II describes screen content coding

support in HEVC version 1 and HEVC range extensions. New

coding tools in the HEVC screen content coding extension

(HEVC-SCC) are described Section III. Section IV presents

new encoding algorithms introduced during the development

of HEVC-SCC. Coding performance comparisons are dis-

cussed in Section V, and Section VI concludes the paper.

II. SCREEN CONTENT CODING SUPPORT IN HEVC

The HEVC screen content coding extension (HEVC-SCC)

is developed based on HEVC version 1 [1] and HEVC range

extensions (HEVC-RExt) [12]. Thus, it inherits the coding

structure and coding tools of HEVC version 1 and HEVC-

RExt. HEVC-SCC also maintains backward compatibility to

HEVC version 1 and HEVC-RExt. As an example, an HEVC-

SCC decoder can decode HEVC version 1 bit-streams and the

decoded videos are identical to those produced by an HEVC

version 1 decoder. Screen content, as one class of video, was

also considered during the development of HEVC version 1

and HEVC-RExt, although it was not the main focus of those

standards. In the following subsections, the structure of HEVC

and HEVC-RExt, along with the coding tools that primarily

targeted screen content, are briefly introduced.

A. HEVC version 1

HEVC version 1 follows the conventional hybrid coding

structure as in previous video coding standards. An input

image is first divided into image blocks, referred to as coding

tree units (CTU), of pre-defined size. The size of a CTU

can be of 16×16, 32×32, or 64×64 luma samples. A CTU

contains corresponding chroma samples according to the input

colour format. A quad-tree split, with a CTU as the root,

divides the CTU into one or more coding units (CU). A CU is

square-shaped and can have 8×8, 16×16, 32×32, or 64×64

luma samples and corresponding luma samples. A CU can

be classified as an intra CU or an inter CU, and it is further

divided into one, two or four prediction units (PU). For an intra

CU, spatially neighboring reconstructed samples are used to

predict its PUs. For an inter CU, a motion vector is sent for

each PU, which is used by a motion compensation process to

generate the prediction from other pictures.

A transform quad-tree is also defined for a CU to indi-

cate how the predicted residual are decorrelated with spatial

transforms after the prediction process. A leaf of a transform

quad-tree is referred to as a transform unit (TU). An integer

transform is applied to each TU. All transforms applied to

an inter CU and most transforms applied to an intra CU are

derived to approximate the discrete cosine transform (DCT)

of appropriate size. The only exception is the 4×4 transform

applied to an intra CU, which is designed to approximate the

discrete sine transform (DST).

During the development of HEVC version 1, it was observed

that for screen content, spatially transforms mentioned above

do not always help in improving coding efficiency. For most

screen content, the images are sharp, containing irregular

edges and shapes. After the prediction process, the residual

signal may already be sparse because the background can

be precisely predicted while irregular foreground may not. In

such a case, the existing transform will spread the energy to

most frequencies instead of compacting the energy, thereby

destroying the sparsity of the residual, leading to low coding

efficiency during entropy coding. Thus, for those blocks, skip-

ping the transform and quantizing data in the spatial domain

can be a better choice, as was demonstrated for H.264/AVC

in [13]. HEVC version 1 can skip the transform for a 4×4 TU,

whether it is intra [14] or inter [15]. This transform skip is

equivalent to applying an identity transform to the TU. Thus,

the quantization process after applying transform skip is the

same as that applied after the spatial transform. It turns out that

such a simple design can lead to significant coding efficiency

improvement for screen content, e.g. the bit-saving brought

by the transform skip mode is about 7.5% for typical 4:2:0

screen content [15]. When applied to 4:4:4 screen content, the

coding gain for transform skip is much larger [16], ranging

from 5.5% to 34.8%.

B. HEVC-RExt

After HEVC version 1, HEVC-RExt was developed to

support non-4:2:0 colour formats, e.g. 4:4:4 and 4:2:2v, and

high bit-depth video, e.g. up to 16-bit. Because most screen

content is captured in the 4:4:4 colour format, which is not

supported by HEVC version 1, more attention was given to

coding of screen content in HEVC-RExt. The coding tools that

improved the coding efficiency for screen content in HEVC-

RExt compared with HEVC version 1 include:

1) Improvements to transform skip mode: As mentioned

above, HEVC version 1 only supports transform skip for 4×4

TUs. HEVC-RExt extends transform skip to all TUs, regard-

less of their size [17]. Enabling transform skip for all TUs

has two benefits. One is that the coding efficiency for screen

content can be further improved. The other is that encoders

have the flexibility to exploit the transform skip mode. For

example, a specific encoder may support only large transform

units so that the encoding complexity can be reduced. If

transform skip is allowed only for 4×4 TUs, the performance

of such an encoder would be affected adversely since it cannot

exploit the benefit brought by transform skip, which can be

much more noticeable for screen content. Other improvements

include coefficient coding for transform skip blocks. For an in-

tra transform block, when a spatial transform is applied to the

residual, the energy is compacted at the upper-left corner of the
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block. However, when transform skip is used on a transform

block, because its prediction is from the adjacent upper row

and/or left column of samples, the prediction error is higher

at the bottom-right corner compared to the upper-left corner.

The different characteristics of the residual of transform skip

blocks relative to transformed blocks make entropy coding

designed for transformed blocks inefficient when applied to

transform skip blocks. A simple yet effective solution adopted

in HEVC-RExt is to rotate the residual of transform skip

blocks by 180 degrees [18], [19]. This rotation process is

only applied to 4×4 intra transform skip blocks [20]. Another

improvement for the entropy coding of the transform skip

blocks is that a single context is used to code the significant

coefficient map. For transformed blocks, the context used for

significance coding depends on the position (frequency) of the

coefficient. However, since all the coefficients of a transform

skip block are from the residual in the spatial domain, using a

single context is more reasonable that using different contexts

depending on position.

2) Residual differential pulse code modulation (RDPCM):

Even after intra prediction, there is still correlation in the

residual signal which can be exploited. Residual differential

pulse code modulation (RDPCM) predicts the current residual

using its immediately neighboring residual. In HEVC-RExt,

RDPCM was proposed for intra lossless coding [21]. Then it

was extended to lossy coding [22] and inter coding [23]. In

RDPCM, the left reconstructed residual or the above one is

used to predict the current residual, depending on whether the

block uses horizontal or vertical RDPCM. RDPCM is used

only for transform skip blocks. In inter mode, flags are sent

to indicate whether RDPCM is used and if so, its direction.

In contrast, RDPCM in intra mode is applied in the same

direction as the intra prediction direction. Because of this,

using the reconstructed residual to predict the current residual

is identical to using reconstructed samples to predict the

current sample in intra mode (if clipping of the reconstructed

sample is ignored). From this perspective, RDPCM shortens

the prediction distance, leading to better prediction. For screen

content, a short distance prediction is quite useful because

usually the content is sharp and changes rapidly.

3) Cross-component prediction (CCP): CCP [24] and its

predecessor LM Chroma mode [25] were proposed to ex-

ploit correlation among colour components [24]. In CCP, the

residual of the second or third colour component can be

predicted from the residual of the first colour component

multiplied by a scaling factor. The factor is selected from

{0,± 1

8
,± 1

4
,± 1

2
,±1} and is signalled to the decoder. One

advantage of performing prediction on residuals in the spatial

domain is that the reconstruction process for the second and

third colour components does not depend on reconstructed

samples of the first colour component. Hence the reconstruc-

tion process for different colour components can be performed

in parallel once the residuals for the three colour components

are available. Although such a design can still leave a cer-

tain degree of correlation among colour components, it was

demonstrated that CCP can significantly improve the coding

efficiency when coding videos having the RGB colour format.

Because much screen content is captured in the RGB domain,

CCP is very effective in coding of screen content.
4) Other improvements: Some other aspects of HEVC-

RExt, although not specifically designed for screen content

coding, also improve the coding efficiency for screen content.

For example, the initialization of Rice parameters based on

previous similar blocks was primarily designed for high bit-

depth coding; but it also showed improvement for coding

screen content [26].

C. HEVC-SCC

Unlike HEVC version 1 and HEVC-RExt, the tools added

for the HEVC-SCC extension focus primarily on coding screen

content. To illustrate the framework of SCC, an SCC encoder

is shown Fig. 1. As shown in the figure, HEVC-SCC is based

on the HEVC framework while several new modules/tools are

added. The new coding tools are:

• Intra block copy (IBC): HEVC-SCC introduces a new

CU mode in addition to the conventional intra and inter

modes, referred to as intra block copy (IBC). When a CU

is coded in IBC mode, the PUs of this CU find similar

reconstructed blocks within the same picture. IBC can be

considered as ”motion compensation” within the current

picture.

• Palette mode: For screen content, it is observed that

for many blocks, a limited number of different colour

values may exist. Thus, palette mode enumerates those

colour values and then for each sample, sends an index

to indicate to which colour it belongs. Palette mode

can be more efficient than the prediction-then-transform

representation.

• Adaptive colour transform (ACT): Because much screen

content uses the RGB colour space, removing inter-colour

component redundancy is important for efficient coding.

Earlier work with adaptive colour space transforms was

shown to yield improvements in coding efficiency [27].

In HEVC-SCC, a CU-level adaptation is used to convert

residual to different colour spaces. More precisely, an

image block in the RGB colour space can be coded

directly. Or it can be converted adaptively to the YCoCg

colour space during coding.

• Adaptive motion vector resolution: Unlike camera-

captured content, where motion is continuous, screen

content often has discrete motion, which has a granularity

of one or more samples. Thus, for much screen content,

it is not necessary to use fractional motion compensa-

tion. In HEVC-SCC, a slice-level control is enabled to

switch the motion vectors between full-pel and fractional

resolutions.

The details of these new tools are described in the following

sections.

III. NEW CODING TOOLS IN HEVC-SCC

This section describes the new coding tools that were

adopted into the HEVC-SCC text specifications, i.e. normative

specifications. When relevant, some non-normative aspects are

included in this section, and a more complete description of

non-normative aspects of the tools is included in the section

on encoding algorithms.
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Fig. 1. Encoder for screen content coding extension.

A. Intra Block Copy

Intra Block Copy (IBC) is a coding tool similar to inter-

picture prediction. The main difference is that in IBC, a pre-

dictor block is formed from the reconstructed samples (before

application of in-loop filtering) of the current picture. Previ-

ously, IBC was proposed in the context of AVC/H.264 [28] but

the coding gain was not consistently high across different test

sequences, which at the time were primarily camera-captured

sequences and not screen content material. A CU based IBC

mode was proposed during the HEVC-RExt development [29].

A modified version [30] was adopted into the HEVC-RExt text

specification but was later removed. IBC has been a part of

HEVC-SCC test model since the beginning of the HEVC-SCC

development.

At the early stage of HEVC-SCC development, IBC was

performed at the coding unit (CU) level. A block vector was

coded to specify the location of the predictor block. However,

since both IBC and inter mode share the concept of vectors

representing displaced blocks, it is natural to unify the design

of IBC and inter mode. Methods to unify these modes [31],

[32] have shown that also using the inter mode syntax design

for IBC is an adequate choice.

In the current HEVC-SCC design, IBC is performed at

the prediction unit (PU) level and is treated as an inter PU.

Specifically, using the inter mode design, the current picture

can also be used as a reference picture for IBC. When a

PU’s reference picture is the current picture, it means that

its prediction is performed from the reconstructed samples,

before in-loop filtering in the encoder, of the current picture,

which corresponds to the original IBC design. When the

current picture is used as a reference, it is marked as a long-

term reference. After the current picture is fully decoded, the

reconstructed picture after in-loop filtering is added to the

decoded picture buffer (DPB) as a short-term reference, which

is identical to what HEVC version 1 does after decoding a

picture. Using the inter mode design to enable IBC at the PU

level enables greater flexibility in combining IBC and inter

mode. For example, an inter CU can have two PUs, one using

conventional inter mode and the other using IBC; a PU can

be bidirectionally predicted from an average between a block

from the current picture and a block from a previous picture.

However, unification between IBC and inter mode does not

mean that IBC can be directly implemented as an inter mode

in practice. The implementation of IBC can be much different

from that of inter mode in many platforms. Such differences

exist because when the current picture is used as a reference,

it has not been fully reconstructed, whereas the other reference

pictures have been decoded and stored in the DPB.

For IBC mode, because the block to be processed and its

prediction are from the same picture, several constraints have

been placed to avoid affecting other modules adversely. The

constraints for IBC mode are:

• The predictor block may not overlap the current CU, to

avoid generating predictions from unreconstructed sam-

ples.

• The predictor block and the current CU should be within

the same slice and the same tile. Otherwise, there will be

dependency among different slices or tiles, which affect
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Fig. 2. Search area for IBC (shown in gray).

the parallel processing capability provided by the design

of slices and tiles.

• The predictor block is normatively required to be entirely

contained in the search region shown in Fig. 2. It is

so designed to avoid affecting the parallel processing

capability provided by wavefronts. To simply the design,

the constraint still holds even when wavefronts are not

being used.

• For constrained-intra profiles, the samples of the predictor

block must be from other intra blocks or IBC blocks.

• The block vector precision is full-pel.

B. Palette mode

Palettes are an efficient method for representing blocks

containing a small number of distinct colour values. Rather

than apply a prediction and transform to a block, palette

mode signals indices to indicate the colour values of each

sample. An early use of palettes was in the conversion of 24-

bit RGB images to 8-bit index images to save on RAM or

video memory buffer space. A CU based palette coding mode

was proposed during the HEVC-RExt development [33]. The

palette mode was further refined through core experiments and

Ad Hoc Group (AHG) discussions and was adopted [34] into

the SCC text specification.

A palette refers to a table consisting of representative colour

values from the CU coded using the palette mode. For each

sample in the CU, an index into the current table is signalled in

the bit-stream. The decoder uses the palette table and the index

to reconstruct each sample of the CU. Each entry in the palette

table consists of three components (RGB or YCbCr). For 4:2:0

and 4:2:2 colour formats, if no chroma components are present

for the current sample position, only the first component is

used for reconstruction. A special index, known as an escape

index, is reserved to indicate that a sample does not belong

to the palette. In such a case, in addition to coding the escape

index, the quantized values of the component(s) of the escape

sample are also coded in the bit-stream.

The size of the palette table is referred to as the palette size.

If the palette size is nonzero, then the indices from zero to

palette size minus one are reserved for denoting entries from

the palette, and the escape index is set equal to the palette

4

R/Y G/Cb B/Cr

Index 0

Index 1

Index 2

Index 3

Index 4

CU

palette

escape

0 32
240 80 80

100 50 20

200 200 250

250 250 150

Fig. 3. Palette example (palette size = 4).

size. An example for this coding is illustrated in Fig. 3. On

the encoder side, palette table derivation is performed. This is

discussed further in Section IV-C. Normative aspects of palette

coding can be divided into two categories: coding of the palette

table and coding of the palette indices of the samples in the

CU.

The palette needs to be signalled to the decoder. It is typical

that a palette shares some entries with neighboring blocks

that are coded using the palette mode. To exploit this sharing,

the palette table is coded using a combination of prediction

from palette entries of previously coded CUs and new palette

entries that are explicitly signalled. For prediction, a predictor

palette consisting of palette entries from the previous CUs

coded in palette mode is maintained. For each entry in the

palette predictor, a flag is signalled to specify whether that

entry is reused in the current palette. The collection of flags

is signalled using run-length coding of zeros. The run-lengths

are coded using exponential Golomb code of order 0. After

signalling the predicted palette entries, the number of new

palette entries and their values are signalled. This is illustrated

in Fig. 4. In this example, the predictor palette contains six

entries. Out of these, three are reused in the current palette

(0th, 2nd and 3rd). These are assigned indices 0, 1 and 2,

respectively, in the current palette. This is followed by 2 new

entries.

For the first CTU of each slice, tile and CTU row (when

wavefronts are used), the palette predictor is initialized using

initialization entries signalled in the picture parameter set

(PPS) or to zero. After a CU has been coded in palette mode,

the palette predictor is updated as follows. First all the entries

from the current palette are included in the predictor palette.

This is followed by all the entries that were not reused from

the previous predictor palette. This process is continued till

all the entries from the previous predictor palette that were

not reused are included or the maximum palette predictor size

is reached. The updated predictor palette is illustrated on the

right side in Fig. 4.

To code the palette indices, first a flag,

palette escape val present flag, is coded to indicate whether

there are any escape indices present in the current CU. Two

different scans may be used to code the palette indices in

a CU, namely, horizontal traverse scan and vertical traverse

scan as shown in Fig. 5. In the following description, a
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Reuse flag

1

0

1

1

0

0

Index

0

1

2

current palette

3

4
Reused palette entries (3)

New palette entries (2), signalled

G/Y B/Cb R/Cr

G0 B0 R0

G2 B2 R2

G3 B3 R3

G3N B3N R3N

G4N B4N R4N

Index

0

1

2

3

4

5

predictor palette

G/Y B/Cb R/Cr

G0 B0 R0

G1 B1 R1

G2 B2 R2

G3 B3 R3

G4 B4 R4

G5 B5 R5

Index

0

1

2

3

4

Updated predictor palette

G/Y B/Cb R/Cr

G0 B0 R0

G2 B2 R2

G3 B3 R3

G3N B3N R3N

G4N B4N R4N

5 G1 B1 R1

6 G4 B4 R4

7 G5 B5 R5

Fig. 4. Construction of palette from predictor palette and new explicitly signalled entries.

horizontal traverse scan is assumed. If the scan is vertical

traverse, the CU index map may be transposed before coding

(or after decoding). The direction of the scan is signalled

using palette transpose flag.

Since screen content may typically contain flat areas with

uniform or near-uniform sample values, run-length coding

of palette indices is an efficient method of compression.

Additionally, it is observed that indices in consecutive rows

or columns may be identical. To exploit this, each palette

sample may be coded in one of two palette sample modes,

COPY INDEX MODE and COPY ABOVE MODE, which

are signalled in the bitstream as palette run type flag. In

COPY INDEX MODE, the palette index is coded followed

by a run value which specifies the number of subsequent sam-

ples that have the same index. The index values are coded us-

ing a truncated binary code [35]. In COPY ABOVE MODE,

the palette index is copied from the previous row. This is fol-

lowed by a run value which specifies the number of subsequent

positions for which the index is copied from the previous row.

Both COPY INDEX MODE and COPY ABOVE MODE

runs may span multiple rows. In COPY ABOVE MODE only

the run value is signalled but not the index. If the index

for a particular sample corresponds to the escape index, the

component value(s) are quantized and coded. Fig. 6 shows an

example of palette sample modes, indices and run values for

a 4×4 block1.

The run coding uses a concatenation of unary code and

exponential Golomb code of order zero. The code can be

described as follows. A run of zero is represented as ”0”. A

run of length L ≥ 1 is represented as a concatenation of ”1”

and the exponential Golomb code (order zero) representation

for (L− 1). Both prefix and suffix are truncated based on the

maximum possible run value when the run continues to the

end of the block. The code is specified in Table I.

Several redundancies are exploited in the coding of palette

indices to reduce the number of syntax elements and make

the coding more efficient. For example, when the palette

size is equal to 0 or when the palette size is equal to

1 and there are no escape indices present, then the in-

1The 4×4 block is chosen for convenience. The minimum palette block
size is 8×8.

TABLE I
BINARIZATION FOR THE PALETTE RUN VALUE.

value prefix suffix

0 0 -

1 10 -

2-3 110 X

4-7 1110 XX

7-15 11110 XXX

. . . . . . . . .

dex values can be inferred, thereby eliminating the need

to signal the palette sample modes, indices and runs. Fur-

thermore a COPY ABOVE MODE may not occur in the

first row (or column for vertical traverse scan) and may

not follow COPY ABOVE MODE. This is used in inferring

COPY INDEX MODE under these conditions.

C. Adaptive colour transform

Much screen content is captured in the RGB colour space.

For an image block in RGB colour space, usually there can

be strong correlation among different colour components such

that a colour space conversion is useful for removing inter-

colour component redundancy. However, for screen content,

there may exist many image blocks containing different fea-

tures having very saturated colours, which leads to less cor-

relation among colour components. For those blocks, coding

directly in the RGB colour space may be more effective.

To handle different characteristics of image blocks in screen

content, a RGB-to-Y CoCg conversion [36] as shown in the

following equation was investigated, and it turned out to be

effective.




Y
Co

Cg



 =





1/4 1/2 1/4
1/2 0 −1/2
−1/4 1/2 −1/4









R
G
B



 (1)

When this colour transform is used, both the input image

block and its corresponding prediction use the same conver-

sion. Because the conversion is linear, it is identical to having

the transform applied to residuals in the spatial domain when

the prediction processes in different colour components are

consistent. Thus, in HEVC-SCC, the conversion is applied
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Fig. 5. Horizontal and vertical traverse scans for the coding of palette indices.

Mode Index Run 

COPY_INDEX 0 3 

COPY_INDEX 4 0 

COPY_INDEX 1 1 

COPY_INDEX 2 0 

COPY_INDEX 3 0 

COPY_ABOVE - 5 

COPY_INDEX 2 0 

0 0 0 0 

2 1 1 4 

3 1 1 4 

2 1 1 4 

Fig. 6. Example of palette sample modes, indices, and run values for a 4×4 block.

on the residual [37], which makes the prediction process for

different colour components independent. It is also noted for

intra-coded blocks, when the intra prediction directions for

different colour components are not the same, the colour

transform is not allowed to be used. This limitation is specified

because when the intra prediction directions are different, the

correlation among colocated samples across colour compo-

nents is decreased, making the colour transform less effective.

The colour transform also changes the norm of different

components. To normalize the errors in different colour spaces,

when the above transform is used for an image block, a set

of QP offsets (−5,−5,−3) is applied to those three colour

components [38] during quantization. After the quantization

and reconstruction, an inverse transform is applied to the

quantized residual so that the reconstruction is still kept in

the input colour space.

To limit the dynamic range expansion brought by the colour

transform, a lifting-based approximation is used in HEVC-

SCC. The corresponding colour space is called Y CoCg-R.

The forward and inverse transform from RGB to Y CoCg-R,

also from [36], are

Co = R−B

t = B + ⌊Co/2⌋

Cg = G− t

Y = t+ ⌊Cg/2⌋ (2)

t = Y − ⌊Cg/2⌋

G = Cg + t

B = t− ⌊Co/2⌋

R = B + Co (3)

where ⌊x⌋ denotes the greatest integer less than or equal to x.

With the forward transform (2), the bit-depth of Y remains

the same as that of the input, while for Co and Cg components,

the bit-depth will be increased by 1. For lossless coding, (2)

and (3) are directly used. While for lossy coding, to keep the

bit-depth identical to the residual of the original colour space,

an additional right shift is applied to Co and Cg components

after the forward transform. Correspondingly, an additional left

shift is applied before the inverse transform [39].

Even after the adaptive colour transform is applied in the

encoder, or in cases when the input video has already under-

gone a colour transform, there can still be inter-component

redundancy that may benefit from the application of cross-

component prediction, e.g. as shown in [40], [41]. Therefore,

CCP may also be applied to CUs which have undergone

the adaptive colour transform. It is shown in [42] that both

ACT and CCP can significantly improve the coding efficiency

for videos in RGB colour space, while ACT might improve

more. In [43], Lai et. al. compare performance with different

adaptive strategies, which indicates that coding in YCoCg

colour space remarkably improve the coding efficiency, while

adaptively choose a better colour space can further improve the

performance, especially for RGB videos and lossless coding

cases.
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TABLE II
TYPES OF CANDIDATE BVS AND ENCODER RESTRICTIONS ON THEIR USE

candidate BVs
PU size

restriction
other restrictions

local search region –
current CTU and one or more

CTUs to the left (configurable)

extended search

region
up to 16×16 enable or disable (configurable)

Previously used BVs

with same PU size
up to 16×16 up to 64 BVs

D. Adaptive motion vector resolution

For camera-captured video, the movement of a real-world

object is not necessarily exactly aligned to the sample positions

in a camera’s sensor. Motion compensation is therefore not

limited to using integer sample positions, i.e. fractional mo-

tion compensation is used to improve compression efficiency.

Computer-generated screen content video, however, is often

generated with knowledge of the sample positions, resulting

in motion that is discrete or precisely aligned with sample

positions in the picture. For this kind of video, integer motion

vectors may be sufficient for representing the motion. Savings

in bit-rate can be achieved by not signalling the fractional

portion of the motion vectors.

In HEVC-SCC, adaptive motion vector resolution

(AMVR) [44] defines a slice-level flag to indicate that

the current slice uses integer (full-pel) motion vectors for

luma samples. If the flag is true, then the motion vector

predictions, motion vector differences, and resulting motion

vectors assume only integer values, so the bits representing

the fractional values do not need to be signalled. To minimize

differences between HEVC-SCC and HEVC version 1, the

decoded integer motion vectors are simply left-shifted by one

or two bits, so the rest of the motion vector processing is

unchanged as the fractional bits are zero.

IV. ENCODING ALGORITHMS

Because of the introduction of new coding tools as de-

scribed in Section III and different characteristics of screen

content, new encoding algorithms were introduced during the

development of HEVC-SCC. These methods are part of the

HEVC-SCC test model 3 [45]. It should be understood that

these methods are not normative but help improve the coding

efficiency of the HEVC-SCC coding tools. The new algorithms

that are much different from conventional video encoding

methods are described in this session for a better understanding

of HEVC-SCC.

A. Intra block vector search

In order to decide whether to use IBC mode for a CU,

a rate-distortion (RD) cost is calculated for the CU. Block

matching (BM) is performed at the encoder to find the optimal

BV for each prediction unit. Depending on the size of the

prediction unit (PU), the following three types of candidate

BVs are evaluated as shown in Table II

The RD cost for each candidate BV is evaluated as:

RD cost
Y
= SADluma + λ× BVbits (4)

where SAD is the sum of absolute differences between sam-

ples in a block and corresponding samples in the matching

block, and BVbits is the number of bits needed to signal the

BV. Note that only the SAD for the luma block is used at

this stage. Once the RD cost for all the candidate vectors is

evaluated, the four candidate BVs with the least RD cost are

chosen. The candidate with the best RD cost is chosen as the

optimal BV. In this case, the RD cost is evaluated based on

both luma and chroma as follows:

RD cost
YUV

= SADluma + SADchroma + λ× BVbits (5)

For 8×8 PUs, the entire picture region conforming to the

restrictions on the predictor block as described in Section III-A

is searched for the optimal BV using a hash-based search.

Each node in the hash table records the position of each BV

candidate in the picture. Only the block vector candidates that

have the same hash entry value as that of the current block

are examined. For PU sizes up to 16×16, with the exception

of 8×8, an extended area may be searched for the optimal

BV. In this case, block vectors in the region conforming to the

restrictions on the predictor block as described in Section III-A

with at least one zero component (horizontal or vertical) are

considered as candidate BVs.

The 16-bit hash entries for the current block and the

reference block are calculated using the original sample values.

Let gradBLK denote the gradient of the 8×8 block and let

dc0, dc1, dc2, and dc3 denote the DC values of the four 4×4

sub-blocks of the 8×8 block. Then, the 16-bit hash entry H
is calculated as:

H = msb(dc0, 3) ≪ 13 + msb(dc1, 3) ≪ 10 +

msb(dc2, 3) ≪ 7 + msb(dc3, 3) ≪ 4 +

msb(gradBLK, 4) (6)

where msb(X,n) represents the n most significant bits of X .

The gradient is calculated as follows: First for each sample

in the block except for the first line and first column, gradX
is calculated as the absolute difference between the current

sample and the sample to the left. Similarly gradY is cal-

culated as the absolute difference between the current sample

and the sample above. Then grad for the sample is set equal

to average of gradX and gradY . The final gradBLK for the

block is the cumulative sum of the per-sample grad values

over the block.

B. Inter search

Large motion is often observed in screen content, which

makes the conventional motion search computationally pro-

hibitive. However, because digitally-captured screen content

is usually noiseless, it is possible to use fast search methods

in the encoder to identify the corresponding block in a ref-

erence picture. In the reference software, a hash-based block

matching algorithm [46] is used to search for identical blocks

in reference pictures. For a reference picture, a 16-bit cyclic
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redundancy check (CRC) value is calculated using the original

sample values for a block starting from any sample position

and having sizes of 8× 8, 16× 16, 32× 32 and 64× 64. An

18-bit hash value is formed comprising the 16-bit CRC and

2 bits representing the block size. An inverted index is used

to index every block having the same hash value. For a CU

with a 2Nx2N prediction unit, the hash value is calculated,

and with this hash value an exact match can be searched for

using the inverted index in linear time, regardless of the search

range and number of reference pictures. To reduce the memory

requirement for storing the hash table, a pre-filtering process

is applied to exclude blocks that can be easily predicted using

intra prediction. For those blocks, it is not necessary to perform

block matching. When a block cannot find an exact match in

the reference picture, as is the case for most camera-captured

material, conventional motion estimation is used. For simple

screen content material, most blocks can have exact matches.

Thus, the motion estimation search process is often be skipped,

which can significantly reduce the encoding complexity.

C. Palette mode encoding

To evaluate the RD cost of encoding a CU in palette mode

a palette table for the CU is derived as follows. A modified

k-means clustering method is used to derive a palette table

in the lossy case. The palette table is initialized to have

no entries. Then, for each sample in the CU, the nearest

palette entry (in terms of SAD) is determined. If the SAD

is within a threshold value, the sample is added to the cluster

corresponding to the nearest palette entry. Otherwise a new

palette entry is created to be equal to the sample value. After

processing all the samples in the CU, each palette entry is

updated by the centroid of the cluster. Then, the palette entries

are sorted based on the number of entries in their associated

clusters. There is a limit on the maximum palette size, which

is signalled in the sequence parameter set. If the number of

palette entries exceeds this limit, the least frequent clusters are

eliminated and the sample values belonging to those clusters

are converted to escape samples.

As discussed in Section III-B, if a palette entry is already

in the palette predictor, the cost of including it in the current

palette is small. On the other hand, when the centroid is not in

the palette predictor, all the components have to be signalled

explicitly in the bit-stream, resulting in much higher cost.

Hence a rate distortion analysis is performed to determine

whether assigning a cluster to an existing palette predictor

entry has a lower RD cost. If this is the case, then the

centroid is replaced by the palette predictor entry. After this

step, duplicate palette entries are removed. Also, if a cluster

includes a single entry that is not contained in the palette

predictor, the entry is converted to an escape sample. For

lossless coding a slightly different method of palette derivation

based on histogram of the CU samples is used.

Once the palette table and assignment of CU sample values

to palette indices are determined, a rate-based encoder opti-

mization is performed to determine the palette run type flag

and run values [47]. For example, assuming that index mode

is chosen for the sample, a run value is determined. Then, the

per-sample cost in bits for coding the index and run value is

calculated. This cost is compared to the per-sample bit cost

for coding the run value assuming COPY ABOVE MODE is

chosen. The run type with the lower per-sample bit cost is

chosen. The decision is greedy in the sense that sometimes

when COPY ABOVE MODE is chosen, the cost of coding

an index is just postponed to a future run. More sophisti-

cated strategies are possible. For example, instead of first

performing index assignment and then making the decision

about palette run type flag and run values, it may be possible

to make these decisions jointly. As a simple example, by

forcing a sample value to map to a different index, it may

be possible to extend a run, thereby lowering the RD cost.

Such strategies are currently not considered in HEVC-SCC

test model 3 encoder.

D. Decision for adaptive colour transform

When the adaptive colour transform is enabled, a coding

unit can choose to perform the colour transform described

in III-C on the residual of three colour components. In the

current test model, the encoder simply compares the R-D costs

of coding in both modes (with or without the colour transform)

and selects one with the least cost. Thus, the encoding time

increases accordingly.

E. Decision for adaptive motion vector resolution

For each slice, an encoder can choose to use full-pel or

fractional motion vectors for luma samples. In the current test

model, instead of checking both options and comparing the

RD costs, a fast algorithm is used to make the decision for

the entire slice. The basic idea of this algorithm is to determine

whether most blocks in the current slice have exact matching

blocks with full-pel displacements in the reference picture.

Similar to the inter search scheme described earlier, hash

values are precomputed for every possible 8× 8 block in the

reference picture. Next, the current slice is divided into non-

overlapped 8 × 8 blocks. For each block, the corresponding

hash value is calculated, and an exact match for each current

block’s hash is searched for in the list of reference block

hashes, without considering the case of hash collision. A match

indicates that an integer motion vector would yield an exact

match, without the need to actually perform the motion search.

If exact matches are found for most of the 8 × 8 blocks,

then full-pel motion vectors will be used for the slice. For

the detailed algorithms, readers can refer to [44].

V. PERFORMANCE ANALYSIS

Simulations were conducted to evaluate the new cod-

ing tools in HEVC-SCC and compare the coding effi-

ciency of HEVC-SCC with HEVC-RExt and H.264/AVC. For

H.264/AVC, HEVC-RExt and HEVC-SCC, the reference soft-

ware JM-18.6, HM-16.4 and SCM-3.0/SCM-4.0 were used,

respectively.
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A. Test conditions

The common test conditions (CTC) used during the devel-

opment of HEVC-SCC [48] were used to generate the results

presented in this section. These test conditions include video

sequences comprising a variety of resolutions and content

types. Table III lists the 4:4:4 sequences. In the category

column, ”TGM”, ”CC”, ”M” and ”A” stand for text and

graphics with motion, camera-captured content, mixed content

(i.e. content having both TGM and CC) and animation. For

each sequence, two colour formats are tested. One is in RGB

and the other is in YCbCr, denoted as YUV in the tables).

Table IV lists the 4:2:0 sequences. All of them are in YCbCr

colour format. As indicated by their names, several of the 4:2:0

sequences are generated from their 4:4:4 correspondences.

TABLE III
TEST SEQUENCES (4:4:4) IN THE CTC.

Resolution Sequence name Category

1920x1080

sc flyingGraphics 1920x1080 60 8bit TGM
sc desktop 1920x1080 60 8bit TGM
sc console 1920x1080 60 8bit TGM

MissionControlClip3 1920x1080 60p 8b444 M
EBURainFruits 1920x1080 50 10bit CC

Kimono1 1920x1080 24 10bit CC

1280x720

sc web browsing 1280x720 30 8bit TGM
sc map 1280x720 60 8bit TGM

sc programming 1280x720 60 8bit TGM
sc SlideShow 1280x720 20 8bit TGM

sc robot 1280x720 30 8bit A

2560x1440
Basketball Screen 2560x1440 60p 8b444 M

MissionControlClip2 2560x1440 60p 8444 M

TABLE IV
TEST SEQUENCES (4:2:0) IN THE CTC.

Resolution Sequence name Category

1920x1080

sc flyingGraphics 1920x1080 60 8bit 420 TGM
sc desktop 1920x1080 60 8bit 420 TGM
sc console 1920x1080 60 8bit 420 TGM

MissionControlClip3 1920x1080 60p 8b420 M

1280x720

sc web browsing 1280x720 30 8bit 420 r1 TGM
sc map 1280x720 60 8bit 420 TGM

sc programming 1280x720 60 8bit 420 TGM
sc SlideShow 1280x720 20 8bit 420 TGM

sc robot 1280x720 30 8bit 420 A

2560x1440
Basketball Screen 2560x1440 60p 8b420 M

MissionControlClip2 2560x1440 60p 8420 M

1024x768 ChinaSpeed 1024x768 30 A

Three test configurations, i.e. all intra (AI), random access

(RA) and low-delay B (LB) were used. For lossy coding, four

QPs, {22, 27, 32, 37}, were applied. More details can be found

in [48].

B. Performance analysis of coding tools

To verify the effectiveness of coding tools described in

Section III, Tables V, VI, VII and VIII show the coding

performance compared to an anchor not having the specific

coding tool in SCM-3.0, for 4:4:4 sequences2. Only the BD-

rate measures of the first colour component are listed due to

space limitations. From these tables, it can be seen that both

IBC and palette modes are very effective for videos in the

TGM and M categories. For camera-captured content, both

tools neither help nor harm the coding efficiency noticeably.

Another observation is that the coding gain for AI is larger

than that for RA or LB, because both IBC and palette modes

are for intra coding.

From Table VII, it can be observed that ACT improves the

coding of RGB videos significantly, regardless of categories.

In contrast, the performance gains of ACT are limited when

the video is already in the YUV colour format.

TABLE V
COMPARISON OF SCM-3.0 WITH VERSUS WITHOUT IBC (BD-RATE

CHANGE).

AI RA LB

RGB

TGM -31.3% -19.1% -10.6%
M -28.9% -19.2% -8.9%
A -1.1% -0.5% -0.1%

CC -0.1% 0.0% 0.0%

YUV

TGM -32.5% -19.1% -9.8%
M -29.5% -19.9% -8.9%
A -1.6% -0.5% 0.1%

CC -0.2% 0.0% 0.1%

TABLE VI
COMPARISON OF SCM-3.0 WITH VERSUS WITHOUT PALETTE (BD-RATE

CHANGE).

AI RA LB

RGB

TGM -15.5% -10.5% -6.8%
M -3.7% -2.6% -1.5%
A 0.0% -0.1% 0.0%

CC 0.0% 0.0% 0.0%

YUV

TGM -16.2% -11.1% -6.8%
M -5.9% -4.4% -2.7%
A 0.1% 0.2% 0.1%

CC 0.0% 0.1% 0.1%

TABLE VII
COMPARISON OF SCM-3.0 WITH VERSUS WITHOUT ACT (BD-RATE

CHANGE).

AI RA LB

RGB

TGM -9.6% -11.6% -11.1%
M -16.6% -23.1% -23.7%
A -24.5% -24.9% -24.0%

CC -24.5% -27.5% -26.1%

YUV

TGM -0.4% -0.7% -1.0%
M 0.1% 0.4% 0.4%
A 0.1% -0.1% 0.0%

CC 0.1% 0.5% 0.3%

2For individual tool comparisons, SCM-3.0 is used because it already
contains all coding tools mentioned above. The improvements of later versions
of SCM are mainly for 4:2:0 sequences.
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TABLE VIII
COMPARISON OF SCM-3.0 WITH VERSUS WITHOUT AMVR (BD-RATE

CHANGE).

RA LB

RGB

TGM -1.4% -2.2%
M 0.0% 0.0%
A 0.0% 0.0%

CC 0.0% 0.0%

YUV

TGM -1.5% -2.4%
M 0.0% -0.1%
A 0.0% 0.0%

CC 0.0% 0.0%

C. Performance comparison with existing standards

Tables IX and XI show the performance comparison be-

tween SCM-4.0 and HM-16.4, for lossy and lossless coding

respectively. For lossy coding, the BD-rate changes for all

three colour components are shown. For lossless coding, the

average bit-saving percentages are listed. Significant improve-

ments in compression efficiency are achieved, especially for

videos in the TGM and M categories. Decreases in BD-rate

of more than 50% indicate that SCM-4.0 can perform with

more than twice the compression efficiency of HM-16.4. For

comparisons with H.264/AVC, Table XIII and XV show the

coding performance comparison between SCM-4.0 and JM-

18.6.

TABLE XI
LOSSLESS CODING PERFORMANCE COMPARISON BETWEEN SCM-4.0 AND

HM-16.4 FOR 4:4:4 SEQUENCES (BD-RATE CHANGE).

Colour format Category AI RA LB

RGB

TGM -45.8% -35.2% -32.2%
M -24.3% -6.3% -3.9%
A -4.4% -1.1% -1.1%

CC -0.2% 0.4% 0.4%

YUV

TGM -46.7% -36.4% -33.3%
M -23.9% -6.3% -3.8%
A -1.7% -0.3% -0.3%

CC 0.0% 0.0% 0.0%

TABLE XII
LOSSLESS CODING PERFORMANCE COMPARISON BETWEEN SCM-4.0 AND

HM-16.4 FOR 4:2:0 SEQUENCES (BD-RATE CHANGE).

Category AI RA LB

TGM -34.1% -23.9% -21.1%
M -21.6% -6.0% -3.5%
A -0.7% -0.2% -0.1%

VI. CONCLUSIONS

The HEVC screen content coding extension was developed

to leverage the unique characteristics of computer-generated

and digitally-captured videos. The intra block copy mode takes

advantage of the presence of exact copies of blocks between

different pictures in a video sequence. Palette mode targets

blocks having a limited number of unique colour values, which

frequently occur in computer-generated pictures. The adaptive

TABLE XV
LOSSLESS CODING PERFORMANCE COMPARISON BETWEEN SCM-4.0 AND

JM-18.6 FOR 4:4:4 SEQUENCES (BD-RATE CHANGE).

Colour format Category AI RA LB

RGB

TGM -66.7% -59.1% -58.9%
M -44.4% -28.4% -26.6%
A -20.9% -14.3% -13.0%

CC -6.9% -2.9% -2.8%

YUV

TGM -53.5% -47.7% -47.4%
M -29.3% -16.7% -14.9%
A -5.0% -7.6% -6.2%

CC -0.7% -1.4% -1.4%

TABLE XVI
LOSSLESS CODING PERFORMANCE COMPARISON BETWEEN SCM-4.0 AND

JM-18.6 FOR 4:2:0 SEQUENCES (BD-RATE CHANGE).

Category AI RA LB

TGM -44.2% -39.8% -36.6%
M -26.9% -16.9% -14.1%
A -4.5% -9.6% -7.7%

colour transform performs an in-loop colour space conversion

from RGB to YCoCg, and an adaptive motion vector resolu-

tion eliminates the need to signal fractional motion vectors for

computer-generated video. With these new tools, HEVC-SCC

is capable of performing with more than twice the compression

efficiency of HEVC-RExt for material having primarily text

and graphics or mixed content.
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