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Abstract

Background: The biomedical literature is the primary information source for manual protein-protein

interaction annotations. Text-mining systems have been implemented to extract binary protein

interactions from articles, but a comprehensive comparison between the different techniques as well as

with manual curation was missing.

Results: We designed a community challenge, the BioCreative II protein-protein interaction (PPI) task,

based on the main steps of a manual protein interaction annotation workflow. It was structured into four

distinct subtasks related to: (a)detection of protein interaction-relevant articles; (b)extraction and

normalization of protein interaction pairs; (c)retrieval of the interaction detection methods used; and (d)

retrieval of actual text passages that provide evidence for protein interactions. A total of 26 teams

submitted runs for at least one of the proposed subtasks. In the interaction article detection subtask, the

top scoring team reached an F-score of 0.78. In the interaction pair extraction and mapping to SwissProt,

a precision of 0.37 (with recall of 0.33) was obtained. For associating articles with an experimental

interaction detection method, an F-score of 0.65 was achieved. As for the retrieval of the PPI passages

best summarizing a given protein interaction in full-text articles, 19% of the submissions returned by one

of the runs corresponded to curator-selected sentences. Curators extracted only the passages that best

summarized a given interaction, implying that many of the automatically extracted ones could contain

interaction information but did not correspond to the most informative sentences.

Conclusion: The BioCreative II PPI task is the first attempt to compare the performance of text-mining

tools specific for each of the basic steps of the PPI extraction pipeline. The challenges identified range from

problems in full-text format conversion of articles to difficulties in detecting interactor protein pairs and

then linking them to their database records. Some limitations were also encountered when using a single

(and possibly incomplete) reference database for protein normalization or when limiting search for

interactor proteins to co-occurrence within a single sentence, when a mention might span neighboring

sentences. Finally, distinguishing between novel, experimentally verified interactions (annotation relevant)

and previously known interactions adds additional complexity to these tasks.
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Background
Physical protein-protein interactions have been studied

extensively because of their crucial role in controlling central

biological processes such as cell division and their implica-

tions in a range of human diseases including cancer. A collec-

tion of experimental techniques is available to characterize

protein-protein interactions; some of them are more suitable

to determine stable complexes whereas others are generally

considered better for detecting transient interactions. The use

of large-scale proteomics approaches for experimentally

obtaining protein interaction information has resulted in an

additional source of interaction data. Also, bioinformatics

techniques based on sequence, structural, or evolutionary

information have been devised to predict binary protein

interactions.

To capture and provide efficient access to the underlying

information, structured interaction annotations have been

stored in public databases. These databases vary in annota-

tion depth and type of interactions, but a common character-

istic is that the annotations are primarily extracted by human

curators from relevant publications. Some interaction data-

bases such as the human protein-protein interaction database

HPRD (Human Protein Reference Database) [1], HomoMINT

(inferred human network) [2], and MIPS (Munich Informa-

tion Center for Protein Sequences) [3] focus on certain taxa

and store mainly information for human or mammalian pro-

teins. There are also more specialized interaction databases

like PDZBase [4], which is restricted to proteins with a PDZ

domain, or Reactome [5], which focuses on interactions

related to biological pathways. The interaction databases

MINT (Molecular Interactions Database) [6] and IntAct [7]

contain the largest number of nonredundant direct human

protein-protein interactions, exceeded in number only by

HPRD. They also provide literature references relevant to the

individual interactions, together with the experimental inter-

action detection method used as supporting evidence [8].

Although most interaction databases provide links to Swiss-

Prot identifiers for their interactor proteins, to compare

annotations derived from different databases as well as to

share the annotation effort, both a standard annotation for-

mat as well as controlled vocabulary terms describing the

experimental context are crucial. The Proteomics Standards

Initiative Molecular Interaction (PSI-MI) standard has been

developed to facilitate a coordinated annotation effort for

protein interactions using controlled vocabulary terms and

providing a common format as framework [9]. More efficient

retrieval systems of biological interactions contained in scien-

tific articles are in demand not only for specialized users such

as biological database curators, but also for the general biol-

ogy community. In order to improve the efficiency of locating

curation relevant articles by the Biomolecular Interaction

Network Database (BIND) curators, an extraction system

called PreBIND based on support vector machine (SVM) clas-

sifiers to detect interaction-relevant articles, has been devel-

oped [10].

A range of methods have been proposed to extract biological

associations from the literature. Some of them obtain general

associations, whereas others focus on certain biologically rel-

evant association categories (for example, protein interac-

tions, genetic interactions [gene regulation], or gene product-

functional keyword association [functional annotations])

[11,12].

In general, two baseline approaches to extract biological rela-

tions may be identified, although many of the previously pub-

lished systems are actually hybrid strategies combining

features from both. The approaches are termed local associa-

tion analysis and global association analysis.

The local association analysis or article-centric approach tries

to extract binary interactions for proteins co-occurring in a

predefined textual context, often corresponding to sentences

or text passages. To determine whether the co-occurring enti-

ties exhibit an interaction relationship, additional contextual

characteristics are considered. Some of these rely, for

instance, on the use of interaction keywords, verbs or seman-

tic frames, or on machine learning techniques for classifying

sentences according to their interaction relevance or even

exploitation of syntactical rules for detecting interaction rela-

tions. Some of these approaches integrate modules that han-

dle negation ('A [does not] interact with B') that reverse the

meaning of a predicate. Other approaches can detect enumer-

ations of multiple protein mentions in a single sentence. The

advantage of the article-centric approach is that it often pro-

vides interaction-relevant sentences useful for human inter-

pretation and can support detection of novel protein

interactions with only single citation evidence. Because this

type of approach extracts direct interactions together with the

supporting textual evidence, it may serve to improve annota-

tion consistency as well as facilitate annotation update.

Global association analysis, or multi-document interaction

extraction, tries to exploit recurrent co-occurrence of proteins

within a collection of documents or passages in order to

detect protein interaction pairs [13]. The strength or reliabil-

ity of the extracted interaction pairs can be calculated based

on statistical co-occurrence analysis. An interaction network

can thus be extracted providing a global systems biology over-

view that also captures indirect relations that go beyond a

single document. This strategy is more suitable for capturing

commonly known protein interactions, which have been

extensively studied with a collection of supporting citations.

One disadvantage of this approach is that it is not straightfor-

ward for human interpretation.

Most of the implemented methods extract interaction infor-

mation from PubMed abstracts and titles only, and not from

the corresponding full-text articles, obtaining results that are
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not directly comparable with the information contained in

interaction databases, which access the whole documents.

Another limitation is that most of them address only very nar-

row aspects of the interaction annotation pipeline, which

gives somewhat artificial results that do not scale up to handle

real applications. Among the aspects often neglected are the

intricacies of the initial article selection process, as well as the

linking of the interactor proteins to their corresponding data-

base identifier, a step that is often referred to as 'normaliza-

tion'. Moreover, no previously reported text-mining strategy

distinguishes between experimentally verified interactions

and interaction statements that lack experimental confirma-

tion. This aspect is crucial, because most of the biological

annotation databases provide an evidence qualifier for each

annotation record. For BioCreative II, we developed a text-

mining task for the extraction of protein-protein interaction

annotations from the literature, and evaluated the submis-

sions against a manually curated 'gold standard' carried out

by expert database annotators.

The main aims posed when devising the protein-protein

interaction (PPI) task were as follows.

1. Determine the performance of state-of-the-art text-mining

tools in extracting PPIs, as compared with manual curation.

2. Provide participating systems with useful resources for

training and testing protein interaction extraction systems.

3. Explore which approaches are successful and practical.

4. Analyze the main difficulties and aspects influencing per-

formance of PPI extraction systems.

5. Promote the development of useful tools to extract protein-

protein interactions from text.

Previously published protein interaction extraction systems

do not have directly comparable evaluation setups to allow

one to carry out consistent comparison and benchmark stud-

ies, and they also yield results that are not comparable with

results of manual database annotation efforts (mainly due to

the lack of interactor protein normalization). The BioCreative

II PPI task was carried out to allow comparison of various

strategies on a common benchmark dataset based on data

collections prepared by domain experts and in line with the

content and annotation strategy of interaction databases.

Protein-protein interaction task

The PPI task comprised four sub-tasks, each of which was

concerned with a particular aspect of the interaction annota-

tion pipeline.

1. Interaction article subtask (IAS): classification and ranking

of PubMed abstracts, based on whether they are relevant to

protein interaction annotation or not.

2. Interaction pair subtask (IPS): extraction of binary protein-

protein interaction pairs from full-text articles. Proteins are

annotated with their corresponding unique SwissProt

identifier.

3. Interaction method subtask (IMS): extraction of the inter-

action detection method used to characterize the protein

interactions described in full-text articles. The interaction

detection methods must be characterized in terms of corre-

sponding MI ontology identifiers. They constitute the experi-

mental evidence for the interaction.

4. Interaction sentences subtask (ISS): retrieval of the textual

evidence passages that describe/summarize the interaction.

Participating teams were provided with a collection of train-

ing data for each subtask to build and train their literature

mining systems during the period from June to October

2006. Then, during the test phase, the participants had to

provide submissions for at least one of the PPI subtasks

within a predefined, short period of time (<2 weeks, to mini-

mize the possibility of a manual annotation attempt). Figure

1 provides a comparative flowchart of the manual protein-

protein interaction annotation process with the automatic

text-based extraction within the context of the BioCreative II

PPI task.

Results
A total of 26 teams submitted results for one or more PPI sub-

tasks. Each team could provide up to three runs (submis-

sions) per subtask, to allow them to explore different

parameters or methods. The most relevant results are

described in this article; additional results and data analysis

are available online [14].

Interaction articles subtask

The aim of the IAS was to determine whether text-mining

tools can detect and rank interaction annotation-relevant

articles based on PubMed titles and abstracts only. Although

manual interaction annotations are based on inspection of

full-text articles, PubMed titles and abstracts were used for

this set up. This is in line with the textual data availability,

because there are still general limitations in retrieving,

processing, and distributing large collections of full-text arti-

cles for a considerable number of annotation-relevant biolog-

ical journals. In this way we also explored the implicit

limitations of abstract-based detection of annotation-rele-

vant articles. Resulting applications would enable a more effi-

cient retrieval of protein-protein interaction literature for

biologists, as well as assisting database curators in the initial

article selection step.

Most of the manual curation strategies start with initial read-

ing of abstracts, followed by detailed examination of the cor-

responding full-text articles only when, based on the abstract,
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the article appears to be worthwhile for manual curation. The

actual protein interaction annotations in turn are extracted

(in most cases) from the full-text articles. This implies that

there are cases where the abstracts alone are not informative

Manual versus automated protein-protein interaction annotationFigure 1

Manual versus automated protein-protein interaction annotation. Presented is a comparison between the manual protein-protein interaction (PPI) 
annotation process and the automatic extraction of protein interactions in the context of the PPI task of BioCreative II.
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enough to determine curation relevance for the correspond-

ing full-text article. To increase recall, the MINT and IntAct

databases carry out a shared, exhaustive curation effort for a

specified list of journals of particular high content of protein

interaction annotations. The idea behind this shared curation

is to ensure that all the interaction annotation information

contained in articles from a certain publication period of

these journals has been extracted.

Participants received a training collection of abstracts result-

ing from the curation effort of the IntAct and MINT interac-

tion databases to develop their systems. To evaluate the

performance of these systems, participants received a test set

of unlabeled abstracts, which they had to classify into interac-

tion relevant or nonrelevant articles. For the evaluation, par-

ticipants were asked to return two separate ranked lists of

article identifiers as output, one for the abstracts classified as

protein interaction relevant and one for the abstracts classi-

fied as nonrelevant. They were asked to generate these classi-

fications automatically, without human re-ranking or manual

inspection.

A total of 19 teams submitted 51 runs (up to three runs were

allowed per team). The automatically classified articles were

compared with the classification carried out by the interac-

tion database curators. As evaluation measures, the recall,

precision, balanced F score and area under the receiver oper-

ating characteristic curve (AUC) were used, as is customary

for information retrieval experiments (see, for example, the

TREC [Text Retrieval Conference] competitions [15], which

have recently included a Genomics track):

Where TP is number of true-positive predictions (interaction-

relevant abstracts correctly identified); FP is the number of

false positives (abstracts which are not interaction-relevant

predicted as such by the participants); FN is the number of

false negatives (interaction-relevant abstracts wrongly classi-

fied as non-relevant by the participants); TN is the number of

true negatives (nonrelevant abstracts, which were identified

as such by the participants); P is the total number of positives

(interaction-relevant); and N is the total number of negatives

(not interaction-relevant abstracts). To calculate the AUC, the

standard R package ROCR, which integrates the most com-

mon evaluation metrics to assess the performance of classifi-

ers [16], was used. Figure 2 shows the overall precision-recall

plot for the IAS (part a) as well as a more detailed zoom of the

top scoring teams (part b). A detailed collection of the IAS

results obtained by each run of the participating teams is pro-

vided in Table 1.

Team 6 (Alex and coworkers [17]) achieved the highest AUC

(0.8554), with a precision of 0.7080, a recall of 0.8609, and

an F score of 0.7770. They applied a SVM classifier together

with careful pre-processing, stemming, part-of-speech (POS)

tagging, sentence splitting and shallow parsing. Team 6 also

integrated a protein name detection and abbreviation resolu-

tion systems. Team 57 [18] obtained the highest F score

(0.7800), also using a SVM-based text classifier. Figure 2b

shows that a common characteristic among a considerable

fraction of the top scoring teams was the usage of SVM tech-

niques for their classification systems. The usefulness of

SVMs to detect interaction literature had previously been

explored both at the level of abstracts and at the sentence

level [19]. A common trend in the submitted runs was the

consistently higher recall when compared with precision.

Manual blind classification of a randomly chosen subset of

412 test set abstracts by a domain expert (but without special

training for interaction annotation) showed a similar out-

come, with a very high recall of 0.97 and a considerable lower

precision of 0.75. A detailed examination of the IAS test set

predictions and the manual abstract classification showed

that there are two basic types of false-positive categorizations

when compared with annotations by interaction database

curators. The first type refers to protein interaction-related

abstracts that nonetheless do not have corresponding pro-

tein-protein interactions that are worth annotating in the full

text. This implies that there are cases in which abstracts do

not provide sufficient information to determine with cer-

tainty whether an experimental protein interaction character-

ization is described in the corresponding full-text article. The

second type of false-positive prediction corresponds to

abstracts describing interaction relations, but not between

proteins. These included the following interaction classes.

1. Protein-DNA interaction descriptions: these mainly refer to

transcriptional complexes that comprise associations

between regulatory gene sequences and transcription factors

(PMID 16311517, PMID 16601684).

2. RNA interaction descriptions: these refer to associations

between RNA molecules (for example, tRNA interaction with

the mRNA; PMID 16724118) or between proteins and RNA

molecules, such as in 'Musashi interacts specifically with the

polyadenylation response element in the 3' untranslated

region of the Mos mRNA' (PMID 16763568).

3. Cellular and subcellular structure interaction descriptions:

these refer to interactions of cells or cellular structures or

between proteins and cellular structures, such as liposomes

Precision
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Figure 2 (see legend on next page)
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(PMID 10409698), the nuclear envelope, or telomeres (PMID

16467853).

4. Chemical substance interaction descriptions, including

binding studies of metal ions (PMID 16601688), peptides

(PMID 16494877), nucleotides (PMID 16678163), oligonucle-

otides (PMID 16794580), or proteoglycans (16511564). The

following two phrases illustrate this kind of interaction

expressions: 'bovine RPE65 binds iron ion' (PMID 16319067)

and 'structure of a complex between Hrp1 and an oligonucle-

otide' (PMID 16794580).

5. Biological process association descriptions: these refer to

relations of a protein with a certain biological process or path-

way, such as in 'NDRG1 interacts with SIRT1/p53 signaling'

(PMID 16314423).

6. Host-pathogen interaction descriptions (for example, for

fungal pathogens; PMID 16263704).

7. Interactions between proteins and cells: 'The carboxyl-ter-

minal domains 19-20 of FH interact with the major opsonin

C3b, glycosaminoglycans, and endothelial cells.' (PMID

16601698).

8. Immune system interaction descriptions: these refer, for

instance, to binding characterizations of allergens and immu-

noglobulins which are not curated by interaction databases

(for example, IgE-binding of hevein; PMID 16638575).

9. Word sense ambiguity. When using words as features for a

document classifier, an incorrect identification of the word

sense can hamper the classification of abstracts. For instance,

the word 'complex', often used to describe a structural assem-

bly of proteins, can also denote 'having many relations'

(PMID 16482221).

10. Protein names: false positives resulting from protein

names containing interaction terms, for example, ATR-inter-

acting protein (ATRIP; PMID 1667595).

In case of false-negative test set classifications, some of them

corresponded to abstracts related to gene regulation but also

mentioned characterizations of transcriptional protein-pro-

tein complexes. Because many of the negative training sam-

ples corresponded to gene regulation characterizations, these

abstracts were harder to classify correctly. Other false-nega-

tive abstracts corresponded to very specific transient interac-

tion types (PMID 16648821). From abstracts alone it often

remains unclear whether the interaction mentioned is also

experimentally characterized in the full-text article. Well

known interactions that might be mentioned in abstracts are

usually not experimentally characterized in the correspond-

ing full-text article. Some of the abstracts do not explicitly

state protein interactions but provide enough contextual

information to make the article worthwhile for a full-text

curation check.

To be of practical significance, evaluation metrics should take

into consideration end user needs and the available amount

of literature data. The BioCreative scenarios have from the

start emphasized the actual usefulness of the results of the

systems for their intended users, biologists and curators, so as

to not create implausible or artificial test scenarios. In

exhaustive curation, as was the case of the BioCreative test

collection, a high recall is actually more desirable, in order not

to miss any curation-relevant article. When considering other

user scenarios, such as thematic curation against the whole

PubMed database, high precision and efficient relevance

ranking might have a greater practical impact.

To determine the effect of combining the predictions pro-

vided by different systems, a majority voting analysis was per-

formed. Based on simple majority voting, a precision of

0.7078 can be reached. Simple majority voting based results

showed a corresponding recall of 0.8817, F measure of

0.7852, and accuracy of 0.7592. The relationship between the

average prediction agreement and the corresponding article

rank was also studied. Figure 3 illustrates this relation, show-

ing that the higher the agreement between different submis-

sions on the correct class label was, the higher the

corresponding average rank of this abstract. This fact sup-

ports the idea of creating an online meta-server to leverage

fully the collective performance of the participating systems,

as well as to enhance comparison of their individual strengths

and weaknesses in real-world settings and conditions. The

BioCreative meta-server is further described in another arti-

cle in this supplement to Genome Biology [20].

Interaction pair subtask

The IPS goes beyond previously published strategies on auto-

matic protein interaction extraction from text. These were

often characterized by strong prior assumptions, resulting in

tools that were not directly comparable with existing protein

interaction annotation databases and were of only limited

practical use. Among the restrictions of previous efforts, as

mentioned previously, is the use of abstracts only, as well as

the assumption of co-occurrence of both entity mentions

Precision versus recall plot for the IASFigure 2 (see previous page)

Precision versus recall plot for the IAS. (a) Overview plot for all of the received submissions and (b) zoomed view of the top scoring teams, with some 
additional details related to the methods used (SVM-based approaches are represented by circles, and other methods by triangles) as well as the AUC 
score. Runs with an AUC greater than 0.8 are shown in green. AUC, area under the receiver operating characteristic curve; IAS, interaction article 
subtask; SVM, support vector machine.



Genome Biology 2008, 9(Suppl 2):S4

http://genomebiology.com/2008/9/S2/S4 Genome Biology 2008,     Volume 9, Suppl 2, Article S4       Krallinger et al. S4.8

within single sentences. Key aspects of biological annotations

- such as linking the entities to their corresponding unique

database identifiers or the consideration of experimental evi-

dence information supporting the interactions - still need fur-

ther refinement to avoid piling up small individual errors into

larger, more significant, global ones. Tackling these and other

challenges required that participating systems use full-text

articles provided in commonly available formats (PDF and

HTML) and extract binary protein interaction pairs regard-

less of whether they co-occurred within a sentence or not.

Additionally, each of the interactor proteins had to be linked

to its corresponding UniProt identifier or accession number.

This implied, for instance, that for the interactor protein

CARD10 the participants had to establish whether it corre-

sponded to the human (CAR10_HUMAN) or mouse protein

(CAR10_MOUSE) in order to assign the correct correspond-

ing database identifier. The manual association of interactor

proteins to their database identifiers constitutes one of the

most time-consuming steps within the manual interaction

curation pipeline. To develop their systems, the participants

received a collection of full-text articles and the correspond-

ing interaction annotation records of MINT and IntAct. As

test collection, a set of full-text articles was released. From

these, the participants had to extract the protein-protein

interaction pairs for which an experimental characterization

was provided in the article (for more details, refer to the data

preparation section). Each of the submissions was scored in

terms of precision and recall of the interaction pairs provided

by the system, as compared with the manually extracted ones.

To avoid inconsistencies resulting from the use of different

database releases, we provided a baseline SwissProt collec-

tion and only protein identifiers contained in that database

version were considered for evaluation purposes. Neverthe-

less, in practice it is not always possible to normalize the

interactor proteins mentioned in the text to a single database,

because there is currently no biological database that covers

all of the proteins described in the literature. Therefore, we

analyzed separately the following groups of articles: those

mentioning only interaction pairs in which both proteins

could be linked to a SwissProt record (SwissProt-only article

set); and those also including interactions formed by a pro-

tein contained in SwissProt and a protein contained in the

TrEMBL (Translated EMBL) database only (whole article

set).

Table 1

IAS result overview

Team Run Precision Recall F score AUC Accuracy

T4 1 0.7040 0.8373 0.7649 0.7495 0.7430

T4 2 0.6061 0.9379 0.7364 0.5529 0.6647

T4 3 0.7128 0.7929 0.7507 0.7479 0.7371

T6 1 0.7080 0.8609 0.7770 0.8554 0.7533

T7 1 0.6851 0.8432 0.7560 0.8270 0.7282

T7 2 0.6682 0.8639 0.7535 0.7875 0.7179

T7 3 0.6840 0.8580 0.7612 0.8318 0.7312

T11 1 0.6411 0.8669 0.7371 0.7995 0.6913

T11 2 0.7222 0.7692 0.7450 0.7567 0.7371

T11 3 0.6769 0.7811 0.7253 0.7013 0.7046

T14 1 0.7343 0.4497 0.5578 0.7500 0.6440

T14 2 0.7371 0.4645 0.5699 0.7561 0.6499

T14 3 0.7465 0.4704 0.5771 0.7570 0.6558

T19 1 0.6247 0.7337 0.6748 0.6765 0.6470

T19 2 0.6453 0.5651 0.6025 0.6765 0.6278

T27 1 0.5886 0.8550 0.6972 0.6812 0.6292

T27 2 0.5554 0.9201 0.6927 0.6244 0.5923

T27 3 0.6076 0.8521 0.7094 0.6945 0.6514

T28 1 0.7507 0.8107 0.7795 0.8471 0.7710

T28 2 0.7471 0.7692 0.7580 0.8150 0.7548

T28 3 0.6864 0.7899 0.7345 0.7993 0.7149

T30 1 0.5826 0.5947 0.5886 0.6197 0.5849

T30 2 0.4871 0.5030 0.4949 0.5643 0.4874

T30 3 0.5995 0.6953 0.6438 0.6581 0.6160

T31 1 0.6678 0.5947 0.6291 0.6714 0.6499

T31 2 0.7206 0.5266 0.6085 0.6793 0.6617

T31 3 0.7959 0.3462 0.4825 0.6793 0.6292

T37 1 0.5480 0.9793 0.7028 0.6976 0.5864

T37 2 0.5755 0.9467 0.7159 0.7468 0.6248

T37 3 0.5312 0.9822 0.6895 0.6550 0.5583

T41 1 0.6098 0.8876 0.7229 0.7535 0.6603

T41 2 0.6154 0.8757 0.7228 0.7720 0.6647

T41 3 0.6193 0.8905 0.7306 0.7714 0.6721

T44 1 0.6888 0.8580 0.7642 0.7320 0.7356

T44 2 0.6459 0.8580 0.7370 0.5970 0.6942

T44 3 0.7081 0.8254 0.7623 0.7433 0.7430

T48 1 0.9118 0.0917 0.1667 0.6572 0.5421

T48 2 0.5887 0.8639 0.7002 0.6422 0.6307

T48 3 0.8346 0.3136 0.4559 0.6904 0.6263

T49 1 0.5261 0.9852 0.6859 0.7968 0.5495

T49 2 0.5170 0.9911 0.6795 0.7990 0.5332

T49 3 0.5741 0.7219 0.6396 0.5894 0.5938

T51 1 0.7179 0.8284 0.7692 0.8412 0.7518

T52 1 0.6929 0.8343 0.7570 0.8057 0.7326

T52 2 0.6651 0.8462 0.7448 0.8146 0.7105

T57 1 0.7031 0.8757 0.7800 0.8194 0.7533

T57 2 0.7024 0.8728 0.7784 0.8151 0.7518

T57 3 0.6962 0.8609 0.7698 0.8054 0.7430

T58 1 0.7656 0.4349 0.5547 0.7326 0.6514

T58 2 0.7692 0.5030 0.6082 0.7578 0.6765

T58 3 0.6676 0.7308 0.6977 0.7554 0.6839

AUC, area under the receiver operating characteristic curve; IAS, 
interaction article subtask.

Table 1 (Continued)

IAS result overview
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When calculating the performance of the interaction extrac-

tion systems, two general evaluation strategies can be

distinguished.

1. The micro-averaged performance is based on combining

results from each interactor protein pair, weighting equally

all pairs, regardless of the number of interactions mentioned

per article. This number can vary considerably, depending on

whether a high-throughput experiment or low-throughput

detailed interaction characterization was carried out. This

score reflects the global performance of a system when com-

pared with the whole collection of curated interaction pairs.

2. Macro-averaged scores are based on computing results per

document and then averaging them for the whole document

collection. Thus, the score for each document is weighted

equally.

The second evaluation strategy is more useful for practical

applications, because it provides some insight into how stable

the method is when it is applied to a given article. Tables 2

and 3 show the evaluation of the protein-protein interaction

pair extraction for the whole test set article collection and the

SwissProt-only article subset, respectively.

For this subtask, a total of 45 runs from 16 teams were evalu-

ated. As a general trend, the performance of the systems on

the SwissProt-only article set was slightly higher, both in

terms of recall (in case of 40 runs) as well as precision (in case

of 38 runs). Looking at the performance of individual sys-

tems, the run submitted by team 4 [21] obtained the highest

average precision of 0.39, followed by team 28 [22] with 0.31

and team 6 [17] reaching a 0.28.

With respect to recall, team 42 [23] submitted the top-scoring

run (0.42), followed by team 4 (0.37) and team 6 (0.30). To

provide a balanced view of both precision and recall, the aver-

age of the F scores obtained for the test set article was also cal-

culated. Here, team 4 obtained an average F score of 0.29,

followed by run 3 of team 28 (0.26) and run 1 of team 6 (0.25).

As can be seen in Table 3 in case of the SwissProt-only article

set, team 28 obtained the best average F score (0.30), fol-

lowed by team 6 (0.29) and team 4 (0.28).

A common characteristic of the top scoring teams was the use

of rather sophisticated interactor protein normalization strat-

egies when compared with other systems; some of them are

described in this supplement. This emphasizes the intercon-

nectedness of the individual components of the pipeline,

where correct identification of protein mentions and linkage

to corresponding database records is one of the crucial

aspects for subsequent successful interaction extraction. For

this reason, we also analyzed the interactor protein normali-

zation performance by comparing the list of interactor pro-

teins extracted automatically with the list derived from

manual curation.

The macro-averaged precision, recall, and F score for articles

with at least a single prediction were calculated. The highest

precision for correct interactor protein normalization was of

Submission agreement versus average article rankFigure 3

Submission agreement versus average article rank. The relation of submission agreement among different runs to the average rank of the articles is 
presented for both relevant and nonrelevant articles. The overall agreement between systems was lower for nonrelevant articles (R2

relevant = 0.7 versus 
R2

nonrelevant = 0.59). In general, the higher the average rank of the article, the more systems agreed on the correct classification.
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Table 2

IPS result overview (whole article collection)

Team Run Precision Recall F score

4 1 0.3893 0.3073 0.2885

6 1 0.2758 0.3011 0.2532

6 2 0.2218 0.2592 0.2066

6 3 0.2392 0.3035 0.2272

11 1 0.0510 0.2753 0.0717

11 2 0.0510 0.2753 0.0717

11 3 0.0517 0.2776 0.0726

14 1 0.1791 0.1421 0.1384

14 2 0.1944 0.1300 0.1414

14 3 0.1162 0.1057 0.0985

17 1 0.0413 0.2543 0.0631

17 2 0.1018 0.2012 0.1182

17 3 0.1633 0.2066 0.1599

19 1 0.0854 0.2115 0.1036

19 2 0.1144 0.2681 0.1361

19 3 0.1595 0.2466 0.1690

28 1 0.1373 0.2905 0.1579

28 2 0.2177 0.2651 0.2039

28 3 0.3096 0.2935 0.2623

30 1 0.0551 0.1888 0.0731

30 2 0.0345 0.2352 0.0528

30 3 0.1574 0.1846 0.1382

36 1 0.0441 0.1121 0.0503

36 2 0.0229 0.0990 0.0305

36 3 0.0548 0.1350 0.0680

40 1 0.0762 0.2489 0.0990

40 2 0.2632 0.2484 0.2171

42 1 0.0160 0.4167 0.0280

42 2 0.2384 0.2218 0.2014

42 3 0.2101 0.2024 0.1827

43 1 0.0395 0.0846 0.0424

43 2 0.0828 0.0680 0.0653

43 3 0.0620 0.0867 0.0592

47 1 0.0830 0.1891 0.0910

47 2 0.0889 0.1909 0.0950

47 3 0.0747 0.1855 0.0844

49 1 0.0109 0.1092 0.0185

49 2 0.0289 0.0557 0.0345

49 3 0.0255 0.0865 0.0357

58 1 0.0003 0.0006 0.0004

58 2 0.0003 0.0006 0.0004

58 3 0.0004 0.0006 0.0005

60 1 0.0323 0.0942 0.0362

60 2 0.0162 0.0558 0.0205

60 3 0.0251 0.0654 0.0299

Interaction pair subtask (IPS) results for the whole article set. The 
average precision, recall, and F score obtained for each of the test set 
submissions are shown.

Table 3

IPS result overview (SwissProt only article collection)

Team Run Precision Recall F score

4 1 0.3908 0.2970 0.2849

6 1 0.3150 0.3356 0.2871

6 2 0.2519 0.2868 0.2308

6 3 0.2632 0.3394 0.2532

11 1 0.0562 0.2850 0.0770

11 2 0.0562 0.2850 0.0770

11 3 0.0569 0.2879 0.0780

14 1 0.1975 0.1543 0.1510

14 2 0.2113 0.1430 0.1552

14 3 0.1287 0.1157 0.1079

17 1 0.0452 0.2765 0.0684

17 2 0.1138 0.2274 0.1334

17 3 0.1901 0.2396 0.1862

19 1 0.0882 0.2287 0.1092

19 2 0.1200 0.2912 0.1453

19 3 0.1750 0.2748 0.1865

28 1 0.1566 0.3189 0.1784

28 2 0.2434 0.2828 0.2247

28 3 0.3696 0.3268 0.3042

30 1 0.0624 0.2153 0.0824

30 2 0.0367 0.2533 0.0557

30 3 0.1646 0.1964 0.1468

36 1 0.0456 0.1243 0.0560

36 2 0.0202 0.0997 0.0295

36 3 0.0560 0.1362 0.0686

40 1 0.0824 0.2672 0.1083

40 2 0.2751 0.2737 0.2355

42 1 0.0177 0.4368 0.0307

42 2 0.2522 0.2331 0.2112

42 3 0.2278 0.2158 0.1970

43 1 0.0412 0.1032 0.0491

43 2 0.1032 0.0836 0.0803

43 3 0.0734 0.1082 0.0731

47 1 0.0876 0.1964 0.0931

47 2 0.0940 0.1988 0.0978

47 3 0.0791 0.1920 0.0860

49 1 0.0107 0.1085 0.0186

49 2 0.0246 0.0564 0.0319

49 3 0.0234 0.0871 0.0340

58 1 0.0000 0.0000 0.0000

58 2 0.0000 0.0000 0.0000

58 3 0.0000 0.0000 0.0000

60 1 0.0384 0.1113 0.0422

60 2 0.0179 0.0631 0.0213

60 3 0.0281 0.0686 0.0314

Interaction pair subtask (IPS) results, SwissProt only. Average 
precision, recall, and F score obtained for the SwissProt-only test set 
articles for each of the evaluated runs of the IPS.
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0.56 (team 4) in case of the whole article set and of 0.57 (team

28) for the SwissProt-only collection. Obviously, the recall

obtained for the interactor normalization was generally

higher than its corresponding precision. In case of the whole

test set, team 42 had the highest recall of 0.68, followed by

0.55 of team 30 (Nakov and Divoli [24]) and 0.54 of team 11

(Abi-Haidar and coworkers [25]). When looking at the Swiss-

Prot-only set, team 42 could obtain a recall of 0.69, but with

a modest precision (0.08). Considering the F scores obtained

for the test set articles, team 28 reached a score of 0.52 for the

SwissProt-only set and team 4 of 0.48 in case of the whole test

set collection.

Interaction method subtask

The reliability of protein interactions is strongly linked to the

underlying experimental evidence providing support for a

specific interaction pair. Each experimental interaction

detection technique offers a certain implicit degree of reliabil-

ity, sometimes also providing contextual information as to

whether it is an in vivo or in vitro interaction or the corre-

sponding basic interaction type (stable or transient). For

most expert-derived biological annotations, the experimental

evidence is one of the central curation criteria. To provide a

consistent controlled vocabulary for describing protein inter-

action experiments, the Molecular Interaction (MI) ontology

has been developed [26], which is part of the curation stand-

ard of both the IntAct and MINT databases. For the IMS task,

the precision for each of the six runs submitted by the two

participating teams was calculated. This was done by compar-

ing the automatically extracted list of experimental tech-

niques used to confirm protein-protein interactions

described in each test set article with a previous manual

annotation performed by database curators. Interaction

detection methods had to be provided in the form of their cor-

responding unique MI concept identifier, which allows direct

mapping into the MI ontology. Each concept in the MI ontol-

ogy is characterized by an associated term as well as addi-

tional information such as short definitions, and a reference.

A total of 874 article-molecular interaction detection method

associations were provided in the test set. Taking into consid-

eration the relations of the interaction detection concepts in

the MI ontology, the evaluation metrics where calculated as

follows:

1. Exact concept matching: implies that the submitted inter-

action detection method is an exact match with respect to the

gold standard annotated concept.

2. Parent concept matching: implies that the submitted inter-

action detection method is either an exact match or a parent

concept with respect to the gold standard annotation. A par-

ent concept was defined as any higher node (a more general

concept) in the MI ontology. Therefore the directed acyclic

graph structure of the MI ontology was exploited, testing the

path from the predicted concept to the annotated one.

Tables 4 and 5 show the results obtained by teams 14 (Ehrler

and coworkers [27]) and 40 (Rinaldi and colleagues [28]) for

exact match and parent match evaluation, respectively. The

highest precision (0.67) was obtained by the first run of team

40, whereas the best F score (0.45) was obtained by the third

run of the same group. Team 40 applied a pattern matching

approach, automatically generating variants of the interac-

tion method terms as provided in the MI ontology. Hand-

crafted patterns for some of the methods were included.

When comparing the results between the two evaluation

types, the average increase in precision and recall for the par-

ent matching with respect to the exact matching was 0.13, and

0.11 in case of the F measure. The most significant perform-

ance difference in terms of F score (0.22) was for team 40

(run 2). It should be noted that team 14 only based their pre-

dictions on the abstracts, explaining their lower performance

and highlighting the importance of full text usage.

Interaction sentences subtask

The ISS was carried out because of increasing interest in

retrieving informative text passages in full-text articles sup-

porting biological annotations that can help in the curation,

interpretation, and update of annotations. In full-text arti-

cles, multiple evidence passages might appear that provide

protein-protein interaction evidence, some being more rele-

vant than others to summarize a given interaction. For the

ISS, participants had to provide, for each protein interaction

pair, a ranked list of a maximum of five evidence passages

describing their interaction. Each submitted evidence pas-

sage could comprise up to three consecutive sentences. The

submitted passages were pooled, duplicates removed, and a

unique identifier was assigned to each of them. The same was

done for the set of best summarizing interaction evidence

passages provided by the database curators.

The predictions were evaluated in terms of percentage of

interaction-relevant sentences with respect to the total

number of predicted (submitted) sentences. Also, the mean

reciprocal rank of the ranked list of interaction evidence

Table 4

IMS result: exact matching

Team Run Precision Recall F score

14 1 0.3628 0.2172 0.2513

14 2 0.3186 0.1980 0.2249

14 3 0.3348 0.1938 0.2265

40 1 0.6679 0.3383 0.4207

40 2 0.4028 0.5548 0.4363

40 3 0.5068 0.5222 0.4836

Interaction method subtask (IMS) results: exact matching. The results 
correspond to the averages calculated after scoring each article in 
terms of precision, recall, and F score for the identification of exact 
matching of article to normalized Molecular Interaction (MI) identifiers.



Genome Biology 2008, 9(Suppl 2):S4

http://genomebiology.com/2008/9/S2/S4 Genome Biology 2008,     Volume 9, Suppl 2, Article S4       Krallinger et al. S4.12

passages with respect to the ma nually chosen best interac-

tion sentence was calculated. To determine whether the sub-

mitted passage corresponded to a passage in the gold

standard collection, we applied an approach based on sliding

the shorter over the longer one (after stripping any HTML

tags) and calculating for each position the corresponding

string similarity between both passages. Predicted passages

were considered as correct (mapping to the manually curated

ones) in case that the string similarity between them was sig-

nificant. For calculating the string similarity the Python dif-

flib library was used. Table 6 contains the results. Team 4 had

the highest score, with 19% of passages that could be mapped

to the manually extracted set. This team submitted few pas-

sages, but with a high fraction of correct ones. The score

reported here was evaluated on the basis of the specific pas-

sages identified by the curators. However, it is also possible

that alternative sentences appeared in the full-text article that

described the interactions, but were not selected by the

curator.

Most abstract-derived interaction sentences in the training

data collections provided for this task lacked experimental

information, which made the extraction of correct passages

more challenging.

The passages extracted by database curators often mentioned

the experimental detection method used to characterize the

described interaction or a reference to figures where the

experimental outcome was shown (80% of the cases),

whereas passages submitted by participating teams often did

not mention any interaction experiment. For example, the

following is a sentence extracted by the curators that reflects

this aspect: 'HAX-1 co-immunoprecipitates with BSEP,

MDR1, and MDR2 from transfected cells and hepatocytes.'

Here, 'co-immunoprecipitates' implies that a co-immunopre-

cipitation experiment was done, which confirmed the interac-

tion between HAX-1 and BSEP, MDR1, and MDR2

The ISS top performing team 4 applied multiple techniques to

retrieve interaction passages: the location of the sentence in

the document, the relation with figures and tables, whether

interaction-indicating keywords were present, the mention of

experimental methods, as well as summary-indicating cue

words.

Discussion and conclusion
The PPI task of the second BioCreative challenge was

designed to cover the main aspects relevant to automatically

extracting biological annotations from the scientific litera-

ture, namely normalized and experimentally verified protein

interactions. It also reflected the importance of collaborative

efforts between domain experts, who manually curate biolog-

ical relevant information from the literature, and the text-

mining community.

The results of the IAS task are promising and show that, in

general, the detection of protein-interaction relevant articles

from PubMed titles and abstracts can be achieved. A compar-

ison with systems using the corresponding full-text articles is

currently missing, but would certainly show better the bound-

aries of abstract-based interaction article classification. Simi-

lar systems could in principle be adapted to assist biologists

in certain steps within the curation process for other biologi-

cal annotation types, such as gene regulation or cellular local-

ization of proteins.

A deeper analysis of the evaluated results showed some of the

inherent challenges when using abstracts alone as well as the

difficulty in constructing a suitable true-negative training set

that does not present a bias because of the journal selection.

In the case of articles with a high percentage of true-positive

predictions, the titles and abstracts were in general character-

ized by a high density not only of words or expressions related

to protein interactions such as 'interacts', 'binding', 'interact-

ing partner', or 'interaction of', but also mentioned the actual

names of the methods used to characterize these interactions

experimentally. In the case of the test set article with PMID

16828757, expressions such as 'yeast two-hybrid screen', 'co-

immunoprecipitation', and 'in vitro binding assays' were

present.

Many of the false-negative articles corresponded to cases in

which gene regulation or gene expression mechanisms were

mentioned. These abstracts are often relevant to both protein

interactions as well as for genetic interactions. For example,

the article with PMID 16547462 describes oligomeric tran-

scription factors.

As for false-positive articles, several general characteristics

can be distinguished. Surprisingly, some systems recurrently

mentioned certain well characterized hub proteins, such as

EGF or EGFR (for instance, PMID 16316986). One potential

reason for this might be that they are often mentioned in the

positive training collection. The average performances of par-

ticipating systems over full-text articles, as well as the limita-

tions when using text-mining techniques to recover such

Table 5

IMS result: parent matching

Team Run Precision Recall F score

14 1 0.4986 0.3078 0.3495

14 2 0.4471 0.2847 0.3170

14 3 0.4881 0.2953 0.3375

40 1 0.6794 0.3472 0.4302

40 2 0.5899 0.8548 0.6519

40 3 0.6541 0.7093 0.6375

Interaction method subtask (IMS) result parent matching. Same as 
Table 4 but using the parent matching evaluation.
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protein-protein interactions, have been explored in these

tasks. Although the initial results are promising, they also

indicate that certain components still need further improve-

ments. Participating groups encountered several obstacles

that increased the difficulty of detecting normalized interac-

tion pairs from full-text articles. Some of these are listed

below.

1. Errors resulting from conversion of PDF or HTML format-

ted documents to plain text, such as page break errors, wrong

special character handling, and word joining.

2. Sentence boundary detection errors and difficulties in

processing tables and figure legends.

3. Multiple organism mentions and the resulting inter-spe-

cies ambiguity for protein normalization.

4. Incompleteness of currently available protein normaliza-

tion resources. Existing annotation databases such as Swiss-

Prot do not contain all of the symbols or names for proteins

described in the literature.

5. Difficulties in extracting the associations and in the han-

dling of coordination (multiple interaction pairs) from a sin-

gle sentence.

6. Interaction evidence phrases in legends or titles that often

do not correspond to grammatically correct sentences.

Table 6

ISS results: parent matching

Team Run Total TP Unique TP (unique) Percentage correct Percentage correct (unique) MRR

4 1 372 51 361 51 0.1371 0.1413 -

4 2 372 71 361 70 0.1909 0.1939 -

6 1 2,497 147 2,072 117 0.0589 0.0565 0.5525

11 1 18,385 360 5,156 131 0.0196 0.0254 0.6594

11 2 18,371 376 5,270 145 0.0205 0.0275 0.6253

11 3 18,371 387 5,252 156 0.0211 0.0297 0.6416

14 1 634 13 579 12 0.0205 0.0207 0.8718

14 2 458 10 422 10 0.0218 0.0237 0.8167

14 3 560 13 514 11 0.0232 0.0214 0.8718

27 1 1,420 37 1,386 36 0.0261 0.0260 0.4653

28 1 3,028 150 3,001 148 0.0495 0.0493 0.3740

28 2 2,249 127 2,231 126 0.0565 0.0565 0.3696

28 3 5,448 352 3,210 191 0.0646 0.0595 0.3392

36 1 4,515 232 3,407 169 0.0514 0.0496 0.5731

36 2 11,827 571 7,526 343 0.0483 0.0456 0.5813

36 3 4,083 247 3,018 161 0.0605 0.0533 0.5476

43 1 3,691 111 3,117 97 0.0301 0.0311 0.4083

43 2 1,507 69 1,383 63 0.0458 0.0456 0.3524

43 3 3,674 148 3,257 131 0.0403 0.0402 0.3449

47 1 7,934 278 4,975 159 0.0350 0.0320 0.5232

47 2 7,633 274 4,835 156 0.0359 0.0323 0.5205

47 3 8,355 290 5,172 163 0.0347 0.0315 0.5329

49 1 21,431 590 10,422 285 0.0275 0.0273 0.3785

60 1 2,243 104 2,019 91 0.0464 0.0451 0.3460

60 2 4,714 157 3,932 130 0.0333 0.0331 0.3959

60 3 7,780 229 6,293 192 0.0294 0.0305 0.3998

This table reflects the baseline evaluation of the submissions received for interaction sentences subtask (ISS). Here, the submitted passages were 
compared with the previously manually selected passages reflecting the best interaction evidence. The 'Total' column indicates the total number of 
evaluated passages (note that submissions of articles for which the curators could not find a suitable evidence passage where excluded from 
evaluation). True positive ('TP') is number of correct passages (mapping the manually annotated ones). The 'Unique' column shows the number of 
unique passages per run (after removing duplicate passages). The 'TP (unique)' column indicates the number of correct passages (mapping the 
manually annotated ones) in the collection of unique passages. 'Percentage correct' is the fraction of predicted passages corresponding to the 'best' 
previously extracted passages. The 'Percentage correct (unique)' is the fraction of unique predicted passages corresponding to the 'best' previously 
extracted passages. 'MRR' is the mean reciprocal rank of the correct passages. Note that in the case of team 4, the MRR should not be taken into 
account, because all of the submitted passages here were labeled with rank 1 by this team.
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7. Heavy use of domain specific terminology, for instance in

the case of experimental descriptions.

8. Evidence for interactions contained in sentences that are

not necessarily consecutive.

9. The need to use domain expert inference and bioinformat-

ics tools to perform protein normalization in order to normal-

ize some of the interactors.

10. Errors in shallow parsing and POS-tagging tools trained

on general English text collections, when applied to the spe-

cific expressions and abbreviations found in biomedical texts.

Figure 4 shows that the interactor normalization of human

and yeast proteins was better than for mouse or rat proteins

(it is easier to relate protein names of humans and yeast to

database entries than is the case for mouse or rat).

One must keep in mind that the results of the interactor pro-

tein normalization are not directly comparable with the per-

formance of the protein normalization tasks of BioCreative I

and II, because of basic differences in the task design.

This is also true for interaction pairs (Figure 5). Specifically,

the correct extraction of pairs of proteins derived from differ-

ent organisms is especially challenging, because it requires

associating correctly each of the interactors with a different

species, a process that can affect significantly both the recall

as well as the precision of interaction extraction systems.

Some participating teams tried to overcome the difficulty in

detecting these in vitro interaction types by restricting their

systems to interactions between proteins from the same

organism source. Some participants also did not handle the

extraction of homo-multimeric interaction types. For

instance, the extraction of homo-dimers often requires differ-

ent approaches because they are often not based on the co-

occurrence of two protein mentions but rather on the pres-

ence of specific expressions such as 'dimer' or 'complex'.

The percentage of agreement of the submitted runs on the

true-positive interaction pairs for interactions between pro-

teins of different organisms was only 2.6%, as compared with

12.3% for interactions of proteins from the same species. This

agreement was even lower for homo-dimeric interactions

Agreement of TP interactor protein normalization versus total number of protein occurrences, by corresponding organism sourceFigure 4

Agreement of TP interactor protein normalization versus total number of 
protein occurrences, by corresponding organism source. This figure 
shows the total number of interactor proteins in the test set for each 
organism with respect to the percentage agreement between different 
participating systems in case of the correct (true positive [TP]) 
predictions. Each circle represents the interactor protein set for a single 
species in the test set. Human (red circle), mouse (pink circle), rat (orange 
circle), and yeast (green circle) proteins are the most frequent interactor 
protein organism sources in the interaction pair subtask (IPS) test set 
collection. A total of 50 different organisms were included in the test set 
(considering the SwissProt subset), corresponding to 1,110 unique 
interactor proteins.

TP interaction pair normalization with respect to organism source compositionFigure 5

TP interaction pair normalization with respect to organism source 
composition. This figure shows the total number of interaction pairs in the 
test set (840) for each corresponding organism source combination with 
respect to the percentage agreement between different participating 
systems in case of correct (true positive [TP]) predictions. Interaction 
pairs of proteins form different organisms (for example, between mouse 
and human proteins) are basically experimental in vitro interactions.
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(0.85%) when compared with hetero-dimeric interactions

(11.3%).

It is generally assumed that large training and test collections

of full text articles with in-depth annotations of biologically

relevant information will improve the performance of text-

mining technologies. The data collections derived from this

BioCreative PPI task can be seen as a contribution in this

direction, being a useful resource for the development of

interaction extraction systems. This is also true for protein

mention and normalization components, where the BioCrea-

tive I challenge has already provided useful resources for

abstract processing.

As a general observation on the outcome of the strategies

used, it can be stated that the most sophisticated and com-

plete systems did significantly outperform more basic strate-

gies, which often only adapted existing supervised learning

modules for this task. In case of the top performing teams,

such as teams 4, 6, and 28, both general language as well as

domain-specific resources were exploited. It is therefore clear

that using sophisticated gene mention and normalization

detection strategies generally improved the results of partici-

pating teams and constitute one of the most important com-

ponents for interaction extraction systems. Also, efficient

handling of linguistic coordination is crucial when extracting

associations such as protein-protein interactions. The use of

a supervised learning-based sentence classifier and the detec-

tion of interaction method names also seemed to play a role in

the performance of interaction detection strategies.

When comparing the performance of the interactor protein

normalization and the interaction pair extraction, it seems

that the extraction of the interaction pairs is slightly better

than would be expected. Even if details are still unclear, it

might indicate a gain from the global information contained

in the articles.

However, one aspect that has not been addressed in the cur-

rent BioCreative evaluation is how the resulting systems

would perform when doing interactive evaluation as part of

curation-assistance tools. To close the gap between text-min-

ing systems and the actual end users, such interactive assess-

ments would be especially useful. Here, aspects such as

interaction ranking, and time spent per curation when using

the text mining systems compared with baseline PubMed

search-based approaches, could provide additional insights

into the importance of literature mining applied to the bio-

medical domain.

From the results obtained in the PPI task it becomes clear that

although current technology might be sufficiently robust for

detecting binary interactions statements from PubMed

abstracts sentences, the automatic extraction and normaliza-

tion of novel experimentally characterized interactions from

full-text articles still requires substantial improvements in

terms of performance. The strategies that participated in the

PPI task can provide useful results for assisting biologists and

database curators in the retrieval process of experimentally

generated interaction information contained in the literature.

One potential evaluation set up that could facilitate the

improvement of current protein interaction annotation

extraction systems would consist of aligning the different

tasks that influence the interaction extraction pipeline by

using a common reference data collection for all tasks and

allowing specific evaluation of each individual components

that influence the overall performance. Additional aspects of

interest for future community evaluations in biomedical text

mining are related to both qualitative as well as quantitative

characterizations of the workload associated with each of the

individual steps underlying manual curation, from the initial

article selection to the completed annotation record, and how

text-mining tools could improve the efficiency within each of

these steps when compared with a baseline system of un-

assisted curation. This would require available online systems

that could be directly tried out by the potential end-user

community.

Materials and methods
Data and corpus collections

Interaction article subtask datasets

The submissions had to be made in a predefined format,

together with a short system description. The construction of

a suitable training set for the IAS exploited the content of

existing interaction databases, namely IntAct and MINT. The

motivations behind this data selection strategy were the fol-

lowing.

1. Explore the usability of existing citation collections derived

from biological annotation databases for the detection of

curation-relevant articles.

2. Pinpoint the main challenges for selecting and retrieving

suitable article collections, based on existing database

citations.

3. Evaluate the use of abstract-based article classification and

ranking versus manually curated articles.

The annotation records of both interaction databases are

freely accessible for download and share a common annota-

tion standard based on the HUPO (Human Proteome Organ-

isation) PSI-MI format. The training collections were

distributed using a simple XML-like format. Three abstract

collections were included in the training set for this subtask.

1. The positives collection (physical protein-protein interac-

tion relevant articles) was based on a set of PubMed articles

that are relevant for protein interaction curation in the sense

of the annotation process and guidelines used by the MINT

and IntAct databases. This means that the corresponding full-
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text articles have been used to extract manual annotations

and therefore meet the underlying curation standards used to

extract experimentally verified protein interaction

information. The initial collection contained articles resulting

from exhaustive curation as well as from thematic curation.

Some articles were removed from this collection mainly

because either no corresponding abstracts could be retrieved

from PubMed or because they corresponded to results

obtained by large-scale experiments. Because the actual cura-

tion was done based on the full-text articles as opposed to the

abstracts, it is conceivable that in some cases the abstracts in

this collection may lack sufficient information to be consid-

ered interaction-relevant. The initial positive training collec-

tion consisted of 3,536 PubMed titles and abstracts

distributed together with the corresponding PMID and the

article source (journal and publication date).

2. The negatives collection (nonrelevant articles) consisted

exclusively of journal titles and abstracts rejected during

exhaustive curation. These articles have no associated anno-

tation records extracted by the domain expert curators and

are thus not relevant to protein interaction annotation (nega-

tive training instances were available only for those journals

for which exhaustive curation had been carried out). The neg-

ative collection contained a total of 1,959 entries. The training

collections of the positive and negative instances were not

balanced; participating systems had to address the resulting

class imbalance.

3. Finally, we also included a collection of likely positive arti-

cles, consisting of PubMed citations that had been extracted

from protein interaction annotations curated by other inter-

action databases (including BIND, HPRD, MPACT, and

GRID). This additional large collection constitutes a noisy

dataset, in the sense that the corresponding databases have

different annotation standards compared with MINT and

IntAct (for instance, regarding the curation of genetic

interactions) and thus have not been included as part of the

ordinary positive training collection. This collection consisted

of a total of 18,930 records.

No restrictions in terms of using additional resources or data

collections for the purpose of system development and train-

ing were imposed on the participating teams. Therefore, addi-

tional resources, such as those resulting from gene mention

detection or associated MeSH terms could be exploited, as is

also done in real-life situations.

In order to perform a comparative assessment of the various

participating systems, a common test data collection was pro-

vided to all participants. This dataset consisted of a collection

of PubMed records (article titles and abstracts) in a format

compliant with the training collection, but without providing

the corresponding article source information as well as with-

out the actual class label (relevant or not relevant). Most of

the articles in the test set resulted from exhaustive curation of

recent publications from specified journals (such as the

EMBO Journal or FEBS letters) published over a predefined

period of time. The resulting annotations from the curation of

these articles were held back by the interaction databases

until the competition was over. Some of the initial test set

articles supplied by the database curators had to be removed

from the test set, because no PubMed abstract was available.

An additional criterion for the construction of the test set was

to make sure that neither publication date nor journal name

could be used as a relevant discriminative feature for classify-

ing the articles.

The relevant and nonrelevant entries were randomly shuffled

so that the article order in the test collection could also not be

used to differentiate relevant from nonrelevant records. The

resulting test set collection of 750 entries was an actual subset

from the initial collection provided by the database curators.

One of the databases also provided a small number of un-

curatable abstracts, meaning that the associated full-text

articles were not worthwhile to curate (too complicated and

from a very specific scientific subdiscipline) or the abstract

was misleading, meaning that protein interactions were men-

tioned in the abstract but the full-text article lacked the

experimental characterization for the proposed interactions.

These articles were also removed from the test collection.

The resulting initial IAS test set consisted of 375 positive (rel-

evant) and negative (nonrelevant) entries, respectively. Nev-

ertheless, during the postevaluation period, several records

were revised and finally removed from the initial test collec-

tion. Thus, the revised test set contained a slight imbalance,

consisting of 338 interaction relevant articles and 339 nonrel-

evant records (for a total of 677 instances).

Interaction pair subtask, interaction method subtask, and interaction 

sentences subtask datasets

For these subtasks a larger training collection of full-text arti-

cles (740) and a smaller collection of test set articles (358)

were provided to registered teams. Both collections contained

full-text articles in different formats, namely as HTML and

PDF. Additionally, we also provided these articles as plain

text automatically converted from HTML to plain text using

html2text and from PDF to plain text using pdftotext. Both

collections consisted of subsets of the original training and

test set provided by the interaction databases after extensive

filtering. For the subselection process, the following criteria

were taken into account.

1. Redundancy: duplicate articles that had been annotated by

both databases were removed.

2. Journal: only articles from publishers who made full-text

available could be included for this evaluation.

3. Large-scale experiments: articles that mentioned large-

scale experiments were removed.
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4. Full text: only full articles which were currently available

both in HTML and PDF formats were included; in case of

articles published before 2000, the full-text articles were

often only available in PDF.

5. Format: in some cases, the articles could not be converted

to plain text using the previously mentioned tools and had to

be removed.

For the training package, in addition to the 740 full-text arti-

cles in the various previously mentioned formats, the associ-

ated annotation files for each article in standard PSI-MI

format and as flat annotation files were provided to the par-

ticipants. These annotations contained the normalized inter-

action pairs, the interaction detection methods, as well as

some additional information curated by the interaction data-

bases. Also, a file with the MI identifiers of concepts that were

children or ancestor nodes of the interaction detection

method (a total of 155 concepts) formed part of the training

package for the IMS.

In case of the ISS, only a limited amount of unique full-text

interaction evidence passages could be provided for the train-

ing collection (63). To compensate, additional resources were

included in the training package:

1. Anne-Lise Veuthey corpus: a collection of sentences kindly

provided by Anne-Lise Veuthey from the Swiss Institute of

Bioinformatics (SIB), containing protein interaction related

sentences from PubMed abstracts. It included a total of 697

evidence sentences.

2. Prodisen interaction subset: a collection of 921 sentences

related to interactions derived from the Prodisen corpus [19].

Each sentence from a given abstract was manually classified

regarding whether it contained interaction descriptions of

genes and proteins.

3. Christine Brun corpus: a set of sentences derived from

abstracts related to interactions and their corresponding

interaction type (defined as direct or indirect).

4. GeneRIF interactions: the collection of interaction sen-

tences provided by GeneRIF. There are a total of 51,381

entries in this collection.

Although all of these additional collections are related to

interaction sentences, they differ from the passages extracted

by the interaction database curators in several points: they

are derived from abstracts alone, whereas the BioCreative

interaction evidence passages were extracted from full-text

articles; and they are single sentences, whereas the BioCrea-

tive test passages can span several sentences.

The training data for the IMS consisted of a subset of annota-

tions and their corresponding full-text articles derived from

the IntAct and MINT databases. These articles had been

curated manually to extract protein interactions for both the

interaction pairs as well as the interaction detection methods.

We recommended for this subtask not to use articles in the

training set describing large-scale experiments (more than 20

to 30 interactions), because they were also excluded from the

test set. Not all of the proteins mentioned in a given article are

usually studied by all of the mentioned protein interaction

detection methods.

As test set for the IPS, IMS and ISS, a total of 358 full-text

articles were provided to the participants. The interaction

databases MINT and IntAct had previously curated these

articles, but held the derived annotations back until the sub-

mission phase of test set predictions was over. These articles

were provided in the same formats as the training set and

resulted from filtering the initial collection provided by the

interaction databases following the subselection criteria pre-

viously introduced. It was not possible to convert some of the

articles to plain text (for instance, PMID 7629138). It was also

verified that the overall length and word count of the articles

converted to plain text from PDF were consistent with the

plain text conversion from the HTML formatted articles.

Participating methods overview

A common characteristic of the majority of the participating

strategies at the IAS was the usage of machine learning tech-

niques (17 out of 19), with SVMs, naïve Bayes, and maximum

entropy classifiers being the most frequently used methods.

Regarding the natural language processing (NLP) compo-

nents often integrated into these systems, stemming and POS

tagging were the most common ones. Surprisingly, only a few

systems exploited Bio-NLP applications such as protein name

taggers or adapted existing lexical resources such as biologi-

cal ontologies for detecting interaction-relevant articles. A

number of teams used sentences as their processing unit but

most of them based their bag-of-words approaches on whole

abstracts as processing unit.

Most of the participating systems did not make use of any

additional training data collections to develop their systems,

which implies that most of them relied only on the training

collections provided by the task organizers. Only a few excep-

tions can be found, for instance in the case of team 6, who also

used a proprietary corpus of biomedical papers annotated

with proteins and their interactions.

In addition to MINT and IntAct, other interaction databases

are also currently available. The majority of the teams did not

exploit annotations derived from these other interaction

annotation resources. Some teams had in-house interaction

annotation collections, as in the case of team 47, who

exploited a collection of their own annotations for system

development.
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Most of the participating strategies are characterized by the

integration of machine learning techniques to address some

of the subtasks, with SVMs being the most frequently adapted

technique, followed by maximum entropy models.

In order to identify correctly the normalized interactor pro-

teins, it is important to associate text mentions with database

records (SwissProt accession numbers). Here the use of pro-

tein name tagging and normalization strategies is crucial. The

gene mention and gene normalization tasks of the BioCrea-

tive challenge addressed these aspects in the case of PubMed

abstracts. For the normalization of the interactor proteins

from full-text articles, most of the participants used a data-

base look-up and protein name dictionary-based approaches

in order to map protein names and symbols contained in the

SwissProt database to text mentions. Only a few teams made

use of more sophisticated protein mention detection methods

like LingPipe [29], Abner [30], or the maximum entropy

Markov model based tagger developed by Curran and Clark

[31].

In full-text articles, proteins derived from multiple organism

sources are often described in the same passage. This is often

the case for human proteins and their related mouse

homologs. Many protein names contained in biological anno-

tation databases such as SwissProt suffer from interspecies

protein name ambiguity, meaning that two proteins from dif-

ferent organism sources share the same name (or symbol). In

order to provide correct associations of proteins to SwissProt

records, the detection of the corresponding organism source

is thus of practical relevance. Not all the strategies used for

the PPI task applied organism tagging to improve the interac-

tor protein normalization.

Almost all teams integrated currently available NLP compo-

nents into their systems for these subtasks. The most fre-

quently used components were POS tagging, stemming, and

sentence segmentation algorithms, as well as tokenization

and shallow parsing tools. Some systems also used additional

elements, such as lemmatization, chunking, and abbreviation

extraction (team 6), or predicate analysis (team 49). The fol-

lowing applications were used by one or more teams: Brill's

POS tagger, MedPost, Stanford parser, Schwartz and Hearst

abbreviation extraction tool, and MxTerminator for sentence

segmentation. Only a few teams used external lexical

resources such as dictionaries or ontologies. For protein

name recognition, team 6 exploited a proprietary protein list

derived from RefSeq. A considerable number of strategies

were characterized by integrating sentence classifiers to

detect interaction-relevant sentences from the full-text arti-

cles. Another common feature of the participating strategies

was the use of regular expressions or pattern matching strat-

egies (for example, for the tagging of protein or species names

as well as for the interaction detection method identification).
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