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Abstract18

The prediction of acid dissociation constants (pKa) is a prerequisite for predicting many other properties of a small molecule,19

such as its protein-ligand binding affinity, distribution coefficient (log D), membrane permeability, and solubility. The prediction20

of each of these properties requires knowledge of the relevant protonation states and solution free energy penalties of each21

state. The SAMPL6 pKa Challenge was the first time that a separate challenge was conducted for evaluating pKa predictions22

as part of the Statistical Assessment of Modeling of Proteins and Ligands (SAMPL) exercises. This challenge was motivated by23

significant inaccuracies observed in prior physical property prediction challenges, such as the SAMPL5 log D Challenge, caused24

by protonation state and pKa prediction issues. The goal of the pKa challenge was to assess the performance of contempo-25

rary pKa prediction methods for drug-like molecules. The challenge set was composed of 24 small molecules that resembled26

fragments of kinase inhibitors, a number of which were multiprotic. Eleven research groups contributed blind predictions for a27

total of 37 pKa distinct prediction methods. In addition to blinded submissions, four widely used pKa prediction methods were28

included in the analysis as reference methods. Collecting both microscopic and macroscopic pKa predictions allowed in-depth29

evaluation of pKa prediction performance. This article highlights deficiencies of typical pKa prediction evaluation approaches30

when the distinction between microscopic and macroscopic pKas is ignored; in particular, we suggest more stringent evaluation31

criteria for microscopic and macroscopic pKa predictions guided by the available experimental data. Top-performing submis-32

sions for macroscopic pKa predictions achieved RMSE of 0.7–1.0 pKa units and included both quantum chemical and empirical33

approaches, where the total number of extra or missing macroscopic pKas predicted by these submissions were fewer than 834

for 24 molecules. A large number of submissions had RMSE spanning 1–3 pKa units. Molecules with sulfur-containing hetero-35

cycles or iodo and bromo groups were less accurately predicted on average considering all methods evaluated. For a subset of36

molecules, we utilized experimentally-determined microstates based on NMR to evaluate the dominant tautomer predictions37

for each macroscopic state. Prediction of dominant tautomers was a major source of error for microscopic pKa predictions,38

especially errors in charged tautomers. The degree of inaccuracy in pKa predictions observed in this challenge is detrimental39

to the protein-ligand binding affinity predictions due to errors in dominant protonation state predictions and the calculation of40

free energy corrections for multiple protonation states. Underestimation of ligand pKa by 1 unit can lead to errors in binding41

1 of 46

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 15, 2020. ; https://doi.org/10.1101/2020.10.15.341792doi: bioRxiv preprint 

http://orcid.org/0000-0002-6789-952X
http://orcid.org/0000-0002-3422-0613
https://orcid.org/0000-0001-7693-2013
http://orcid.org/0000-0003-1120-5776
http://orcid.org/0000-0002-1083-5533
http://orcid.org/0000-0003-0542-119X
mehtap.isik@choderalab.org
https://doi.org/10.1101/2020.10.15.341792
http://creativecommons.org/licenses/by/4.0/


free energy errors up to 1.2 kcal/mol. The SAMPL6 pKa Challenge demonstrated the need for improving pKa prediction methods42

for drug-like molecules, especially for challenging moieties and multiprotic molecules.43

44
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SAMPL ⋅ blind prediction challenge ⋅ acid dissociation constant ⋅ pKa ⋅ small molecule ⋅macroscopic pKa⋅microscopic pKa⋅macro-46

scopic protonation state ⋅microscopic protonation state47

Abbreviations48

SAMPL Statistical Assessment of the Modeling of Proteins and Ligands49

pKa − log10 of the acid dissociation equilibrium constant50

log P log10 of the organic solvent-water partition coefficient (Kow) of neutral species51

log D log10 of organic solvent-water distribution coefficient (Dow)52

SEM Standard error of the mean53

RMSE Root mean squared error54

MAE Mean absolute error55

� Kendall’s rank correlation coefficient (Tau)56

R2 Coefficient of determination (R-Squared)57

MPSC Multiple protonation states correction for binding free energy58

DL Database Lookup59

LFER Linear Free Energy Relationship60

QSPR Quantitative Structure-Property Relationship61

ML Machine Learning62

QM Quantum Mechanics63

LEC Linear Empirical Correction64

1 Introduction65

The acid dissociation constant (Ka) describes the protonation state equilibrium of a molecule given pH. More commonly, we66

refer to pKa = − log10 Ka, its negative logarithmic form. Predicting pKa is a prerequisite for predicting many other properties of67

small molecules such as their protein binding affinity, distribution coefficient (logD), membrane permeability, and solubility. As a68

major aim of computer-aided drug design (CADD) is to aid in the assessment of pharmaceutical and physicochemical properties69

of virtual molecules prior to synthesis to guide decision-making, accurate computational pKa predictions are required in order70

to accurately model numerous properties of interest to drug discovery programs.71

Ionizable sites are found often in drug molecules and influence their pharmaceutical properties including target affinity,72

ADME/Tox, and formulation properties [1]. It has been reported that most drugs are ionized in the range of 60-90% at physiolog-73

ical pH [2]. Drug molecules with titratable groups can exist in many different charge and protonation states based on the pH of74

the environment. Given that experimental data of protonation states and pKa are often not available, we rely on predicted pKa75

values to determine which charge and protonation states the molecules populate and the relative populations of these states,76

so that we can assign the appropriate dominant protonation state(s) in fixed-state calculations or the appropriate solvent state77

weights/protonation penalty to calculations considering multiple states.78

The pH of the human gut ranges between 1–8, and 74% of approved drugs can change ionization state within this physio-79

logical pH range [3]. Because of this, pKa values of drug molecules provide essential information about their physicochemical80

and pharmaceutical properties. A wide distribution of acidic and basic pKa values, ranging from 0 to 12, have been observed in81

approved drugs [1, 3].82

Drug-like molecules present difficulties for pKa prediction compared with simple monoprotic molecules. Drug-like molecules83

are frequently multiprotic, have large conjugated systems, often contain heterocycles, and can tautomerize. In addition, drug-84

like molecules with significant conformational flexibility can form intramolecular hydrogen bonding, which can significantly shift85

their pKa values compared to molecules that cannot form intramolecular hydrogen bonds. This presents further challenges for86

modeling methods, where deficiencies in solvation models may mispredict the propensity for intramolecular hydrogen bond87
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formation.88

Accurately predicting pKas of drug-like molecules accurately is a prerequisite for computational drug discovery and design.89

Small molecule pKa predictions can influence computational protein-ligand binding affinities in multiple ways. Errors in pKa90

predictions can cause modeling the wrong charge and tautomerization states which affect hydrogen bonding opportunities91

and charge distribution within the ligand. The dominant protonation state and relative populations of minor states in aqueous92

medium is dictated by the molecule’s pKa values. The relative free energy of different protonation states in the aqueous state is93

a function of pH, and contributes to the overall protein-ligand affinity in the form of a free energy penalty for populating higher94

energy protonation states [4]. Any error in predicting the free energy of a minor aqueous protonation state of a ligand that95

dominates the complex binding free energy will directly add to the error in the predicted binding free energy, and selecting96

the incorrect dominant protonation state altogether can lead to even larger modeling errors. Similarly for log D predictions, an97

inaccurate prediction of protonation states and their relative free energies will be detrimental to the accuracy of transfer free98

energy predictions.99

For a monoprotic weak acid (HA) or base (B)—whose dissociation equilibria are shown in Equation 1—the acid dissociation100

constant is expressed as in Equation 2, or, commonly, in its negative base-10 logarithmic form as in Equation 3. The ratio of101

ionization states can be calculated with Henderson-Hasselbalch equations shown in Equation 4.102

HA ⇌ A− +H+ ; BH+
⇌ B +H+ (1)

Ka =
[A−][H+]

[HA]
; Ka =

[B][H+]

[B+]
(2)

pKa = − log10 Ka (3)

pH = pKa + log10
[A−]

[HA]
; pH = pKa + log10

[B]

[BH+]
(4)

For multiprotic molecules, the definition of pKa diverges into macroscopic pKa and microscopic pKa [5–7]. Macroscopic pKa103

describes the equilibrium dissociation constant between different charged states of the molecule. Each charge state can be104

composed of multiple tautomers. Macroscopic pKa is about the deprotonation of the molecule, rather than the location of the105

titratable group. A microscopic pKa describes the acid dissociation equilibrium between individual tautomeric states of different106

charges. (There is no pKa defined between tautomers of the same charge as they have the same number of protons and their107

relative populations are independent of pH.) The microscopic pKa determines the identity and distribution of tautomers within108

each charge state. Thus, each macroscopic charge state of a molecule can be composed of multiple microscopic tautomeric109

states. The microscopic pKa value defined between two microstates captures the deprotonation of a single titratable group110

with other titratable groups held in a fixed background protonation state. In molecules with multiple titratable groups, the111

protonation state of one group can affect the proton dissociation propensity of another functional group, therefore the same112

titratable group may have different proton affinities (microscopic pKa values) based on the protonation state of the rest of the113

molecule.114

Different experimental methods are sensitive to changes in the total charge or the location of individual protons, so they115

measure different definitions of pKas, as explained inmore detail in prior work [8]. Most common pKa measurement techniques116

such as potentiometric and spectrophotometric methodsmeasuremacroscopic pKas, while NMRmeasurements can determine117

microscopic pKas by measuring microstate populations with respect to pH. Therefore, it is important to pay attention to the118

source and definition of pKa values in order to correctly interpret their meaning.119

Many computationalmethods can predict bothmicroscopic andmacroscopic pKas. While experimentalmeasurementsmore120

often provide only macroscopic pKas, microscopic pKa predictions are more informative for determining relevant microstates121

(tautomers) of a molecule and their relative free energies. Predicted microstate populations can be converted to predicted122

macroscopic pKas for direct comparison with experimentally obtained macroscopic pKas. In this paper, we explore approaches123

to assess the performance of both macroscopic and microscopic pKa predictions, taking advantage of available experimental124

data.125

Microscopic pKa predictions can be converted to macroscopic pKa predictions either directly with Equation 5 [9],

Kmacro
a

=

Ndeprot
∑

j=1

1
∑Nprot

i=1

1

Kmicro
ij

, (5)
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or through computing the macroscopic free energy of deprotonation between ionization states with charges N and N − 1 via126

Boltzmann-weighted sum of the relative free energy of microstates (Gi) as in Equations 6 and 7 [10].127

ΔGN−1,N = RT ln

∑

i
e−Gi∕RT �Ni ,N−1

∑

i
e−Gi∕RT �Ni ,N

(6)

pKa = pH −
ΔGN−1,N

RT ln 10
(7)

In Equation 6 ΔGN−1,N is the effective macroscopic protonation free energy. �Ni ,N−1 is equal to unity when the microstate i128

has a total charge of N − 1 and zero otherwise. RT is the ideal gas constant times the absolute temperature.129

1.1 Motivation for a blind pKa challenge130

SAMPL (Statistical Assessment of theModeling of Proteins and Ligands) is a series of annual computational prediction challenges131

for the computational chemistry community. The goal of the SAMPL community is to evaluate the current performance of132

computational models and to bring the attention of the quantitative biomolecular modeling field on problems that limit the133

accuracy of protein-ligand binding models. SAMPL Challenges aim to enable computer-aided drug discovery to make sustained134

progress toward higher accuracy by focusing the community on critical challenges that isolate one accuracy-limiting problem at135

a time. By conducting a series of blind challenges—which often feature the computation of specific physical properties critical136

for protein-ligand modeling—and encouraging rapid sharing of lessons learned, SAMPL aims to accelerate progress toward137

quantitative accuracy in modeling.138

SAMPL Challenges that focus on physical properties have assessed intermolecular binding models of various protein-ligand139

and host-guest systems, as well as the prediction of hydration free energies and distribution coefficients to date. These blind140

challenges motivate improvements in computational methods by revealing unexpected sources of error, identifying features141

of methods that perform well or poorly, and enabling the participants to share information after each successive challenge.142

Previous SAMPL Challenges have focused on the limitations of force field accuracy, finite sampling, solvation modeling defects,143

and tautomer/protonation state predictions on protein-ligand binding predictions.144

During the SAMPL5 log D Challenge, the performance of models in predicting cyclohexane-water log D was worse than145

expected—accuracy suffered when protonation states and tautomers were not taken into account [11, 12]. Many participants146

simply submitted log P predictions as if they were equivalent to log D, and many were not prepared to account for the con-147

tributions of different ionization states to the distribution coefficient in their models. Challenge results highlighted that log P148

predictions were not an accurate approximation of log D without capturing protonation state effects. The calculations were149

improved by including free energy penalty of the neutral state which relies on obtaining an accurate pKa prediction [11]. With150

the goal of deconvoluting the different sources of error contributing to the large errors observed in the SAMPL5 log D Challenge,151

we organized separate pKa and log P challenges in SAMPL6 [8, 13, 14]. For this iteration of the SAMPL challenge, we isolated the152

problem of predicting aqueous protonation states and associated pKa values.153

This is the first time a blind pKa prediction challenge has been fielded as part of SAMPL. In this challenge, we aimed to154

assess the performance of current pKa prediction methods for drug-like molecules, investigate potential causes of inaccurate155

pKa estimates, and determine how the current level of accuracy of these models might impact the ability to make quantitative156

predictions of protein-ligand binding affinities.157

1.2 Approaches to predict small molecule pKas158

There are a large variety of pKa prediction methods developed for the prediction of aqueous pKas of small molecules. Broadly,159

we can divide pKa predictions as knowledge-based empirical methods and physical methods. Empirical methods include the160

following categories: Database Lookup (DL) [15], Linear Free Energy Relationship (LFER) [16–18], Quantitative Structure-Property161

Relationship (QSPR) [19–22], and Machine Learning (ML) approaches [23, 24]. DL methods rely on the principle that structurally162

similar compounds have similar pKa values and utilize an experimental database of complete structures or fragments. The pKa163

value of the most similar database entry is reported as the predicted pKa of the query molecule. In the QSPR approach, the pKa164

values are predicted as a function of various quantitative molecular descriptors, and the parameters of the function are trained165

on experimental datasets. A function in the form of multiple linear regression is common, although more complex forms can166

also be used such as the artificial neural networks in MLmethods. The LFER approach is the oldest pKa prediction strategy. They167
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Figure 1. Distribution of molecular properties of the 24 compounds from the SAMPL6 pKa Challenge. A Histogram of spectrophotometric
pKa measurements collected with Sirius T3 [8]. The overlaid rug plot indicates the actual values. Five compounds have multiple measured pKas
in the range of 2–12. B Histogram of molecular weights calculated for the neutral state of the compounds in SAMPL6 set. Molecular weights
were calculated by neglecting counterions. C Histogram of the number of non-terminal rotatable bonds in each molecule. D The histogram of
the ratio of heteroatom (non-carbon heavy atoms including, O, N, F, S, Cl, Br, I) count to the number of carbon atoms.

use Hammett-Taft type equations to predict pKa based on classification of the molecule to a parent class (associated with a base168

pKa value) and two parameters that describe how the base pKa valuemust bemodified given its substituents. Physical modeling169

of pKa predictions requires Quantum Mechanics (QM) models. QM methods are often utilized together with linear empirical170

corrections (LEC) that are designed to rescale and unbias QM predictions for better accuracy. Classical molecular mechanics-171

based pKa prediction methods are not feasible as deprotonation is a covalent bond breaking event that can only be captured172

by QM. Constant-pH molecular dynamics methods can calculate pKa shifts in large biomolecular systems where there is low173

degree of coupling between protonation sites and linear summation of protonation energies can be assumed [25]. However,174

this approach can not generally be applied to small organic molecule due to the high degree of coupling between protonation175

sites [26–28].176

2 Methods177

2.1 Design and logistics of the SAMPL6 pKa Challenge178

The SAMPL6 pKa Challenge was conducted as a blind prediction challenge and focused on predicting aqueous pKa values of 24179

smallmolecules not previously reported in the literature. The challenge setwas composed ofmolecules that resemble fragments180

of kinase inhibitors. Heterocycles that are frequently found in FDA-approved kinase inhibitors were represented in this set. The181

compound selection process was described in depth in the prior publication reporting SAMPL6 pKa Challenge experimental data182

collection [8]. The distribution of molecular weights, experimental pKa values, number of rotatable bonds, and heteroatom to183
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carbon ratio are depicted in Fig. 1. The challenge molecule set was composed of 17 small molecules with limited flexibility (less184

than 5 non-terminal rotatable bonds) and 7molecules with 5–10 non-terminal rotatable bonds. The distribution of experimental185

pKa values was roughly uniform between 2–12. 2D representations of all compounds are provided in Fig. 5. Drug-like molecules186

are often larger and more complex than the ones used in this study. We limited the size and the number of rotatable bonds of187

compounds to create molecule set of intermediate difficulty.188

The dataset composition and experimental details—without the identity of the small molecules—were announced approxi-189

mately one month before the challenge start date. Experimental macroscopic pKa measurements were collected using a spec-190

trophotometric method with the Sirius T3 (Sirius Analytical), at room temperature, in ionic strength-adjusted water with 0.15 M191

KCl [8]. The instructions for participation and the identity of the challenge molecules were released on the challenge start date192

(October 25, 2017). A table of molecule IDs (in the form of SM##) and their canonical isomeric SMILES was provided as input.193

Blind prediction submissions were accepted until January 22, 2018.194

Following the conclusion of the blind challenge, the experimental data was made public on January 23, 2018. The SAMPL195

organizers and participants gathered at the Second Joint D3R/SAMPL Workshop at UC San Diego, La Jolla, CA on February 22–23,196

2018 to share results. The workshop aimed to create an opportunity for participants to discuss the results, evaluatemethodolog-197

ical choices by comparing the performance of different methods, and share lessons learned from the challenge. Participants198

reported their results and their own evaluations in a special issue of the Journal of Computer-Aided Molecular Design [29].199

While designing this first pKa prediction challenge, we did not know the optimal format to capture pKa predictions of partic-200

ipants. We wanted to capture all necessary information that will aid the evaluation of pKa predictions at the submission stage.201

Our strategy was to directly evaluatemacroscopic pKa predictions comparing them to experimental macroscopic pKa values and202

to use collected microscopic pKa prediction data for more in-depth diagnostics of method performance. Therefore, we asked203

participants to submit their predictions in three different submission types:204

• Type I:microscopic pKa values and related microstate pairs205

• Type II: fractional microstate populations as a function of pH in 0.1 pH increments206

• Type III:macroscopic pKa values207

For each submission type, a machine-readable submission file template was specified. For type I submissions, participants208

were asked to report the microstate ID of the protonated state, the microstate ID of deprotonated state, the microscopic pKa,209

and the predicted microscopic pKa standard error of the mean (SEM). The method of microstate enumeration and why it was210

needed are discussed further in Section 2.2 "Enumeration of Microstates". The SEM aims to capture the statistical uncertainty of211

the predictionmethod. Microstate IDs were preassigned identifiers for eachmicrostate in the form of SM##_micro###. For type212

II submissions, the submission format included a table that started with a microstate ID column and a set of columns reporting213

the natural logarithm of fractional microstate population values of each predictedmicrostate for 0.1 pH increments between pH214

2 and 12. For type III submissions participants were asked to report molecule ID, macroscopic pKa, and macroscopic pKa SEM.215

We required participants to submit predictions for all fields for each prediction, but it was not mandatory to submit predic-216

tions for all the molecules or all three submission types. Although we accepted submissions with partial sets of molecules, it217

would have been a better choice to require predictions for all the molecules for a better comparison of overall method perfor-218

mance. The submission files also included fields for naming the method, listing the software utilized, and a free text section to219

describe the methodology used in detail.220

Participants were allowed to submit predictions for multiple methods as long as they created separate submission files.221

While anonymous participation was allowed, all participants opted to make their submissions public. Blind submissions were222

assigned a unique 5-digit alphanumeric submission ID, which will be used throughout this paper. Unique IDs were also assigned223

when multiple submissions exist for different submissions types of the same method such as microscopic pKa (type I) and224

macroscopic pKa (type III). These submission IDs were also reported in the evaluation papers of participants to allow cross-225

referencing. Submission IDs, participant-provided method names, and method categories are presented in Table 1. In many226

cases,multiple types of submissions (type I, II, and III) of the samemethodwere provided by participants as challenge instructions227

requested. Although each prediction set was assigned a separate submission ID, we matched the submissions that originated228

from the same method according to the reports of the participants for cases where multiple sets of predictions came from a229

given method. Submission IDs for both macroscopic (type III) and microscopic (type I) pKa predictions for each method are230

shown in Table 1.231
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2.2 Enumeration of microstates232

To capture both the pKa value and titrating proton position for microscopic pKa predictions, we needed microscopic pKa val-233

ues to be reported together with a pair of microstates which describe the protonated and deprotonated states corresponding234

to each microscopic transition. String representations of molecules such as canonical SMILES with explicit hydrogens can be235

written, however, there can be inconsistencies between the interpretation of canonical SMILES written by different software236

and algorithms. To avoid complications while reading microstate structure files from different sources, we decided that the237

safest route was pre-enumerating all possible microstates of challenge compounds, assigning microstate IDs to each in the238

form of SM##_micro###, and requiring participants to report microscopic pKa values along with microstate pairs specified by239

the provided microstates IDs.240

We created initial sets of microstates with Schrödinger Epik [30] and OpenEye QUACPAC [31] and took the union of results.241

Microstates with Epik were generated using Schrödinger Suite v2016-4, running Epik to enumerate all tautomers within 20 pKa242

units of pH 7. For enumerating microstates with OpenEye QUACPAC, we had to first enumerate formal charges and for each243

charge enumerate all possible tautomers using the settings ofmaximum tautomer count 200, level 5, with carbonyl hybridization244

set to False. Then we created a union of all enumerated states written as canonical isomeric SMILES generated by OpenEye245

OEChem [32]. Even though resonance structures correspond to different canonical isomeric SMILES, they are not different246

microstates, therefore it was necessary to remove resonance structures that were replicates of the same tautomer. To detect247

equivalent resonance structures, we converted canonical isomeric SMILES to InChI hashes with explicit and fixed hydrogen248

layer. Structures that describe the same tautomer but different resonance states lead to explicit hydrogen InChI hashes that249

are identical, allowing replicates to be removed. The Jupyter Notebook used for the enumeration of microstates is provided in250

Supplementary Information.251

We provided microstate ID tables with canonical SMILES and 2D depictions to aid participants in matching predicted struc-252

tures to microstate IDs. A canonical SMILES representation was selected over canonical isomeric SMILES, because resonance253

and geometric isomerismdo not lead to differentmicrostates according to our workingmicrostate definition. The only exception254

was for molecule SM20, which should be consistently modeled as the E-isomer.255

During the course of the SAMPL6 Challenge, participants identified new microstates that were not present in the initial list256

that we provided. Despite combining enumerated charge states and tautomers generated by both Epik and OpenEye QUACPAC,257

to our surprise, the microstate lists were still incomplete. Based on participant requests for new microstates, we iteratively258

had to update the list of microstates and assign new microstate IDs. Every time we received a request, we shared the updated259

microstate ID lists with all challenge participants. Some participants updated their pKa prediction by including the newly added260

microstates in their calculations. In the future, developing a better algorithm that can enumerate all possible microstates (not261

just the ones with significant populations) would be very beneficial for anticipating microstates that may be predicted by pKa262

prediction methods.263

A microscopic pKa definition was provided in challenge instructions for clarity as follows: Physically meaningful microscopic264

pKas are defined between microstate pairs that can interconvert by single protonation/deprotonation event of only one titrable265

group. So, microstate pairs should have total charge (absolute) difference of 1 and only one heavy atom that differs in the266

number of associated hydrogens, regardless of resonance state or geometric isomerism. All geometric isomer and resonance267

structure pairs that have the samenumber of hydrogens bound to equivalent heavy atoms are grouped into the samemicrostate.268

Pairs of resonance structures and geometric isomers (cis/trans, stereo) are not considered as different microstates, as long as269

there is no change in the number of hydrogens bound to each heavy atom. Transitions where there are shifts in the position270

of protons coupled to changes in the number of protons were also not considered as microscopic pKa values [26]. Since we271

wanted participants to report onlymicroscopic pKas that describe single deprotonation events (in contrast to transitions between272

microstates that are different in terms of two ormore titratable protons), we have also provided a pre-enumerated list of allowed273

microstate pairs.274

Provided microstate ID and microstate pair lists were intended to be used for reporting microstate IDs and to aid parsing of275

submissions. The enumerated lists of microstates were not created with the intent to guide computational predictions. This was276

clearly stated in the challenge instructions. However, we noticed that some participants still used themicrostate lists as an input277

for their pKa predictions as we received complaints from participants that due to our updates to microstate lists they needed278

to repeat their calculations. This would not have been an issue if participants used pKa prediction protocols that did not rely on279

an external pre-enumerated list of microstates as an input. None of the participants reported this dependency in their method280

descriptions explicitly, so it was also not obvious how participants were using the provided states in their predictions. We could281
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not identify which submissions used these enumerated microstate lists as input for predictions and which have followed the282

challenge instructions and relied only on their prediction method to generate microstates.283

2.3 Evaluation approaches284

Since the experimental data for the challengewasmainly composed ofmacroscopic pKa values of bothmonoprotic andmultipro-285

tic compounds, evaluation ofmacroscopic andmicroscopic pKa predictions was not straightforward. For a subset of 8molecules,286

the dominant microstate sequence could be inferred from NMR experiments. For the rest of the molecules, the only experimen-287

tal information available was the macroscopic pKa value. The experimental data—in the form of macroscopic pKa values—did288

not provide any information on which group(s) are being titrated, the microscopic pKa values, the identity of the associated289

macrostates (which total charge), or microstates (which tautomers). Also, experimental data did not provide any information290

about the charge state of protonated and deprotonated species associated with each macroscopic pKa. Typically charges of291

states associated with experimental pKa values are assigned based on pKa predictions, not experimental evidence, but we did292

not utilize such computational charge assignment. For a fair performance comparison between methods, we avoided relying293

on any particular pKa prediction to assist the interpretation of the experimental reference data. This choice complicated the294

pKa prediction analysis, especially regarding how to pair experimental and predicted pKa values for error analysis. We adopted295

various evaluation strategies guided by the experimental data. To comparemacroscopic pKa predictions to experimental values,296

we had to utilize numerical matching algorithms before we could calculate performance statistics. For the subset of molecules297

with experimental data aboutmicrostates, we usedmicrostate-basedmatching. Thesematchingmethods are described inmore298

detail in the next section.299

Three types of submissions were collected during the SAMPL6 pKa Challenge. We have only utilized the type I (microscopic300

pKa value and microstate IDs) and the type III (macroscopic pKa value) predictions in this article. Type I submissions contained301

the same prediction information as the type II submissions which reported the fractional population of microstates with respect302

to pH. We collected type II submissions in order to capture relative populations of microstates, not realizing they were redun-303

dant. The microscopic pKa predictions collected in type I submissions capture all the information necessary to calculate type304

II submissions. Therefore, we did not use type II submissions for challenge evaluation. In theory, type III (macroscopic pKa)305

predictions can also be calculated from type I submissions, but collecting type III submissions allowed the participation of pKa306

prediction methods that directly predict macroscopic pKa values without considering microspeciation and methods that apply307

special empirical corrections for macroscopic pKa predictions.308

2.3.1 Matching algorithms for pairing predicted and experimental pKa values309

Macroscopic pKa predictions can be calculated frommicroscopic pKa values for direct comparison to experimental macroscopic310

pKa values. One major question must be answered to allow this comparison: How should we match predicted macroscopic311

pKa values to experimental macroscopic pKa values when there could multiple pKa values reported for a given molecule? For312

example, experiments on SM18 showed three macroscopic pKas, but prediction of xvxzdmethod reported twomacroscopic pKa313

values. There were also examples of the opposite situation with more predicted pKa values than experimentally determined314

macroscopic pKas: One experimental pKa was measured for SM02, but two macroscopic pKa values were predicted by xvxzd315

method. The experimental and predicted values must be paired before any prediction error can be calculated, even though316

there was not any experimental information regarding underlying tautomer and charge states.317

Knowing the charges of macrostates would have guided the pairing between experimental and predicted macroscopic318

pKa values, however, not all experimental pKa measurements can determine determine the charge of protonation states. The319

potentiometric pKa measurements just captures the relative charge change between macrostates, but not the absolute value of320

the charge. Thus, our experimental data did not provide any information that would indicate the titration site, the overall charge,321

or the tautomer composition of macrostate pairs that are associated with each measured macroscopic pKa that can guide the322

matching between predicted and experimental pKa values.323

For evaluating macroscopic pKa predictions taking the experimental data as reference, Fraczkiewicz [23] delineated recom-324

mendations for fair comparative analysis of computational pKa predictions. They recommended that, in the absence of any325

experimental information that would aid in matching, experimental and computational pKa values should be matched preserv-326

ing the order of pKa values and minimizing the sum of absolute errors.327

We picked the Hungarian matching algorithm [33, 34] to match experimental and predicted macroscopic pKa values with328

a squared error cost function as suggested by Kiril Lanevskij via personal communication. The algorithm is available in the329

SciPy package (scipy.optimize.linear_sum_assignment) [35]. This matching algorithm provides optimum global assignment that330
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minimizes the linear sum of squared errors of all pairwise matches. We selected the squared error cost function instead of the331

absolute error cost function to avoid misordered matches, For instance, for a molecule with experimental pKa values of 4 and332

6, and predicted pKa values of 7 and 8, Hungarian matching with absolute error cost function would match 6 to 7 and 4 to 9.333

Hungarian matching with squared error cost would match 4 to 7 and 6 to 9, preserving the increasing pKa value order between334

experimental and predicted values. A weakness of this approach would be failing to match the experimental value of 6 to pre-335

dicted value of 7 if that was the correct match based on underlyingmacrostates. But the underlying pair of states were unknown336

to us both because the experimental data did not determine which charge states the transitions were happening between and337

also because we did not collect the pair of macrostates associated with each pKa predictions in submissions. Requiring this in-338

formation for macroscopic pKa predictions in future SAMPL challenges would allow for better comparison between predictions,339

even if experimental assignment of charges is not possible. There is no perfect solution to the numerical pKa assignment prob-340

lem, but we tried to determine the fairest way to penalize predictions based on their numerical deviation from the experimental341

values.342

For the analysis of microscopic pKa predictions we adopted a different matching approach. For the eight molecules for which343

we had the requisite data for this analysis, we utilized the dominant microstate sequence inferred from NMR experiments to344

match computational predictions and experimental pKa values. Wewill refer to this assignmentmethod asmicrostatematching,345

where the experimental pKa value is matched to the computational microscopic pKa value which was reported for the dominant346

microstate pair observed for each transition. We have compared the results of Hungarian matching and microstate matching.347

Inevitably, the choice of matching algorithms to assign experimental and predicted values has an impact on the computed348

performance statistics. We believe the Hungarian algorithm for numerical matching of unassigned pKa values and microstate-349

based matching when experimental microstates are known were the best choices, providing the most unbiased matching with-350

out introducing assumptions outside of the experimental data.351

2.3.2 Statistical metrics for submission performance352

A variety of accuracy and correlation statistics were considered for analyzing and comparing the performance of prediction353

methods submitted to the SAMPL6 pKa Challenge. Calculated performance statistics of predictions were provided to partici-354

pants before the workshop. Details of the analysis and scripts are maintained on the SAMPL6 GitHub Repository (described in355

Section 5).356

Error metrics357

There are six error metrics reported for the numerical error of the pKa values: the root-mean-squared error (RMSE), mean abso-358

lute error (MAE),mean error (ME), coefficient of determination (R2), linear regression slope (m), and Kendall’s Rank Correlation Co-359

efficient (�). Uncertainty in each performance statistic was calculated as 95% confidence intervals estimated by non-parametric360

bootstrapping (sampling with replacement) over predictions with 10 000 bootstrap samples. Calculated errors statistics of all361

methods can be found in Table S2 for macroscopic pKa predictions and Tables S4 and S4 for microscopic pKa predictions.362

Assessing macrostate predictions363

In addition to assessing the numerical error in predicted pKa values, we also evaluated predictions in terms of their ability to364

capture the correct macrostates (ionization states) and microstates (tautomers of each ionization state) to the extent possible365

from the available experimental data. For macroscopic pKas, the spectrophotometric experiments do not directly report on the366

identity of the ionization states. However, the number of ionization states indicates the number of macroscopic pKas that exists367

between the experimental range of 2.0–12.0. For instance, SM14 has two experimental pKas and therefore three different charge368

states observed between pH 2.0 and 12.0. If a prediction reported 4 macroscopic pKas, it is clear that this method predicted369

an extra ionization state. With this perspective, we reported the number of unmatched experimental pKas (the number of370

missing pKa predictions, i.e., missing ionization states) and the number of unmatched predicted pKas (the number of extra pKa371

predictions, i.e., extra ionization states) after Hungarian matching. The latter count was restricted to only predictions with pKa372

values between 2 and 12 because that was the range of the experimental method. Errors in extra or missing pKa prediction373

errors highlight failure to predict the correct number of ionization states within a pH range.374

Assessing microstate predictions375

For the evaluation of microscopic pKa predictions, taking advantage of the available dominant microstate sequence data for376

a subset of 8 compounds, we calculated the dominant microstate prediction accuracy which is the ratio of correct dominant377

tautomer predictions for each charge state divided by the total number of dominant tautomer predictions. Dominantmicrostate378

9 of 46

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 15, 2020. ; https://doi.org/10.1101/2020.10.15.341792doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.15.341792
http://creativecommons.org/licenses/by/4.0/


prediction accuracy was calculated over all experimentally detected ionization states of each molecule which were part of this379

analysis. In order to extract the sequence of dominant microstates from the microscopic pKa predictions sets, we calculated380

the relative free energy of microstates selecting a neutral tautomer and pH 0 as reference following Equation 8. Calculation of381

relative microstate free energies was explained in more detail in a previous publication [26].382

The relative free energy of a state with respect to reference state B at pH 0.0 (arbitrary pH value selected as reference) can383

be calculated as follows:384

ΔGAB = ΔmAB RT ln 10 (pH − pKa) (8)

ΔmAB is equal to the number protons in state A minus that in state B. R and T indicate the molar gas constant and temperature,385

respectively. By calculating relative free energies of all predicted microstates with respect to the same reference state and pH,386

we were able to determine the sequence of predicted dominant microstates. The dominant tautomer of each charge state387

was determined as the microstate with the lowest free energy in the subset of predicted microstates of each ionization state.388

This approach is feasible because the relative free energy of tautomers of the same ionization state is independent of pH and389

therefore the choice of reference pH is arbitrary.390

Identifying consistently top-performing methods391

We created a shortlist of top-performing methods for macroscopic and microscopic pKa predictions. The top macroscopic pKa392

predictionswere selected if they ranked in the top 10 consistently according to two errormetrics (RMSE,MAE) and two correlation393

metrics (R-Squared, and Kendall’s Tau), while also having fewer than eight missing or extra macroscopic pKas for the entire394

molecule set (eight macrostate errors correspond to macrostate prediction mistake in roughly one third of the 24 compounds).395

These methods are presented in Table 2. A separate list of top-performing methods was constructed for microscopic pKa with396

the following criteria: ranking in the top 10 methods when ranked by accuracy statistics (RMSE and MAE) and perfect dominant397

microstate prediction accuracy. These methods are presented in Table 3.398

Determining challenging molecules399

In addition to comparing theperformanceofmethods, we alsowanted to compare pKa prediction performance for eachmolecule400

to determine which molecules were the most challenging for pKa predictions considering all the methods in the challenge. For401

this purpose, we plotted prediction error distributions of each molecule calculated over all prediction methods. We also calcu-402

lated MAE for each molecule over all prediction sets as well as for predictions from each method category separately.403

2.4 Reference calculations404

Including a null model is helpful in comparative performance analysis of predictive methods to establish what the performance405

statistics look like for a baseline method for the specific dataset. Null models or null predictions employ a simple prediction406

model which is not expected to be particularly successful, but it provides a simple point of comparison for more sophisticated407

methods. The expectation or goal is for more sophisticated or costly prediction methods to outperform the predictions from a408

null model, otherwise the simpler null model would be preferable. In SAMPL6 pKa Challenge there were two blind submissions409

using database lookupmethods thatwere submitted to serve as null predictions. Thesemethods, with submission IDs 5nm4j and410

5nm4j both used OpenEye pKa-Prospector database to find themost similar molecule to querymolecule and simply reported its411

pKa as the predicted value. Database lookup methods with a rich experimental database do present a challenging null model to412

beat, however, due to the accuracy level needed from pKa predictions for computer-aided drug design we believe suchmethods413

provide an appropriate performance baseline that physical and empirical pKa prediction methods should strive to outperform.414

We also included additional reference calculations in the comparative analysis to provide more perspective. Some widely415

usedmethods by academia and industry weremissing from the blind challenge submission. Therefore, we included thosemeth-416

ods as reference calculations: Schrödinger/Epik (nb007, nb008, nb010), Schrödinger/Jaguar (nb011, nb013), Chemaxon/Chemicalize417

(nb015), andMolecular Discovery/MoKa (nb016, nb017). Epik and Jaguar pKa predictionswere collected by Bas Rustenburg, Chem-418

icalize predictions by Mehtap Isik, and MoKa predictions by Thomas Fox. All were done after the challenge deadline avoiding419

any alterations to their respective standard procedures and any guidance from experimental data. Experimental data was pub-420

licly available before these calculations were complete, therefore reference calculations were not formally considered as blind421

submissions.422

All figures and statistics tables in thismanuscript include reference calculations. As the reference calculationswere not formal423

submissions, these were omitted from formal ranking in the challenge, but we present plots in this article which show them for424

easy comparison. These are labeled with submission IDs of the form nb### to clearly indicate non-blind reference calculations.425
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3 Results and Discussion426

Participation in the SAMPL6 pKa Challenge was high with 11 research groups contributing pKa prediction sets for 37 methods.427

A large variety of pKa prediction methods were represented in the SAMPL6 Challenge. We categorized these submissions into428

four method classes: database lookup (DL), linear free energy relationship (LFER), quantitative structure-property relationship429

or machine learning (QSPR/ML), and quantum mechanics (QM). Quantum mechanics models were subcategorized into QM430

methods with and without linear empirical correction (LEC), and combined quantum mechanics and molecular mechanics (QM431

+ MM). Table 1 presents method names, submission IDs, method categories, and also references for each approach. Integral432

equation-based approaches (e.g.EC-RISM) were also evaluated under the Physical (QM) category. There were 2 DL, 4 LFER, and433

5 QSPR/ML methods represented in the challenge, including the reference calculations. The majority of QM calculations include434

linear empirical corrections (22 methods in QM + LEC category), and only 5 QMmethods were submitted without any empirical435

corrections. There were 4 methods that used a mixed physical modeling approach of QM + MM.436

The following sections present a detailed performance evaluation of blind submissions and reference prediction methods437

for macroscopic and microscopic pKa predictions. Performance statistics of all the methods can be found in Tables S2 and S4.438

Methods are referred to by their submission ID’s which are provided in Table 1.439

3.1 Analysis of macroscopic pKa predictions440
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Figure 2. RMSE and unmatched pKa counts vs. submission ID plots for macroscopic pKa predictions based on Hungarian matching.

Methods are indicated by submission IDs. RMSE is shown with error bars denoting 95% confidence intervals obtained by bootstrapping over
challenge molecules. Submissions are colored by their method categories. Light blue colored database lookup methods are utilized as the null
prediction method. QM methods category (navy) includes pure QM, QM+LEC, and QM+MM approaches. Lower bar plots show the number of
unmatched experimental pKa values (light grey,missing predictions) and the number of unmatchedpKa predictions (dark grey, extra predictions)
for each method between pH 2 and 12. Submission IDs are summarized in Table 1. Submission IDs of the form nb### refer to non-blinded
reference methods computed after the blind challenge submission deadline. All others refer to blind, prospective predictions.

The performance of macroscopic pKa predictions was analyzed by comparison to experimental pKa values collected by the441

spectrophotometric method via numerical matching following the Hungarian method. Overall pKa prediction performance was442

worse than we hoped. Fig. 2 shows RMSE calculated for each prediction method represented by their submission IDs. Other443

performance statistics are depicted in Fig. 3. In both figures, method categories are indicated by the color of the error bars. The444

statistics depicted in these figures can be found in Table S2. Prediction error ranged between 0.7 to 3.2 pKa units in terms of445
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Table 1. Submission IDs, names, category, and type for all the pKa prediction sets. Reference calculations are labeled as nb###. Themethod
name column lists the names provided by each participant in the submission file. The “type” column indicates if a submission was or a post-
deadline reference calculation, denoted by “Blind” or “Reference” respectively. The methods in the table are grouped by method category and
not ordered by performance.

Method

Category
Method

Microscopic pKa
(Type I)

Submission ID

Macroscopic pKa
(Type III)

Submission ID

Submission

Type
Ref.

DL Substructure matches to experimental data in pKa OpenEye pKa Prospector Database v1.0 5nm4j Null [36]
DL OpenEye pKa-Prospector 1.0.0.3 with Analog Search ion identification algorithm pwn3m Null [36]
LFER ACD/pKa GALAS (ACD/Percepta Kernel v1.6) v8qph 37xm8 Blind [37]
LFER ACD/pKa Classic (ACD/Percepta Kernel, v1.6) xmyhm Blind [38]
LFER Epik Scan (Schrödinger v2017-4) nb007 Reference [30]
LFER Epik Microscopic (Schrödinger v2017-4) nb008 nb010 Reference [30]
QSPR/ML OpenEye Gaussian Process 6tvf8 hytjn Blind [12]
QSPR/ML OpenEye Gaussian Process Resampled q3pfp Blind [12]
QSPR/ML S+pKa (ADMET Predictor v8.5, Simulations Plus) hdiyq gyuhx Blind [24]
QSPR/ML Chemicalize v18.23 (ChemAxon MarvinSketch v18.23) nb015 Reference [39]
QSPR/ML MoKa v3.1.3 nb016 nb017 Reference [22, 40]

QM
Adiabatic scheme with single point correction: SMD/M06-2X//6-311++G(d,p)//M06-2X/6-31+G(d)
for bases and SMD/M06-2X//6-311++G(d,p)//M06-2X/6-31G(d) for acids + thermal corrections

ko8yx ryzue Blind [41]

QM
Direct scheme with single point correction: SMD/M06-2X//6-311++G(d,p)//M06-2X/6-31+G(d) for
bases and SMD/M06-2X//6-311++G(d,p)//M06-2X/6-31G(d) for acids + thermal corrections

w4z0e xikp8 Blind [41]

QM
Adiabatic scheme: thermodynamic cycle that uses gas phase optimized structures for gas phase free
energy and solution phase geometries for solvent phase free energy. SMD/M06-2X/6-31+G(d) for
bases and SMD/M06-2X/6-31G(d) for acids + thermal corrections

wcvnu 5byn6 Blind [41]

QM
Vertical scheme: thermodynamic cycle that uses only gas phase optimized structures to compute gas
hase and solvation free energy. SMD/M06-2X/6-31+G(d) for bases and SMD/M06-2X/6-31G(d) for
acids + Thermal corrections

arcko w4iyd Blind [41]

QM
Direct scheme: solution phase free energy is determined by solution phase geometries without
thermodynamic cycle SMD/M06-2X/6-31+G(d) for bases and SMD/M06-2X/6-31G(d) for acids
+ thermal corrections

wexjs y75vj Blind [41]

QM + LEC Jaguar (Schrödinger v2017-4) nb011 nb013 Reference [42]
QM + LEC CPCM/B3LYP/6–311+G(d,p) and global fitting y4wws 35bdm Blind [10]

QM + LEC
CPCM/B3LYP/6–311+G(d,p) and separate fitting for neutral to negative and for positive to neutral
transformations

qsicn p0jba Blind [10]

QM + LEC EC-RISM/MP2/6-311+G(d,p)-P3NI-q-noThiols-2par kxztt ds62k Blind [43]
QM + LEC EC-RISM/MP2/cc-pVTZ-P2-q-noThiols-2par ftc8w 2ii2g Blind [43]
QM + LEC EC-RISM/MP2/6-311+G(d,p)-P2-phi-all-2par ktpj5 nb001 Blind* [43]
QM + LEC EC-RISM/MP2/6-311+G(d,p)-P2-phi-noThiols-2par wuuvc nb002 Blind* [43]
QM + LEC EC-RISM/MP2/6-311+G(d,p)-P3NI-phi-all-2par 2umai nb003 Blind* [43]
QM + LEC EC-RISM/MP2/6-311+G(d,p)-P3NI-phi-noThiols-2par cm2yq nb004 Blind* [43]
QM + LEC EC-RISM/MP2/6-311+G(d,p)-P2-phi-all-1par z7fhp nb005 Blind* [43]
QM + LEC EC-RISM/MP2/6-311+G(d,p)-P3NI-phi-all-1par 8toyp nb006 Blind* [43]
QM + LEC EC-RISM/MP2/cc-pVTZ-P2-phi-noThiols-2par epvmk ttjd0 Blind [43]
QM + LEC EC-RISM/MP2/cc-pVTZ-P2-phi-all-2par xnoe0 mkhqa Blind [43]
QM + LEC EC-RISM/MP2/cc-pVTZ-P3NI-phi-noThiols-2par 4o0ia mpwiy Blind [43]
QM + LEC EC-RISM/B3LYP/6-311+G(d,p)-P3NI-q-noThiols-2par nxaaw ad5pu Blind [43]
QM + LEC EC-RISM/B3LYP/6-311+G(d,p)-P3NI-phi-noThiols-2par 0xi4b f0gew Blind [43]
QM + LEC EC-RISM/B3LYP/6-311+G(d,p)-P2-phi-noThiols-2par cywyk np6b4 Blind [43]
QM + LEC PCM/B3LYP/6-311+G(d,p) gdqeg yc70m Blind [43]
QM + LEC COSMOtherm_FINE17 (COSMOtherm C30_1701, BP/TZVPD/FINE//BP/TZVP/COSMO) t8ewk 0hxtm Blind [44, 45]

QM + LEC
DSD-BLYP-D3(BJ)/def2-TZVPD//PBEh-3c[DCOSMO-RS] + RRHO(GFN-xTB[GBSA])
+ Gsolv(COSMO-RS[TZVPD]) and linear fit

xvxzd Blind [46]

QM + LEC

ReSCoSS conformations // DSD-BLYP-D3 reranking // COSMOtherm pKa: DSD-BLYP-D3(BJ)/
def2-TZVPD// PBE-D3(BJ)/def2-TZVP/COSMO + RRHO[GFN-xTB + GBSA-water]
+ Gsolv[COSMO-RS(FINE17/TZVPD)] level and COSMOtherm pKa applied at the single conformer
pair level (COSMOthermX17.0.5 release and BP-TZVPD-FINE-C30-1701 parameterization)

eyetm 8xt50 Blind [46]

QM + LEC

ReSCoSS conformations // COSMOtherm pKa: DSD-BLYP-D3(BJ)/def2-TZVPD// PBE-D3(BJ)/
def2-TZVP/COSMO + RRHO[GFN-xTB + GBSA-water] + Gsolv[COSMO-RS(FINE17/TZVPD)]
level and COSMOtherm pKa was applied directly on the resulting conformer sets with at least 5%
Boltzmann weights for each microspecies (COSMOthermX17.0.5 release and BP-TZVPD-FINE-
C30-1701 parameterization)

ccpmw yqkga Blind [46]

QM + MM
M06-2X/6-31G*(for bases) or 6-31+G*(for acids) for gas phase, solvation free energy using TI with
explicit solvent and GAFF, solvation free energy of proton -265.6 kcal/mol

0wfzo Blind [47]

QM + MM
M06-2X/6-31G*(for bases) or 6-31+G*(for acids) for gas phase, solvation free energy using TI with
explicit solvent and GAFF, solvation free energy of proton -271.88 kcal/mol

z3btx Blind

QM + MM
M06-2X/6-31G*(for bases) or 6-31+G*(for acids) + thermal state correction for gas phase, solvation
free energy using TI with explicit solvent and GAFF, solvation free energy of proton -265.6 kcal/mol

758j8 Blind

QM + MM
M06-2X/6-31G*(for bases) or 6-31+G*(for acids) + thermal state correction for gas phase, solvation
free energy using TI with explicit solvent and GAFF, solvation free energy of proton -271.88 kcal/mol

hgn83 Blind

* Microscopic pKa submissions were blind, however, participant requested a correction after blind submission deadline for macroscopic pKa submissions. Therefore, these were assigned
submission IDs in the form of nb###.
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RMSE, while an RMSE between 2-3 log units was observed for the majority of methods (20 out of 38 methods). Only five meth-446

ods achieved RMSE less than 1 pKa unit. One is QM method with COSMO-RS approach for solvation and linear empirical cor-447

rection (xvxzd (DSD-BLYP-D3(BJ)/def2-TZVPD//PBEh-3c[DCOSMO-RS] + RRHO(GFN-xTB[GBSA]) + Gsolv(COSMO-RS[TZVPD]) and448

linear fit)), and the remaining four are empirical prediction methods of LFER (xmyhm (ACD/pKa Classic), nb007 (Schrödinger/Epik449

Scan)) and QSPR/ML categories (gyuhx (Simulations Plus), nb017 (MoKa)). These five methods with RMSE less than 1 pKa unit are450

also the methods that have the lowest MAE. xmyhm and xvxzd were the only two methods for which the upper 95% confidence451

interval of RMSE was lower than 1 pKa unit.452

In terms of correlation statistics, many methods have good performance, although the ranking of methods changes accord-453

ing to R2 and Kendall’s Tau. Therefore, many methods are indistinguishable from one another, considering the uncertainty of454

the correlation statistics. 32 out of 38 methods have R and Kendall’s Tau higher than 0.7 and 0.6, respectively. 8 methods have455

R2 higher than 0.9 and 6methods have Kendall’s Tau higher than 0.8. The overlap of these two sets are the following: gyuhx (Sim-456

ulations Plus), xvxzd (DSD-BLYP-D3(BJ)/def2-TZVPD//PBEh-3c[DCOSMO-RS] + RRHO(GFN-xTB[GBSA]) + Gsolv(COSMO-RS[TZVPD])457

and linear fit), xmyhm (ACD/pKa Classic), ryzue (Adiabatic scheme with single point correction: MD/M06-2X//6-311++G(d,p)//M06-458

2X/6-31+G(d) for bases and SMD/M06-2X//6-311++G(d,p)//M06-2X/6-31G(d) for acids + thermal corrections), and 5byn6 (Adiabatic459

scheme: thermodynamic cycle that uses gas phase optimized structures for gas phase free energy and solution phase geome-460

tries for solvent phase free energy. SMD/M06-2X/6-31+G(d) for bases and SMD/M06-2X/6-31G(d) for acids + thermal corrections).461

It is worth noting that ryzue and 5byn6 are QM predictions without any empirical correction. Their high correlation and rank cor-462

relation coefficient scores signal that with an empirical correction their accuracy based performance could improve. Indeed, the463

participants have shown that this is the case in their own challenge analysis paper and achieved RMSE of 0.73 pKa units after464

the challenge [41].465

Null prediction methods based on database lookup (5nm4j and pwn3m) had similar performance, with an RMSE of roughly466

2.5 pKa units, an MAE of 1.5 pKa units, R
2 of 0.2, and Kendall’s Tau of 0.3. Many methods were observed to have a prediction467

performance advantage over the null predictions shown in light blue in Fig. 2 and Fig. 3 considering all the performance metrics468

as a whole. In terms of correlation statistics, the null methods are the worst performers, except for 0hxtm. From the perspective469

of accuracy-based statistics (RMSE and MAE), only the top 10 methods were observed to have significantly lower errors than the470

null methods considering the uncertainty of error metrics expressed as 95% confidence intervals.471

The distribution of macroscopic pKa prediction signed errors observed in each submission was plotted in Fig. 7A as ridge472

plots using the Hungarian matching scheme. 2ii2g, f0gew, np64b, p0jba, and yc70m tended to overestimate, while 5byn6, ryzue,473

and w4iyd tended to underestimate macroscopic pKa values.474

Four submissions in the QM+LEC category used the COSMO-RS implicit solvation model. While three of these achieved the475

lowest RMSE among QM-basedmethods (xvxzd, yqkga, and 8xt50) [46], one of them showed the highest RMSE (0hxtm (COSMOth-476

erm_FINE17)) among all SAMPL6 Challenge macroscopic pKa predictions. All four methods used COSMO-RS/FINE17 to compute477

solvation free energies. The major difference between the three low-RMSE methods and 0hxtm seems to be the protocol for478

determining relevant conformations for each microstate. xvxzd, yqkga, and 8xt50 used a semi-empirical tight binding (GFN-xTB)479

method and GBSA continuum solvationmodel for geometry optimization, followed by high level single-point energy calculations480

with a solvation free energy correction (COSMO-RS(FINE17/TZVPD)) and rigid rotor harmonic oscillator (RRHO[GFN-xTB(GBSA])481

correction. yqkga, and 8xt50 selected conformations for each microstate with the Relevant Solution Conformer Sampling and482

Selection (ReSCoSS) workflow [46]. The conformations were clustered according to shape, and the lowest energy conformations483

from each cluster (according to BP86/TZVP/COSMO single point energies in any of the 10 different COSMO-RS solvents) were con-484

sidered as relevant conformers. The yqkga method further filtered out conformers that have less than 5% Boltzmann weights485

at the DSD-BLYP-D3/def2-TZVPD + RRHO(GFNxTB) + COSMO-RS(fine) level. The xvxzd method used an MF–MD–GC//GFN-xTB486

workflow and energy thresholds of 6 kcal/mol and 10 kcal/mol, for conformer and microstate selection. On the other hand,487

the conformational ensemble captured for each microstate seems to be more limited for the 0hxtm method, judging by the488

method description provided in the submission file (this participant did not publish an analysis of the results that they obtained489

for SAMPL6). The 0hxtmmethod reported that relevant conformations were computed with the COSMOconf 4.2 workflowwhich490

produced multiple relevant conformers for only the neutral states of SM18 and SM22. In contrast to xvxzd, yqkga, and 8xt50, the491

0hxtm method also did not include a RRHO correction. Participants who submitted the three low-RMSE methods report that492

capturing the chemical ensemble for each molecule including conformers and tautomers and high-level QM calculations led493

to more successful macroscopic pKa prediction results and RRHO correction provided a minor improvement [46]. Comparing494

these results to other QM approaches in the SAMPL Challenge also points to the advantage of the COSMO-RS solvation approach495

compared to other implicit solvent models.496
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In addition to the statistics related to the pKa value, we also analyzed missing or extra pKa predictions. Analysis of the497

pKa values with accuracy- and correlation-based error metrics was only possible after the matching of predicted macroscopic498

pKa values to experimental pKa values through Hungarian matching, although this approach masks pKa prediction issues in499

the form of extra or missing macroscopic pKa predictions. To capture this class of prediction errors, we reported the number of500

unmatched experimental pKas (missing pKa predictions) and the number of unmatched predicted pKas (extra pKa predictions)501

after Hungarian matching for each method. Both missing and extra pKa prediction counts were only considered for the pH502

range of 2–12, which corresponds to the limits of the experimental assay. The lower subplot of Fig. 2 shows the total count503

of unmatched experimental or predicted pKa values for all the molecules in each prediction set. The order of submission IDs504

in the x-axis follows the RMSD based ranking so that the performance of each method from both pKa value accuracy and the505

number of pKas can be viewed together. The omission or inclusion of extramacroscopic pKa predictions is a critical error because506

inaccuracy in predicting the correct number of macroscopic transitions shows that methods are failing to predict the correct set507

of charge states, i.e., failing to predict the correct number of ionization states that can be observed between the specified pH508

range.509

In the analysis of these challenge results, extra macroscopic pKa predictions were found to be more common than missing510

pKa predictions. In pKa prediction evaluations, the accuracy of predicted ionization states within a pH range is usually neglected.511

When predictions are only evaluated for the accuracy of the pKa value with numerical matching algorithms, a larger number of512

predicted pKas lead to greater underestimation of prediction errors. Therefore, it is not surprising that methods are biased to513

predict extra pKa values. The SAMPL6 pKa Challenge experimental data consists of 31 macroscopic pKas in total, measured for514

24 molecules (6 molecules in the set have multiple pKas). Within the 10 methods with the lowest RMSE, only the xvxzd method515

predicts too few pKa values (2 unmatched out of 31 experimental pKas). All other methods that rank in the top 10 by RMSE516

have extra predicted pKas ranging from 1 to 13. Two prediction sets without any extra pKa predictions and low RMSE are 8xt50517

(ReSCoSS conformations // DSD-BLYP-D3 reranking // COSMOtherm pKa) and nb015 (ChemAxon/Chemicalize).518

3.1.1 Consistently well-performing methods for macroscopic pKa prediction519

Methods ranked differently when ordered by different error metrics, although there were a couple of methods that consistently520

ranked in the top fraction. By using combinatorial criteria that take multiple statistical metrics and unmatched pKa counts into521

account, we identified a shortlist of consistently well-performing methods for macroscopic pKa predictions, shown in Table 2.522

The criteria for selection were the overall ranking in Top 10 according to RMSE, MAE, R2, and Kendall’s Tau and also having a523

combined unmatched pKa (extra andmissing pKas) count less than 8 (a third of the number of compounds). We rankedmethods524

in ascending order for RMSE and MAE and in descending order for R2, and Kendall’s Tau to determine methods. Then, we took525

the intersection set of Top 10 methods according to each statistic to determine the consistently-well performing methods. This526

resulted in a list of four methods that are consistently well-performing across all criteria.527

Consistently well-performingmethods formacroscopic pKa prediction includedmethods fromall categories. Twomethods in528

theQM+LEC categorywere xvxzd (DSD-BLYP-D3(BJ)/def2-TZVPD//PBEh-3c[DCOSMO-RS] + RRHO(GFN-xTB[GBSA]) +Gsolv(COSMO-529

RS[TZVPD]) and linear fit) and (8xt50) (ReSCoSS conformations // DSD-BLYP-D3 reranking // COSMOtherm pKa) and both used530

COSMO-RS. Empirical pKa predictions with top performance were both proprietary software. From QSPR and LFER categories,531

gyuhx (Simulations Plus) and xmymhm (ACD/pKa Classic) were consistently well-performing methods. The Simulation Plus pKa532

prediction method consisted of 10 artificial neural network ensembles trained on 16,000 compounds for 10 classes of ionizable533

atoms, with the ionization class of each atom determined using an assigned atom type and local molecular environment [48].534

The ACD/pKa Classic method was trained on 17,000 compounds, uses Hammett-type equations, and captures effects related to535

tautomeric equilibria, covalent hydration, resonance effects, and �, �-unsaturated systems [38].536

Figure 4 plots predicted vs. experimental macroscopic pKa predictions of four consistently well-performing methods, a rep-537

resentative average method, and the null method(5nm4j). We selected the method with the highest RMSE below the median of538

all methods as the representative method with average performance: 2ii2g (EC-RISM/MP2/cc-pVTZ-P2-q-noThiols-2par).539

3.1.2 Which chemical properties are driving macroscopic pKa prediction failures?540

In addition to comparing the performance of methods that participated in the SAMPL6 Challenge, we also wanted to analyze541

macroscopic pKa predictions from the perspective of challenge molecules and determine whether particular compounds suffer542

from larger inaccuracy in pKa predictions. The goal of this analysis is to provide insight onwhichmolecular properties ormoieties543

might be causing larger pKa prediction errors. In Fig. 5, 2D depictions of the challenge molecules are presented with MAE544

calculated for their macroscopic pKa predictions over all methods, based on Hungarian match. For multiprotic molecules, the545
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Figure 3. Additional performance statistics for macroscopic pKa predictions based on Hungarian matching. Methods are indicated by
submission IDs. Mean absolute error (MAE), mean error (ME), Pearson’s R2, and Kendall’s Rank Correlation Coefficient Tau (�) are shown, with
error bars denoting 95% confidence intervals were obtained by bootstrapping over challenge molecules. Refer to Table 1 for the submission
IDs and method names. Submissions are colored by their method categories. Light blue colored database lookup methods are utilized as the
null prediction method.

MAE was averaged over all the pKa values. For the analysis of pKa prediction accuracy observed for each molecule, MAE is a546

more appropriate statistical value than RMSE for following global trends, as it is less sensitive to outliers than the RMSE.547
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Table 2. Four consistently well-performing prediction methods for macroscopic pKa prediction based on consistent ranking within

the Top 10 according to various statistical metrics. Submissions were ranked according to RMSE, MAE, R2, and �. Consistently well-
performing methods were selected as the ones that rank in the Top 10 in each of these statistical metrics. These methods also have less
than 2 unmatched experimental pKas and less than 7 unmatched predicted pKas according to Hungarian matching. Performance statistics
are provided as mean and 95% confidence intervals.

Submission ID Method Name RMSE MAE R2
Kendall’s Tau

(�)

Unmatched Exp.

pKa Count

Unmatched Pred.

pKa Count [2,12]

xvxzd
Full quantum chemical calculation of
free energies and fit to experimental pKa

0.68 [0.54, 0.81] 0.58 [0.45, 0.71] 0.94 [0.88, 0.97] 0.82 [0.68, 0.92] 2 4

gyuhx S+pKa 0.73 [0.55, 0.91] 0.59 [0.44, 0.74] 0.93 [0.88, 0.96] 0.88 [0.8, 0.94] 0 7
xmyhm ACD/pKa Classic 0.79 [0.52, 1.03] 0.56 [0.38, 0.77] 0.92 [0.85, 0.97] 0.81 [0.68, 0.9] 0 3

8xt50
ReSCoSS conformations // DSD-BLYP-D3
reranking // COSMOtherm pKa

1.07 [0.78, 1.36] 0.81 [0.58, 1.07] 0.91 [0.84, 0.95] 0.80 [0.68, 0.89] 0 0

A comparison of the prediction accuracy of individual molecules is shown in Fig. 6. In Fig. 6A, the MAE for each molecule is548

shown considering all blind predictions and reference calculations. A cluster of molecules marked orange and red have higher549

than average MAE. Molecules marked red (SM06, SM21, and SM22) are the only compounds in the SAMPL6 dataset with bromo550

or iodo groups and they suffered amacroscopic pKa prediction error in the range of 1.7–2.0 pKa units in terms ofMAE. Molecules551

marked orange (SM03, SM10, SM18, SM19, and SM20) have sulfur-containing heterocycles, and all thesemolecules except SM18552

have MAE larger than 1.6 pKa units. Despite containing a thiazole group, SM18 has a low prediction MAE. SM18 is the only553

compound with three experimental pKa values, and we suspect the presence of multiple experimental pKa values could have a554

masking effect on the errors captured by the MAE when the Hungarian matching scheme is used due to more potential pairing555

choices that may artificially lower the error.556

We separately analyzed the MAE of each molecule for empirical (LFER and QSPR/ML) and QM-based physical methods (QM,557

QM+LEC, and QM+MM) to gain additional insight into prediction errors. Fig. 6B shows that the difficulty of predicting pKa values558

of the same subset of molecules was a trend conserved in the performance of physical methods. For QM-basedmethods, sulfur-559

containing heterocycles, amides proximal to aromatic heterocycles, and compounds with iodo and bromo substitutions have560

lower pKa prediction accuracy.561

The SAMPL6 pKa set consists of only 24 small molecules and lacks multiple examples of many moieties, limiting our ability562

to determine with statistical significance which chemical substructures cause greater errors in pKa predictions. Still, the trends563

observed in this challenge point to molecules with iodo-, bromo-, and sulfur-containing heterocycles as having systematically564

larger prediction errors in macroscopic pKa value. We hope that reporting this observation will lead to the improvement of565

methods for similar compounds with such moieties.566

Wehave also looked for correlationwithmolecular descriptors for finding other potential explanations as towhymacroscopic567

pKa prediction errors were larger for certain molecules. While testing the correlation between errors and many molecular de-568

scriptors, it is important to account for the possibility of spurious correlations. We haven’t observed any statistically significant569

correlation between numerical pKa predictions and the descriptors we have tested. First, having more experimental pKa values570

(Fig. 6A) did not seem to be associated with poorer pKa prediction performance. Still, we need to keep in mind that multiprotic571

compounds were sparsely represented in the SAMPL6 set (5 molecules with 2 macroscopic pKa values and one with 3 macro-572

scopic pKa). Second, we checked the following other descriptors: presence of an amide group, molecular weight, heavy atom573

count, rotatable bond count, heteroatom count, heteroatom-to-carbon ratio, ring system count, maximum ring size, and the574

number of microstates (as enumerated for the challenge). Correlation plots and R2 values can be seen in Fig. S2.575

We had suspected that pKa prediction methods may perform better for moderate values (4–10) than extreme values as576

molecules with extreme pKa values are less likely to change ionization states close to physiological pH. To test this we look at577

the distribution of absolute errors calculated for all molecules and challenge predictions binned by experimental pKa value 2 pKa578

unit increments. As can be seen in Fig. S3B, the value of true macroscopic pKa values was not a factor affecting the prediction579

error seen in SAMPL6 Challenge.580

Fig. 7B is helpful to answer the question "Are there molecules with consistently overestimated or underestimated pKa val-581

ues?". This ridge plots show the error distribution of each experimental pKa. SM02_pKa1, SM04_pKa1, SM14_pKa1, and SM21_pKa1582

wereunderestimated, predicting lower protein affinity bymore than 1pKa unit bymajority of the predictionmethods. SM03_pKa1,583

SM06_pKa2, SM19_pKa1, and SM20_pKa1were overestimated by themajority of the predictionmethods bymore than 1 pKa unit.584

SM03_pKa1, SM06_pKa2, SM10_pKa1, SM19_pKa1, and SM22_pKa1 have the highest spread of errors and were less accurately585
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Figure 4. Predicted vs. experimental macroscopic pKa prediction for four consistently well-performing methods, a representative

method with average performance (2ii2g), and the null method (5nm4j). When submissions were ranked according to RMSE, MAE, R2, and
�, four methods ranked in the Top 10 consistently in each of these metrics. Dark and light green shaded areas indicate 0.5 and 1.0 units of
error. Error bars indicate standard error of the mean of predicted and experimental values. Experimental pKa SEM values are too small to be
seen under the data points. EC-RISM/MP2/cc-pVTZ-P2-q-noThiols-2par method (2ii2g) was selected as the representative method with average
performance because it is the method with the highest RMSE below the median.

predicted overall.586

3.2 Analysis ofmicroscopic pKa predictionsusingmicrostates determinedbyNMR for 8molecules587

The most common approach for analyzing microscopic pKa prediction accuracy has been to compare it to experimental macro-588

scopic pKa data, assuming experimental pKa values describe titrations of distinguishable sites and, therefore, correspond to589

microscopic pKas. But this typical approach fails to evaluate methods at the microscopic level.590

Analysis of microscopic pKa predictions for the SAMPL6 Challenge was not straightforward due to the lack of experimental591

data with microscopic resolution of the titratable sites and their associated microscopic pKas. For 24 molecules, macroscopic592

pKa values were determined with the spectrophotometric method. For 18 molecules, a single macroscopic titration was ob-593

served, and for 6 molecules multiple experimental pKa values were observed and characterized. For 18 molecules with a single594

experimental pKa, it is probable that the molecules are monoprotic and, therefore, macroscopic pKa value is equal to the mi-595

croscopic pKa. There is, however, no direct experimental evidence supporting this hypothesis aside from the support from596

computational predictions, such as the predictions by ACD/pKa Classic. There is always the possibility that the macroscopic pKa597

observed is the result of two different titrations overlapping closely with respect to pH if any charge state has more than one598

tautomer. We did not want to bias the blind challenge analysis with any prediction method. Therefore, we believe analyzing599

the microscopic pKa predictions via Hungarian matching to experimental values with the assumption that the 18 molecules600

have a single titratable site is not the best approach. Instead, an analysis at the level of macroscopic pKa values is much more601

appropriate when a numerical matching scheme is the only option to evaluate predictions usingmacroscopic experimental data.602
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SM01	

0.72	[0.51,	0.99]		

			

SM02	

1.01	[0.88,	1.15]				

SM03	

2.39	[1.78,	3.00]			

SM04	

0.98	[0.81,	1.15]			

SM05	

1.59	[1.24,	1.93]			

SM06	

2.03	[1.65,	2.47]			

	

SM07		

1.51	[1.11,	1.94]		

	

SM08	

0.87	[0.62,	1.15]			

	

SM09	

1.06	[0.87,	1.26]			

SM10	

2.24	[1.60,	2.93]			

SM11	

0.79	[0.54,	1.06]			

SM12	

1.05	[0.85,	1.26]			

SM13	

1.01	[0.76,	1.27]			

SM14	

1.45	[1.19,	1.73]		

SM15	

1.04	[0.86,	1.22]			

SM16	

1.07	[0.88,	1.28]			

SM17	

1.19	[0.92,	1.48]			

SM18	

1.06	[0.84,	1.33]			

	

	

SM19	

2.23	[1.64,	2.89]			

SM20	

1.69	[1.44,	1.93]			

SM21	

2.00	[1.46,	2.56]			

SM22	

1.73	[1.29,	2.21]			

SM23	

1.12	[0.80,	1.46]			

	

SM24	

1.01	[0.77,	1.26]			

	

Figure 5. Molecules from the SAMPL6 Challenge with MAE calculated for all macroscopic pKa predictions. The MAE calculated over all
prediction methods indicates which molecules had the lowest prediction accuracy in the SAMPL6 Challenge. MAE values calculated for each
molecule include all the matched pKa values. SM06, SM14, SM15, SM16, SM18, and SM22 were multiprotic. Hungarian matching algorithm was
employed for pairing experimental and predicted pKa values. MAE values are reported with 95% confidence intervals.
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C   SAMPL6 molecules with sulfur-containing heterocycles

D   SAMPL6 molecules with bromo and iodo groups

QM-based	methods	
Empirical	methods	

Sulfur-containing	heterocycles	

Bromo	and	iodo	groups	2 experimental pKa values

3 experimental pKa values

B				A				

Molecule ID Molecule ID

Figure 6. Average prediction accuracy calculated over all prediction methods was poorer for molecules with sulfur-containing hetero-

cycles, bromo, and iodo groups. (A) MAE calculated for each molecule as an average of all methods. (B) MAE of each molecule broken out
by method category. QM-based methods (blue) include QM predictions with or without linear empirical correction. Empirical methods (green)
include QSAR, ML, DL, and LFER approaches. (C) Depiction of SAMPL6 molecules with sulfur-containing heterocycles. (D) Depiction of SAMPL6
molecules with iodo and bromo groups.
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Figure 7. Macroscopic pKa prediction error distribution plots show how prediction accuracy varies across methods and individual

molecules. (A) pKa prediction error distribution for each submission for all molecules according to Hungarian matching. (B) Error distribution
for each SAMPL6molecule for all predictionmethods according to Hungarianmatching. For multiprotic molecules, pKa ID numbers (pKa1, pKa2,
and pKa3) were assigned in the direction of increasing experimental pKa value.
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For a subset of eight molecules, dominant microstates were inferred from NMR experiments. Six of these molecules were603

monoprotic and two were multiprotic. This dataset was extremely useful for guiding the assignment between experimental604

and predicted pKa values based on microstates. In this section, we present the performance evaluations of microscopic pKa605

predictions for only the 8 compounds with experimentally-determined dominant microstates.606

3.2.1 Microstate-based matching revealed errors masked by pKa value-based matching between experimental607

and predicted pKas608

Comparing microscopic pKa predictions directly to macroscopic experimental pKa values with numerical matching can lead to609

underestimation of errors. To demonstrate how numerical matching often masks pKa prediction errors, we compared the per-610

formance analysis done by Hungarian matching to that from microstate-based matching for 8 molecules presented in Fig. 8A.611

RMSE calculated for microscopic pKa predictions matched to experimental values via Hungarian matching is shown in Fig. 8B,612

while Fig. 8C shows RMSE calculated via microstate-based matching. The Hungarian matching incorrectly leads to significantly613

(and artificially) lower RMSE compared to microstate-based matching. The reason is that the Hungarian matching assigns exper-614

imental pKa values to predicted pKa values only based on the closeness of the numerical values, without consideration of the615

relative population of microstates and microstate identities. Because of this, a microscopic pKa value that describes a transition616

between very low population microstates (high energy tautomers) can be assigned to the experimental pKa if it has the closest617

pKa value. This is not helpful because, in reality, the microscopic pKa values that influence the observable macroscopic pKa the618

most are the ones with higher microstate populations (transitions between low energy tautomers).619

The number of unmatched predictedmicroscopic pKas is shown in the lower bar plots of Fig. 8B and C, to emphasize the large620

number of microscopic pKa predictions submitted by many methods. In the case of microscopic pKa, the number of unmatched621

predictions does not indicate an error in the form of an extra predicted pKa, because the spectrophotometric experiments do622

not capture all microscopic pKas theoretically possible (transitions between all pairs of microstates that differ by one proton).623

pKas of transitions to and from very high energy tautomers are very hard to measure by experimental methods, including the624

most sensitive methods like NMR. Prediction of extra microscopic pKa values can cause underestimation of prediction errors625

when numericalmatching algorithms such as Hungarianmatching are used. We also checked how oftenHungarianmatching led626

to the correct matches between predicted and experimental pKa in terms of the microstate pairs, i.e., how often the microstate627

pair of the Hungarian match recapitulates the dominant microstate pair of the experiment. The overall accuracy of microstate628

pair matching was found to be low for the SAMPL6 Challenge submission. Fig. S4 shows that for most methods the predicted629

microstate pair selected by the Hungarian match did not correspond to the experimentally-determined microstate pair. This630

means lower RMSE (better accuracy) performance statistics obtained fromHungarianmatching are artificially low. This problem631

could be avoided by matching experimental and predicted values on the basis of microstate IDs, if experimental microscopic632

assignments are available.633

Unfortunately, we were only able to perform this more reliable microstate-based analysis for a subset of compounds. The634

conclusions in this section reflect only eight compounds with limited structural diversity: Six molecules with 4-aminoquinazoline635

and two with benzimidazole scaffolds, with a total of 10 pKa values. The sequences of dominant microstates for SM07 and SM14636

were determined by NMR experiments directly [8], while dominant microstates of their derivatives were inferred by taking them637

as a reference (Fig. 8). Althoughwe believe thatmicrostate-based evaluation ismore informative, the lack of a large experimental638

dataset limits the conclusions to a very narrow chemical diversity. Still, microstate-based matching revealed errors masked by639

pKa value-based matching between experimental and predicted pKas.640

3.2.2 Accuracy of pKa predictions evaluated by microstate-based matching641

Both accuracy- and correlation-based statistics were calculated for the predicted microscopic pKa values after microstate-based642

matching. RMSE, MAE, ME, R2, and Kendall’s Tau results of each method are shown in Fig. 8C and Fig. 9. A table of the calculated643

statistics can be found in Table S4. Due to the small number of data points in this set, correlation-based statistics have large644

uncertainties and thus have less utility for distinguishing better-performing methods. Therefore, we focused more on accuracy-645

basedmetrics for the analysis of microscopic pKas than correlation-basedmetrics. In terms of accuracy of predictedmicroscopic646

pKa values, all three QSPR/ML based methods (nb016 (MoKa), hdiyq (Simulations Plus), 6tvf8 (OE Gaussian Process)), three QM-647

based methods (nb011 (Jaguar), ftc8w (EC-RISM/MP2/cc-pVTZ-P2-q-noThiols-2par), t8ewk (COSMOlogic_FINE17)), and one LFER648

method (v8qph (ACD/pKa GALAS)) achieved RMSE lower than 1 pKa unit. The same six methods also have the lowest MAE.649
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Figure 8. NMR determination of dominant microstates allowed in-depth evaluation of microscopic pKa predictions for 8 compounds.

A Dominant microstate sequence of two compounds (SM07 and SM14) were determined by NMR [8]. Based on these reference compounds,
the dominant microstates of 6 related compounds were inferred and experimental pKa values were assigned to titratable groups with the as-
sumption that only the dominant microstates have significant contributions to the experimentally observed pKa. B RMSE vs. submission ID
and unmatched pKa vs. submission ID plots for the evaluation of microscopic pKa predictions of 8 molecules by Hungarian matching to experi-
mental macroscopic pKa values. C RMSE vs. submission ID and unmatched pKa vs. submission ID plots showing the evaluation of microscopic
pKa predictions of 8 molecules by microstate-based matching between predicted microscopic pKas and experimental macroscopic pKa values.
Submissions 0wfzo, z3btx, 758j8, and hgn83 have RMSE values bigger than 10 pKa units which are beyond the y-axis limits of subplot C and B.
RMSE is shown with error bars denoting 95% confidence intervals obtained by bootstrapping over the challenge molecules. Lower bar plots
show the number of unmatched experimental pKas (light grey, missing predictions) and the number of unmatched pKa predictions (dark grey,
extra predictions) for each method between pH 2 and 12. Submission IDs are summarized in Table 1.
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Figure 9. Additional performance statistics formicroscopic pKa predictions for 8molecules with experimentally determined dominant

microstates. Microstate-based matching was performed between experimental pKa values and predicted microscopic pKa values. Mean
absolute error (MAE), mean error (ME), Pearson’s R2, and Kendall’s Rank Correlation Coefficient Tau (�) are shown, with error bars denoting
95% confidence intervals obtained by bootstrapping over challenge molecules. Methods are indicated by their submission IDs. Submissions are
colored by their method categories. Refer to Table 1 for submission IDs and method names. Submissions 0wfzo, z3btx, 758j8, and hgn83 have
MAE andME values bigger than 10 pKa units which are beyond the y-axis limits of subplots A and B. A large number and wide variety of methods
have statistically indistinguishable performance based on correlation statistics (C and D), in part because of the relatively small dynamic range
and small size of the set of 8 molecules.
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3.2.3 Evaluation of dominant microstate prediction accuracy650

For many computational chemistry approaches, including structure-based modeling of protein-ligand interactions, predicting651

the ionization state and the exact position of protons is necessary to establish what to include in the modeled system. In652

addition to being able to predict pKa values accurately, we require pKa prediction methods to be able to capture microscopic653

protonation states accurately. Even when the predicted pKa value is accurate, the predicted protonation sites can be incorrect,654

leading to potentially large modeling errors in quantities such as the computed free energy of binding. Therefore, we assessed655

whether methods participating in the SAMPL6 pKa Challenge were correctly predicting the sequence of dominant microstates,656

i.e., dominant tautomers of each charge state observed between pH 2 and 12.657

Fig. 10 shows how well methods perform for predicting the dominant microstate, as analyzed for eight compounds with658

available experimental microstate assignments. The dominant microstate sequence is essentially the sequence of states that659

are most visible experimentally due to their higher fractional population and relative free energy within the tautomers at each660

charge. To extract the dominant tautomers predicted for the sequence of ionization states of each method, the relative free661

energy of microstates were first calculated at reference pH 0 [26]. To subsequently determine the dominant microstate at each662

formal charge, we selected the lowest energy tautomer for each ionization state based on the relative microstate free energies663

calculated at pH 0. The choice of reference pH is arbitrary, as relative free energy difference between tautomers of the same664

charge is always constant with respect to pH. This analysis was performed only for the charges -1, 0, 1, and 2—the charge range665

captured by NMR experiments. Predicted and experimental dominant microstates were then compared for each charge state666

to calculate the fraction of correctly predicted dominant tautomers. This value is reported as the dominant microstate accuracy667

for all charge states (Fig. 10A).668

Many of the methods which participated in the challenge made errors in predicting the dominant microstate. 10 QM and 3669

QSPR/MLmethods did notmake anymistakes in dominantmicrostate predictions, although, they are expected tomakemistakes670

in the relative population of tautomers (free energy difference between microstates) as reflected by the pKa value errors. While671

all participating QSPR/ML methods showed good performance in dominant microstate prediction, LFER and some QMmethods672

made mistakes. The accuracy of the predicted dominant neutral tautomers was perfect for all methods, except qsicn (Fig. 10B),673

but errors in predicting the major tautomer of charge +1 were much more frequent. 22 out of 35 prediction sets made at least674

one error in predicting the lowest energy tautomer with +1 charge. We didn’t include ionization states with charges -1 and +2 in675

this assessment because we had only one compound with these charges in the dataset. Nevertheless, errors in predicting the676

dominant tautomers seem to be a bigger problem for charged tautomers than the neutral tautomer.677

Only eight compounds had data on the sequence of dominant microstates. Therefore conclusions on the performance of678

methods in termsof dominant tautomer prediction are limited to this limited chemical diversity (benzimidazole and4-aminoquinazoline679

derivatives). We present this analysis as a prototype of how microscopic pKa predictions should be evaluated. Hopefully, fu-680

ture evaluations can be performed with larger experimental datasets following the strategy we demonstrated here in order to681

reach broad conclusions about which methods are better for capturing dominant microstates and ratios of tautomers. Even682

if experimental microscopic pKa measurement data is not available, experimental dominant tautomer determinations are still683

informative for assessing computational predictions.684

The most frequent misprediction was the major tautomer of the SM14 cationic form, as shown in Fig. 10. This figure shows685

the accuracy of the predicted dominant microstate calculated for individual molecules and for charge states 0 and +1, averaged686

over all prediction methods. SM14, the molecule that exhibits the most frequent error in the predicted dominant microstate,687

has two experimental pKa values that were 2.4 pKa units apart, and we suspect that could be a contributor to the difficulty of688

predicting microstates accurately. Other molecules are monoprotic (4-aminoquinazolines) or their experimental pKa values are689

very well separated (SM14, 4.2 pKa units). It would be very interesting to expand this assessment to a larger variety of drug-like690

molecules to discover for which structures tautomer predictions are more accurate and for which structures computational691

predictions are not as reliable.692

3.2.4 Consistently well-performing methods for microscopic pKa predictions693

We have identified different criteria for determining consistently top-performing predictions of microscopic pKa than macro-694

scopic pKa: having perfect dominant microstate prediction accuracy, unmatched pKa count of 0, and ranking in the top 10695

according to RMSE and MAE. Correlation statistics were not found to have utility for discriminating performance due to large696

uncertainties in these statistics for a small dataset of 10 pKa values. Unmatched predicted pKa count was also not considered697

since experimental data was only informative for the pKa between dominant microstates and did not capture all the possible698

theoretical transitions betweenmicrostate pairs. Table 3 reports six methods that have consistent good performance according699

24 of 46

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 15, 2020. ; https://doi.org/10.1101/2020.10.15.341792doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.15.341792
http://creativecommons.org/licenses/by/4.0/


c
y
w

y
k

w
c
v
n

u
4

o
0

ia
6

tv
f8

w
4

z
0

e
w

e
x
js

n
b

0
1

1
n

b
0

1
6

0
x
i4

b
g

d
q

e
g

h
d

iy
q

k
o

8
y
x

n
x
a

a
w

8
to

y
p

a
rc

k
o

e
y
e

tm
k
x
z
tt

e
p

v
m

k
c
m

2
y
q

w
u

u
v
c

z
7

fh
p

2
u

m
a

i
ft
c
8

w
c
c
p

m
w

k
tp

j5
y
4

w
w

s
v
8

q
p

h
x
n

o
e

0
t8

e
w

k
n

b
0

0
8

h
g

n
8

3
0

w
fz

o
7

5
8

j8
z
3

b
tx

q
s
ic

n

0.0

0.2

0.4

0.6

0.8

1.0
c
y
w

y
k

w
c
v
n

u
4

o
0

ia
6

tv
f8

w
4

z
0

e
w

e
x
js

n
b

0
1

1
n

b
0

1
6

0
x
i4

b
g

d
q

e
g

h
d

iy
q

k
o

8
y
x

n
x
a

a
w

8
to

y
p

a
rc

k
o

e
y
e

tm
k
x
z
tt

e
p

v
m

k
c
m

2
y
q

w
u

u
v
c

z
7

fh
p

2
u

m
a

i
ft
c
8

w
c
c
p

m
w

k
tp

j5
y
4

w
w

s
v
8

q
p

h
x
n

o
e

0
t8

e
w

k
n

b
0

0
8

h
g

n
8

3
0

w
fz

o
7

5
8

j8
z
3

b
tx

q
s
ic

n

0.0

0.2

0.4

0.6

0.8

1.0

QM LFER QSPR/ML

S
M

1
5

S
M

1
2

S
M

0
9

S
M

0
7

S
M

0
2

S
M

0
4

S
M

1
3

S
M

1
4

Molecule ID

0.0

0.2

0.4

0.6

0.8

1.0

Charge 0 Charge +1

Submission ID

Submission ID

Charge 0 Charge +1
C

A

B

D
o

m
in

a
n

t 
M

ic
ro

s
ta

te
 A

c
c
u

ra
c
y

D
o

m
in

a
n

t 
M

ic
ro

s
ta

te
 A

c
c
u

ra
c
y

D
o

m
in

a
n

t 
M

ic
ro

s
ta

te
 A

c
c
u

ra
c
y

Figure 10. Some methods predicted the sequence of dominant tautomers inaccurately. Prediction accuracy of the dominant microstate
of each charged state was calculated using the dominant microstate sequence determined by NMR for 8 molecules as reference. (A) Dominant
microstate accuracy vs. submission ID plot was calculated considering all the dominant microstates seen in the experimental microstate dataset
of 8 molecules. (B) Dominant microstate accuracy vs. submission ID plot was generating considering only the dominant microstates of charge
0 and +1 seen in the 8 molecule dataset. The accuracy of each molecule is broken out by the total charge of the microstate. (C) Dominant
microstate prediction accuracy calculated for each molecule averaged over all methods. In (B) and (C), the accuracy of predicting the dominant
neutral tautomer is shown in blue and the accuracy of predicting the dominant +1 charged tautomer is shown in green. Error bars denoting
95% confidence intervals obtained by bootstrapping.

to many metrics, although evaluated only for the 8 molecule set due to limitations of the experimental dataset. Six methods700

were divided evenly betweenmethods of QSPR/ML category and QM category. nb016 (MoKa), hdiyq (Simulations Plus), and 6tvf8701

(OE Gaussian Process) were QSPR and ML methods that performed well. nb011 (Jaguar), 0xi4b(EC-RISM/B3LYP/6-311+G(d,p)-P2-702

phi-noThiols-2par), and cywyk (EC-RISM/B3LYP/6-311+G(d,p)-P2-phi-noThiols-2par) were QM predictions with linear empirical703

corrections with good performance with microscopic pKa predictions.704

The Simulations Plus pKa prediction method is the only method that appeared to be consistently well-performing in both the705

assessment for macroscopic and microscopic pKa prediction (gyuhx and hdiyq). However, it is worth noting that two methods706

that were in the list of consistently top-performing methods for macroscopic pKa predictions lacked equivalent submissions707

of their underlying microscopic pKa predictions, and therefore could not be evaluated at the microstate level. These meth-708

ods were xmyhm (ACD/pKa Classic) and xvxzd(DSD-BLYP-D3(BJ)/def2-TZVPD//PBEh-3c[DCOSMO-RS] + RRHO(GFN-xTB[GBSA]) +709
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Gsolv(COSMO-RS[TZVPD]) and linear fit).710

Table 3. Top-performing methods for microscopic pKa predictions based on consistent ranking within the Top 10 according

to various statistical metrics calculated for 8 molecule dataset. Performance statistics are provided as mean and 95% confidence
intervals. Submissions that rank in the Top 10 according to RMSE and MAE and have perfect dominant microstate prediction accuracy
were selected as consistently well-performing methods. Correlation-based statistics (R2, and Kendall’s Tau), although reported in the
table, were excluded from the statistics used for determining top-performing methods. This was because correlation-based statistics
were not very discriminating due to the narrow dynamic range and the small number of data points in the 8 molecule dataset with
NMR-determined dominant microstates.

Submission

ID
Method Name

Dominant

Microstate

Accuracy

RMSE MAE R2 Kendall’s Tau

Unmatched

Exp. pKa
Count

Unmatched

Pred. pKa
Count [2,12]

nb016 MoKa 1.0 [1.0, 1.0] 0.52 [0.25, 0.71] 0.43 [0.23, 0.65] 0.92 [0.05, 0.99] 0.62 [-0.14, 1.00] 0 3
hdiyq S+pKa 1.0 [1.0, 1.0] 0.68 [0.49, 0.83] 0.60 [0.39, 0.80] 0.86 [0.47, 0.98] 0.78 [0.40, 1.00] 0 16
nb011 Jaguar 1.0 [1.0, 1.0] 0.72 [0.35, 1.07] 0.54 [0.28, 0.86] 0.86 [0.18, 0.98] 0.64 [0.26, 0.95] 0 36
6tvf8 OE Gaussian Process 1.0 [1.0, 1.0] 0.76 [0.55, 0.95] 0.68 [0.46, 0.90] 0.92 [0.78, 0.99] 0.87 [0.6, 1.00] 0 55

0xi4b
EC-RISM/B3LYP/6-311+G(d,p)
-P3NI-phi-noThiols-2par

1.0 [1.0, 1.0] 1.15 [0.75, 1.50] 0.98 [0.63, 1.36] 0.77 [0.02, 0.98] 0.51 [-0.14, 1.00] 0 33

cywyk
EC-RISM/B3LYP/6-311+G(d,p)
-P2-phi-noThiols-2par

1.0 [1.0, 1.0] 1.17 [0.88, 1.41] 1.06 [0.74, 1.35] 0.73 [0.02, 0.98] 0.56 [-0.08, 1.00] 0 36

3.3 How do pKa prediction errors impact protein-ligand binding affinity predictions?711

pKa predictions provide a key input for computational modeling of protein-ligand binding with physical methods. The SAMPL6712

pKa Challenge focused only on small molecule pKa prediction and showed how pKa prediction accuracy observed can impact the713

modeling of ligands. Many affinity prediction methods such as docking, MM/PBSA, MM/GBSA, absolute or alchemical relative714

free energy calculation methods predict the affinity of the ligand to a receptor using a fixed protonation state for both ligand715

and receptor. These models can sensitively depend upon pKa and dominant tautomer predictions for determining possible716

protonation states of the ligand in the aqueous environment and in a protein complex, as well as the free energy penalty to717

access those states [4]. The accuracy of pKa predictions can become a limitation for the performance of physical models that try718

to quantitatively describe molecular association.719

In terms of ligand protonation states, there are two ways in which pKa prediction errors can influence the prediction accuracy720

for protein-ligand binding free energies as depicted in Fig. 11. The first scenario is when a ligand is present in aqueous solution721

in multiple protonation states (Fig. 11A). When only the minor aqueous protonation state contributes to protein-ligand complex722

formation, the overall binding free energy (ΔGbind ) needs to be calculated as the sum of binding free energy of the minor state723

and the protonation penalty of that state (ΔGprot). ΔGprot is a function of both pH and pKa. A 1 unit of error in predicted pKa would724

lead to 1.36 kcal/mol error in overall binding free energy if the protonation state with theminor population binds the protein and725

this minor protonation state is correctly selected tomodel the free energy of binding; if the incorrect dominant protonation state726

for the complex is selected, the dominant contribution to the free energy of binding may be missed entirely, leading to much727

larger modeling errors in the binding free energy. Other scenarios—in which multiple protonation states can be significantly728

populated in complex—can lead to more complex scenarios in which the errors in predicted pKa propagate in more complex729

ways. The equations in Fig. 11A show the overall free energy for a simple thermodynamic cycle involving multiple protonation730

states.731

In addition to the presence of multiple protonation states in the aqueous environment, multiple charge states can contribute732

to complex formation (Fig. 11B). Then, the overall free energy of binding needs to include aMultiple Protonation States Correction733

(MPSC) term (ΔGcorr) [4]. MPSC is a function of pH, aqueous pKa of the ligand, and the difference between the binding free energy734

of charged and neutral species (ΔGC

bind
− ΔGN

bind
) as shown in Fig. 11B.735

Using the equations in Fig. 11B, we canmodel the trueMPSC (ΔGcorr) with respect to the difference between pH and the pKa of736

the ligand to seewhen this value has a significant impact on the overall binding free energy. In Fig. 12, the trueMPSC thatmust be737

added to ΔGN
bind

is shown for ligands with varying binding affinity difference between protonation states (ΔΔG = ΔGC

bind
−ΔGN

bind
).738

Fig. 12A shows the case of a monoprotic base in which the charged state has a lower affinity than the neutral state. Solid lines739

depict the accurate correction value. In cases where the pKa is lower than the pH, the correction factor disappears as the ligand740

fully populates the neutral state (ΔGbind = ΔGN
bind

). As the pH dips below the pKa, the charged state is increasingly populated and741

ΔGcorr increases to approach ΔΔG.742
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A    When only the minor protonation state can bind to the protein B    When multiple protonation states can bind to the protein
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Figure 11. Aqueous ligand pKa can influence overall protein-ligand binding affinity. A When only the minor aqueous protonation state
contributes to protein-ligand complex formation, the overall binding free energy (ΔGbind ) needs to be calculated as the sum of binding affinity
of the minor state and the protonation penalty of that state. B When multiple charge states contribute to complex formation, the overall free
energy of binding includes a multiple protonation states correction (MPSC) term (ΔGcorr). MPSC is a function of pH, aqueous pKa of the ligand,
and the difference between the binding free energy of charged and neutral species (ΔGC

bind
− ΔGN

bind
).

It is interesting to note the pH-pKa range over which ΔGcorr changes significantly. It is often assumed that, for a basic ligand,743

if the pKa of a ligand is more than 2 units higher than the pH, only 1% of the population is in the neutral state according to744

Henderson-Hasselbalch equation, and it is safe to approximate the overall binding affinity with ΔGC

bind
. Based on the magnitude745

of the relative free energy difference between ligand protonation states, this assumption is not always correct. As seen in746

Fig. 12A, the responsive region of ΔGcorr can span 3 pH units for a system with ΔΔG = 1kcal∕mol, or 5 pH units for a system with747

ΔΔG = 4kcal∕mol. This highlights that the range of pKa values that impact binding affinity predictions is wider than 2 pH units.748

Molecules with pKa values several units away from the physiological pH can still impact the overall binding affinity significantly749

due to the MPSC.750

Despite the need to capture the contributions of multiple protonation states by including the MPSC in binding affinity calcu-751

lations, inaccurate pKa predictions can lead to errors in ΔGcorr and overall free energy of binding prediction. In Fig. 12A dashed752

lines show predicted ΔGcorr based on pKa error of -1 units. We have chosen a pKa error of 1 unit as this is the average inaccuracy753

expected from the pKa prediction methods based on the SAMPL6 Challenge. Underestimation of the pKa causes the ΔGcorr to754

be underestimated as well and will result in overestimated affinities (i.e., too negative binding free energy) for a varying range755

of pH - pKa values depending on the binding affinity difference between protonation states(ΔΔG). In Fig. 12B dashed lines show756

how the magnitude of the absolute error caused by calculating ΔGcorr with an inaccurate pKa varies with respect to pH. Different757

colored lines show simulated results with varying binding free energy differences between protonation states. For a system758

whose charged state has higher binding free energy than the neutral state (ΔΔG = 2 kcal/mol), the absolute error caused by759

underestimated pKa by 1 unit can be up to 0.9 kcal/mol. For a system whose charged state has an even lower affinity (more760

positive binding free energy) than the neutral state (ΔΔG = 4 kcal/mol), the absolute error caused by underestimated pKa by761

1 unit can be up to 1.2 kcal/mol. The magnitude of errors contributing to overall binding affinity is too large to be neglected.762

Improving the accuracy of small molecule pKa prediction methods can help to minimize the error in predicted MPSC.763

With the current level of pKa prediction accuracy as observed in SAMPL6 Challenge, is it advantageous to include the MPSC764

in affinity predictions that may include errors caused by pKa predictions? We provide a comparison of the two choices to answer765

this question: (1) Neglecting the MPSC completely and assuming overall binding affinity is captured by ΔGN
bind

, (2) including MPSC766

with a potential error in overall affinity calculation. The magnitude of error caused by Choice 1 (ignoring MPSC) is depicted as767

a solid line in Fig. 12B and the magnitude of error caused by MPSC computed with inaccurate pKa is depicted as dashed lines.768

What is the best strategy? Error due to choice 1 is always larger than error due to choice 2 for all pH-pKa values. In this scenario,769

including the MPSC improves overall binding affinity prediction accuracy. The error caused by the inaccurate pKa is smaller than770
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the error caused by neglecting the MPSC.771

We can also ask whether or not an MPSC calculated based on an inaccurate pKa should be included in binding affinity predic-772

tions in different circumstances, such as underestimated or overestimated pKa values and charged states with higher or lower773

affinities than the neutral states. We tried to capture these circumstances in four quadrants of Fig. 12. In the case of overesti-774

mated pKa values (Fig. 12E-H), it can be seen that for most of the pH-pKa range, it is more advantageous to include the predicted775

MPSC in affinity calculations, except a smaller window where the opposite choice would be more advantageous. For instance,776

for the system with ΔΔG = 2 kcal/mol and overestimated pKa (Fig. 12E) for the pH-pKa region between -0.5 and 2, including the777

predicted ΔGcorr introduces more error than ignoring the MPSC.778

In practice, we normally do not know the exact magnitude or the direction of the error of our predicted pKa. Therefore, using779

simulated MPSC error plots to decide when to include MPSC in binding affinity predictions is not possible. However, based on780

the analysis of a case with 1 unit of pKa error, including the MPSC correction would be more often than not helpful in improving781

binding affinity predictions. The detrimental effect of pKa inaccuracy is still significant. Hopefully, future improvements in pKa782

prediction methods will improve the accuracy of the MPSC and binding affinity predictions of ligands which have multiple proto-783

nation states that contribute to aqueous or complex populations. Being able to predict pKa values with 0.5 units accuracy, for784

example, would significantly aid binding affinity models in computing more accurate MPSC terms.785

The whole analysis presented in this section assumes that at least the dominant protonation state of the ligand is correctly786

included in the modeling of the protein-ligand complex. We have not discussed the case of omitting this dominant state from787

the free energy calculations entirely when it is erroneously predicted to be a minor state in solution. Such a mistake could be788

the most problematic, and the errors in estimated binding free energy could be very large.789

3.4 Take-away lessons from SAMPL6 pKa Challenge790

The SAMPL6 pKa Challenge showed that, in general, pKa prediction accuracy of computational methods is lower than expected791

for drug-like molecules. Our expectation prior to the blind challenge was that well-developedmethods would achieve prediction792

errors as low was 0.5 pKa units, and make reliable predictions of dominant charge and tautomer states in solution. There are793

many factors that complicate predicting pKa values of drug-like molecules: multiple titratable sites, including tautomerization,794

frequent presence of heterocycles, and extended conjugation patterns, as well as high numbers of rotatable bonds and the795

possibility of intramolecular hydrogen bonds. Macroscopic pKa predictions have not yet reached experimental accuracy (where796

the inter-method variability of macroscopic pKa measurements is around 0.5 pKa units [23]). There was not a single method797

in the SAMPL6 Challenge that achieved RMSE around 0.5 or lower for macroscopic pKa predictions for the 24 molecule set of798

kinase inhibitor fragment-like molecules. Smaller RMSEs were observed in the microscopic pKa evaluation section of this study799

for some methods; however, the 8 molecule set used for that analysis poses a very limited dataset to reach conclusions about800

general expectations for drug-like molecules.801

As the majority of experimental data was in the form of macroscopic pKa values, we had to adopt a numerical matching802

algorithm (Hungarian matching) to pair predicted and experimental values to calculate performance statistics of macroscopic803

pKa predictions. Accuracy, correlation, and extra/missing pKa prediction counts were the main metrics for macroscopic pKa804

evaluations. An RMSE range of 0.7 to 3.2 pKa units was observed for all methods. Only five methods achieved RMSE between805

0.7–1 pKa units, while an RMSE between 1.5–3 log units was observed for the majority of methods. All four methods of the LFER806

category and three out of 5 QSPR/ML methods achieved RMSE less than 1.5 pKa units. All the QM methods that achieved this807

level of performance included linear empirical corrections to rescale and unbias their pKa predictions.808

Based on the consideration of multiple error metrics, we compiled a shortlist of consistently-well performing methods for809

macroscopic pKa evaluations. Two methods from QM+LEC methods, one QSPR/ML, two empirical methods achieved consistent810

performance according to many metrics. The common features of the two empirical methods were their large training sets811

(16000–17000 compounds) and commercial nature.812

Therewere four submissions ofQM-basedmethods that utilized the COSMO-RS implicit solvationmodel. While three of these813

achieved the lowest RMSE among QM-based methods (xvxzd, yqkga, and 8xt50) [46], one of them showed the highest RMSE814

(0hxtm (COSMOtherm_FINE17)). The comparison of these methods indicates that capturing the conformational ensemble of815

microstates, using high-level QM calculations, and including RRHO corrections contribute to better macroscopic pKa predictions.816

Linear empirical corrections applied QM calculations improved results, especially when the linear correction is calibrated for an817

experimental dataset using the same level of theory as the deprotonation free energy predictions (as in xvxzd). This challenge818

also points to the advantage of the COSMO-RS solvation approach compared to other implicit solvent models.819

Molecules that posed greater difficulty for pKa predictions were determined by comparing the macroscopic pKa prediction820
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Figure 12. Inaccuracy of pKa prediction (± 1 unit) affects the the accuracy of MPSC and overall protein-ligand binding free energy

calculations to varying degrees based on aqueous pKa and relative binding affinity of individual protonation states (ΔΔG = ΔGC
bind

−

ΔGN
bind

). All calculations are made for 25°C, and a ligand with a single basic titratable group. A, C, E, and G show MPSC (ΔGcorr) calculated with
true vs. inaccurate pKa. B, D, F, and H show the comparison of the absolute error to ΔGbind caused by ignoring the MPSC completely (solid
lines) vs. calculating MPSC based in inaccurate pKa value (dashed lines). These plots provide guidance on when it is beneficial to include MPSC
correction based on pKa error, pH - pKa, and ΔΔG.
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accuracy of each molecule averaged over all methods submitted to the challenge. pKa prediction errors were higher for com-821

pounds with sulfur-containing heterocycles, iodo, and bromo groups. This trend was also conserved when only QM-based822

methods were analyzed. The SAMPL6 pKa dataset consisted of only 24 small molecules which limited our ability to statistically823

confirm this conclusion, however, we believe it is worth reporting molecular features that coincided with larger errors even if824

we can not evaluate the reason for these failures.825

Utilizing a numerical matching algorithm to pair experimental and predicted macroscopic pKa values was a necessity, how-826

ever, this approach did not capture all aspects of prediction errors. Computing the number of missing or extra pKa predictions827

remaining after Hungarianmatching provided a window for observingmacroscopic pKa prediction errors such as the number of828

macroscopic transitions or ionization states expected in a pH interval. In pKa evaluation studies, it is typical to just focus on pKa829

value errors evaluated after matching and to ignore pKa prediction errors that the matching protocol can not capture [49–53].830

Frequently ignored prediction errors include predicting missing or extra pKas and failing to predict the correct charge states.831

The SAMPL6 pKa Challenge results showed sporadic presence of missing pKa predictions and very frequent tendency to make832

extra pKa predictions. Both indicate failures to capture the correct ionization states. The traditional way of evaluating pKas that833

only focuses on the pKa value error after some sort of numerical match between predictions and experimental values may have834

motivated these types of errors as there would be no penalty for missing a macroscopic deprotonation and predicting an extra835

one. This problem does not seem to be specific to any method category.836

We used the eight molecule subset of SAMPL6 compounds with NMR-based dominant microstate sequence information837

to demonstrate the advantage of evaluating pKa prediction on the level of microstates. Comparison of statistics computed838

for the 8 molecule dataset by Hungarian matching and microstate-based matching showed how Hungarian matching, despite839

being the best choice when only numerical matching is possible, can still mask errors in pKa predictions. Errors computed by840

microstate-basedmatching were larger compared to numerical matching algorithms in terms of RMSE. Microscopic pKa analysis841

with numerical matching algorithmsmaymask errors due to the higher number of guessesmade. Numerical matching based on842

pKa values also ignores information regarding the relative population of states. Therefore, it can lead to pKas defined between843

very low energymicrostate pairs to bematched to the experimentally observable pKa betweenmicrostates of higher populations.844

Of course, the predicted pKa value could be correct however the predicted microstates would be wrong. Such mistakes caused845

by Hungarian matching were observed frequently in SAMPL6 results, and therefore we decided microstate-based matching of846

pKavalues provides a more realistic picture of method performance.847

Some QM and LFER methods made mistakes in predicting the dominant tautomers of the ionization states. Dominant tau-848

tomer prediction seemed to be particularly difficult for charged tautomers compared with neutral tautomers. The easiest way to849

extract the dominant microstate sequence from predictions was to calculate the relative free energy of microstates at any refer-850

ence pH, determining the lowest free energy state in each ionization state. Errors in dominant microstate predictions were very851

rare for neutral tautomers, butmore frequent in cationic tautomers with +1 charge of the 8molecule set. SM14was themolecule852

with the lowest dominant microstate prediction accuracy, while dominant microstates predictions for SM15 were perfect for all853

molecules. SM14 and SM15 both possess two experimental pKas and a benzimidazole scaffold. The difference between them is854

the distance between the experimental pKa values, which is smaller for SM14. These results make sense from the perspective855

of relative free energies of microstates. Closer pKa values mean that the free energy difference between different microstates is856

smaller for SM14, and therefore any error in predicting the relative free energy of tautomers is more likely to cause reordering of857

relative populations of microstates and impact the accuracy of dominant microstate predictions. It would have been extremely858

informative to evaluate the tautomeric ratios and relative free energy predictions of microstates, however, the experimental859

data needed for this approach was not available. Tautomeric ratios could not be measured by the experimental methods avail-860

able to us. Resolving tautomeric ratios would require extensive NMR measurements, but these measurements can suffer from861

lower accuracy especially when the free energy difference between tautomers is large.862

The overall assessment of the SAMPL6 pKa Challenge captured non-stellar performance for microscopic and macroscopic863

pKa predictions which can be detrimental to the accuracy of protein-ligand affinity predictions and other pH-dependent physic-864

ochemical property predictions such as distribution coefficients, membrane permeability, and solubility. Protein-ligand binding865

affinity predictions utilize pKa predictions in two ways: determination of the relevant aqueous microstates and quantification of866

the free energy penalty to reach these states. More accurate microscopic pKa predictions are needed to be able to accurately867

incorporate multiple protonation state corrections (MPSC) into overall binding affinity calculations.868

We simulated the effect of overestimating or underestimating pKa of a ligand by one unit on overall binding affinity prediction869

for a ligand where both cation and neutral states contribute to binding affinity. A pKa prediction error of this magnitude (assum-870

ing dominant tautomers were predicted correctly) could cause up to 0.9 and 1.2 kcal/mol error in overall binding affinity when871
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the binding affinity of protonation states are 2 or 4 kcal/mol different, respectively. For the case of 4 kcal/mol binding affinity872

difference between protonation states, the pH-pKa range that the error would be larger than 0.5 kcal/mol surprisingly spans873

around 3.5 pH units. The worse case, of course, is where there is a significant difference in binding free energy between the874

two protonation states, but we include the wrong one in our free energy calcuation. We demonstrated that the range of pH-pKa875

value that the MPSC needs to be incorporated in binding affinity predictions can be wider than the widely assumed range of 2876

pH units, based on the affinity difference between protonation states. At the level of 1 unit pKa error, incorporating the MPSC877

would improve binding affinity predictions more often than not. If the microscopic pKa could be predicted with 0.5 pKa units of878

accuracy, MPSC calculations would be much more reliable.879

There are multiple factors to consider when deciding which pKa prediction method to utilize. These factors include the880

accuracy of microscopic and macroscopic pKa values, the accuracy of the number and the identity of ionization states predicted881

within the experimental pH interval, the accuracy of microstates predicted within the experimental pH interval, the accuracy of882

tautomeric ratio (i.e., relative free energy betweenmicrostates), how costly is the calculation in terms of time and resources, and883

whether one has access to software licenses that might be required.884

All of the top-performing empirical methods were developed as commercial software that requires a license to run, and885

there were not any open-source alternatives for empirical pKa predictions. Since the completion of the blind challenge, two886

publications reported open-source machine learning-based pKa prediction methods, however, one can only predict the most887

acidic or most basic macroscopic pKa values of a molecule [54] and the second one is only trained for predicting pKa values of888

monoprotic molecules [55]. Recently, a pKa prediction methodology was published that describes a mixed approach of semi-889

empirical QM calculations and machine learning that can predict macroscopic pKas of both mono- and polyprotic species [56].890

The authors reported RMSE of 0.85 for the retrospective analysis performed on the SAMPL6 dataset.891

3.5 Suggestions for future blind challenge design and evaluation of pKa predictions892

This analysis helped us understand the current state of the field and led to many lessons informing future SAMPL challenges.893

We believe the greatest benefit can be achieved if further iterations of small molecule pKa prediction challenges can be orga-894

nized, creating motivation for improving protonation state prediction methods for drug-like molecules. In future challenges, it895

is desirable to increase chemical diversity to cover more common scaffolds [57] and functional groups [58] seen in drug-like896

molecules, gradually increasing the complexity of molecules.897

Microscopic pKa measurements are needed for careful benchmarking of pKa predictions for multiprotic molecules.898

Future challenges should promote stringent evaluation for pKa predictionmethods from the perspective of microscopic pKa and899

microstate predictions. It is necessary to assess the capability of pKa prediction methods to capture the free energy profile of900

microstates ofmultiproticmolecules. This is critical because pKa predictions are often utilized to determine relevant protonation901

states and tautomers of small molecules that must be captured in other physical modeling approaches, such as protein-ligand902

binding affinity or distribution coefficient predictions. Different tautomers can have different binding affinities and partition903

coefficients.904

In this paper, we demonstrated how experimental microstate information can guide the analysis further than the typical pKa905

evaluation approach that has been used so far. The traditional pKa evaluation approach focuses solely on the numerical error of906

the pKa values and neglects the difference between macroscopic and microscopic pKa definitions. This is mainly caused by the907

lack of pKa datasets with microscopic detail. To improve pKa and protonation state predictions for multiprotic molecules, it is908

necessary to embrace the difference betweenmacroscopic andmicroscopic pKa definitions and select strategies for experimen-909

tal data collection and prediction evaluation accordingly. In the SAMPL6 Challenge, the analysis was limited by the availability of910

experimental microscopic data as well. As is usually the case, macroscopic pKa values were abundant (24molecules) and limited911

data on microscopic states was available (8 molecules), although the latter opened new avenues for evaluation. For future blind912

challenges for multiprotic compounds, striving to collect experimental datasets with microscopic pKas would be very beneficial,913

despite the high cost of these measurements. Benchmark datasets of microscopic pKa values with assigned microstates are914

currently missing because experimental determination of these are much more expensive and time-consuming than macro-915

scopic pKa measurements. This limits the ability to improve pKa and tautomer prediction methods for multiprotic molecules.916

If the collection of experimental microscopic pKas is not possible due to time and resource costs of such NMR experiments, at917

least supplementing the more automated macroscopic pKa measurements with NMR-based determination of the dominant mi-918

crostate sequence or tautomeric ratios of each ionization state can create very useful benchmark datasets. This supplementary919

information can allow microstate-based assignment of experimental to predicted pKa values and a more realistic assessment920
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of method performance.921

Evaluation strategy for pKa predictions must be determined based on the nature of experimental pKa measure-922

ments available.923

If the only available experimental data is in the form of macroscopic pKa values, the best way to evaluate computational pre-924

dictions is by calculating predicted macroscopic pKa from microscopic pKa predictions. With the conversion of microscopic pKa925

to macroscopic pKas, all structural information about the titration site is lost, and the only remaining information is the total926

charge of macroscopic ionization states. Unfortunately, most macroscopic pKa measurements—including potentiometric and927

spectrophotometric methods—do not capture the absolute charge of the macrostates. The spectrophotometric method does928

not measure charge at all. The potentiometric method can only capture the relative charge changes betweenmacrostates. Only929

pH-dependent solubility-based pKa estimations can differentiate neutral and charged states from one another. It is, therefore,930

very common to have experimental datasets of macroscopic pKa without any charge or protonation position information regard-931

ing the macrostates. This causes an issue of assigning predicted and experimental pKa values before any error statistics can be932

calculated.933

As delineated by Fraczkiewicz [23], the fairest and most reasonable solution for the pKa matching problem involves an934

assignment algorithm that preserves the order of predicted and experimental microstates and uses the principle of smallest935

differences to pair values. We recommendHungarianmatching with a squared-error penalty function. The algorithm is available936

in SciPy package (scipy.optimize.linear_sum_assignment) [35]. In addition to the analysis of numerical error statistics following937

Hungarian matching, at the very least, the number of missing and extra pKa predictions must be reported based on unmatched938

pKa values. Missing or extra pKa predictions point to a problem with capturing the right number of ionization states within939

the pH interval of the experimental measurements. We have demonstrated that for microscopic pKa predictions, performance940

analysis based on Hungarian matching results in overly optimistic and misleading results—instead the employed microstate-941

based matching provided a more realistic assessment when microstate data is available.942

Lessons from the first pKa blind challenge will guide future decisions on challenge rules, prediction reporting for-943

mats, and challenge inputs.944

We solicited three different submission types in SAMPL6 to capture all the necessary information related to pKa predictions.945

These were (1) macroscopic pKa values, (2) microscopic pKa values and microstate pair identities, and (3) fractional population946

of microstates with respect to pH. We realized later that collecting fractional populations of microstates was redundant since947

microscopic pKa values and microstate pairs capture all the necessary information to construct fractional population vs. pH948

curves [26]. Only microscopic and macroscopic pKa values were used for the challenge analysis presented in this paper.949

While exploring ways to evaluate SAMPL6 pKa Challenge results, we developed a better way to capture microscopic pKa950

predictions, as presented in Gunner et al. [26]. This alternative reporting format consists of reporting the charge and relative951

free energy of microstates with respect to an arbitrary reference microstate and pH. This approach presents the most concise952

method of capturing all necessary information regarding microscopic pKa predictions and allows calculation of predicted mi-953

croscopic pKas, microstate population with respect to pH, macroscopic pKa values, macroscopic population with respect to pH,954

and tautomer ratios. Still, there may be methods developed to predict macroscopic pKas directly instead of computing them955

from microstate predictions that justifies allowing a macroscopic pKa reporting format. In future challenges, we recommend956

collecting pKa predictions with two submission types: (1) macroscopic pKa values together with the charges of the macrostates957

and (2) microstates, their total charge, and relative free energies with respect to a specified reference microstate and pH. This958

approach is being used in SAMPL7.959

In SAMPL6, we provided an enumerated list of microstates and their assignedmicrostate IDs because wewere worried about960

parsing submitted microstates in SMILES from different sources correctly. There were two disadvantages to this approach. First,961

this list of enumerated microstates was used as input by some participants which was not our intention. (Challenge instructions962

requested that predictions should not rely on these microstate lists and only use them for matching microstate IDs.) Second,963

the first iteration of enumerated microstates was not complete. We had to add new microstates and assign them microstate964

IDs for a couple of rounds until reaching a complete list. In future challenges, a better way of handling the problem of capturing965

predicted microstates would be asking participants to specify the predicted protonation states themselves and assigning iden-966

tifiers after the challenge deadline to aid comparative analysis. This would prevent the partial unblinding of protonation states967

and allow the assessment of whether methods can predict all the relevant states independently, without relying on a provided968

list of microstates. Predicted states can be submitted as mol2 files that represent the microstate with explicit hydrogens. The969
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organizers must only provide the microstate that was selected as the reference state for the relative microstate free energy970

calculations.971

In the SAMPL6 pKa Challenge, there was not a requirement that participants should report predictions for all compounds.972

Some participants reported predictions for only a subset of compounds, which may have led these methods to look more973

accurate than others due to missing predictions. In the future, it will be better to allow submissions of only complete sets for a974

better comparison of method performance.975

A wide range of methods participated in the SAMPL6 pKa Challenge—from very fast QSPR methods to QM methods with a976

high-level of theory and extensive exploration of conformational ensembles. In the future, it would be interesting to capture977

computing costs in terms of average compute hours per molecule. This can provide guidance to future users of pKa prediction978

methods for selection of which method to use.979

It is advantageous to field associated challenges with common set of molecules for different physicochemical prop-980

erties.981

Future blind challenges can maximize learning opportunities by evaluating predictions of different physicochemical properties982

for the same molecules in consecutive challenges. In SAMPL6, we organized both pKa and log P challenges. Unfortunately only983

a subset of compounds in the pKa datasets were suitable for the potentiometric log P measurements [8]. Still, comparing pre-984

diction performance of common compounds in both challenges can lead to beneficial insights especially for physical modeling985

techniques if there are common aspects that are beneficial or detrimental to prediction performance. For example, in SAMPL6986

pKa and log P Challenges COSMO-RS and EC-RISM solvation models achieved good performance. Having access to a variety of987

physicochemical property measurements can also help the identification of error sources. For example, dominant microstates988

determined for pKa challenge can provide information to check if correct tautomers are modeling in a log P or log D challenge.989

pKa prediction is a requirement for log D prediction and experimental pKa values can help diagnosing the source of errors in990

log D predictions better. The physical challenges in SAMPL7, for which the blind portion of the challenges have just concluded on991

October 8th, 2020, follow this principle and include both pKa, log P, and membrane permeability properties for a set of mono-992

protic compounds. We hope that future pKa challenges can focus on multiprotic drug-like compounds with microscopic pKa993

measurements for an in-depth analysis.994

4 Conclusion995

The first SAMPL6 pKa Challenge focused on molecules resembling fragments of kinase inhibitors, and was intended to assess996

the performance of pKa predictions for drug-like molecules. With wide participation, we had an opportunity to prospectively997

evaluate pKa predictions spanning various empirical and QM based approaches. In addition to community participants, a small998

number of popular pKa prediction methods that were missing from blind submissions were added as reference calculations999

after the challenge deadline.1000

Practical experimental limitations restricted the overall size and microscopic information available for the blind challenge1001

dataset [8]. The experimental dataset consisted of spectrophotometric measurements of 24 molecules, some of which were1002

multiprotic. For a subset of molecules there was also NMR data to inform the dominant microstate sequence, though micro-1003

scopic pKa measurements were not performed. We conducted a comparative analysis of methods represented in the blind1004

challenge in terms of both macroscopic and microscopic pKa prediction performance avoiding any assumptions about the inter-1005

pretation of experimental pKas.1006

Here, we used Hungarian matching to assign predicted and experimental values for the calculation of accuracy and cor-1007

relation statistics, because the majority of experimental data was macroscopic pKa values. In addition to evaluating error in1008

predicted pKa values, we also reported the macroscopic pKa errors that were not captured by the match between experimental1009

and predicted pKa values. These were extra ormissing pKa predictions which are important indicators that predictions are failing1010

to capture the correct ionization states.1011

We evaluated microscopic pKa predictions utilizing the experimental dominant microstate sequence data of eight molecules.1012

This experimental data allowed us to use microstate-based matching for evaluating the accuracy of microscopic pKa values1013

in a more realistic way. We have determined that QM and LFER predictions had lower accuracy in determining the dominant1014

tautomer of the charged microstates than the neutral states. For both macroscopic and microscopic pKa predictions we have1015

determined methods that were consistently well-performing according to multiple statistical metrics. Focusing on the com-1016

parison of molecules instead of methods for macroscopic pKa prediction accuracy indicated molecules with sulfur-containing1017

heterocycles, iodo, and bromo groups suffered from lower pKa prediction accuracy.1018
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The overall performance of pKa predictions as captured in this challenge is concerning for the application of pKa prediction1019

methods in computer-aided drug design. Many computational methods for predicting target affinities and physicochemical1020

properties rely on pKa predictions for determining relevant protonation states and the free energy penalty of such states. 1 unit1021

of pKaerror is an optimistic estimate of currentmacroscopic pKa predictions for drug-likemolecules based on SAMPL6 Challenge1022

where errors in predicting the correct number of ionization states or determining the correct dominant microstate were also1023

common to many methods. In the absence of other sources of errors, we showed that 1 unit over- or underestimation of the1024

pKa of a ligand can cause significant errors in the overall binding affinity calculation due to errors in multiple protonation state1025

correction factor.1026

The SAMPL6 GitHub Repository contains all information regarding the challenge structure, experimental data, blind predic-1027

tion submission sets, and evaluation ofmethods. The repository will be useful for future follow up analysis and the experimental1028

measurements can continue to serve as a benchmark dataset for testing methods.1029

In this article, we aimed to demonstrate not only the comparative analysis of the pKa prediction performance of contempo-1030

rary methods for drug-like molecules, but also to propose a stringent pKa prediction evaluation strategy that takes into account1031

differences in microscopic and macroscopic pKa definitions. We hope that this study will guide and motivate further improve-1032

ment of pKa prediction methods.1033

5 Code and data availability1034

• SAMPL6 pKa challenge instructions, submissions, experimental data and analysis is available at
SAMPL6 GitHub Repository: https://github.com/samplchallenges/SAMPL6

1035

6 Overview of supplementary information1036

Contents of the Supplementary Information:1037

• TABLE S1: SMILES and InChI identifiers of SAMPL6 pKa Challenge molecules.1038

• TABLE S2: Evaluation statistics calculated for all macroscopic pKa prediction submissions based on Hungarian match for1039

24 molecules.1040

• TABLE S3: Evaluation statistics calculated for all microscopic pKa prediction submissions based on Hungarian match for 81041

molecules with NMR data.1042

• TABLE S4: Evaluation statistics calculated for all microscopic pKa prediction submissions based on microstate match for 81043

molecules with NMR data.1044

• FIGURE S1: Dominant microstates of 8 molecules were determined based on NMR measurements.1045

• FIGURE S2: MAE of macroscopic pKa predictions of each molecule did not show any significant correlation with any molec-1046

ular descriptor.1047

• FIGURE S3: The value of macroscopic pKa was not a factor affecting prediction error seen in SAMPL6 Challenge according1048

to the analysis with Hungarian matching.1049

• FIGURE S4: There was low agreement between experimental dominantmicrostate pairs and the predictedmicrostate pairs1050

selected by Hungarian algorithm for microscopic pKa predictions.1051

Extra files included in supplementary-documents.tar.gz:1052

• An archive copy of the pKa Challenge directory of SAMPL6 GitHub Repository (SAMPL6-repository-pKa-directory.zip)1053

• Table S1 in CSV format (SAMPL6-pKa-chemical-identifiers-table.csv)1054

• Table S2 in CSV format (macroscopic-pKa-statistics-24mol-hungarian-match.csv)1055

• Table S3 in CSV format (microscopic-pKa-statistics-8mol-hungarian-match-table.csv)1056

• Table S4 in CSV format (microscopic-pKa-statistics-8mol-microstate-match-table.csv)1057

• Figure S1 in CSV format (experimental-microstates-of-8mol-based-on-NMR.csv)1058

• The JupyterNotebookused for the enumeration ofmicrostates (enumerate-microstates-with-Epik-and-OpenEye-QUACPAC.ipynb)1059

• A CSV table of SAMPL6 molecule IDs and OpenEye OEChem generated SMILES (molecule_ID_and_SMILES.csv)1060
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Table S1. SMILES and InChI identifiers of SAMPL6 pKa Challenge molecules. A CSV version of this table can be found in
SAMPL6-supplementary-documents.tar.gz. SMILES were generated by OpenEye OEChem [32]

SAMPL6 Molecule ID Isomeric SMILES InChI

SM01 c1cc2c(cc1O)c3c(o2)C(=O)NCCC3
InChI=1S/C12H11NO3/c14-7-3-4-10-9(6-7)8-2-1-5-13-12(15)11(8)16-10/
h3-4,6,14H,1-2,5H2,(H,13,15)

SM02 c1ccc2c(c1)c(ncn2)Nc3cccc(c3)C(F)(F)F
InChI=1S/C15H10F3N3/c16-15(17,18)10-4-3-5-11(8-10)21-14-12-6-1-2-7
-13(12)19-9-20-14/h1-9H,(H,19,20,21)

SM03 c1ccc(cc1)Cc2nnc(s2)NC(=O)c3cccs3
InChI=1S/C14H11N3OS2/c18-13(11-7-4-8-19-11)15-14-17-16-12(20-14)9
-10-5-2-1-3-6-10/h1-8H,9H2,(H,15,17,18)

SM04 c1ccc2c(c1)c(ncn2)NCc3ccc(cc3)Cl
InChI=1S/C15H12ClN3/c16-12-7-5-11(6-8-12)9-17-15-13-3-1-2-4-14(13)1
8-10-19-15/h1-8,10H,9H2,(H,17,18,19)

SM05 c1ccc(c(c1)NC(=O)c2ccc(o2)Cl)N3CCCCC3
InChI=1S/C16H17ClN2O2/c17-15-9-8-14(21-15)16(20)18-12-6-2-3-7-13(1
2)19-10-4-1-5-11-19/h2-3,6-9H,1,4-5,10-11H2,(H,18,20)

SM06 c1cc2cccnc2c(c1)NC(=O)c3cc(cnc3)Br
InChI=1S/C15H10BrN3O/c16-12-7-11(8-17-9-12)15(20)19-13-5-1-3-10-4-2
-6-18-14(10)13/h1-9H,(H,19,20)

SM07 c1ccc(cc1)CNc2c3ccccc3ncn2
InChI=1S/C15H13N3/c1-2-6-12(7-3-1)10-16-15-13-8-4-5-9-14(13)17-11-18
-15/h1-9,11H,10H2,(H,16,17,18)

SM08 Cc1ccc2c(c1)c(c(c(=O)[nH]2)CC(=O)O)c3ccccc3
InChI=1S/C18H15NO3/c1-11-7-8-15-13(9-11)17(12-5-3-2-4-6-12)14(10-16
(20)21)18(22)19-15/h2-9H,10H2,1H3,(H,19,22)(H,20,21)

SM09 COc1cccc(c1)Nc2c3ccccc3ncn2.Cl
InChI=1S/C15H13N3O.ClH/c1-19-12-6-4-5-11(9-12)18-15-13-7-2-3-8-14(1
3)16-10-17-15;/h2-10H,1H3,(H,16,17,18);1H

SM10 c1ccc(cc1)C(=O)NCC(=O)Nc2nc3ccccc3s2
InChI=1S/C16H13N3O2S/c20-14(10-17-15(21)11-6-2-1-3-7-11)19-16-18-1
2-8-4-5-9-13(12)22-16/h1-9H,10H2,(H,17,21)(H,18,19,20)

SM11 c1ccc(cc1)n2c3c(cn2)c(ncn3)N
InChI=1S/C11H9N5/c12-10-9-6-15-16(11(9)14-7-13-10)8-4-2-1-3-5-8/h1-7
H,(H2,12,13,14)

SM12 c1ccc2c(c1)c(ncn2)Nc3cccc(c3)Cl.Cl
InChI=1S/C14H10ClN3.ClH/c15-10-4-3-5-11(8-10)18-14-12-6-1-2-7-13(12)
16-9-17-14;/h1-9H,(H,16,17,18);1H

SM13 Cc1cccc(c1)Nc2c3cc(c(cc3ncn2)OC)OC
InChI=1S/C17H17N3O2/c1-11-5-4-6-12(7-11)20-17-13-8-15(21-2)16(22-3)9
-14(13)18-10-19-17/h4-10H,1-3H3,(H,18,19,20)

SM14 c1ccc(cc1)n2cnc3c2ccc(c3)N
InChI=1S/C13H11N3/c14-10-6-7-13-12(8-10)15-9-16(13)11-4-2-1-3-5-11/h1
-9H,14H2

SM15 c1ccc2c(c1)ncn2c3ccc(cc3)O
InChI=1S/C13H10N2O/c16-11-7-5-10(6-8-11)15-9-14-12-3-1-2-4-13(12)15/
h1-9,16H

SM16 c1cc(c(c(c1)Cl)C(=O)Nc2ccncc2)Cl
InChI=1S/C12H8Cl2N2O/c13-9-2-1-3-10(14)11(9)12(17)16-8-4-6-15-7-5-8/
h1-7H,(H,15,16,17)

SM17 c1ccc(cc1)CSc2nnc(o2)c3ccncc3
InChI=1S/C14H11N3OS/c1-2-4-11(5-3-1)10-19-14-17-16-13(18-14)12-6-8-
15-9-7-12/h1-9H,10H2

SM18 c1ccc2c(c1)c(=O)[nH]c(n2)CCC(=O)Nc3ncc(s3)Cc4ccc(c(c4)F)F
InChI=1S/C21H16F2N4O2S/c22-15-6-5-12(10-16(15)23)9-13-11-24-21(30
-13)27-19(28)8-7-18-25-17-4-2-1-3-14(17)20(29)26-18/h1-6,10-11H,7-9H2,
(H,24,27,28)(H,25,26,29)

SM19 CCOc1ccc2c(c1)sc(n2)NC(=O)Cc3ccc(c(c3)Cl)Cl
InChI=1S/C17H14Cl2N2O2S/c1-2-23-11-4-6-14-15(9-11)24-17(20-14)21-1
6(22)8-10-3-5-12(18)13(19)7-10/h3-7,9H,2,8H2,1H3,(H,20,21,22)

SM20 c1cc(cc(c1)OCc2ccc(cc2Cl)Cl)/C=C/3\C(=O)NC(=O)S3
InChI=1S/C17H11Cl2NO3S/c18-12-5-4-11(14(19)8-12)9-23-13-3-1-2-10(6-
13)7-15-16(21)20-17(22)24-15/h1-8H,9H2,(H,20,21,22)/b15-7+

SM21 c1cc(cc(c1)Br)Nc2c(cnc(n2)Nc3cccc(c3)Br)F
InChI=1S/C16H11Br2FN4/c17-10-3-1-5-12(7-10)21-15-14(19)9-20-16(23-
15)22-13-6-2-4-11(18)8-13/h1-9H,(H2,20,21,22,23)

SM22 c1cc2c(cc(c(c2nc1)O)I)I InChI=1S/C9H5I2NO/c10-6-4-7(11)9(13)8-5(6)2-1-3-12-8/h1-4,13H

SM23 CCOC(=O)c1ccc(cc1)Nc2cc(nc(n2)Nc3ccc(cc3)C(=O)OCC)C
InChI=1S/C23H24N4O4/c1-4-30-21(28)16-6-10-18(11-7-16)25-20-14-15(3)
24-23(27-20)26-19-12-8-17(9-13-19)22(29)31-5-2/h6-14H,4-5H2,1-3H3,(H2,
24,25,26,27)

SM24 COc1ccc(cc1)c2c3c(ncnc3oc2c4ccc(cc4)OC)NCCO
InChI=1S/C22H21N3O4/c1-27-16-7-3-14(4-8-16)18-19-21(23-11-12-26)24-
13-25-22(19)29-20(18)15-5-9-17(28-2)10-6-15/h3-10,13,26H,11-12H2,1-2H3,
(H,23,24,25)
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Figure S1. Dominant microstates of 8 molecules were determined based on NMR measurements. Dominant microstate sequence of 6
analogues were determined taking SM07 and SM14 as reference. Matched experimental pKa values were determined by spectrophotometric
pKa measurements [8]. A CSV version of this table can be found in SAMPL6-supplementary-documents.tar.gz.
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Figure S2. MAE ofmacroscopic pKa predictions of eachmolecule did not showany significant correlationwith anymolecular descriptor.

Plots show regression lines, 95% confidence intervals of the regression lines, and R2. The following molecular descriptors were calculated using
OpenEye OEMolProp Toolkit [59]: molecular weight, non-terminal rotatable bond count, heteroatom to carbon ratio, maximum ring size, heavy
atom count, heteroatom count, ring system count. Microstate count is based on the enumerated microstates for each compounds including
additional microstates requested by participants.
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Figure S3. The value ofmacroscopic pKaswas not a factor affecting prediction error seen in SAMPL6 Challenge according to the analysis

with Hungarian matching. There was not clear trend between pKa prediction error and the true pKa error. Very high and very low pKa values
have similar inaccuracy compared to pKa values close to 7. A Scatter plot ofmacroscopic pKa prediction error calculatedwithHungarianmatching
vs. experimental pKa value B Box plot of absolute error of macroscopic pKa predictions binned into 2 pKa unit intervals of experimental pKa.
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Figure S4. There was low agreement between experimental dominant microstate pairs and the predicted microstate pairs selected

by Hungarian algorithm for microscopic pKa predictions. This analysis could only be performed for 8 molecules with NMR data. Hungarian
matching algorithm which matches predicted and experimental values considering only the closeness of the numerical value of pKa and it often
leads to predicted pKa matches that described a different microstates pair than the experimentally observed dominant microstates.
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Table S2. Evaluation statistics calculated for all macroscopic pKa prediction submissions based on Hungarian match for 24

molecules. Methods are represented via their SAMPL6 submission IDs which can be cross-referencedwith Table 1 formethod details.
There are eight error metrics reported: the root-mean-squared error (RMSE), mean absolute error (MAE), mean (signed) error (ME),
coefficient of determination (R2), linear regression slope (m), Kendall’s Rank Correlation Coefficient (�), unmatched experimental pKas
(number of missing pKa predictions) and unmatched predicted pKas (number of extra pKa predictions between 2 and 12. This table
is ranked by increasing RMSE. A CSV version of this table can be found in SAMPL6-supplementary-documents.tar.gz.

Submission

ID
RMSE MAE ME R2 m Kendall’s Tau

Unmatched

exp. pKas

Unmatched

pred. pKas [2,12]

xvxzd 0.68 [0.54, 0.81] 0.58 [0.45, 0.71] 0.24 [-0.01, 0.45] 0.94 [0.88, 0.97] 0.92 [0.84, 1.02] 0.82 [0.68, 0.92] 2 4
gyuhx 0.73 [0.55, 0.91] 0.59 [0.44, 0.74] 0.03 [-0.23, 0.28] 0.93 [0.88, 0.96] 0.98 [0.90, 1.08] 0.88 [0.80, 0.94] 0 7
xmyhm 0.79 [0.52, 1.03] 0.56 [0.38, 0.77] 0.13 [-0.14, 0.41] 0.92 [0.85, 0.97] 0.96 [0.86, 1.08] 0.81 [0.68, 0.90] 0 3
nb017 0.94 [0.72, 1.16] 0.77 [0.58, 0.97] -0.16 [-0.49, 0.16] 0.88 [0.81, 0.94] 0.94 [0.82, 1.08] 0.73 [0.60, 0.84] 0 6
nb007 0.95 [0.73, 1.15] 0.78 [0.60, 0.97] 0.05 [-0.29, 0.37] 0.88 [0.77, 0.95] 0.84 [0.77, 0.92] 0.79 [0.65, 0.89] 0 13
yqkga 1.01 [0.78, 1.23] 0.80 [0.59, 1.03] -0.17 [-0.51, 0.19] 0.87 [0.78, 0.93] 0.93 [0.77, 1.08] 0.83 [0.72, 0.91] 0 1
nb010 1.03 [0.77, 1.26] 0.81 [0.61, 1.04] 0.24 [-0.11, 0.59] 0.87 [0.77, 0.94] 0.95 [0.83, 1.08] 0.80 [0.67, 0.90] 0 4
8xt50 1.07 [0.78, 1.36] 0.81 [0.58, 1.07] -0.47 [-0.82, -0.14] 0.91 [0.84, 0.95] 1.08 [0.94, 1.22] 0.80 [0.68, 0.89] 0 0
nb013 1.10 [0.72, 1.47] 0.80 [0.56, 1.09] -0.15 [-0.55, 0.22] 0.88 [0.78, 0.95] 1.09 [0.90, 1.25] 0.79 [0.64, 0.90] 0 6
nb015 1.27 [0.98, 1.56] 1.04 [0.80, 1.31] 0.13 [-0.32, 0.56] 0.87 [0.80, 0.93] 1.16 [0.94, 1.34] 0.78 [0.66, 0.86] 0 0
p0jba 1.31 [0.69, 1.73] 1.08 [0.43, 1.72] -0.92 [-1.72, -0.11] 0.91 [0.51, 1.00] 1.18 [0.36, 1.72] 0.80 [0.00, 1.00] 0 0
37xm8 1.41 [0.93, 1.84] 1.01 [0.68, 1.38] -0.18 [-0.69, 0.32] 0.83 [0.70, 0.93] 1.16 [0.98, 1.33] 0.70 [0.56, 0.83] 1 1
mkhqa 1.60 [1.13, 2.05] 1.24 [0.90, 1.62] -0.32 [-0.89, 0.21] 0.80 [0.67, 0.91] 1.14 [0.98, 1.34] 0.64 [0.44, 0.79] 0 6
ttjd0 1.64 [1.20, 2.06] 1.30 [0.96, 1.67] -0.12 [-0.70, 0.45] 0.81 [0.69, 0.91] 1.2 [1.03, 1.40] 0.65 [0.47, 0.80] 0 5
nb001 1.68 [1.05, 2.37] 1.21 [0.84, 1.68] 0.44 [-0.10, 1.03] 0.80 [0.70, 0.90] 1.16 [0.95, 1.42] 0.72 [0.55, 0.85] 0 7
nb002 1.70 [1.08, 2.38] 1.25 [0.89, 1.70] 0.51 [-0.04, 1.10] 0.80 [0.70, 0.90] 1.15 [0.95, 1.42] 0.72 [0.56, 0.84] 0 7
35bdm 1.72 [0.66, 2.34] 1.44 [0.62, 2.26] -1.01 [-2.18, 0.13] 0.92 [0.46, 1.00] 1.45 [0.73, 2.15] 0.80 [0.00, 1.00] 0 0
ryzue 1.77 [1.42, 2.12] 1.50 [1.17, 1.84] 1.30 [0.86, 1.72] 0.91 [0.86, 0.95] 1.23 [1.06, 1.41] 0.82 [0.71, 0.91] 0 0
2ii2g 1.80 [1.31, 2.24] 1.39 [1.01, 1.82] -0.74 [-1.29, -0.15] 0.79 [0.65, 0.89] 1.15 [0.96, 1.37] 0.68 [0.59, 0.82] 0 2
mpwiy 1.82 [1.39, 2.23] 1.48 [1.14, 1.88] 0.10 [-0.54, 0.73] 0.82 [0.70, 0.91] 1.29 [1.12, 1.51] 0.66 [0.49, 0.80] 0 5
5byn6 1.89 [1.50, 2.27] 1.59 [1.24, 1.97] 1.32 [0.84, 1.80] 0.91 [0.85, 0.95] 1.28 [1.10, 1.48] 0.83 [0.72, 0.92] 0 0
y75vj 1.90 [1.50, 2.26] 1.58 [1.21, 1.97] 1.04 [0.46, 1.60] 0.89 [0.79, 0.95] 1.34 [1.16, 1.53] 0.75 [0.57, 0.88] 1 0
w4iyd 1.93 [1.53, 2.28] 1.58 [1.20, 1.98] 1.26 [0.72, 1.76] 0.85 [0.74, 0.92] 1.21 [1.00, 1.4.0] 0.73 [0.57, 0.85] 0 1
np6b4 1.94 [1.21, 2.71] 1.44 [1.04, 1.94] -0.47 [-1.08, 0.24] 0.71 [0.60, 0.87] 1.08 [0.81, 1.43] 0.75 [0.62, 0.86] 0 8
nb004 2.01 [1.38, 2.63] 1.57 [1.16, 2.04] 0.56 [-0.10, 1.27] 0.82 [0.72, 0.90] 1.35 [1.15, 1.60] 0.71 [0.54, 0.84] 0 5
nb003 2.01 [1.39, 2.64] 1.58 [1.18, 2.04] 0.52 [-0.14, 1.22] 0.82 [0.73, 0.91] 1.36 [1.16, 1.61] 0.71 [0.54, 0.84] 0 5
yc70m 2.03 [1.73, 2.33] 1.80 [1.48, 2.13] -0.41 [-1.09, 0.31] 0.47 [0.28, 0.64] 0.56 [0.35, 0.83] 0.53 [0.35, 0.68] 0 27
hytjn 2.16 [1.24, 3.06] 1.39 [0.86, 2.04] 0.71 [0.03, 1.48] 0.45 [0.13, 0.78] 0.62 [0.26, 1.00] 0.47 [0.16, 0.73] 1 27
f0gew 2.18 [1.38, 2.95] 1.58 [1.09, 2.16] -0.73 [-1.42, 0.04] 0.77 [0.67, 0.89] 1.29 [1.01, 1.63] 0.76 [0.63, 0.86] 0 0
q3pfp 2.19 [1.33, 3.09] 1.51 [0.99, 2.13] 0.59 [-0.10, 1.37] 0.44 [0.13, 0.77] 0.66 [0.27, 1.07] 0.50 [0.20, 0.75] 1 22
ds62k 2.22 [1.62, 2.81] 1.78 [1.34, 2.27] 0.78 [0.06, 1.52] 0.82 [0.70, 0.90] 1.41 [1.20, 1.63] 0.72 [0.55, 0.85] 0 4
xikp8 2.35 [1.94, 2.73] 2.06 [1.66, 2.47] 0.77 [-0.02, 1.58] 0.89 [0.80, 0.95] 1.59 [1.40, 1.81] 0.76 [0.59, 0.89] 1 0
nb005 2.38 [1.79, 2.95] 1.91 [1.44, 2.43] 0.31 [-0.49, 1.15] 0.84 [0.74, 0.91] 1.56 [1.34, 1.82] 0.71 [0.54, 0.83] 0 0
5nm4j 2.45 [1.42, 3.34] 1.58 [0.94, 2.34] 0.05 [-0.80, 1.07] 0.19 [0.00, 0.70] 0.40 [-0.06, 0.81] 0.34 [-0.04, 0.67] 4 1
ad5pu 2.54 [1.68, 3.30] 1.83 [1.24, 2.49] -0.65 [-1.48, 0.25] 0.76 [0.64, 0.88] 1.43 [1.12, 1.78] 0.77 [0.63, 0.88] 0 0
pwn3m 2.60 [1.45, 3.53] 1.54 [0.83, 2.37] 0.79 [-0.06, 1.77] 0.21 [0.00, 0.63] 0.37 [0.01, 0.78] 0.34 [0.04, 0.63] 1 3
nb006 2.98 [2.37, 3.56] 2.53 [2.00, 3.10] 0.42 [-0.60, 1.47] 0.84 [0.74, 0.92] 1.78 [1.55, 2.06] 0.71 [0.54, 0.84] 0 0
0hxtm 3.26 [1.81, 4.39] 1.92 [1.03, 2.98] 1.38 [0.37, 2.56] 0.08 [0.00, 0.48] 0.28 [-0.17, 0.83] 0.29 [-0.04, 0.61] 3 7
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Table S3. Evaluation statistics calculated for all microscopic pKa prediction submissions based on Hungarian match for 8

molecules with NMR data. Methods are represented via their SAMPL6 submission IDs which can be cross-referenced with Table 1
for method details. There are eight error metrics reported: the root-mean-squared error (RMSE), mean absolute error (MAE), mean
(signed) error (ME), coefficient of determination (R2), linear regression slope (m), Kendall’s RankCorrelationCoefficient (�), unmatched
experimental pKas (number of missing pKa predictions) and unmatched predicted pKas (number of extra pKa predictions between 2
and 12. This table is ranked by increasing RMSE. A CSV version of this table can be found in SAMPL6-supplementary-documents.tar.gz.

Submission

ID
RMSE MAE ME R2 m Kendall’s Tau

Unmatched

exp. pKas

Unmatched

pred. pKas [2,12]

nb011 0.47 [0.30, 0.64] 0.33 [0.22, 0.46] -0.02 [-0.18, 0.14] 0.97 [0.94, 0.99] 1.01 [0.97, 1.06] 0.90 [0.78, 0.96] 0 36
hdiyq 0.62 [0.47, 0.76] 0.47 [0.33, 0.62] 0.13 [-0.09, 0.34] 0.95 [0.92, 0.97] 0.34 [0.92, 1.09] 0.87 [0.79, 0.93] 0 16
epvmk 0.63 [0.43, 0.81] 0.47 [0.32, 0.63] -0.02 [-0.25, 0.21] 0.95 [0.89, 0.98] 0.21 [0.91, 1.04] 0.81 [0.68, 0.91] 0 37
xnoe0 0.65 [0.47, 0.82] 0.50 [0.36, 0.66] -0.1 [-0.32, 0.13] 0.95 [0.89, 0.98] 0.13 [0.92, 1.05] 0.82 [0.69, 0.91] 0 36
gdqeg 0.65 [0.41, 0.89] 0.43 [0.27, 0.62] 0.11 [-0.10, 0.35] 0.94 [0.88, 0.98] 0.35 [0.87, 1.02] 0.83 [0.67, 0.95] 0 53
4o0ia 0.66 [0.44, 0.86] 0.47 [0.31, 0.64] 0.00 [-0.22, 0.24] 0.94 [0.88, 0.98] 0.24 [0.87, 1.05] 0.85 [0.73, 0.94] 0 35
nb008 0.76 [0.48, 1.02] 0.52 [0.34, 0.73] -0.08 [-0.37, 0.17] 0.93 [0.85, 0.98] 0.17 [0.79, 0.93] 0.84 [0.73, 0.92] 0 35
ccpmw 0.79 [0.62, 0.94] 0.62 [0.46, 0.80] -0.17 [-0.44, 0.11] 0.92 [0.86, 0.96] 0.11 [0.82, 1.05] 0.80 [0.67, 0.89] 0 7
0xi4b 0.84 [0.58, 1.07] 0.61 [0.42, 0.83] 0.22 [-0.07, 0.51] 0.92 [0.84, 0.97] 0.51 [0.91, 1.09] 0.81 [0.65, 0.92] 0 32
cywyk 0.86 [0.60, 1.10] 0.62 [0.42, 0.84] 0.13 [-0.16, 0.44] 0.90 [0.82, 0.96] 0.44 [0.86, 1.08] 0.81 [0.64, 0.92] 0 35
ftc8w 0.86 [0.51, 1.17] 0.59 [0.39, 0.83] 0.10 [-0.19, 0.41] 0.90 [0.77, 0.97] 0.41 [0.84, 0.98] 0.75 [0.57, 0.88] 0 35
nxaaw 0.89 [0.56, 1.25] 0.61 [0.41, 0.87] -0.02 [-0.35, 0.28] 0.89 [0.75, 0.97] 0.28 [0.85, 1.00] 0.79 [0.63, 0.91] 0 29
nb016 0.95 [0.71, 1.18] 0.77 [0.57, 0.98] -0.23 [-0.56, 0.12] 0.89 [0.83, 0.95] 0.12 [0.82, 1.07] 0.75 [0.62, 0.85] 0 3
kxztt 0.96 [0.56, 1.33] 0.64 [0.41, 0.92] 0.00 [-0.32, 0.36] 0.90 [0.76, 0.97] 0.36 [0.96, 1.13] 0.79 [0.63, 0.91] 0 37
eyetm 0.98 [0.69, 1.27] 0.72 [0.50, 0.97] -0.32 [-0.65, 0.00] 0.91 [0.86, 0.96] 0.00 [0.94, 1.22] 0.78 [0.64, 0.88] 0 7
cm2yq 0.99 [0.44, 1.54] 0.56 [0.31, 0.90] 0.10 [-0.21, 0.50] 0.91 [0.83, 0.98] 0.50 [0.96, 1.25] 0.89 [0.80, 0.96] 0 36
2umai 1.00 [0.46, 1.54] 0.57 [0.33, 0.91] 0.07 [-0.25, 0.46] 0.91 [0.82, 0.98] 0.46 [0.96, 1.26] 0.87 [0.76, 0.95] 0 36
ko8yx 1.01 [0.76, 1.25] 0.78 [0.56, 1.01] 0.35 [0.01, 0.67] 0.91 [0.82, 0.96] 0.67 [0.96, 1.19] 0.78 [0.64, 0.89] 0 26
wuuvc 1.02 [0.51, 1.53] 0.62 [0.38, 0.93] 0.19 [-0.13, 0.58] 0.88 [0.80, 0.96] 0.58 [0.85, 1.19] 0.90 [0.81, 0.96] 0 36
ktpj5 1.02 [0.51, 1.56] 0.61 [0.37, 0.95] 0.17 [-0.16, 0.57] 0.88 [0.80, 0.96] 0.57 [0.87, 1.22] 0.89 [0.80, 0.96] 0 36
z7fhp 1.02 [0.49, 1.55] 0.61 [0.36, 0.94] 0.08 [-0.24, 0.48] 0.90 [0.82, 0.97] 0.48 [0.97, 1.26] 0.88 [0.80, 0.95] 0 28
arcko 1.04 [0.73, 1.32] 0.77 [0.53, 1.02] 0.37 [0.05, 0.72] 0.89 [0.80, 0.94] 0.72 [0.90, 1.14] 0.78 [0.62, 0.90] 0 24
y4wws 1.04 [0.70, 1.33] 0.74 [0.49, 1.00] -0.31 [-0.66, 0.05] 0.91 [0.85, 0.96] 0.05 [1.02, 1.26] 0.79 [0.68, 0.88] 0 30
wcvnu 1.11 [0.80, 1.39] 0.84 [0.59, 1.11] 0.28 [-0.10, 0.66] 0.89 [0.77, 0.95] 0.66 [0.98, 1.22] 0.73 [0.54, 0.88] 1 27
8toyp 1.13 [0.61, 1.65] 0.70 [0.42, 1.05] 0.13 [-0.25, 0.56] 0.88 [0.81, 0.96] 0.56 [0.98, 1.29] 0.83 [0.72, 0.92] 0 27
qsicn 1.17 [0.30, 1.65] 0.88 [0.23, 1.54] -0.76 [-1.54, 0.01] 0.91 [0.46, 1.00] 0.01 [0.52, 1.59] 0.80 [0.00, 1.00] 0 2
wexjs 1.30 [0.95, 1.62] 0.98 [0.68, 1.29] 0.27 [-0.17, 0.74] 0.86 [0.74, 0.93] 0.74 [1.00, 1.29] 0.73 [0.55, 0.86] 0 25
v8qph 1.37 [0.92, 1.79] 0.98 [0.66, 1.34] -0.15 [-0.64, 0.34] 0.84 [0.70, 0.93] 0.34 [0.97, 1.32] 0.70 [0.55, 0.82] 0 6
w4z0e 1.57 [1.18, 1.94] 1.23 [0.90, 1.58] 0.09 [-0.48, 0.62] 0.85 [0.76, 0.91] 0.62 [1.08, 1.46] 0.72 [0.60, 0.82] 0 19
6tvf8 1.88 [0.87, 2.85] 1.02 [0.54, 1.66] 0.45 [-0.14, 1.18] 0.51 [0.16, 0.87] 1.18 [0.26, 0.89] 0.61 [0.34, 0.82] 0 55
0wfzo 2.89 [1.73, 3.89] 1.88 [1.17, 2.68] 0.76 [-0.15, 1.77] 0.48 [0.21, 0.75] 1.77 [0.60, 1.37] 0.51 [0.30, 0.70] 0 4
t8ewk 3.30 [1.89, 4.39] 1.98 [1.06, 3.00] 1.32 [0.27, 2.49] 0.07 [0.00, 0.45] 2.49 [-0.17, 0.79] 0.28 [-0.03, 0.6] 0 6
z3btx 4.00 [2.30, 5.45] 2.49 [1.47, 3.65] 1.48 [0.26, 2.86] 0.29 [0.04, 0.60] 2.86 [0.31, 1.44] 0.43 [0.19, 0.63] 0 1
758j8 4.52 [2.64, 6.18] 2.95 [1.85, 4.25] 1.85 [0.48, 3.38] 0.24 [0.02, 0.58] 3.38 [0.20, 1.51] 0.34 [0.08, 0.57] 0 2
hgn83 6.38 [4.04, 8.47] 4.11 [2.52, 5.93] 2.13 [0.07, 4.28] 0.08 [0.00, 0.39] 4.28 [-0.18, 1.43] 0.32 [0.07, 0.56] 0 0
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Table S4. Evaluation statistics calculated for all microscopic pKa prediction submissions based on microstate pair match for 8

molecules with NMR data. Methods are represented via their SAMPL6 submission IDs which can be cross-referenced with Table 1 for
method details. There are eight error metrics reported: the root-mean-squared error (RMSE), mean absolute error (MAE), mean (signed)
error (ME), coefficient of determination (R2), linear regression slope (m), Kendall’s Rank Correlation Coefficient (�), unmatched experimental
pKas (number of missing pKa predictions) and unmatched predicted pKas (number of extra pKa predictions between 2 and 12. This table is
ranked by increasing RMSE. A CSV version of this table can be found in SAMPL6-supplementary-documents.tar.gz.

Submission

ID
RMSE MAE ME R2 m Kendall’s Tau

Unmatched

exp. pKas

Unmatched

pred. pKas [2,12]

nb016 0.52 [0.25, 0.71] 0.43 [0.23, 0.65] -0.09 [-0.45, 0.30] 0.92 [0.05, 0.99] 0.99 [0.14, 1.16] 0.62 [-0.14, 1.00] 0 3
hdiyq 0.68 [0.49, 0.83] 0.60 [0.39, 0.80] 0.38 [0.02, 0.70] 0.86 [0.47, 0.98] 0.91 [0.45, 1.26] 0.78 [0.4, 1.00] 0 16
nb011 0.72 [0.35, 1.07] 0.54 [0.28, 0.86] 0.45 [0.14, 0.83] 0.86 [0.18, 0.98] 0.93 [0.50, 1.21] 0.64 [0.26, 0.95] 0 36
ftc8w 0.75 [0.52, 0.96] 0.68 [0.50, 0.89] -0.31 [-0.68, 0.16] 0.87 [0.02, 0.99] 1.12 [-0.11, 1.39] 0.56 [-0.10, 1.00] 0 35
6tvf8 0.76 [0.55, 0.95] 0.68 [0.46, 0.90] -0.63 [-0.89, -0.35] 0.92 [0.78, 0.99] 0.94 [0.69, 1.41] 0.87 [0.6, 1.00] 0 55
t8ewk 0.96 [0.65, 1.19] 0.81 [0.46, 1.13] -0.77 [-1.12, -0.38] 0.80 [0.53, 0.96] 0.96 [0.76, 2.26] 0.78 [0.31, 1.00] 1 7
v8qph 0.99 [0.40, 1.52] 0.67 [0.29, 1.17] -0.09 [-0.75, 0.45] 0.68 [0.11, 0.97] 0.96 [-1.26, 1.16] 0.38 [-0.3, 1.00] 0 6
ccpmw 1.07 [0.78, 1.27] 0.95 [0.60, 1.25] -0.83 [-1.25, -0.37] 0.74 [0.43, 0.99] 0.95 [0.70, 2.32] 0.89 [0.52, 1.00] 1 8
0xi4b 1.15 [0.75, 1.50] 0.98 [0.63, 1.36] -0.30 [-0.94, 0.44] 0.77 [0.02, 0.98] 1.26 [0.09, 2.10] 0.51 [-0.14, 1.00] 0 33
cywyk 1.17 [0.88, 1.41] 1.06 [0.74, 1.35] -0.47 [-1.09, 0.24] 0.73 [0.02, 0.98] 1.15 [-0.04, 2.00] 0.56 [-0.08, 1.00] 0 36
eyetm 1.17 [0.77, 1.52] 1.00 [0.61, 1.41] -0.89 [-1.38, -0.38] 0.67 [0.30, 0.94] 0.93 [0.65, 2.59] 0.72 [0.29, 1.00] 1 8
nb008 1.26 [0.74, 1.71] 1.09 [0.63, 1.57] 0.47 [-0.40, 1.32] 0.79 [0.01, 0.99] 1.21 [-0.59, 1.85] 0.52 [-0.2, 1.00] 0 38
y4wws 1.41 [0.95, 1.80] 1.22 [0.78, 1.66] -0.71 [-1.44, 0.06] 0.87 [0.05, 0.98] 1.55 [0.41, 2.02] 0.56 [-0.11, 1.00] 0 31
ktpj5 1.46 [0.83, 2.10] 1.15 [0.67, 1.77] 0.94 [0.29, 1.68] 0.77 [0.01, 0.98] 1.28 [-0.26, 1.60] 0.42 [-0.27, 0.95] 0 37
wuuvc 1.47 [0.84, 2.09] 1.18 [0.70, 1.77] 0.99 [0.36, 1.68] 0.78 [0.01, 0.98] 1.27 [-0.24, 1.58] 0.47 [-0.20, 1.00] 0 37
xnoe0 1.54 [1.09, 2.00] 1.39 [1.02, 1.83] 0.91 [0.11, 1.64] 0.82 [0.01, 0.98] 1.47 [-0.30, 1.79] 0.42 [-0.27, 0.95] 0 37
qsicn 1.58 [1.44, 1.70] 1.57 [1.44, 1.70] -1.57 [-1.7, -1.44] 1.00 [0.00, 1.00] 1.06 0 2
epvmk 1.66 [1.20, 2.15] 1.50 [1.07, 1.96] 1.12 [0.31, 1.82] 0.82 [0.02, 0.98] 1.47 [-0.21, 1.8] 0.42 [-0.25, 0.95] 0 37
4o0ia 1.73 [1.33, 2.17] 1.62 [1.29, 2.02] 1.31 [0.53, 1.93] 0.87 [0.03, 0.99] 1.50 [0.07, 1.84] 0.56 [-0.07, 1.00] 0 36
ko8yx 1.75 [1.08, 2.45] 1.44 [0.87, 2.12] 1.38 [0.74, 2.10] 0.97 [0.88, 1.00] 1.66 [1.46, 2.28] 0.91 [0.69, 1.00] 0 27
2umai 1.76 [1.21, 2.35] 1.54 [1.04, 2.11] 1.31 [0.55, 2.03] 0.82 [0.02, 0.98] 1.43 [-0.02, 1.77] 0.47 [-0.17, 0.95] 0 37
cm2yq 1.77 [1.22, 2.36] 1.55 [1.06, 2.12] 1.33 [0.57, 2.04] 0.82 [0.02, 0.98] 1.43 [-0.02, 1.76] 0.47 [-0.17, 0.95] 0 37
nxaaw 1.80 [0.84, 2.80] 1.34 [0.80, 2.18] 0.16 [-0.77, 1.41] 0.59 [0.02, 0.97] 1.37 [-0.08, 2.92] 0.6 [-0.05, 1.00] 0 30
wcvnu 1.90 [1.14, 2.64] 1.57 [0.97, 2.27] 1.44 [0.70, 2.24] 0.97 [0.91, 1.00] 1.78 [1.58, 2.48] 0.91 [0.69, 1.00] 0 27
kxztt 2.00 [1.13, 2.73] 1.64 [1.00, 2.39] 1.64 [1.00, 2.39] 0.83 [0.01, 0.98] 1.42 [-0.21, 1.99] 0.56 [-0.10, 1.00] 0 38
wexjs 2.05 [1.18, 2.93] 1.66 [1.01, 2.47] 1.48 [0.63, 2.39] 0.96 [0.55, 0.99] 1.87 [1.54, 2.29] 0.73 [0.20, 1.00] 0 26
z7fhp 2.14 [1.38, 2.87] 1.80 [1.12, 2.58] 1.28 [0.18, 2.34] 0.78 [0.02, 0.98] 1.71 [-0.41, 2.13] 0.42 [-0.25, 0.95] 0 30
gdqeg 2.38 [1.97, 2.71] 2.25 [1.74, 2.68] -1.61 [-2.46, -0.37] 0.10 [0.00, 0.98] 0.31 [-0.60, 1.63] 0.29 [-0.45, 1.00] 0 53
8toyp 2.63 [1.89, 3.29] 2.34 [1.59, 3.07] 1.78 [0.47, 2.89] 0.82 [0.02, 0.98] 1.94 [-0.06, 2.39] 0.47 [-0.17, 0.95] 0 29
w4z0e 2.63 [1.81, 3.53] 2.34 [1.67, 3.18] 1.74 [0.46, 2.92] 0.98 [0.55, 1.00] 2.28 [1.52, 2.41] 0.73 [0.20, 1.00] 0 20
arcko 2.64 [1.23, 3.78] 2.08 [1.10, 3.24] 1.71 [0.44, 3.10] 0.57 [0.04, 0.95] 1.42 [0.56, 2.93] 0.56 [-0.06, 1.00] 0 28
0wfzo 18.72 [11.21, 25.03] 15.80 [9.9, 22.35] 15.09 [8.28, 22.12] 0.09 [0.01, 0.73] 2.35 [-10.18, 8.12] 0.02 [-0.65, 0.66] 0 12
z3btx 22.60 [15.03, 29.00] 19.70 [12.97, 26.69] 19.70 [12.97, 26.69] 0.09 [0.01, 0.72] 2.35 [-10.00, 8.28] 0.02 [-0.66, 0.66] 0 7
758j8 23.76 [16.33, 30.24] 21.00 [14.26, 28.00] 21.00 [14.26, 28.00] 0.09 [0.01, 0.71] 2.35 [-10.34, 8.12] 0.02 [-0.65, 0.65] 0 8
hgn83 27.91 [20.54, 34.52] 25.60 [18.9, 32.64] 25.60 [18.9, 32.64] 0.09 [0.01, 0.72] 2.35 [-10.21, 8.00] 0.02 [-0.65, 0.65] 0 5
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