
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

6-4-1982

Overview of the University of Pennsylvania CORE System Overview of the University of Pennsylvania CORE System

Standard Graphics Package Implementation Standard Graphics Package Implementation

Frederick P. Stluka

Brian F. Saunders

Paul M. Slayton

Norman I. Badler
University of Pennsylvania, badler@seas.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_reports

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Frederick P. Stluka, Brian F. Saunders, Paul M. Slayton, and Norman I. Badler, "Overview of the University of
Pennsylvania CORE System Standard Graphics Package Implementation", . June 1982.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-82-17.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/1004
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F1004&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=repository.upenn.edu%2Fcis_reports%2F1004&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fcis_reports%2F1004&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/1004
mailto:repository@pobox.upenn.edu

Overview of the University of Pennsylvania CORE System Standard Graphics Overview of the University of Pennsylvania CORE System Standard Graphics
Package Implementation Package Implementation

Abstract Abstract
The CORE System is a proposed standard for a device-independent graphics system. The concept of a
device-independent system was first developed in 1977 by the Graphics Standards Planning Committee
(GSPC) of ACM Siggraph and later refined in 1979 [1,2]. The CORE System design has received favorable
reviews and has been implemented by various vendors at several universities, and other computing
facilities (e.g. [3,7]). The main objectives of the CORE System are to provide uniformity, compatibility, and
flexibility in graphics software. Three advantages that the CORE system provides over non-standard
graphics systems are device independence, program portability, and functional completeness.

A large number of different graphics hardware devices currently exist with a wide range of available
functions. The CORE System provides device independence by shielding the applications programmer
from specific hardware characteristics. The shielding is at the functional level: the device-independent
(DI) system uses internal routines to convert the application programmer's functional commands to
specific commands for the selected hardware device driver (DD). The progammer describes a graphical
world to the CORE System in device-independent normalized device coordinates. The programmer also
specifies the viewport on the logical view surface (output device) where a picture segment is to be
placed.

As the CORE System becomes the accepted standard graphics package, program portability will become
more feasible. Program portability means the ability to transport application programs between two sites
without requiring structural modifications. The CORE System was designed for functional completeness
so that any graphics function a programmer desires is either included within the system or can be easily
built on top of CORE System routines.

Disciplines Disciplines
Computer Engineering | Computer Sciences

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-82-17.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/1004

https://repository.upenn.edu/cis_reports/1004

~5- ~~~-/2-1 1

OVERVIEW

of the

UNIVERSITY OF PENNSYLVANIA

C 0 R E S Y S T E M

STANDARD GRAPHICS PACKAGE

IMPLEMENTATION

Frederick P. Stluka

Brian F. Saunders

Paul M. Slayton

Norman I. Badler

Department of Computer and Information Science

Moore School D2

University of Pennsylvania

June 4, 1982

I. Introduction to the CORE System

The CORE System is a proposed standard for a
device-independent graphics system. The concept of a
device-independent system was first developed in 1977
by the Graphics Standards Planning Committee (GSPC)
of ACM Siggraph and later refined in 1979 [1,2]. The
CORE System design has received favorable reviews and
has been implemented by various vendors at several
universities, and other computing facilities (e.g.
[3,7]). The main objectives of the CORE System are
to provide uniformity, compatibility, and flexibility
in graphics software. Three advantages that the CORE
system provides over non-standard graphics systems
are device independence, program portability, and
functional completeness.

A large number of different graphics hardware
devices currently exist with a wide range of
available functions. The CORE System provides device
independence by shielding the applications programmer
from specific hardware characteristics. The
shielding is at the functional level: the
device-independent (DI) system uses internal routines
to convert the application programmer's functional
commands to specific commands for the selected
hardware device driver (DD). The progammer describes
a graphical world to the CORE System in
device-independent normalized device coordinates.
The programmer also specifies the viewport on the
logical view surface (output device) where a picture
segment is to be placed.

As the CORE System becomes the accepted standard
graphics package, program portability will become
more feasible. Program portability means the ability
to transport application programs between two sites
without requiring structural modifications. The CORE
System was designed for functional completeness so
that any graphics function a programmer desires is
either included within the system or can be easily
built on top of CORE System routines.

II. Characteristics of the University of
Pennsylvania CORE System

In 1980, four senior students at the University
of Glasgow implemented a CORE System as their senior
project [3]. Like our system, theirs is written in
Pascal with one device driver. Our CORE System is
fully 3D while they created a 2D system. Our
environment used a Ramtek GX-100B as its graphics
device. We followed the guidelines of the 1979 GSPC
design document while they followed the 1977 GSPC
version. Both implementations used similar but

independently-derived linked list data structures to
store primitives and segments.

According to the GSPC 1979 design document [1],
we implemented a CORE system with Output Level 3C
(including retained segments, highlighting,
visibility, pick detection, and full image
transformation: 3D scale, rotation and translation),
and Input Level 2 (synchronous input). Due to the
time constraints of a single year senior project,
several features were not implemented: text
primitives, logical input device echoing, pixel
arrays for polygon fill, patterned polygon edge
style, hidden surface removal, and the Metafile. It
was determined that these features could be added to
the system at a later data and still permit an
acceptably functional graphics system. The system
has been designed so that these features may be
easily added. A device dependent text primitive may
be used via the ESCAPE feature.

III. Pascal Implementation

III.A. The Pascal Language

This CORE System was implemented in Pascal on
the Moore School's UNIVAC 1100/61. It is standard
Pascal, but has some very nice enhancements. Pascal
was chosen as the implementation language because of
its excellent data structuring facilities, because it
is the most widely used language at the Moore School,
and because one of the authors (Stluka) had spent the
previous summer installing Pascal on the UNIVAC 1100,
and was therefore the local expert in the language
and its implementation.

III.B. External Procedures

The CORE System physically consists of two
libraries containing a relocatable element for each
routine. One library contains all the DI routines,
and the other library contains the DD routines for
the Ramtek. The application programmer links to
these two libraries before running a program.

Pascal 1100 supports the creation of relocatable
Pascal elements. This feature gives Pascal several
advantages over languages that do not allow creation
of relocatables. One is that the implementers of the
system are able to compile each routine separately
into the library. The only way to create a library
without separate relocatables is to make all the
procedures internal to a large dummy routine and then
just compile the dummy routine. This adds
significantly to the development time if all routines

must be compiled together for a change in only one
routine. Another advantage is that source code
modules are small and easily handled by the text
editor. Load modules created by an application
program are also much smaller since they contain only
the code for those library routines which are needed.
This is much better than having to put a large dummy
routine around all the procedures in the library. In
that case, each application program load module would
be huge, containing the code for every routine in the
library, whether it is called or not.

It should be obvious therefore that the ability
to create relocatable elements is necessary to any
graphics development project that is building Pascal
code libraries. This feature saved many hours of
work and helped to make application programs as small
and efficient as possible.

III.C. INCLUDE Facility

The use of INCLUDE statements made the system
very modular and flexible. Each routine used
INCLUDEs to declare all the global data types, global
variables, and procedure definitions that are
directly callable by the particular routine. The
application program need INCLUDE only one file
element to declare all the global data types, global
variables, and definitions of all the user-callable
routines.

III.D. Common Data Area

III.D.l. Input record

The input record contains all the
characteristics for the six logical input devices.
It is a linked list structure created and maintained
by the DI routines which deal specifically with
input. It is loaded by the device driver with
initial values specific to the available physical
input devices attached to the selected output device.
Each record contains a fixed part and a variant part
with a section for characteristics particular to each
logical input device.

III.D.2. Escape record

The escape record is created by the application
programmer who wishes to use the ESCAPE facility.
The record contains arrays for integer, real, and
character parameters. The record was designed in
such a manner to allow for any possible type of
parameter passing to occur. The application program
fills the three arrays with the desired parameters of

each type and specifies the number of each in the
record. The ESCAPE procedure is then called with an
option code to select from up to 11 (an arbitrary
limit) user-accessible DD features. The selected
routine within the ESCAPE interprets the parameter
fields of the record accordingly.

III.D.3. Control variables

The control variables are used throughout the
CORE System and are part of the global export
variables. Examples of control variables are system
flags and characteristics, and the current operating
position.

III.D.4. View State record

This record contains viewing parameters that are
used in the 3D viewing pipeline. Typical variables
in this record are flags and matrices, as well as
viewing vectors. These variables are not known to
the application programmer and are updated only
through DI routines.

III.D.5. Color Table record

The color table is actually three arrays of
color values representing amounts of Red, Green, and
Blue. The record also contains the number of
increments of each color array, and the low and high
values. Color values are stored normalized in the
range 0.0 to 1.0. It is the responsibility of each
device driver to convert this color value into an
appropriate color value for the selected device. The
record is initialized and maintained by DI routines.

TII.D.~. Device Driver record

This record contains specific information for
each device driver to be included in the CORE System.
The fields in the record are fixed, but their values
are initialized at run time by the selected device
driver. For example, each driver will set the
variable VSPIXX to the maximum size of its horizontal
screen resolution.

III.E. Pseudo-Display File

III.E.l. Segment records

The pseudo-display file is a two level Pascal
linked list structure that contains both
characteristics and coordinates of graphical data.
The file is a segmented dynamic display structure
which is composed of a variable number of segments of

dynamic size which describe the picture stored by the
CORE System. The two levels of the structure are
segments and primitives.

Each segment is a logical portion of the picture
defined by the application programmer. Each segment
has a set of dynamic and static attributes associated
with it. The one static attribute, the image
transformation limit, determines which types of
transformations can be applied to the segment's image
on the screen. The four dynamic attributes
associated with each segments are its name, its
current image transformation, its highlighting, and
its detectability. Each segment is a record (but not
a variant) containing a pointer to the list of
primitives contained within the segment as well as
all the segment static and dynamic attributes (Fig.
1) •

III.E.2. Primitive records

The six types of primitives are LINE, POLYLINE,
TEXT, POLYGON, MARKER, and POLYMARKER. Each
primitive type has a different set of attributes
associated with it. Each primitive is a record
containing the necessary information to display the
primitive, in addition to its pick identifier and a
pointer to the next primitive on the linked list.
Since each type of primitive has its own unique set
of attributes, Pascal variant records are used.
Primitives are stored in LIFO order in the linked
list. Thus, when a newframe action takes place, the
last primitive added to the pseudo-display file is
the first to be drawn on the device. This, as
discovered later, is the opposite of the intended
temporal priority.

III. F. Viewing Pipeline

The application programmer specifies the picture
in any appropriate 3D world coordinate system. To
store objects in normalized device coordinates which
are directly accessible by the device driver the
following picture generation process is used [2,5,6].

First, the world coordinates are converted to
normalized clipping coordinates by passing each point
through two 4x4 composite viewing matrices. Now all
the points are oriented with respect to either a
truncated, normalized pyramid for perspective
viewing, or a unit cube for parallel viewing.

Clipping is performed by comparing each point to
the six planes of the view volume. Points found to
be outside the view volume are either clipped to the

S£6-MENT.ED DYNftMlL..

DISPLAY PILE

PA.IMliiVe Pf< !I'! l/IVE

PRIMITIVE PfHMITIV£ PRifl11i/Y£

PJVMiiiVt.

fRif'ttTfV!

planes or marked as clipped out.

If perspective viewing is desired, the truncated
pyramid view volume is converted to a cube view
volune ranging from (0,0,-1) to (0,0,1).

All coordinates are then mapped from the
normalized view volume to the application specified
viewport. In order to simplify the pick operation,
an extent box surrounding the primitive is calculated
by comparing the fully converted primitive
coordinEtes to determine the maximum and minimum
values along each axis [4,6].

III.G. Ramtek Device Driver

C1•rrently, the only graphics device connected to
the UNIVAC 1100 is the Ramtek. The Ramtek's current
driver, a set of FORTRAN routines, was first
converted to Pascal. Starting with this layer of
low-level software, a CORE System driver was written.
A set of approximately 25 routines was developed to
interf~ce the DI CORE system with this low-level
software. The driver handles all output primitives
and all six logical input devices.

IV. Interactive CORE

An interactive DI CORE routine tester was
implemented which allows the application programmer
to write graphics programs at the terminal and
imme~iately see the results of specific DI routines.
The user can experiment with the CORE system
interactively without having to invest time and
effort in writing PASCAL batch programs. The
Interactive CORE facility is completely menu-driven
and ~rompts the user for all routine parameters
indivioually. In addition to the standard DI CORE
routi~es, two features are included. First, a 3D
cube is pre-defined in world coordinates and its
viewing parameters can be varied. Second, a
debugging feature allows the operator to directly
access CCRE System global variables. Overall the
Interactive CORE facility should be a great aid for
understanding the CORE System and writing graphics
programs.

V. Effort

The design team consisted of Fred Stluka, Brian
Saunders, and Paul Slayton. The implementation team
also consisted of Fred Stluka, Brian Saunders, and
Paul Slayton. The implementation team worked much
harder. Because of the size of the project, the work
had to be properly allocated to each member of the

design/implementation team. Stluka was responsible
for the design of the pseudo-display file and partial
implementation of the viewing pipeline. Saunders was
responsible for the design of the input facilities
and partial implementation of the viewing pipeline.
Slayton was responsible for the design of the device
driver forwat. Throughout the project, each member
of the team worked with the others to aid in design
and implementation of the other allocated sections of
the p~oject, thus this was really a team project.
Each one ~new what the others were doing and helped
out whenever possible.

VI. Conclusion

T~e project was judged successful both as a
educational exercise and as a means of developing
portabLe graphics software in PASCAL, particularly
targeted at a UNIVAC 1100. The system is presently
being converted to run on a VAX-11/780 and little
difficulty is expected. This computer will also
permit development of the important asynchronous
input .t2vel.

VII. icknowledgments

The team would like to thank Norman Badler for
all his help and aid in understanding what the CORE
System is all about.

qe would also like to thank the Moore School
Computing Facility and Skip Dane for making the
UNIVAC 1100 and the Ramtek talk to each other so we
could draw pretty pictures.

VIII. References

[1] Graphics Standards
Compu~er Graphics vol.

Planning Committee
13 , No. 3 , Aug. 1 9 7 9 •

Report,

[2] ACM SIGGRAPH Tutorial on Graphics
Aug. h-7, 1979, Chicago, IL.

Standards,

[3] C. J. Nichol
Imple~entation of

and A. C. Kilgour, "A Pascal
the GSPC CORE Graphics Package,"

Comp~ter Graphics Vol. 15, No. 4, Dec. 1981,
pp. 327-335.

[4] 1-f. T. Garrett, "Logical Pick
for the CORE System," Computer
No. 4, Feb. 1980, pp. 303-313.

Device Algorithms
Graphics Vol. 13,

[5] w. M. Newman and R. F. Sproull, Principles of
Interacti~e Computer Graphics, 2nd ed., McGraw-Hil~
NeWYork, ~!Y, 1979.

[6] J. D. Foley and A.
Interactive Computer
Reading, MA, 1982.

van Dam,
Graphics,

Fundamentals of
Addison-Wesley,

[7] George Washington University Implementation of
the 1979 GSPC CORE System, 27 May 1980.

	Overview of the University of Pennsylvania CORE System Standard Graphics Package Implementation
	Recommended Citation

	Overview of the University of Pennsylvania CORE System Standard Graphics Package Implementation
	Abstract
	Disciplines
	Comments

	tmp.1452007788.pdf.MRnLO

