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Abstract
The residual slurry obtained from the anaerobic digestion (AD) of biogas feed substrates such as livestock dung is known 
as BGS. BGS is a rich source of nutrients and bioactive compounds having an important role in establishing diverse micro-
bial communities, accelerating nutrient use efficiency, and promoting overall soil and plant health management. However, 
challenges such as lower C/N transformation rates, ammonia volatilization, high pH, and bulkiness limit their extensive 
applications.
Here we review the strategies of BGS valorization through microbial and organomineral amendments. Such cohesive 
approaches can serve dual purposes viz. green organic inputs for sustainable agriculture practices and value addition of 
biomass waste. The literature survey has been conducted to identify the knowledge gaps and critically analyze the latest 
technological interventions to upgrade the BGS for potential applications in agriculture fields.
The major points are as follows: (1) Bio/nanotechnology-inspired approaches could serve as a constructive platform for 
integrating BGS with other organic materials to exploit microbial diversity dynamics through multi-substrate interactions. 
(2) Advancements in next-generation sequencing (NGS) pave an ideal pathway to study the complex microflora and translate 
the potential information into bioprospecting of BGS to ameliorate existing bio-fertilizer formulations. (3) Nanoparticles 
(NPs) have the potential to establish a link between syntrophic bacteria and methanogens through direct interspecies electron 
transfer and thereby contribute towards improved efficiency of AD. (4) Developments in techniques of nutrient recovery 
from the BGS facilities’ negative GHGs emissions and energy-efficient models for nitrogen removal. (5) Possibilities of 
formulating low-cost substrates for mass-multiplication of beneficial microbes, bioprospecting of such microbes to produce 
bioactive compounds of anti-phytopathogenic activities, and developing BGS-inspired biofertilizer formulations integrating 
NPs, microbial inoculants, and deoiled seed cakes have been examined.

Keywords  Biogas slurry · Agriculturally important microbes · Deoiled seed cakes · Bio-fertilizer formulations · Bio/nano 
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BGS	� Biogas slurry/bioslurry
BGSY	� Biogas yield
BSM	� Biostimulation
C/N	� Carbon-to-nitrogen ratio
CAGR​	� Compound annual growth rate
CANON	� Completely autotrophic nitrogen removal over 

nitrite process
CBY	� Cumulated biogas yields
CCL	� Chemically cultivated lands
CD	� Cow dung
CFs	� Chemical fertilizers
CM	� Cattle manure
CMM	� Cellular membrane
CNPs	� Conductive nanoparticles
CS	� Cattle slurry
DBS	� Digested biogas slurry
DIET	� Direct interspecies electron transfer
DOCs	� Deoiled cakes
DOM	� Dissolved organic matter
DP	� Dominant phylum
DPA	� Dipicolinic acid
DVM	� Digestate with vermiculite
EET	� Extracellular electron transfer
EU	� European Union
FAO	� Food and Agriculture Organization
FYM	� Farm yard manure
GD	� Goat dung
GHGs	� Greenhouse gases
HACs	� High-ammonia conditions
HED	� Hen droppings
HGM	�  Hydrogenotrophic methanogens
HM	� Horse manure
HOD	� Horse dung
HRT	� Hydraulic retention time
IDR	� Indonesian rupiah
IHT	� Interspecies H2 transfer
INR	� Indian rupees
J-DOC	� Jatropha deoiled cake
K-DOC	� Karanja deoiled cake
LCA	� Life cycle assessment
LFD	� Liquid fraction of the digestate
LR	� Laser irradiation
LSS	� Livestock slurry
MBRs	� Metal-binding receptors
MCNs	� Micronutrients
Mg ha-1	� Mega gram per hectare
MIET	� Mediated interspecies electron transfer
MME	� Microbial metabolic efficiency
MMTs	� Million metric tons
MNPs	� Magnetite nanoparticles
MT	� Million ton
NAR	� Nijhuis ammonium recovery
NBS	� Nutrient subsidy rates

NEDOCs	� Non-edible deoiled cakes
NGS	� Next-generation sequencing
NOB	� Nitrite-oxidizing bacteria
NPs	� Nanoparticles
nZVI	� Nanosized zero-valent iron
OTUs	� Operational taxonomic units
PB	� Plant biomass
PSB	� Phosphate-solubilizing bacteria
QIIME	� Quantitative insights into microbial ecology
SBAD	� Substrate for anaerobic digestion
SC	� Slurry compost
SI	� Shannon index
SNA	� Syntrophic acetogens
SOC	� Soil organic carbon
SPB	� Secondary fermenting bacteria
TAN	� Total ammonia nitrogen
TKN	� Total Kjeldahl nitrogen
TNC	� Total nutrient content
TS	� Total solids
USD	� United States dollar
UTC​	� Coordinated universal time
V-GPM	� Vacuum-assisted gas-permeable membrane
VMD	� Vacuum membrane distillation
VOA	� Volatilization of ammonia
VS	� Volatile solids

1  Introduction

1.1 � Background of the study

The prevalence of various types of abiotic and biotic stress 
leads to a decline in crop productivity and consequently 
accelerates the application of different types of chemical 
fertilizers and pesticides in agriculture fields. Such chemical 
inputs not only impose a threat to human life, but environ-
mental consequences are more pronounced. The application 
of nitrogenous chemical fertilizers has three important con-
cerns, i.e., increasing cost (due to hikes in petroleum prices); 
economic loss (over 50% of applied nitrogenous fertilizers 
lost in different agriculture processing); and environmental 
hazards [1]. There is a gap of about 10 million ton (MTs) 
of plant nutrients between removal by crops and replenish-
ment through fertilizers, presently in India [1]. Such figures 
necessitate transformation in our ideology from conventional 
practices to environmental-friendly approaches, promoting 
minimal or optimum use of chemical fertilizers or encourag-
ing organic farming.

Organic farming as a sustainable agriculture practice has 
gained global attention in the present-day scenario; however, 
certain challenges to widen the scope of such practices need 
to be addressed. As per the data published in “The World of 
Organic Agriculture (Statistics and emerging trends 2020)” 
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(FiBL survey 2020), there are 186 countries involved in 
organic activities in the year 2018 with 71.5 million hec-
tares of land covered under organic agriculture. However, as 
far as the worldwide organic producers are concerned, India 
(1,149,371) (2018 data) has maximum numbers followed 
by Uganda (210,352) (2016 data) and Ethiopia (203,602) 
(2015 data) (FiBL Survey 2020) [2]. The USA is the world-
wide leader of the organic market followed by Germany and 
France with retail sales of 40559, 10919, and 9139 million 
euros respectively, while in terms of per capita consumption 
Denmark and Switzerland top the chart (FiBL-AMI survey 
2020, 2018 data) [2]. Besides offering numerous benefits 
to the environment, issues like low productivity and higher 
produce cost are some of the key challenges that limit the 
interest of organic producers at large. A survey study by 
Ramesh et al. [3] also put forward similar concerns.

The amendments in biological resources (principally 
those considered as biomass waste or byproducts) to develop 
organomineral biofertilizers through the implementation of 
technological interventions such as microbiology, biotech-
nology, and nanotechnology are the key areas that must be 
looked upon to further strengthen organic agriculture prac-
tices. Biogas slurry/bioslurry (BGS) is one such residual 
biomass, which hosts a diverse microbial population, and 
accumulates secondary metabolites, carrying essential 
micro/macro-nutrients. Cow dung (CD), one of the common 
biogas feedstock and BGS source, is rich in mineral elements 
like N, P, Ca, Zn, Mg, S, Fe, Cu, Co, and Mn [4] and harbors 
diverse microbial population [5]. The full potential of CD in 
areas such as agriculture, energy, environment, and human 
health is still unexplored [5]. BGS demonstrates potential 

applications as a soil conditioner, fertilizer, and bio-pesticide 
in agriculture. The detailed discussion over different applica-
tions of BGS in crop fields is presented in Section 2.2. Tak-
ing account of shortcomings, it has been observed that BGS 
alone is unable to fulfill the entire nutrient demand due to its 
bulkiness, N loss as ammonia volatilization, reduced rates 
of C/N transformation, etc. [6–8]. The major limitations and 
emerging challenges for BGS applications in the agriculture 
fields have been outlined in the next section.

1.2 � Limitations of BGS: need for value addition

BGS obtained from animal dung such as cattle and live-
stock have nutrient profile contributed as a potential source 
of fertigation in agriculture fields. However, BGS has vari-
ous limitations such as bulkiness, low C/N ratio, nitrogen 
loss through volatilization of ammonia (VOA), and high 
pH (Fig. 1). A biogas plant with 800 m3 of working vol-
ume is estimated to be discharged 15 tons of BGS per day 
[9]; hence, generated volumes of BGS need to be managed 
appropriately to avoid any environmental consequences, as a 
result thereof. The bulkiness in BGS is due to the high water 
content (~93%) in it [10–12], which further complicates its 
transport and utilization [13]. The bulkiness of BGS also 
limits its potential to fulfill the entire nutrient demand [7] in 
agriculture fields.

Loss of nitrogen as VOA from liquid slurry depends upon 
different physical (liquid temperature, viscosity, contents, 
and distribution of particle size in solids), chemical (pH, 
ionic strength, and total ammonical nitrogen), and environ-
mental (temperature, humidity, direction, and speed of the 

Fig. 1   Limitations of BGS as 
a potential nutrient input in 
agriculture fields (contamina-
tion include pathogens, heavy 
metals, organic pollutants, 
pesticides, antibiotics, etc.) 
(conceptualized from [6–8, 21])
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wind, etc.) factors [8]. Such losses were also observed at the 
time of drying BGS or soon after its application in agricul-
ture fields [14]. BGS have pH values usually in the alkaline 
range [11, 14, 15], and as per the reports, the higher pH (>7) 
promotes N loss through VOA [16].

Nitrogen loss from BGS in the form of VOA imposes 
complexity during its handling, storage, and field applica-
tions [14]. Storage limitations such as lack of bottom liners 
or impermeable surfaces can have the risk of nitrogen and 
potassium leaching [14]. Under circumstances where the 
proper covering of recovered BGS is not available, the risk 
of ammonia emissions can further increase [14]. For conven-
ient handling, BGS often dried or composted, which can also 
end up with N losses as VOA [14]. However, such losses 
can be minimized with the use of nitrogen-rich organic sub-
strates during composting of BGS. High air temperature 
can also increase the N loss through ammonia emissions 
[16]. Studies mentioned that the available nitrogen in BGS 
is comparatively less efficient than mineral fertilizers due 
to such N losses [17]. The ammonia deposition as a conse-
quence of increasing VOA is reportedly associated with the 
risk of acidification in sensitive ecosystems [18], besides 
this, ammonia also act as precursor for secondary aerosols 
production [19].

Zheng et al. [6] reported low C/N transformation rates 
in biogas digestate obtained from farm manure (pig manure 
and urine). The low carbon and high nitrogen contents in 
anaerobic digestates [14] are primarily attributed to the 
conversion of carbon-rich substrate into methane. Studies 
reported mixed responses (i.e., positive, negative as well 
as no effects) of N availability on mineralization of soil 
organic carbon (SOC) [20]. As cited by Insam et al. [21] 
and Stumpe et al. [22] and mentioned in the study of Sen-
bayram et al. [23], the elevated levels of nitrogen in diges-
tates can increase the mineralization of carbon (called as 
priming effect). High and low priming effects were report-
edly observed under lower (higher C/N ratio) and higher 
N availability (low C/N ratio) respectively [24]. Liu et al. 
[24] reported higher SOC stocks and lower respiration activ-
ity of soil microbes under nitrogen deposition conditions. 
Researchers also speculate the role of soil microbial commu-
nity in the degradation of BGS-derived recalcitrant organic 
carbon present in topsoil, hence, mounting the SOC stocks 
[25]. Liao et al. [20] mentioned that the decrease in priming 
effect under the conditions of higher nitrogen availability 
is majorly controlled by “microbial metabolic efficiency” 
(MME). Similar findings were reported earlier, and Chen 
et al. [26] also concluded that instead of microbial activity 
(extracellular enzymatic activities), the dynamics of carbon 
in topsoil under higher nitrogen availability is regulated by 
MME. As mentioned by Groot and Bogdanski [19], in spite 
of the higher mineralization of nitrogen at a low C/N ratio, 
the susceptibility towards emissions of ammonia increases. 

To further explore this, we have reviewed the study of Sen-
bayram et al. [23]. The application of organic matter in 
combination with ammonium sulfate initially increases the 
readily available SOC. Following the rapid decomposition 
of easily degradable carbon compounds, the ratio of nitrate 
nitrogen and available carbon increases, and once reached 
threshold levels, it may induce N2O emissions under the 
conditions of high soil moisture [23].

The direct application of liquid BGS in agriculture fields 
(such as foliar spray) is also an important consideration. To 
avoid the toxicity risk on plant growth as a result of higher 
concentration of ammonia and soluble P, it has been recom-
mended to dilute the liquid BGS before applying on standing 
crops based on the type of biodigester (like floating drum/
fixed dome type; tubular/plug-flow type, etc.) [17]. The 
application of recovered digestates can also induce phyto-
toxicity effects precisely when used as a peat substitute in 
nursery/horticulture plantations, which more likely depends 
on the content of soluble salts in digestates [14].

The BGS concentration is another important aspect and as 
reported by Warnars and Oppenoorth [17]; it depends upon 
the absorption rate of plants at the time of slurry applica-
tion. Niyungeko et al. [15] observed an increase in colloidal 
phosphorous leaching from paddy (rice) topsoil at medium 
(673 m3 ha−1: 165 kg N ha−1, 52 kg P ha−1) and high (1350 
m3 ha−1: 330 kg N ha−1, 104 kg P ha−1) application rate of 
BGS. Warnars and Oppenoorth [17] recommended lower 
application doses of BGS to limit the N loss as nitrate leach-
ing. Over-fertilization with BGS can risk the environment 
(VOA causes atmospheric pollution) and also incurred with 
financial losses (loss of fertilizer nitrogen) [19].

Reports indicated that the possibilities of pathogens and 
heavy metal contaminants in BGS are lesser in the case of 
using manure over other waste streams as feedstock material 
for AD [14]. However, it is noteworthy that the degradation 
of heavy metals does not occur during AD [27]. Hence, it 
is important to study the fate of heavy metal transfer on 
receiving environment as a consequence of BGS fertiliza-
tion, more precisely the long-term application effects. Bian 
et al. [28] treated farmland soil with BGS (pig manure and 
straw as feedstock material for AD) and investigated the con-
centrations of heavy metals in different soil and plant sam-
ples. They observed higher levels of Cd, Pb, and Zn (mean 
concentrations) in soil amended with BGS (which exceeds 
standard safety limits as referred to in the study), and the 
plants were found to have heavy metals (under investigation) 
above the standard safety limits as referred to in the study 
(except Cu). Overall, leafy vegetables showed higher heavy 
metal uptake as compared to the non-leafy vegetables. Risk 
assessment through plant ingestion displayed higher “non-
carcinogenic risk” with heavy metals As, Cd, and Pb; while 
the carcinogenic risk (CGR) was found to be associated with 
Cr>As>Cd (decreasing order), out of them, CGR through 
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food chain was primarily ascribed to Cd and As [28]. Tang 
et al. [27] found concentrations of heavy metals (Cd, Cu, 
Pb, and Zn) in soil and crop plants (Rice and Wheat) after 
5 years following repeated fertilization with BGS (pig 
manure as feedstock material for AD) within the standard 
safety limits as laid down by different international bodies 
(China, EU, and FAO). In another interesting study by Lu 
et al. [29], the effect of BGS (called anaerobically digested 
slurry by the authors) (pig farm waste as feedstock material 
for AD) fertigation on rice grain yield and accumulation 
of heavy metals in harvested rice grains was investigated. 
They have recorded the heavy metal concentration in BGS as 
Cu>Cd>Pb>Cr>Hg (decreasing order), and observed levels 
of heavy metals in soil (before transplantation of rice and 
after harvesting) as well as in rice grains were found lower 
than the standard critical levels as referred to in the study, 
and the heavy metal concentration in harvested grains were 
independent of the dose of BGS application in fields.

In addition to this, it is also important that the BGS must 
be well-treated to be free from contaminations such as path-
ogens [17]. That could be of concern in scenarios where 
stringent measures (such as optimum retention time, pH, 
digester temperature [21]) during AD of feedstock mate-
rials will not be followed. Studies mentioned that manag-
ing such consistencies in operational conditions might be 
more challenging for developing countries [14]. Though the 
occurrence of pathogens in BGS is comparatively lesser than 
FYM, however, the risk cannot be ignored completely as the 
process of AD does not kill the entire range of pathogens 
[17]. In addition to pathogens and heavy metals, the pres-
ence of antibiotics and different organic pollutants (includ-
ing pesticides) is some of the emerging challenges while 
using the BGS for agriculture applications [21]. Pointing 
to the existing challenges with the application of BGS as a 
rationale behind the present study and prioritizing the con-
cept of sustainable agriculture practices, we have attempted 
to highlight the latest technological developments fostering 
the value addition of BGS.

2 � BGS: source, composition, and agricultural 
applications

2.1 � Source and composition

Biogas is comprised of methane (major component), carbon 
dioxide, nitrogen, hydrogen sulfide, hydrogen, and traces of 
ammonia [30]. Hydrolysis, acidogenesis, acetogenesis, and 
methanogenesis are the key steps of biogas production in 
which each step is catalyzed by the diverse microflora [31]. 
Different substrates for AD to produce biogas include ani-
mal (manure, dung, fodder residue, etc.), vegetable (grass, 
straw, etc.), and household (night soil, garbage, etc.) waste 

[32]. Livestock dung (such as cattle manure) is the most 
commonly available substrate for biogas production [33], 
precisely in rural areas.

Discussing the Indian scenario, from 730 MT of dung 
produced by animals annually, bovine dung alone (cattle and 
buffalo dung) accounts for 256.2 MT from which estimated 
annual BGS production is 76.8 MT (at 1 kg cattle dung= 
~0.3 kg BGS) [10]. In another study by Thiruselvi et al. 
[34], the amount of CD generated in India has been reported 
around 335 MT per month (out of which ~110 MT is consid-
ered to be waste during collection and transportation). Refer-
ring to Kumar et al. [10], we can estimate the monthly BGS 
recovery rates after AD of ~225 MT CD. Rath and Joshi [35] 
mentioned the estimated annual bioslurry recovery of 299 
MT from ~995 MT of bovine dung. Such values direct the 
extent of digestate availability from the biogas plants. As 
per the case study conducted in Rajasthan (India) [36], the 
majority of biogas plant owners preferred to use recovered 
BGS as fertilizer. Considering this awareness among the 
farmers, the application of integrated approaches leading 
to the value addition of BGS to develop low-cost Bio-Agri 
inputs will be of great significance to further promote its full 
potential with anticipations of reducing our dependence on 
chemical fertilizers.

Biogas slurry or bioslurry abbreviated as BGS in the pre-
sent study recovered as the spent from the AD of organic 
feeds during biogas production. The bulk of BGS is con-
tributed by water (~93%) and the remaining part (~7%) is 
comprised of organic (4.5%) and inorganic (2.5%) matter 
[10–12]. pH value lies above the neutral range [37]. It is 
rich in NPK with other nutrients (Ca, Mg, Fe, Mn, Cu, and 
Zn) essential for plant growth [38]. One of the latest studies 
mentioned 2.55%, 0.57%, and 1.77% of N, P, and K respec-
tively in BGS [33]. Sharma et al. [39] in sun-dried BGS 
reported C, N, P, and K content of 41.6±2.1%, 0.72±0.12%, 
0.59±0.02%, and 0.91±0.04% respectively.

Mdlambuzi et  al. [33] observed a direct relationship 
between the NPK content of cattle manure (CM) and recov-
ered BGS, i.e., higher N, K, and lower P content. It is worth 
mentioning here that the nutritional status of recovered BGS 
relies upon several aspects such as the source of feedstock 
substrate, operational conditions in AD, and native micro-
flora. Hence, it is important to optimize the substrate com-
bination coupled with operational conditions during AD, 
which can yield twin benefits of higher biogas yields and 
nutrient-enriched BGS. Organic matter has a low C/N ratio, 
which limits the process of AD [40]. As the animal manures 
have low C/N content, it is ideal to perform co-digestion 
with the substrates having high carbon to low nitrogen con-
tent such as plant biomass. Co-digestion studies using plant 
biomass with livestock wastes such as CD [41, 42] and poul-
try litter [43] are well documented. This will facilitate C/N 
balance, favoring microbial breakdown of substrate mixture 
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in the digester [44]. Rodríguez-Abalde et al. [45] reported 
higher methane yields at a C/N ratio of 20–30. Wei et al. [46] 
optimized the combination of CM, maize straw, and sewage 
sludge (35:35:30) for higher methane yields. Priya et al. [47] 
performed co-digestion of plant biomass with organic wastes 
and found higher levels of volatile solids (VS) leading to 
improved levels of biogas yield.

Interestingly, the anaerobic digestate obtained from diges-
tion (of feed substrate, i.e., CM, pig slurry, and poultry litter) 
or co-digestion (with onion waste) shows similarity in their 
structural characteristics, and the recovered co-digestate 
showed improvement in the availability of nutrients [48]. 
Concluding this, the C/N content is an important considera-
tion while selecting substrates and optimizing their different 
combinations. The strategy of co-digestion with other feed-
stocks has also been reported to recuperate the process of 
AD [40]. We suggest further readings on the co-digestion of 
livestock manure with different feedstocks [31, 45, 49–51].

2.2 � Agricultural applications

2.2.1 � Is BGS a preferred source of fertilizer over raw 
manure or traditional composts?

Anaerobic digestates such as BGS comparatively offer 
low nitrate leaching and lesser nitrous oxide emissions 
[18]. Digestates from organic matter such as animal slurry 
reportedly contains more mineral nitrogen as compared 
to the undigested ones [52]. According to Aminul Haque 
[12], anaerobically decomposed BGS has a higher nutrient 
value than aerobically decomposed BGS. Smith et al. [53] 
observed higher nitrogen losses in composting (26–51%) 
over AD (5–10%). In comparison to traditional compost, 
BGS is an easily available form of compost [17] and is also 
reported to have stronger plant growth-promoting activities 
than raw slurries due to higher concentrations of ammoni-
cal nitrogen [54]. As compared to CD, BGS have lower 
C/N content, thus enabling higher fertilization potential, 
and anaerobic digestion aids mineralization effects, hence 
increasing the bioavailability of nutrients to the plants [16], 
though the susceptibility towards N loss due to VOA can be 
increased [19]. Tumuhimbise [55] recorded higher biofer-
tilizer potential of CM bioslurry as compared to the sun-
dried slurry, fresh CM, and NPK treatments on the overall 
growth of radish in ferralsol soil. On reviewing the litera-
ture, BGS appears as a preferred source of nutrients (like 
N) with significant fertilizer potential [17, 53–56]. Research 
and development in the area of BGS enrichment to meet the 
current nutrient demands in agriculture fields coupled with 
searching opportunities to develop effective bioformulations 
against a wide range of pests will be of great significance 
to meet the objectives of organic farming and sustainable 
development goals.

2.2.2 � Nutrient profile of BGS

As compared to CM, Mdlambuzi et al. [33] found 0.65%, 
0.133%, and 0.10% higher values of N, P, and K content (% 
wt) in BGS respectively. According to Devarenjan et al. [11], 
2m3 of the biogas plant can produce around 50 kg of BGS 
every day and 1m3 of BGS contains about 0.16 to 1.05 kg of 
nitrogen which is equal to approximately 0.35 to 2.5 kg of 
urea. Animal urine added to BGS increases nitrogen levels 
that accelerate the compost-making process and optimize the 
C/N ratio in BGS that aids nutrient availability to soil biota 
and plants [10]. Jared et al. [38] recorded higher levels of 
Ca, Mg, Fe, Mn, and Zn in slurry compost as compared to 
BGS. However, from Fig. 2, it can be noticed that in terms of 
NPK values, BGS is preferred over slurry compost and farm 
yard manure (FYM). Incorporation of nutrient-rich organic 
amendments such as non-edible DOCs (NEDOCs) as a 
strategy to facilitate multi-substrate interaction of beneficial 
microbes and thereby to ameliorate micronutrient status of 
BGS has been proposed through the present review and will 
be discussed further upon.

2.2.3 � BGS as an organic fertilizer

BGS offers various advantages as an organic fertilizer like 
improvement in soil nutrient profile and their availability 
to plants; improves soil structure, its water holding capac-
ity, and cation exchange capacity; improves soil microbiota 
(nitrogen-fixing bacteria, phosphate-solubilizing bacteria 
(PSBs)); etc. [10]. Such organic amendments can further 
prevent or reduce soil erosion through improvements in the 
physical properties of soil (such as water-holding capacity 
[10], air permeability [6], aggregate stability, penetration 
resistance [57], etc.) along with an increase in soil organic 
carbon content [57]. BGS is a rich source of slow-release 
minerals [58] and provides nutrients in balanced proportions 
[59]. It can be utilized directly or indirectly as a fertilizer 
with other organic materials [10]. BGS can be applied as 
a foliar spray (onto crops), diluted liquid (onto roots), and 
dry composted form (combined with irrigation techniques 
to ensure sufficient water to crop plants) [37]. Zhao et al. 
[60] reported the preferential application of BGS in agricul-
ture application as compost instead of its direct application. 
Referring to Table 1, it has been observed that the BGS have 
a potential role in plant growth–promoting activities such as 
overall yield and productivity, improving nutrient contents 
in soil, and maintaining soil structure, effectivity against 
soil-borne, and plant pathogens, etc. Beneficial effects of 
BGS fertilization leading to the overall soil and plant health 
management are represented schematically in Fig. 3.

Plant growth and productivity  Ferralsol soil fertilized 
with CM bioslurry promotes plant height and total biomass 
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content, and improves growth parameters such as root 
diameter, and leave number and weight, in radish [55]. Xu 
et al. [61] recorded the highest yields in rice and rape at an 
application rate of 165.1 and 182.1 t ha−1 BGS respectively. 
They [61] have observed comparatively better results than 
those obtained from chemical fertilizers treatment. Besides 
this, You et al. [58] fertilized red clay soil with BGS (at 
30 and 40 kg/plant/year) and noticed an improvement in 
fresh fruits yield, oil yield, and seed rate (fresh and dry) 
per plant in Camellia oleifera. Ferdous et al. [62] supple-
mented CD BGS with synthetic fertilizer (NPK, S, Zn, B) 
at an application rate of 5 t ha−1 and reported increasing 
tomato yields. Results of Xu et al. [37] showed an increase 
in overall growth, stomatal conductance, concentration of 
intercellular CO2, water-use efficiency, rate of transpiration, 
photosynthesis, etc., in Perilla frutescens seedlings. Aminul 
Haque [12] reported a higher manure value of BGS in Rabi 
crops than Kharif crops and mentioned that nitrogen content 
was higher in air-dried BGS than sun-dried BGS.

Jothi et al. [63] noticed an increase in fruit number (3 
fruits/plant) and yield of tomato (35.2 g/plant) with the 
application of BGS (obtained from the AD of a mixture 
containing CD and water at 1:1). Garg et al. [64] recovered 
the higher maize grain yields (6.21 Mg ha−1) and improve-
ment in root length density (1.10 cm cm−3) with the treat-
ment of BGS (at 15 Mg ha−1). Zhao et al. [65] in laboratory 
investigations recorded the highest germination potential, 
germination rate, and germination index in Vicia faba (L.) 
seeds soaked in 75% BGS (w/v in distilled water). Du et al. 
[66] worked on Hoggery BGS and observed a substantial 

increase in wheat (23.47%) and maize (15.46%) yields. 
Some of the studies such as Coelho et al. [67] demonstrate 
that the biofertilization potential of anaerobic digestates out-
weighs the effect of undigested cattle slurry.

Taking a brief account of soil aggregation properties, 
Zheng et al. [6] experimentally examined improvement in 
soil structure, fertility, and C/N distribution in red soil (Ulti-
sol) treated with BGS (obtained from AD of pig manure and 
urine) and chemical fertilizer (0.45:0.55). The application of 
BGS can reduce the use of synthetic fertilizers up to 15–20% 
[10]. Lu et al. [29] found a reduction in the chemical applica-
tion (NPK by 100, 100, and 26% respectively) and irrigation 
water use (by 45.5%) without affecting rice grain yields in 
the field experimental study. Xu et al. [37] observed vari-
able concentrations of mineral elements in different organs 
of P. frutescens. Koszela and Lorencowicza [68] fertilized 
soil with BGS and reported higher N (3.66%), P (0.30%), 
K (1.96%), Ca (1.96%), and Mg (0.38%) content in Alfalfa 
leaves as compared to treatment that involved chemical 
fertilizer application. Yu et al. [69] with the application of 
concentrated BGS have seen improvements in the soil avail-
able NPK content while working on the tomato plant. In a 
similar study, Thomas et al. [70] found enhanced nitrogen 
and phosphorous uptake efficiency in Barley forage utiliz-
ing anaerobic beef cattle digestate (solid). In experiments 
of Coelho et al. [67] on ryegrass swards, soil treated with 
anaerobic co-digestate of food waste and pig slurry showed 
higher P (4.6 mg/L) than the soil treated with undigested 
CS (1.5 mg/L). They have also observed enhanced levels of 
nutrients such as B, Cu, Zn, and Mn.
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Fig. 2   Comparative analysis of nutrient composition in different 
organic inputs. a Macronutrients along with Fe; b micronutrients Mn, 
Cu, and Zn (note: DBS-AH, CM-AH, and FYM-AH represent aver-
age data from three different regions/sample matrices; BGS-J, SS-J, 
and FYM-J represent average data derived from the range of values 

provided; the values of Ca, Mg, and Fe were not reported in DBS-
AH, CM-AH, and FYM-AH; DBS, digested biogas slurry; CM, 
compost manure; FYM, farm yard manure; BGS, biogas slurry; SC, 
slurry compost; J, reported by Jared et al. [38]; and AH, reported by 
Aminul Haque [12])
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Biopesticidal activities  Moving to biopesticidal potential, 
BGS successfully investigated for nematicidal, anti-fungal, 
termite repellent, and other similar activities. BGS (called 
effluent by the author) repels termites, and reduces weed 
growth by about 50%, and its compost was reported to 
increase 10–30% cereal crop production as compared to 
FYM if stored and applied properly [12]. AD of dairy manure 
promotes the multiplication of Bacillus species (Bacillus 
subtilis-B11; Bacillus licheniformis-B59) and suppressed late 
blight of potato [71]. Min et al. [72], utilizing anaerobically 
digested slurry, reported nematode control in tomato and 
radish. Jothi et al. [63] also observed nematicidal properties 
of BGS (obtained from AD of CD and water mixture in 
1:1) applied at 10% w/w in tomato against Meloidogyne 
incognita. Kupper et al. [73] formulated Bio1 biofertilizer 
from anaerobically digested CM supplemented with 
micronutrients (and additives for promoting fermentation) 
and found effectivity (at 10% concentration) in control of 
citrus black spot caused by Phyllosticta citricarpa in Natal 
oranges, grafted on Cravo lemon trees.

Improvement in biochemicals and other utilities  Du et al. 
[66] have seen improved levels of starch and crude protein 
in wheat and maize with the application of Hoggery BGS. 
Islam et al. [74] applied BGS (at 70 kg N ha−1) and reported 

the highest crude protein content of 11.91% and biomass 
yield of 54.12 t ha−1 in Zea mays. Yu et al. [69] applied 
concentrated BGS and observed a higher amount of amino 
acids, proteins, vitamin C, soluble sugars, tannins, and beta 
carotene in tomato fruits. They have also reported higher 
counts of culturable microbes (actinomycetes, bacteria, and 
fungi) in Rhizospheric and non-rhizospheric soils. In addi-
tion to this, BGS also contributes towards mitigating climate 
change through sequestration of Carbon in the soil [75]. Soil 
fertilized with anaerobic digestates offers low CO2 emis-
sion as compared to manure [48]. BGS can also serve as an 
organic carrier material to deliver agriculturally important 
microbes (AIMs). In particular, this area has been further 
reviewed in the Section 3 (solutions) of the manuscript.

3 � Solutions

Various limitations associated with the BGS like low 
C/N transformation rates, high TAN content, ammonia 
volatilization, high pH, bulkiness, and risk of contamina-
tion imposed challenges like handling, storage, transport, 
and further application in agriculture fields to meet the 
desired benefits. Efforts have been made by the research-
ers to investigate the different approaches to overcome 

Fig. 3   Schematic representation of beneficial effects of BGS application in agriculture ( source: conceptualized from the multiple authors 
referred in the manuscript) (AGS, aggregate stability; WHC, water-holding capacity; CEC, cation exchange capacity)
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such ambiguities. To facilitate the systematic assessment 
of the available and prospective solutions, the present 
section has been discussed under nanotechnology-based 
interventions, nutrient recovery from BGS, microbially 
inspired, and integrated approaches. Microbes are the key 
drivers of agroecosystems and are known for increasing 
nutrient availability to plants and conferring pest and 
disease resistance as well. NEDOCs, apart from being a 
rich source of essential nutrients for crop plants, act as 
substrates for the beneficial microbial community that 
facilitates their decomposition followed by the nutrient 
release in soil [76]. BGS enrichment through NEDOCs 
and AIMs can serve multiple benefits such as balanced 
C/N ratio, availability of nutrients, and growth-promoting 
effects to the plants. NGS platform allows comprehen-
sive assessment of the microbial diversity in solid and 
liquid fractions of the digestate. Screening and selection 
of beneficial microbes can further be subjected to the 
BGS-inspired multi-substrate interaction with differ-
ent organic substrates for mass multiplication of such 
microbes. These integrated approaches can materialize 
to develop different biofertilizer and organomineral-based 
bio-formulations. The additional processing of slurry 
dewatering, separation of LFD, and decontamination can 
also be minimized following such integrated approaches. 
In recent years, nanotechnology-based approaches have 
also been explored to bring more opportunities for the 
stakeholders associated with the agriculture sector. 
Nanoparticles are reported to have a significant influ-
ence on the microflora favoring soil nutrient mobiliza-
tion [77] and recovery of nutrient-rich BGS [78]. The 
scope of nanotechnology-based interventions has also 
been explored to upgrade the fertilization potential of 
recovered BGS from the digesters. To provide state-of-
the-art information, this section has been taken in detail 
into the following sub-sections: role of nanoparticles in 
AD of biomass, nanoparticle-microbe interaction, nano-
particle co-aggregation, and environmental impacts of 
nanoparticle introduction into the functional system and 
environment. Afterward, the different methodologies of 
nutrient recovery from the LFD have been reviewed and 
recent technological developments in the area of nitrogen 
recovery as free ammonia and its subsequent utilization as 
a renewable CO2 adsorbent for biogas upgradation were 
also discussed. The manuscript is concluded with an over-
view of commercial viability and economic estimates 
concerning BGS. The study will be of great significance 
for the researchers aiming to encourage environmental-
friendly methods of developing organic formulations from 
biomass wastes/generated end-products to meet the cur-
rent fertilizer demands and promote sustainable and cir-
cular bioeconomy through a zero-waste approach.

3.1 � Microbially inspired approaches 
for the enrichment of BGS

The successful investigations on mass multiplication of 
AIMs in a variety of organic substrates such as DOCs, CM, 
and BGS not only promote the novel routes of microbial 
introduction in the agriculture fields but also showcase the 
possibilities of value addition of different organic inputs of 
low nutrient value. Different strategies of BGS enrichment 
through microbially inspired routes have been reviewed 
in this section. Taking account of another key aspect, i.e., 
the microbial community dynamics of methanogens, little 
information is available on the unculturable microbes 
supporting AD of organic matter leading to biogas 
production [40]. However, advancement in molecular 
biology techniques such as NGS will be useful in depicting 
microbial community structures (diversity and richness) 
through taxonomic assignments (QIIME analysis), alpha 
diversity analysis (Shannon index, Simpson index, ACE, 
Chao1 index, and observed species), and others. The 
microbial community analysis reported in CD, CM, and 
BGS and the potential role of the identified microflora 
in crop improvement have been reviewed. Furthermore, 
integrated approaches of combining BGS with other 
organic inputs (NEDOCs) to exploit the microbial 
community dynamics through multi-substrate interactions 
have also been discussed.

3.1.1 � Microflora associated with biogas feedstocks 
and BGS

Microbial diversity analysis  16S ribosomal sequencing 
studies allow diversity and dynamics analysis of uncultured 
microbes inhabiting the environmental niches [79, 80]. Inte-
gration of advanced “Omics” technologies permits detailed 
investigation of microbial community structures in varied 
habitations including biogas digesters containing biomass 
feedstocks. Han et al. [81] reported bacterial and archaeal 
community diversity in household rural biogas digesters fed 
with different raw materials such as vegetable waste, pig 
manure, and a mixture of other waste materials. The most 
abundant phyla reported were Bacteroidetes, Firmicutes, and 
Proteobacteria.

Application of BGS has substantial effects on the 
microbial population (Rhizospheric and non-rhizospheric 
soil) [69]. CD, one of the common feed substrates in biogas 
production, harbors diverse microbiota. CD consists of 80% 
water, 14.4% undigested matter, and 5.6% of a microbial 
community comprising fungi, bacteria, and actinomycetes 
[82]. Sun et al. [83] reported Firmicutes as the dominant 
phylum in cow manure and the operational taxonomic units 
(OTUs) were 270–274. The Shannon Diversity, Chao1, and 
Simpson indices recorded by them were 6.361 to 6.167, 358 
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to 420, and 0.957 to 0.971 respectively for the bacterial 
population and 2.081 to 2.404, 22 to 27, and 0.648 to 0.693 
for Archaeal population in cow manure. BGS reportedly 
support bacterial populations such as Proteobacteria, 
Chloroflexi, Firmicutes and Bacteroidetes [40], Bacillus 
spp., Carnobacterium spp., [60], P. fluorescence, Nomuraea 
rileyii, Verticillium lecani, Fusarium-15, and Trichoderma 
viride [59]. Christy et  al. [84] isolated Acetobacter 
syzygii, Bacteroides nordii, Clostridium perfringens, 
Methanobacterium formicicum, Lactobacillus acidophilus, 
Methanosarcina siciliae, Prevotella bivia, Porphyromonas 
asaccharolytica, and Prevotella bivia from bioreactor (fed 
with CD slurry).

Xu et al. [61] performed alpha diversity analysis of bac-
terial population in soil fertilized with BGS, chemical fer-
tilizer (NPK for rice: 0.006, 0.10, 0.07 t ha−1 respectively; 
NPK and boron for rape: 0.25, 0.27, 0.19, 0.007 t ha−1 
respectively), and control (soil without treatment). They 
have recorded higher Chao1 index values in sampled soil 
enriched with a low dose of BGS (59.9 t ha−1) as compared 
to its higher dose (264.4 t ha−1). The decreasing order of 
Chao1 index in sampled soil was as follows: BGS low dose 
59.9 t ha−1 (39,552–44828)> chemical fertilizer treatment 
(38,869–41,143)> control (37,068–41,756). The values 
obtained by them for Shannon Index were 10.80–12.22 for 
BGS (at 59.9 t ha−1), 10.97–12.05 for chemical fertilizer 
treatment, and 10.44–12.46 for control. Compared to con-
trol, the abundance of Acidobacteria, Chloroflexi, Plancto-
mycetes, Verrucomicrobia, Nitrospirae, and AD3 was rela-
tively higher in BGS treatments. The alpha diversity indices 
for microbial community analysis associated with BGS are 
in Table 2.

Application of microbes (associated with BGS and biogas 
feedstocks) in agriculture  Lu et al. [88] identified 17 bacte-
rial strains from CD ((Alcaligenes faecalis CD232, CD243, 
CD257, CD261, CD205), Bacillus cereus (CD9, CD98, 
CD260), Microbacterium aerolatum (CD142), P. otitidis 
(CD237), P. beteli (CD204), P. aeruginosa (CD245), Provi-
dencia rettgeri (CD256), Proteus penneri (CD129, CD212), 
Staphylococcus xylosus (CD250), and Staphylococcus sciuri 
(CD97)) (out of 219 isolates) that showed anti-nematodal 
activity (greater than 90% within 1 h) against Caenorhabdi-
tis elegans. Except Alcaligenes faecalis CD205, P. otitidis 
CD237, and P. aeruginosa CD245, volatile compounds of 
the remaining 14 bacterial isolates exhibited nematicidal 
activity against Meloidogyne incognita. Bacillus licheni-
formis isolated from CD (fermented with basalt dust and 
eggshell) showed IAA production (1.75 μgmL−1), phos-
phorous solubilization (2.37% in 10 days), and antagonistic 
activity against plant fungal pathogen (Rhizoctonia batati-
cola) [89].

Bioinoculants with multiple properties can be preferred 
in agriculture fields. Paikray and Malik [90] in a US 
patent application disclose a synergistic composition of 
at least seven beneficial bacteria (P. fluorescens, P. striata, 
Azospirillum, Azotobacter, Bacillus subtilis, Bacillus 
polymyxa, and Lactobacillus); at least two beneficial fungi 
(Trichoderma herzianum, T. viride); at least one yeast 
(Saccharomyces cerevisiae); and at least one compound 
which extends the effective lifetime of said formulation. 
Game et  al. [91] studied the efficacy of microbial 
consortium (Bacterial isolate B-28 (Bacillus spp.), fungal 
isolate F-13 (Aspergillus terreus), and Actinomycetes 
isolate A-40 (Streptomyces sp.)) for composting of 
rural (farm waste, animal litter, animal fodder waste, 
dung) and urban wastes (vegetable waste, kitchen waste, 
roadside waste, papers, etc.) and reported the reduction 
in composting time coupled with nutrient enrichment in 
compost derived from both the waste types as compared 
to the commercial consortium and uninoculated controls.

BGS in combination with different organic amendments 
reported to support the population of bio-control agents such 
as P. fluorescence, Verticillium lecani, Trichoderma viride, 
and Metarhizium anisopliae [59]. Kavya et al. [92] reported 
an increase in the growth of beneficial microorganisms 
(Rhizobium, Pseudomonas, Azotobacter, Azospirillum) on 
different combinations of substrates (CD, press mud, poultry 
litter, kitchen wastes, maize stalks, and fruit wastes) utilized 
for biogas production and observed that the different organic 
substrates supported the microorganism’s growth for at least 
3 to 4 weeks of duration. Karmegam and Rajasekar [93] 
studied the strategies for enriching BGS vermicompost with 
Azotobacter chroococcum and Bacillus megaterium.

Soil available nutrient through the application of organic 
matter relies upon the catabolic potential of microflora 
[94]. The viability and an adequate load of microorganisms 
are important to get appropriate results in the agriculture 
fields. Bioinoculant success depends upon the survival 
of microbial strain in the soil, more prominently under 
adverse agro-climatic conditions such as temperature 
variations and pH range. Scientists and biofertilizer 
producers are also facing the same challenges to increase 
the effectiveness of biofertilizers under variable geographic 
and agro-climatic conditions [1]. The development of 
stress resistance in microbial strains through phenotypic 
adaptations (permanent and non-revertible) is preferred 
over genetically manipulated strains (gene transfer) due 
to environmental hazards associated with the introduction 
of genetically modified organisms [1]. Thus, studies 
pertaining to the selection and application of suitable 
bio-inoculants (with respect to soil nature, agro-climatic 
condition, crop variety, etc.) and microbial formulations 
coupled with soil texture profiling to tune up with microbial 
growth must be taken up further [1].
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3.1.2 � NEDOCs: potential substrates for mass multiplication 
of AIMs

BGS can combine with the organic substrates of high nutri-
ent values like NEDOCs. The combination of BGS and 
NEDOCs complements each other in terms of improving 
their properties (such as balanced C/N ratio and moisture 
content), which can also be productive for the mass multi-
plication of AIMs. Besides this, the addition of NEDOCs 
potentially reduces the requirement of dewatering in BGS, 
hence aiding convenience in storage and handling for field 
applications. This is a key aspect as the process of drying 
BGS to reduce water content is reported to have low nitrogen 
levels as compared to the fresh BGS (wet) [9]. Thus, the 
addition of NEDOCs to some extent can reduce the necessity 
of additional treatments of BGS (to reduce water content) 
and could be beneficial to sustain the nutrient levels in BGS, 
which are probably lost at the time of drying.

The major fraction of seed cakes is reportedly rejected 
as toxic, and remains unutilized [95]. India has over 100 
species of non-edible oil seed-bearing plants [96, 97], out 
of which presently 10–12 varieties have been explored until 
now [97]. Around 70% of oiled cake has been recovered 
after expelling oil from the tree-borne oilseeds [96]; hence, 
the availability of the DOCs can be estimated from such fig-
ures. Marathe and Deshmukh [96] while highlighting the oil-
seed production potential in India mentioned the non-edible 
oilseed cakes quantity of about 2.812 MMTs. However, as 
cited by Prasad [98], an evaluation of the exact quantity of 
non-edible oilseed cakes (NECs) is insignificant.

Table 3 shows the nutrient compositions of different 
non-edible seed cakes published in the previous reports. 
NEDOCs of Azadirachta indica contain N, P, K, Ca, Zn, Fe, 
etc., [99]; similarly, nutrients reported in P. pinnata DOCs 
were C, N, P, K, Ca, Mg, S (macronutrients), Zn, Fe, Cu, 
and B (micronutrients) [39, 100]. Jared et al. [38] found 
higher Mn, Zn, Ca, and Fe in slurry compost as compared 
to BGS, though the NPK levels were greater in BGS. As the 
microbes play an important role in the process of compost-
ing [101], the higher nutrient availability can be attributed 
to the undergoing microbial actions. Microbial biofertilizers 
have significant potentials for biological nitrogen fixation: 

nutrient recycling, solubilization, and mobilization, etc. 
[102]. NEDOCs have also been investigated for supporting 
the population of agriculturally beneficial microbes [103, 
104]. Optimization of BGS and DOC combination for mass 
multiplication of AIMs followed by application of developed 
biofertilizer formulations in agriculture fields can strategi-
cally favor the soil nutrient profile and higher crop yields.

The presence of toxic compounds in NEDOCs limits their 
applications in the agriculture fields. Decomposition sub-
stantially reduces the presence of toxic compounds present 
in DOCs. Das et al. [106] through co-composting of Jatropha 
DOC (J-DOC) and animal dungs considerably reduced the 
Phorbol ester content. Incorporating AIMs further improves 
the efficiency of decomposition followed by the metaboli-
zation of such toxic compounds. Researchers successfully 
utilized the NEDOCs as low-cost substrates for the multi-
plication of biocontrol agents, growth-promoting microbes, 
and developing different bioformulations [39, 76, 108–115]. 
According to Singh et al. [69], the utilization of DOCs as 
substrates for the multiplication of beneficial microbes 
facilitates soil fertility under field conditions coupled with 
reducing the risk of disease occurrence. Tomer et al. [112] 
mentioned the role of allelochemicals behind the prevention 
of various soil-borne diseases through the combined applica-
tion of DOCs and microbial bio-control agents.

Studies in the area of screening, identification, and 
separation of bioactive compounds produced by the AIMs 
utilizing DOCs and BGS could be beneficial in develop-
ing formulations of potential biocontrol activities. The 
approach seems to be more conceivable if we look upon 
the findings of Sharma et al. [108], Arora et al. [109], and 
Sharma et al. [116]. Sharma et al. [108] multiplied Purpu-
reocillium lilacinum 6029 on Karanja DOC (K-DOC) and 
the metabolites of potential biocontrol activity identified by 
them were benzene acetic acid, benzoic acid, phenyl ethyl 
alcohol, 2-ethyl butyric acid, and 3,5-di-t-butylphenol. 
The first report on the presence of butyric acid (possesses 
nematicidal activities) in P. lilacinus filtrate was predicted 
to be the result of metabolic pathways elicited in response 
to their growth (during submerged fermentation) on K-DOC 
[116]. Arora et al. [109] optimized K-DOC, J-DOC, and 
dextrose combination (4.5, 12.5, and 10 gL−1 respectively) 

Table 3   Nutrient compositions 
of different non-edible seed 
cakes

DOCs Nutrient composition

Karanja C: 42.26±2.4%; N: 4.87±0.87%; P: 0.89±0.03%; K: 1.3±0.02% [39]; Ca: 
0.25%; Mg: 0.17%; Zn: 59 ppm; Fe: 1000 ppm; Cu: 22 ppm; Mg: 74 ppm; B: 
19 ppm; and S: 1894 ppm [100]

Neem N: 4.51%; P: 0.79%; K: 1.40%; Zn: 57 ppm; Ca: 1.40 ppm; Fe 640 ppm [99]
Mahua C: 44.93±0.08%; N: 3.15±0.02% [105]
Jatropha N: 2.93±0.06%; P: 9623±109 ppm; K: 8563±157 ppm; C/N: 10.2±0.10 [106]
Castor N: 75.4 gkg−1; P: 31.1 gkg−1; K: 6.6 gkg−1; Ca: 7.5 gkg−1; Mg: 5.1 gkg−1 [107]
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for the growth of Paecilomyces variotii and reported dipi-
colinic acid (DPA) production 2.5 times higher as compared 
to the basal medium. The effectiveness of DPA in regulating 
rhizospheric phytopathogens has also been reported. In this 
way, not only the wide range of NEDOCs; the other biomass 
wastes such as BGS can also be exploited to develop a rich 
repository of compounds derived from AIMs through multi-
substrate interactions.

The low levels of NPK or other nutrients in the cattle feed 
could have been reflected in the CM and consequently in the 
recovered BGS. Under such conditions, BGS alone will be 
unable to fulfill the entire nutrient demands as a fertilizer. 
To balance the phosphorus levels in BGS, Mdlambuzi et al. 
[33] added superphosphate. However, possibilities of such 
amendments can also be possible through the enrichment 
with DOCs and AIMs (such as phosphate-solubilizing bacte-
ria). The C/N content is critical in the investigations dealing 
with the suitability of different substrate(s) to achieve higher 
microbial growth. Sharma et al. [110] optimize the C/N 
ratio of 40:1 (pH=7) in K-DOC (using sucrose as carbon 
source) for the growth of P. lilacinus. Sharma et al. [39] have 
attempted to replace the sucrose with BGS (sun-dried) as a 
potential carbon source (required for microbial growth under 
SSF). The recorded values of C/N ratio for K-DOC and BGS 
(sun-dried) were 8.68 ± 0.11 and 57.78 ± 0.19 respectively 
[39]. In concerned with their suitability favoring microbial 
growth, the C/N ratio appears to be high in K-DOC and 
low in sun-dried BGS. The authors [39] reported K-DOC/
BGS ratio of 60/40 as optimal for P. lilacinum 6029 mul-
tiplication under SSF. In co-composting of Jatropha DOCs 
and rice straw mixture (1:9) (OM) with different animal 
dungs (buffalo dung (BD), cow dung (CD), goat dung (GD), 

horse dung (HOD), and hen droppings (HED)), Das et al. 
[106] recorded the highest C/N ratio in OM+CD (20:1). 
Upon optimizing the OM and animal dung proportions, the 
OM+BD, OM+GD, OM+HED, and OM+HOD in the com-
bination of 20:1, 10:1, 5:1, and 5:1 respectively showed the 
highest C/N ratio (Fig. 4). Thus, as compared to other animal 
dungs, CD contributes maximum C/N ratio and undoubtedly 
emerges as an ideal ingredient to directly or indirectly (after 
resource generation such as BGS) utilized with other organic 
substrates for the mass multiplication of AIMs. Such studies 
certainly pave the way ahead to explore the diverse range of 
carbon-rich biomass wastes with the potentials of replacing 
expensive carbon sources.

3.2 � Integrated approaches

This section entails the utilization of BGS for agricultural 
applications through enrichments via multi-component 
organic substrates, vermicomposting, NPK amendments, 
etc. Alongside, methodologies to overcome the contamina-
tion risks (pathogens, heavy metals, pesticides, and other 
organic pollutants) and handling a liquid fraction of BGS 
were also taken into consideration; hence, the said subsec-
tion is entitled as integrated approaches.

Taking account of growth-promoting activities of the 
BGS-AIM combination, Hamid et al. [117] recorded an 
overall improvement in growth, yield, and physiology of 
sunflower under moderate salinity stress with the application 
of BGS enriched with B. subtilis Y16 strain. Ahmad et al. 
[118] also noticed improvements in maize growth under salt 
stress using BGS supplemented with biofertilizer and 100% 
recommended dose of nitrogen. Gao et al. [119] reported an 

Fig. 4   C/N ratio under opti-
mized combinations of OM 
with different animal dungs 
(refer text for the details of 
abbreviations used) [106]
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increase in mycorrhizal colonization, rhizospheric bacterial 
count, and overall growth in maize using formulation con-
taining BGS, biofertilizer, and 50% NPK. Sharma et al. [39] 
developed a fungal formulation (P. lilacinum) using K-DOC 
and sun-dried BGS (60:40) as a substrate for nematode 
control. Devakumar et al. [59] also utilized multi-substrate-
enriched BGS for the multiplication of biocontrol agents 
such as P. fluorescence and Trichoderma viride. In an experi-
ment, soil samples were collected from BGS-cultivated 
(paddy) (BCL) and chemically cultivated lands (CCL) and 
found 23.3% higher bacterial counts in BCL as compared 
to CCL [36]. Thus, BGS application supports a favorable 
environment for microbial growth in agriculture fields.

Treatment of BGS has a significant influence on enzy-
matic regulation, cellular development, and photosynthetic 
induction [119]. Organic or mineral enrichments could be 
helpful to reduce the bulkiness of BGS and increase its 
application as fertilizer in agriculture [7]. Notably, perform-
ing anaerobic co-digestion (ACD) of CM with other carbon-
rich organic substrates (balanced C/N ratio) promotes micro-
bial activity, thereby improving biogas yield and recovery of 
nutrient-rich digestate.

Vermicomposting of BGS significantly reduces the C/N 
ratio (above 80% as compared to an untreated BGS recorded 
by Yadav et al.) [120], which supports its application in 
agriculture as a potential organic nutrient input. They have 
reported higher TKN values (g kg−1) with vermicomposted 
BGS (29.90±2.10) as compared to an untreated slurry 
(6.20±0.25). The microbial diversity of vermicompost 
can also be explored for the value addition of BGS. Hao 
et al. [121] in their investigation observed that the bacte-
rial communities associated with the vermicompost showed 
metabolic competence for the upgradation of swine manure 
compost. Decline in Stenotrophomonas and Acinetobacter 
(genera of phylum Proteobacteria known for pathogenic bac-
teria) and rise in Chryseolinea and Actinomadura genera 
(beneficial microbes) were also noted. The 30th-day inocu-
lation of A. chroococcum at the rate of 30 mL, 35 mL, and 
40 mL per 175 g of vermibed substrate (composted BGS) 
showed survival up to 105 days (cfu 2 × 107 g−1), 135 (cfu 1 
× 107 g−1) days, and 135 days (cfu 2 × 107 g−1) respectively 
[93]. In the case of B. megaterium, they found that the 30th-
day inoculation at the rate of 30 mL, 35 mL, and 40 mL per 
175 g of vermibed substrate showed survival up to 150 days 
(cfu 2 × 107 g−1), 165 (cfu 1 × 107 g−1) days, and 165 days 
(cfu 2 × 107 g−1) respectively.

Extracts of T. brownii leaves and barks of Acanthaceae 
spp. (at 5% v/v separately) added to biogas substrate (67% 
kitchen waste and 33% of CD and goat dung in 1:1) reported 
increasing biogas yields and nutrient content (TKN, TAN, 
TS, TP, etc., in the case of T. brownii leaves extract; and K, 
Ca, NO3

−, PO4
3−, SO4

2− in the case of Acanthaceae spp. 
bark extract) in BGS [122]. Zhang et al. [123] performed 

ACD of rice straw and combined swine manure-urea mixture 
in 7:3 (C/N ratio 24.23) and observed higher biogas produc-
tion coupled with improving fertilization value of recovered 
digestate as compared to other treatments and control. The 
authors stated that the urea addition could foster the lignin 
degradation, hasten the process of hydrolysis, and improve 
N content in the digestates.

Partial replacement of chemical fertilizers with BGS has 
also been reported in a few studies for fertigation purposes. 
BGS enriched with variable doses of NPK promotes growth 
and pod yield in the pea plant [124]. As compared to fer-
tilizer control, Jamison et al. [125] observed a slight incre-
ment in nutrient uptake and use efficiency in Brassica juncea 
using lignocellulosic biomass digestate supplemented with 
commercial liquid fertilizer. Do and Scherer [126] witnessed 
higher ryegrass yield using hygromull-enriched anaerobic 
digestate. Fraire García et al. [127] observed an increase in 
maize and tomato yields in Ultisol soil fertilized with BGS 
(enriched with recommended fertilizer dose). Xu et al. [9] 
found improvement of forage and biomass quality in Lolium 
multiflorum with partial replacement of chemical fertiliz-
ers (CFs) with BGS. Supplementation of BGS (100.5 kg 
ha−1) with CF (37.5 kg ha−1) was reported to increase crude 
fiber and crude protein content in L. multiflorum by 10.00% 
and 10.35% respectively as compared to CF treatment alone 
(112.4 kg ha−1) (NPK content in BGS: 0.23%, 0.05%, 0.32% 
respectively; in CF: 11.34%, 7.56%, 7.56% respectively). 
Refer to Table 4 for more applications of enriched BGS in 
agriculture.

Apart from this, while handling the BGS, its manage-
ment is also important to prevent the loss of nutrients at the 
time of application [53]. The BGS applied in agricultural 
fields is majorly acquired from biogas digesters operated 
with feedstock sources like livestock slurry (LSS), anaerobic 
co-digestates of LSS, and plant biomass or biomass waste 
such as agriculture residues. The recovered BGS is either 
applied directly or in supplementation with micronutrients, 
chemical fertilizers, etc. In such instances, the likelihood 
of meeting expected benefits primarily depends upon the 
handling, storage, and mode of the BGS application. The 
effectiveness of different application modes (such as root 
irrigation and spraying) also needs to be investigated [69]. 
Higher nutrient concentration can result in the accumulation 
of ions at the intercellular level, damage chloroplast struc-
ture, and consequently, decrease in chlorophyll content and 
photosynthetic rate [37]. Therefore, further studies leading 
to the optimization of effective dose with reference to the 
application mode, soil nutrient profile, plant’s requirement, 
etc., are hereby suggested.

Another emerging challenge with the BGS (precisely 
obtained from animal manures, urine, and different waste 
streams as feedstock material for AD) is the likelihood of 
pathogens, heavy metals, pesticides, etc., which further 
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contaminates soil and plants when applying directly to the 
crop fields. It is suggested that in cases where BGS applied 
to the vegetables and fruits that are consumed fresh, they 
must be washed well before consumption [17]. The risk of 
pathogens can be reduced through proper treatment of BGS 
(optimal retention time, temperature, etc.) [14]. Appropri-
ate dilutions before field applications can further reduce the 
toxicity risk as a consequence of the higher concentration 
of ammonia and soluble P, presence of heavy metals, patho-
gens, and other contaminants. As mentioned earlier, the pro-
cess of AD does not degrade heavy metals [27]; however, 
their solubility and availability can decrease (due to precipi-
tation, struvite production, etc., depending upon metal type) 
[21]. With BGS application, the use of metal-immobilizing 
materials can play a substantial role in mitigating the poten-
tial risk of heavy metal pollution [27]. However, further 
studies are duly recommended to explore such possibilities.

3.3 � Nanotechnology‑based interventions

Nanoparticles offer a large surface-area-to-volume ratio, 
thus are reported to have no impact on chemical properties 
of soil (such as pH, electrical conductivity) when applied in 
combination with organic matter (such as anaerobic diges-
tates) or alone [77]. Nanoparticles are also found to influ-
ence the microbiota and extracellular enzyme secretion in 
the soil thus favoring soil nutrient mobilization [77, 131]. 
Nanoparticle treatment has been reported to enhance biogas 
production through the increased activity of bacteria degrad-
ing organic matter anaerobically and the resulting waste can 
be utilized as quality compost [78]. Table 5 shows the role 
of NPs in biogas production from organic feedstocks such as 
livestock, phyto-biomass, and sludge/wastewater. The idea 
was to give an overview (based on the latest findings) of how 
nanoparticle dose, type, and their interaction with feedstock 
substrates and microbial community during AD affect the 
yield and quality of biogas production.

Apart from NPs, trace elements/bulk materials/mineral 
accelerants (such as iron oxide, copper oxide, zinc oxide, 
copper chloride, cobalt chloride, iron oxide-zeolite, mag-
netite, Fe2+ (as FeCl2·4H2O), Ni2+ (as NiCl2·6H2O), Fe–Co, 
Fe–Ni, Fe–Co–Ni, cupric sulfate, cupric glycinate, vermicu-
lite, limonite, bentonite, waste iron powder, zvi powder, fly 
ash, clinoptilolite) have also reported improvements in the 
biogas/methane yield during AD of biomass [132–147]. We 
suggest further readings [148] to get more information on 
the role of trace elements (Cu, Co, Fe, Mn, Mo, Ni, Se, W, 
Zn, V) in different enzymes that take part in AD. The addi-
tion of trace elements/mineral accelerants during AD was 
also reported to improve fertilization values of recovered 
digestate, as observed by Xu et al. [134] in the case of ver-
miculite addition (as mineral accelerant). The biostimulation 
(BSM) of methanogens during AD through laser irradiation Ta
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(LR) has also been described to enhance the microbial 
actions, and in the latest developments the LR is coupled 
with NP treatment for improving the biogas production [149, 
150] and LCA assessment performed by Samer et al. [150] 
asserted that the application of LR with NPs for BSM dur-
ing AD have minimal adverse effects on the environment as 
compared to control.

While reviewing the literature, we have encountered a 
study where nanoparticles (zinc oxide NPs, average size 
≤40 nm; conc. 20% w/v in distilled water) were supple-
mented with recovered BGS to investigate the effect of 
developed formulations on soil nutrient availability and 
uptake by plants [77]. BGS (biodigester feed substrate was 
buffalo manure) enriched with ZnO NPs (1.4, 2.8, and 3.6 
mg kg−1 soil) at a field application rate of 270 kg N ha−1 
showed improved soil nitrogen content as compared to the 
lone application of BGS. They have found decreasing soil 
microbial carbon and C/N ratio with increasing ZnO NP 
concentration (amended with BGS), which is attributed to 
the increasing bacterial population. On reviewing the work 
of Aziz et al. [77] and multiple citations of peer-reviewed 
studies mentioned in their work, the role of NPs in increas-
ing soil N and P for plant uptake is principally due to their 
influence on soil microbial population and consequently the 
secretion of extracellular enzymes like phosphatase (phos-
phorous availability) and urease (nitrogen availability) in 
soil. The increasing nutrient immobilization (such as N and 
P) in soil has associated risks of decreasing uptake by plants. 
It is also important to take note that, instead of increasing 
soil-N content, Aziz et al. [77] have not observed any sig-
nificant increase in N uptake by plants with ZnO NPs + BGS 
treatments as compared to lone BGS, which necessitates fur-
ther studies to investigate the other factors affecting shoot 
N uptake. Possibilities of biotransformation of ZnO NPs to 
zinc phosphate or phytate that can limit translocation of zinc 
into shoots also need to be studied further.

3.3.1 � Nanoparticles in AD of biomass

The assessment of AD of biomass signifies the biogas yields 
coupled with the quality of recovered digestate. Trace ele-
ments are reported to have stimulatory effects on methano-
gens activity during the AD of biomass. It is interesting to 
compare the influence of NPs and their bulk counterparts 
on the AD during biogas production. We have reviewed the 
work of Abdelsalam et al. [165, 166] and Juntupally et al. 
[167], to get a better understanding of the subject matter in 
question.

Beginning with the findings of Abdelsalam et al. [165], 
in the case of cobalt treatments, the maximum biogas yield 
(BGSY) (HRT 31–35 days) was reported at 1 mgL−1 CoNPs. 
At the same concentration and HRT, CoCl2 treatment gives 
lower BGSY, which was even lesser than the recorded yield 

at 0.5 mgL−1 CoNPs. If we consider the risk of NPs toxicity 
at higher concentrations, the obtained results at low CoNPs 
concentration (0.5 mgL−1) are comparable and better than 
those observed at higher concentrations of their bulk coun-
terparts (1.0 mgL−1 CoCl2) (Fig. 5a). Likewise, in the case 
of NiNP treatment, the BGSY (HRT 26–30 days) follows the 
increasing trend with increase in concentration (0.5 mgL−1 
<1.0 mgL−1 <2.0 mgL−1). However, the maximum BGSY 
(HRT 31–35) with 1.0 mgL−1 NiCl2 was lesser than the 
recorded yields at all the concentrations of NiNPs (Fig. 5b). 
Overall, the higher BGSY and lower HRT to achieve maxi-
mum yields were noticed with NiNP treatment as compared 
to CoNPs. Hijazi et al. [168] made similar observations with 
bulk counterparts (mentioned in brackets) of NiNPs (NiCl2), 
CoNPs (CoCl2), and FeNPs (FeCl3), and recorded maximum 
biogas production from manure treated with NiNPs (1 gm−3) 
followed by CoNPs (1 gm−3) and FeNPs (1 gm−3) (~7.82% 
and ~18.87% higher as compared to CoNPs and FeNPs treat-
ments respectively).

Abdelsalam et  al. [166] performed another study on 
Fe-NPs (nZVI), Fe3O4 magnetite NPs (MNPs), and their 
bulk counterpart (FeCl3). They have observed the highest 
BGSY in 20 mgL−1 Fe-NPs as compared to other treatments 
(Fig. 5c). Similar observations were recorded for Fe3O4 
MNPs at the same concentration (Fig. 5d). The HRT was 
comparatively lesser and BGSY yield was higher in the lat-
ter case (Fe3O4 MNPs) at all the treatment concentrations. 
BGSY with bulk Fe (FeCl3) at 10 mgL−1 was not compa-
rable with those from NP treatments at all the investigated 
concentrations. Taking note of the size of synthesized NPs 
in both the studies, it was higher with CoNPs (28±0.7 nm) 
than NiNPs (17±0.3 nm) in the first study, and in the second 
study Fe3O4 MNPs (7.0±0.2 nm) were slightly smaller than 
Fe-NPs (9.0±0.3 nm). Thorough investigations are required 
to evaluate the effect of NP size on their performance during 
AD. Juntupally et al. [167] compared the biogas production 
potential of Co (CO3O4 NPs), Fe (Fe3O4 NPs), Mo (MoO3 
NPs), and Ni (NiO NPs) nanoparticles with their bulk coun-
terparts, i.e., CoCl2, Fe2O3, (NH4)6Mo7O24·4H2O, and NiCl2 
respectively. All the digesters fed with NPs showed higher 
biogas production over their bulk partners, with maximum 
values recorded for NiNPs (21.2 nm) followed by FeNPs 
(5.6 nm), and CoNPs (37 nm), and MoNPs (Fig. 5e).

FeNPs have been investigated in most of the stud-
ies in the area of AD of biomass and subsequent biogas 
production [154]. Fe-based additives were reported to 
influence microbial activity during AD [154, 166, 169]. 
Yang et al. [170] performed microbial diversity analysis 
(nZVI supplemented AD of swine manure) and found an 
abundance of hydrogenotrophic Methanomassiliicoccus 
(39.2–92.0%). nZVI facilitates the reduction of “oxida-
tion-reduction potential,” which is reported to promote AD 
[155, 171]. Ye et al. [171] also mentioned that the strong 
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reduction ability of nZVI facilitates pollutant removal dur-
ing AD via direct electron transfers. NPs such as Zn and Ni 
are involved in multi-enzyme complexes, thus becoming 
one of the preferred candidates for improvements in AD 
leading to higher biogas production. Ni is either associated 

with the cofactor F430 or bound to FE-S clusters, while Co 
is mentioned to take part in methyl group transfer [168, 
172].

Amo-Duodu et al. [155] recorded higher methane yields 
(100%) from NP treatments (Fe-1g, Cu-1g, Ni-2g) as 
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Fig. 5   Comparative analysis of the treatment of NPs and their bulk 
counterparts on AD of biomass leading to biogas production a Co-
NPs and CoCl2; b Ni-NPs and NiCl2 [165]; c Fe-NPs (nZVI) and 
FeCl3; d Fe3O4-NPs and FeCl3 [166]; e CO-NPs: CO3O4, CO-Bulk: 
CoCl2; Fe-NPs: Fe3O4, Fe-Bulk: Fe2O3; Mo-NPs: MoO3, Mo-Bulk: 

(NH4)6Mo7O24.4H2O; Ni-NPs: NiO, Ni-Bulk: NiCl2; CMP: Com-
posite treatment of Bulk/NPs (Bioreactor feed include 600 mL CM + 
10 mg of NPs or bulk form or CMP of NPs/bulk form + 200 mL of 
microbial culture MMC-A) [167] (In graphs a to d, enclosed brackets 
in treatment categories on the X-axis indicates dose in mgL−1)
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compared to control (63%) (without NP treatment, waste-
water as feed substrate only). NPs such as NiNPs alone or 
in combination with FeNPs and CoNPs reduce the H2S con-
tent [151, 153], thus yielding good-quality fuel. Not only 
this; in the same study, researchers mentioned the increase 
in TS and VS removal efficiencies in the biodigester supple-
mented with NiNPs at 2 mgL−1 dose. Similar observations 
were reported by Abdelwahab et al. [151] with FeNPs (at 15 
mgL−1). pH was also recorded at the ideal range for optimal 
activity of microbes during the digestion process in both the 
studies at selective treatments. Juntupally et al. [173] found 
higher methane production from AD of pre-treated horse 
manure (HM) (dilute acid thermal pretreatment) added with 
40 mgL−1 Fe3O4 NPs as an accelerant, though in untreated 
HM, they have found maximum yields with 60 mgL−1 Fe3O4 
NPs. Overall, using the strategy of biomass pretreatment, 
the dose of NPs can be reduced as an accelerant during AD, 
with higher methane yields and reduced HRT. The addition 
of nickel NPs in biogas feed (CM) can improve the ferti-
lizer potential of recovered effluents [151]. BGS (feed sub-
strate buffalo manure) (field application at 270 kg N ha−1) 
enriched with different doses of ZnO NPs (average size ≤40 
nm; conc. 20% w/v in distilled water) (1.4, 2.8, and 3.6 mg 
kg−1 soil) improves soil nitrogen content [77]. The applica-
tion of nanofertilizers can reduce nutrient leaching loss, thus 
promoting the efficiency of nutrient use [174].

Not only the elemental nanoparticles; other particles/
materials of nano-dimensions have also been reported to 
have potential application in biomass degradation. Lignin 
degradation is one of the challenging tasks during biofuel 
production from the lignocellulosic feedstocks. Yang et al. 
[175] in an innovative approach reported 10% higher lignin 
breakdown (initial concentration of 50 mgL−1) using nitro-
gen nanobubble water as compared to the control (during 
ACD with activated water sludge). An increase in activity 
of methanogenic bacteria during ACD is attributed to higher 
methane production as well. They have anticipated the role 
of hydroxyl ions generated by nitrogen nanobubble water 
behind such observations.

3.3.2 � Nanoparticle‑microbe interaction

As reviewed by Abdelsalam and Samer [172], the interac-
tion of NPs with the biological systems can involve either 
direct uptake (via ATP dependent system; depends upon size 
and speciation of the NPs) or complexation with the dis-
solved organic matter (DOM) (on cell membrane DOM-NP 
complex binds with the MBRs). NP uptake by methanogens 
involved “metalloenzyme, electron transfer, and reduction 
pathways” during methane production [172].

Kumar et al. [176] reviewed the applications of conduc-
tive NPs (abbreviated as CNPs) to improve the efficiency of 
AD leading to higher methane production. The relatively low 

efficiency of mediated interspecies electron transfer (MIET) 
as a consequence of diffusion limitations with H2 as an elec-
tron carrier during AD limits the process of methanogen-
esis. In contrary to this, direct interspecies electron trans-
fer (DIET) enables direct interaction (cell-to-cell electrons 
transport) between the methanogens and bacteria during AD 
and facilitates metabolic conditions favored higher rates of 
methane production.

Cruz Viggi et al. [146] via theoretical valuations cited 
that DIET permits higher electron transfer rates among 
syntrophic bacteria as compared to IHT (Interspecies H2 
transfer)/MIET. Basically, in IHT, the hydrogen acts as an 
electron carrier and mediates the transfer of electrons to the 
methanogens from secondary fermenting bacteria (SPB). 
Hence, the involvement of SPB in generating hydrogen as 
reducing equivalents requires energy and is thermodynami-
cally not favored under standard conditions. Instead in DIET, 
the electron transfer is accomplished either via conductive 
pili or membrane-bounded cytochromes (c-type) without the 
requirement of such electron carriers; thus, DIET is more 
feasible in terms of energy requirements [137].

CNPs have been reported to play an important role in 
such microbial interactions for electron transfer during 
AD [176]. Zhang et al. [177] also investigated the role of 
magnetite-NP treatment favoring DIET and FE-S precipita-
tion leading to improved methane yields. Through microbial 
community analysis, they have also predicted the role of 
magnetite-NPs in increasing methanogenesis over acetogen-
esis. For methane production, Yang et al. [170] found the 
addition of nZVI more beneficial during the methanogenic 
stage as compared to the acidogenic stage. Farghali et al. 
[178] reported enhanced methanogenic activity during AD 
of CM as a result of TiO2-NP-assisted extracellular electron 
transfer (EET), and Ti–S clusters also brings reductions in 
H2S levels. Wang et al. [179] characterize the Tungsten-
based nanomaterials to establish DIET for improving AD 
of biomass. Attributes such as stable chemical properties 
during AD, zero band gap (results in higher electrical con-
ductivity, potential to act as electron carriers during DIET), 
and co-existing of syntrophic bacteria and methanogens in 
biodigester as revealed from pyrosequencing studies yield 
conceivable pieces of evidence in support of tungsten-based 
NPs as one of the potential accelerants of AD. Van Steendam 
et al. [180] for improving AD via DIET recommends the 
development of appropriate characterization methods.

Bi et al. [139] found the increasing activity of hydrogeno-
trophic (HGM) and acetoclastic methanogens (ACM) during 
solid AD of chicken manure supplemented with Ni2+ and Fe2+ 
treatments. Yang et al. [141] with ZVI powder supplementation 
(5 gL−1) found a higher relative abundance of Methanoculleus 
species (39.9%) as compared to the control experiment (34.6%) 
and these species belongs to hydrogenotrophic methanogens 
reported to thrive under high ammonia conditions (HACs) 
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during AD. ACM has higher substrate utilization potential; 
hence, a possibility of sustaining higher ACM activity during 
HACs through ZVI enrichment also existed that favors fixation 
of CO2 into methane and sustained performance of anaerobes 
could also be attributed to the adaptive biochemical plasticity 
of these microbes under such stressed conditions [141]. The 
researchers also recovered ~66.0% of ZVI powder from the 
bioreactor after the experiment.

Kato et al. [181] observed that supplementing metha-
nogenic microbes with hematite or magnetite nanoparti-
cles (10–50-nm size) hasten methanogenesis (in terms of 
production rate and lag time) from ethanol and acetate. A 
schematic representation highlighting the role of Fe-NPs in 
AD of biomass is included in Fig. 6. The different routes 
leading to methane production has been reviewed keeping 
in view of both IHT and DIET process. Fe2+ ions through 
Fe–S precipitation also pave the route for H2S mitigation. 
Methylotrophic, hydrogenotrophic, and acetoclastic are 
the three pathways of methane production during AD, and 
enzymes catalyzed in each step have specific metal require-
ments [182]. Hence, it is proposed to develop nano-elemen-
tal formulations to fulfill such requirements of participating 

enzymes in all three production pathways and optimize the 
methanogenic activity for improved methane production.

NGS allows analysis of microbial diversity and 
dynamics during AD. Such investigations are vital to 
screen the most efficient microbes during the AD utilizing 
different biomass feedstocks and accelerants including 
trace metals and nanoparticles. In one such study, Eduok 
et al. [183] found abundance of Methanosarcina in the 
digesters spiked (at ~0.67 mL−1 L day−1 for 315 days) with 
the mixture of Ag NPs (20 nm) (0.01 mgL−1), ZnO NPs 
(20 nm) (0.12 mgL−1), and TiO2 (21 nm) (0.08 mgL−1). 
As per the previous reports, this archaeal genus possesses 
remarkable properties of multi-substrate utilization for 
biogas production, adaptations to NPs presence [183], 
and most important the capacity to catalyze all the major 
pathways leading to methane production during AD 
(acetoclastic, hydrogenotrophic, methylotrophic, and 
methyl reduction pathways) [183, 184].

Zhang et al. [87] reported nitrogen removal applying nan-
oparticle treatment, in which ZnO NPs at low concentrations 
(up to 5 mgL−1) increase the activity of anaerobic-oxidizing 
bacteria (ANOB) and ammonia-oxidizing bacteria (AAOB) 

Fig. 6   Interaction between Fe-NPs and microbes during AD of organic substrates ( source: conceptualized from the multiple authors referred in 
the manuscript)
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to remove nitrogen from the sludge (Fig. 7). The activity of 
these bacteria inhibits nitrate formation through the sup-
pression of nitrogen-oxidizing bacteria (NOB) activity. They 

have noticed the increase in microbial diversity at low con-
centrations of ZnO (Fig. 8). The OTU count and Shannon 
Index (SI) were highest at ZnO NPs 1 mgL−1 (OTU=998, 

Fig. 7   Role of ZnO NPs in the removal of nitrogen from sludge during the CANON process (Conceptualized from [87])

Fig. 8   Effect of ZnO NP 
concentration on the relative 
abundance of bacteria partici-
pating in AD [87] (C=control 
experiment without ZnO NP 
addition; T1, T2, T3, and T4 
are treatments with ZnO NPs 
concentrations 1, 5, 10, and 
20 mgL−1 respectively, and T5 
represents treatment in which 
no further addition of ZnO NPs 
done; B1: ammonia-oxidizing 
bacteria; B2: anaerobic-oxidiz-
ing bacteria; and B3: nitrite-
oxidizing bacteria)
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SI=4.39) followed by 5 mg L−1 (OTU=958, SI=4.34). They 
have also observed the improvements in nitrogen removal at 
these treatment doses. Lower concentrations of nanoparti-
cles (Fe, Cu, and Ni NPs) favor nutrient supply for microbi-
ally inspired AD [155]. He et al. [185] in their investigation 
found higher sensitivity of microbes towards ZnO NPs at 
genus and phylum levels as compared to class level. Thus, 
nanoparticle treatment significantly alters the microbial 
community structure during AD of biogas feed substrates 
[86].

As stated above, nanoparticles play a significant role in 
the AD of biomass; this could serve as an opportunity to 
generate nutrient-rich digestate in addition to improved bio-
energy efficiency. To achieve this objective, studies are war-
ranted to advance our understanding of how nanoparticles 
interact with the microbes during AD, and the role of NPs 
to elicit the metabolic pathways in microbes followed by the 
screening and characterization of bioactive molecules was 
thereby produced. To further strengthen this, in our point of 
view, studies exploring the microbial diversity and dynam-
ics in varied biomass feedstock and anaerobic digestates are 
vital, in which NGS could have an important contribution.

3.3.3 � Nanoparticles co‑aggregation

ZnO NPs are one of the highly used engineered nanomateri-
als [187]. AD systems encountered toxicity at higher doses 
of ZnO NPs. Tong et al. [188] in a phototoxicity analysis, 
reported ~40% disruption of the cellular membrane (CMM) 
in E. coli at 25 mgL−1 concentration of ZnO NPs, and such 
damaging effects were not visible at a lower dose of ZnO 
NPs (1  mgL−1). Ye et al. [189] reported denitrification 
suppression by ZnO NPs in a dose-dependent manner (1, 
25, and 50 mgL−1) owning to a decrease in total nitrogen 
removal rates and N2O emissions. They observed higher 
sensitivity of denitrification as compared to the nitrifica-
tion process to ZnO nanotoxicity. However, to extenuate the 
effect of ZnO nanotoxicity (reported to be due to free Zn2+ 
and generation of reactive oxygen species like H2O2 and 
·OH) on anaerobes during AD, Zhang et al. [190] performed 
a combined toxicity assessment of ZnO and TiO2 NPs and 
observed decrease in Zn2+. The previous studies also found 
a decrease in ZnO NP toxicity as a result of Zn2+ absorption 
in presence of TiO2 NPs, as cited by [190].

Despite phototoxicity of TiO2 NPs at 10 mg L−1 to E. 
coli (~65% CMMs damage), their treatment in combination 
with ZnO NPs (TiO2 NPs 10 mgL−1 + ZnO NPs 1 mgL−1) 
reported no toxicity, which appears to be eliminated by the 
ZnO NPs (ZnO NPs avoids close surface interaction of TiO2 
NPs/aggregates with bacterial CMMs) [188]. In another 
interesting observation, the authors reported that unlike in 
the case of phototoxicity, the TiO2 and ZnO NP combina-
tions (TiO2 NPs 10 mgL−1 + ZnO NPs 1 mgL−1) showed 

an additive effect in generating ROS. Now the question is 
despite generating higher ROS during combined treatment 
as a consequence of additive effect, how does this combi-
nation minimize the toxicity damage? They have proposed 
some possibilities behind such observations. One of these 
is, in case of combined treatment with concentrations, i.e., 
TiO2 NPs 10 mgL−1 + ZnO NPs 1 mgL−1, the formation of 
ZnO–TiO2 aggregates established diminished contact with 
the CMMs of bacteria; thus, generated ROS in the majority 
did not make contact with bacterial CMMs, despite additive 
effects. Moving ahead, the authors also found that the com-
bined treatment effect (in terms of phototoxicity) of TiO2 
NPs 10 mgL−1 + ZnO NPs 25 mgL−1 was comparable with 
that of their individual treatment dose (i.e., TiO2 NPs at 10 
mgL−1 and ZnO NPs at 25 mgL−1); for this, the authors have 
mentioned that the larger ZnO NPs blocked the contact of 
several TiO2 NPs with bacterial CMMs.

Further studies are duly recommended to examine the 
role of ZnO NP interaction with different components of 
AD (such as IET, syntrophic bacteria and methanogen activ-
ity, H2S mitigation) for improved levels of produced meth-
ane coupled with the nutrient profile of recovered diges-
tate (solid and liquid fractions). Besides this, integrated 
approaches must be explored to reduce the possibilities of 
ZnO NP toxicity interfering with AD of biogas feedstocks 
(precisely while using the wastewater sludge, or similar 
waste of anthropogenic origin). As stated earlier, the ZnO 
NP toxicity is mainly attributed to their dissolution and 
availability as free Zn2+ in the system [187, 188, 190, 191]; 
thus, investigating the suitable adsorbents or trace element/
NPs co-aggregates will provide an opportunity to recover 
zinc in the digestate, which can be further utilized as a 
potential fertilizer in the zinc-deficient soil.

3.3.4 � Environmental impacts

Nanotechnology-driven AD of biomass reported to enhance 
biogas/methane production; however, utilization of spent 
BGS must be investigated for toxicity analysis (on plants, 
beneficial microbes, etc.) before using as a fertilizer source 
for agriculture applications due to the associated risk of NP 
accumulation [78]. Hijazi et al. [192] performed the life 
cycle assessment (LCA) study to estimate the environmen-
tal impact of NP introduction (CoNPs: 1 g m−3, NiNPs: 2 
g m−3, FeNPs: 15 g m−3, Fe3O4 NPs: 20 g m−3, and with-
out NP treatment served as a control) during AD of manure 
for biogas production. For the analyzed six parameters (in 
reference to the electricity production by NPs treated and 
control biomass), CoNP treatment was best in terms of 
lowest: GHG emission, acidification, eutrophication, and 
human toxicity potential. NiNP treatment has the lowest risk 
of resource and ozone layer depletion. The representative 
view highlighting trends in the variation of environmental 
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indicators associated with the electricity generation from 
the NPs treated biomass and control experiment is shown in 
Table 6. It has been clearly observed that the untreated bio-
mass (control) presented with the highest risk with reference 
to all the investigated environmental indicators. Considering 
an overall environmental impact, Hijazi et al. [192] recom-
mended CoNPs for biomass treatment (AD) and electricity 
generation through obtained biogas.

Nguyen et  al. [193] performed toxicity analysis of 
metallic nanoparticles on E. coli before and after AD and 
observed higher toxicity in samples before AD. Garcia et al. 
[194] observed 100% and 33–50% toxicity of CeO2 NPs and 
Ag NPs on biogas production respectively. However, there 
was no or negligible toxicity of Au NPs, and TiO2 NPs were 
reported towards oxidative heterotrophic organisms, ammo-
nia-oxidizing bacteria, and anaerobic biomass. Dispersion 
of ZnO NPs caused 99% E. coli cell death at 100 mgL−1 
[193]. CeO2 NPs at l0 mgL−1 showed a positive effect on 
the E. coli population [193]. Zhang et al. [186] in a study on 
AD of sludge using NPs (carbon NPs, ZnO NPs, CuO NPs, 
and Al2O3 NPs) reported an abundance of mobile genetic 
elements in Phylum Proteobacteria followed by Firmicutes. 
The nZVI (55±11 nm) at 30 mM concentration was reported 
to inhibit methanogenesis as a result of disruption of the 
microbial cell membrane and rapid H2 production [195]. Ma 
et al. [196] found an nZVI concentration of 160 mgL−1 suit-
able for reducing antibiotic resistance genes during AD of 
CM and also reported an increase in methane yield (6.43%). 
As per Zheng et al. [197], the variations in bioavailable frac-
tions of heavy metals (like Zn, Ni) during AD (swine manure 
was feed substrate) depend upon three important digestion 
variables, i.e., concentration of ammoniacal nitrogen <meth-
ane content in daily biogas yield <pH (arranged as per the 
order of importance reported in the study).

Hassanein et al. [198] utilized the recovered effluent from 
the digester as a fertilizer source for Lactuca sativa. Despite 

approximately similar levels of N, P, K, Zn, Mn, Cu, and Na 
in both the digester effluents, i.e., NP fed (NPD) (continuous 
digester containing NP mixture, i.e., FeNPs 1000 mgL−1, 
NiNPs 120 mgL−1, and CoNPs 54 mgL−1 fed twice on days 
84 and 202) and control (CND) (biogas feedstock was cow 
dairy manure in both the digesters), the L. sativa fertilized 
with NPD effluent showed higher amount of these nutrients 
in its biomass as compared to those fertilized with CND 
effluent (both the digester effluents were diluted to 1:13.8 
using deionized water (7.6 L) divided into five loadings over 
the growth period of 57 days). This could be attributed to 
the increasing nutrient uptake and translocation efficiency 
as a consequence of NP treatment. The recorded values of 
Fe, Ni, and Co in L. sativa were below the reported toxic 
limits. However, further investigations are much indeed in 
the area of NP introduction to the various levels of the food 
chain and in-depth assessment of their toxicity leading to 
the health and environmental implications. The authors have 
recommended such studies as well.

The non-biodegradable nature of metallic particles pos-
sesses a risk of toxicity [147] in the concerned environment. 
In the investigation of Luna-delRisco et al. [147], it has been 
observed that one of the reasons behind the toxicity of such 
particles is attributed to their aqueous solubility (AQS). 
They have reported poor AQS of CuO NPs, ZnO NPs, and 
their bulk counterparts, though it was noticed higher AQS 
of CuO NPs than their bulk counterpart that can partially be 
contributed to the higher toxicity potentials. The order of 
toxicity to anaerobic bacteria was reported in the following 
order: CuO NPs (∼30 nm)> ZnO NPs (∼50–70 nm)> ZnO 
Bulk> CuO Bulk. Taking account of recovery of Cu2+ ions 
(at higher CuO NP treatment doses, i.e., 120–480 mgL−1) 
in liquid fraction of digestates, the proportion was highest 
at CuO NP concentration of 240 mgL−1 (~14.5%) followed 
by 480 mgL−1 (~9.94%) and 120 mgL−1 (~6.58%). Hence, 
the concentrations and types of NPs can significantly affect 
the microbial diversity during AD. As compared to control 
(without the addition of NPs), Hui and Kui [199] observed 
a higher sludge humification index (20.7–49.6%) during the 
process of vermicomposting in treatments with ZnO and 
TiO2 NPs, which is attributed to the rich microbial diversity 
supported by NPs, as evidenced from the presence of organic 
acids, aromatic compounds, and polysaccharides in the final 
vermicompost product. The higher nanoparticle concentra-
tions will also affect the process of AD of sludge (metha-
nation, hydrolysis, acidification) as observed by Mu et al. 
[200] in the case of increasing ZnO NP dose. They have 
also noticed the inhibition of enzymatic activities at such 
doses. Furthermore, to explore this area in greater detail, 
studies related to the environmental exposure of nanopar-
ticles and their toxicity analysis are important. Nanotoxic-
ity studies (phytotoxicity, cytotoxicity, and genotoxicity) 
must be accomplished with thorough investigations on the 

Table 6   Trends in the variation of environmental indicators associ-
ated with the electricity generation (bioenergy) from the NPs treated 
biomass and control experiment [192]

*Numbers from 1 to 5 indicate an increasing trend of the environ-
mental indicators impact, i.e., 1<2<3<4<5.

Environmental indi-
cators

CoNPs NiNPs FeNPs Fe3O4 NPs Control

GHGs emission 1 2 4 3 5
Acidification 1 4 3 2 5
Eutrophication 1 3 2 4 5
Resource depletion 3 1 4 2 5
Ozone layer deple-

tion
2 1 4 3 5

Human toxicity 
potential

1 3 4 2 5
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impact of nanoparticle types along with their shape, size, 
and concentration.

3.4 � Nutrient recovery from BGS

Direct applications of BGS in agriculture fields have certain 
concerns regarding its physical (presence of debris such as 
plastics, glass, etc.), chemical (pH, nutrient composition, 
presence of heavy metals), and biological qualities (presence 
of pathogens) [13]. This will consequently entail some pre-
conditioning or value additions. On surveying literature, dif-
ferent methods of nitrogen removal/recovery from the liquid 
fraction of BGS such as Anammox, membrane separation, 
absorption, and struvite crystallization, were encountered 
[13]. Solid digestate can be exploited directly or subjected to 
composting or drying and used as a rich source of phospho-
rous [13]. On the other hand, the liquid fraction of the diges-
tate (LFD) is of great interest for researchers as it provides N 
and K. The difference between nitrogen removal (converting 
ammonium into nitrogen gas) and recovery (ammonium fix-
ation to be further utilized as N source in agriculture fields) 
from the LFD is imperative. Menkveld and Broeders [201] 
described the Nijhuis Ammonium Recovery System (NAR) 
based on chemical stripping and asserted removal efficiency 
of ammonia between 85 and 90% from AD manure or 
organic wastewaters. Schematic representation of the NAR 
system has been mentioned in Fig. 9a. Here strategically, 
CO2 stripping has been done through the introduction of 
fresh air; consequently, the pH increases and the requirement 
of NaOH decreases. Higher pH in ammonia stripper increase 
ammonia volatilization and ammonium phosphate recovery 
can reach 25–40% under optimized conditions, as stated.

Nitrogen recovery using chemical stripping is an energy-
extensive process with high temperature and chemical 
treatments (NaOH and H2SO4) [202]. Battista et al. [202] 
in an innovative step performed recovery of nitrogen as 
ammonium sulfate (~2M, yield under optimized process) 
from ADDC using solar energy-driven lab-scale greenhouse 
(Fig. 9b). The recovered solid digestate was evaluated as 
P-source on growth in maize and results were comparable to 
commercial triple superphosphate fertilizer under observed 
greenhouse pot experiments. Xu et al. [134] used vermicu-
lite (P content 0.1%) as an accelerant during ACD of Aloe 
peel waste and dairy manure for biogas production and 
found maximum N (%), K (%), and total nutrient content 
(TNC) (%) in digestate with vermiculite (0.3%) (DVM) as 
compared to control and other treatments (digestate with 
0.1%/0.6%/0.9% vermiculite). The accelerant property of 
vermiculite favoring biomass decomposition could be attrib-
uted to the release of trace elements such as Fe3+, Ca2+, 
Mg2+, Zn2+ and Al3+, as cited by them. Compared to control, 
DVM-0.3% have ~12.57%, ~15.07, ~25.71, and ~15.42% 
higher N, P, K, and TNC respectively. Ehmann et al. [203] 

also recovered P from anaerobic digestates. Gienau et al. 
[204] in an optimized membrane treatment process (cen-
trifugation, ultrafiltration, and reverse osmosis) recovered 
nutrient-rich solid (total nitrogen: 8.2–12.0 kg/t, P2O5: 
5.6–10.4 kg/t) digestate and LFD (NH4

+–N: 2.9–5.6 kg/t, 
K+: 6.2–9.2 kg/t).

He et al. [205] reported optimum pH, removal tempera-
ture, and pressure of 13.04, 35°C, and 15 kPa respectively 
for the removal of ammonia-nitrogen (AMN) through vac-
uum distillation. They have concluded that under the con-
ditions of high pH, vacuum distillation of BGS can yield 
higher removal rates of AMN. In a “vacuum membrane 
distillation” (VMD) process, under alkaline pH (10) of 
bioslurry, He et al. [206] recorded over 90% conversion of 
TAN into free ammonia. They also observed that the alka-
line treatment during the VMD process substantially reduces 
the BGS phytotoxicity. In both studies, recovered ammonia 
can act as a potential CO2 absorbent. In another study, He 
et al. [207] recovered free ammonia from BGS using the 
VMD process, and the recovered ammonia showed better 
performance as a CO2 absorbent in upgrading biogas as 
compared to the other tested absorbents. Chen et al. [208] 
used vacuum-assisted gas-permeable membrane (V-GPM) 
for ammonia recovery from LFD and reported over 80% 
removal (In 6 h, 70 °C temperature, and 30 kPa pressure). 
The technique was reported to have negative GHG emis-
sions [209]. García-González et al. [210] recovered ammo-
nia from digestate (obtained from ACD of pig manure and 
agro-food waste) using gas-permeable membranes with 71% 
efficiency of N recovery. The carbonaceous materials are 
retained with the digestate using this technology as cited by 
García-González et al. [210]. The ammonium ions in LFD 
can also be transformed to the gaseous phases such as hydro-
gen, ammonia, and N2O through hydrolysis, stripping, and 
Nitrification-denitrification process respectively, for further 
utilization as an energy source [211]. For recovery of ammo-
nia and biogas (up-gradation) from the wastewater digestates 
of high strength, a hydrophobic membrane-based ammonia 
recovery system link coupled with an electromethanogenic 
microbial electrolysis cell has been reported [212].

Taking account of the adsorption process for nutrient 
removal, biochar has been explored as one of the low-cost 
adsorbing materials with promising outcomes [213]. Het-
erogeneity in biochar surface facilitates different adsorption 
mechanisms [214]. Adsorption mechanisms for nutrient 
removal from BGS using iron modified biochars (pyroly-
sis of corn straw at 690°C temperature) include floccula-
tion, electrostatic attraction, functional group reaction, ion 
exchange in case of nitrogen, flocculation, co-precipitation, 
ligand exchange, and surface complexation in the case of 
phosphorous [213]. Maximum adsorption values recorded 
using iron-modified biochars were 11.68 and 26.14 mg g−1 
for nitrogen and phosphorous respectively [213]. Kubar 
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et al. [215] in a biochar and struvite co-precipitation method 
recorded maximum recovery of P (45.36% with ZnCl2) and 
NH4

+ (33% with NaHCO3
−) using rice biochar and Tongan 

sludge urban biochar respectively (adsorbent dose=0.2 g).
Biochar can be modified through different acid, alkaline, 

coating, magnetic, steam, and nanoparticle-based treat-
ments for recovery of heavy metals, organic compounds, 
and nutrients such as nitrogen and phosphorous [214]. Bio-
char obtained from pyrolysis of anaerobic digestate of algae 
dairy manure upon treatment with 2M KOH showed higher 
sorption (50.71 mg g−1) of Cu(II) as compared to untreated 
biochar (21.12 mg g−1) [216]. Hardwood biochar (114.2 mg 
g−1) showed maximum sorption capacity of ammonium as 
compared to corncobs (108.9 mg g−1) and mixed sawdust 
pellets (24.7 mg g−1) biochar from swine BGS (anaerobic 
digestate) (influent ammoniacal nitrogen concentration of 
500 mg L−1, inflow rate 15 mL min−1) (pyrolysis tempera-
ture of 600 °C at 10 °C/min for 8 h) [217]. Kizito et al. 
[218] in another study reported maximum sorption capacity 
of ammonium by wood biochar (44.64±0.602 mg g−1) fol-
lowed by rice husk biochar (39.8±0.54 mg g−1) from piggery 
bioslurry (anaerobic digestate) (influent ammoniacal nitro-
gen concentration of 1400 mg L−1) (pyrolysis temperature 
of 600 °C for 10 h). Luo et al. [219] recovered 20% of nitro-
gen (30 mg L−1 day−1) and 80% of phosphorous (7 mg L−1 
day−1) from BGS (piggery) using a novel photobioreactor 
under optimum operating conditions.

BGS have solid and liquid fractions, and to maximize 
their full potential as a nutrient source, the focus must be 
paid towards the exploitation of both these fractions. The 
LFD also aids bulkiness to the BGS and thereby limits its 
extensive applications in the agriculture fields as a conse-
quence of challenges such as space limitations, long-term 
storage, and transportation. In general, LFD has low nutrient 
contents; hence, its further concentration or transforming to 
solid compounds has been recommended to facilitate the 
ease of transport [211]. It can also be amended with the 
mineral elements [35] and AIMs to develop value-added 
products. Additionally, the LFD can also be processed for 
the recovery of nitrogen; aiding to this, the latest techno-
logical developments have been reviewed and discussed 
[87, 201, 202]. The microalgal biomass harvested from 
such liquid fractions can also bioaccumulate N, P, and traces 
of micronutrients as well [13]. Sobhi et al. [220] explored 
heterotrophic indigenous microflora for the simultaneous 
achievement of biomass production (>6 gL−1 with lipid, 
crude protein, ash content, and gross energy of 10.9%, 65%, 
10.7%, and 19.6 MJ kg−1 respectively) and nutrient recovery 
(~68% phosphate and ~97% of total nitrogen) from the LFD. 

Apart from the nutrient recovery, the resultant biomass can 
be further exploited as an animal feed or bioenergy feed-
stock. Thus, microalgal and microbial-based biosorption 
methodologies will be of great interest to serve multiple pur-
poses such as wastewater treatment, generation of nutrient-
rich biomass, and potential feedstock for biofuel production.

4 � Review of commercial viability 
and economic estimates

Interpretations of the BGS values can have multifaceted out-
looks, such as economic fertilizer to agronomic estimates 
(Fig. 10). In beginning, the biofertilizer market has been 
reviewed to provide a brief overview of the existing market 
for organic agri-inputs. As per the biofertilizer market report 
(May 2021), the global market in 2021 for biofertilizers is 
estimated to be 2.6 billion USD, which is expected to be 
4.5 billion USD by the year 2026 [222]. In another report 
published in June 2020 [223], the global biofertilizer market 
valued at 1.0 billion USD in 2019 is projected to achieve a 
CAGR of 12.8% from 2020 to 2027.

Moving to field valuations, an estimated return of INR 
32400 can be obtained from the 10.8 ton of dried (25% 
moisture) BGS (at INR 3 per kilogram) (biogas plant of 
2 m3 capacity with daily feeding of 50 kg cattle dung and 
an equal amount of water, can produce 10.8 ton of dried 
BGS annually), as mentioned by [36]. Shaibur et al. [4] in 
their survey study on the utilization of CD in Ziala village 
(Satkhira District, Bangladesh) by sampled owners (twelve) 
estimated yearly savings of 10447 kg of chemical fertiliz-
ers, which is equal to 470115 Bangladeshi Taka per year 
(~ 5547.97 USD, as of 17 May 2021, 14:32 UTC, Xe Cur-
rency converter). Rachmah et al. [224] reported the cost of 
bioslurry fertilizer between 520 and 1000 IDR/kg (equiva-
lent to 0.037–0.070 USD, as of 15 May 2021, 18:12 UTC, 
Xe Currency converter) in their study in central Java (Indo-
nesia) region during January–February 2020. While mak-
ing economic estimates, an important factor is the handling 
and transportation cost associated with the BGS. We have 
reviewed some of the related studies to explore the transport 
options and related costs, though such costs vary and depend 
upon multiple factors such as available infrastructure, tech-
nologies for conditioning, processing, and management of 
slurry. In one of the earlier studies of Ghafoori et al. [225], 
the on-road transport cost of liquid digestate through truck 
(“standard 40 t tandem trailer truck”) (in Alberta, Canada) 
was estimated as 3.9 USD t−1 (distance fixed-cost) and 0.064 
USD t−1 km−1 (distance variable cost) (refer to [225] for 
more details). Taking into account the cost associated with 
the feedstock material transport to the biogas plant, we have 
encountered a few studies. Zheng et al. [226] reviewed the 
economic scenario of one of the representative bio-natural 

Fig. 9   a The Nijhuis Ammonium Recovery System (amended and 
redrawn after [201]); b recovery of nitrogen as ammonium sulfate 
from the ADDC (conceptualized from [202])

◂



	 Biomass Conversion and Biorefinery

1 3

gas production projects in Europe; here the estimated cost 
for feedstock transport was mentioned as 6 Euro/t. Accord-
ing to Ghafoori et al. [225], transportation cost to bring 
feedstock (beef-cattle manure) material to a large-capacity 
centralized digester plant can be reduced using the pipeline 
as compared to the truck-based transport systems.

Utilization of LFD for recovery of nutrients can reduce 
the bulkiness of BGS and somehow the higher transportation 
cost as well [211]. The BGS enrichment studies and devel-
oping value-added products can be a considerable alternative 
to further reduce transport costs. Romero-Güiza et al. [13] 
reviewed the pelleting process for BGS solid fraction and 
cited that the price for the finished product can reach up to 
250 euros per ton. Chen et al. [208] through vacuum-assisted 
gas-permeable membrane process of ammonia recovery esti-
mated an additional benefit of 0.51 USD per kilogram of N. 
Menkveld and Broeders [201] estimated the nitrogen recov-
ery cost per kilogram ranges from 1.0 to 3.0 euros using the 
NAR system (efficiency between 80 and 90%), while for 
Anammox (efficiency up to 75%) and MBR (efficiency up 
to 75%), they have mentioned the figures ranges from 1.5 to 
3.0 and >5.5 euros respectively.

The highest benefit to cost ratio of 3.01 was reported in 
BGS enriched with Panchagavya (5 kg CD/BGS 12 ripe 
banana, 3 L tender coconut water, 1 L cow ghee/butter clari-
fied, 3 L cow urine, and 2 L each of cow milk and curd) 
as compared to other organic treatments [130]. Rana et al. 
[227] performed bio-fortification of Cu, Zn, Fe, and Mn with 
combined inoculation of bacterial and cyanobacterial strains 
in rice-wheat cropping sequence and recorded yield benefits 

of 40–60 kg N ha−1 savings (applied as urea) equivalent to 
924–1386 USD (based on conservative estimates of area 
under rice and wheat crops in India and China).

Based on the NPK content in BGS, CM [33], N-DOC 
[228] (average value calculated from the multiple reported 
data), K-DOC [21], J-DOC, and J-BGS [229], economic val-
ues have been estimated theoretically (conceptualized from 
[221]). The price of N, P, and K fixed by the Department 
of Fertilizers, Ministry of Chemicals and Fertilizers, Govt. 
of India, under nutrient subsidy rates (NBS) per kilogram 
of N/P/K for the year 2020–2021 (Department of Fertiliz-
ers, Ministry of Chemicals and Fertilizers, Govt. of India) 
[230] was considered for the calculation. As observed from 
Fig. 11, value addition of BGS with DOCs resulted in higher 
N and P content, ensuring its higher price values as well.

Abdelwahab et  al. [154] reported ~38.20% higher 
biogas production from CM treated with FeNPs (15 
mgL−1) during AD, as compared to the control (CM with-
out NP treatment). An increase in ~1.16% N and ~3.63% 
K was also noticed in recovered digestate (treated with 
FeNPs) as compared to control, though the P content was 
0.94% less in treated digestate. Hassaneen et al. [182] 
recovered nutrient-enriched digestate from the AD of NP-
treated (zinc ferrite, average crystallite size 6.22 nm) CM. 
Interestingly, the recovered digestate (HRT-50 days) has 
higher P content (3.50%) along with N and K content of 
3.40% and 1.30% respectively. Abdelwahab et al. [231] in 
cost analysis for biogas production reported net gains of 
20.6, 19.7, and 13.5 USD with NiNP supplementation at 
2.0 (NiNPs-2.0), 1.0 (NiNPs-1.0), and 0.5 (NiNPs-0.5) 

Fig. 10   A schematic view 
representing prospective values 
of BGS (conceptualized from 
[221])



Biomass Conversion and Biorefinery	

1 3

mgL−1 concentrations respectively. The estimated costs in 
NP synthesis (including chemicals) were 0.7, 1.5, and 3.1 
USD with NiNPs-0.5, NiNPs-1.0, and NiNPs-2.0 respec-
tively. Studies on ACD of BGS and DOCs coupled with 
NP supplementation will be of great interest for in situ 
recovery of nutrient-rich digestate and improved biogas 
yields. The recovered digestates can be further exploited 
as a suitable substrate for the mass multiplication of AIMs, 
owning to which bioformulations of the broad spectrum 
will be developed to meet the agriculture requirements. 
Additionally, the liquid fraction of digestate can also be 
processed for the recovery of nitrogen; aiding to this, the 
latest developments such as solar-driven technology [202], 
energy-efficient chemical stripping [201], and nanoparti-
cle-assisted CANON process [87] have been discussed. 
The area is much promising and has immense potential 
to demonstrate multifaceted opportunities of generating 
greater revenues for the rural community where these 
resources (CD, BGS, DOCs) are in surplus availability. 
To further extend this, it is recommended to explore other 
associated values of BGS (mentioned in Fig. 10), as this 
will encourage the diverse stakeholders concerned to 
develop BGS-inspired value-added products that can act 
as a catalyst for rural development in terms of sustaining 
virtuous livelihood.

Some of the patents related to the recovery of resources 
from the BGS are mentioned below:

1.	 Patent title: Producing liquid fertilizer in a biogas plant. 
Publication number: US9957201. Publication date: 
01 May 2018. Inventor: Liebeneiner, Rolf. Current 
Assignee: Bekon GMBH.

2.	 Patent title: Method for cycling biomasses between 
mushroom cultivation and anaerobic biogas fermenta-
tion, and for separating and drying a degassed biomass. 
Publication number: WO/2015/007290. Publication 
date: 22 Jan 2015. Inventors: Hoff, Svend Kristian and 
Pedersen, Lars Jørgen. Applicants: Advanced Substrate 
Technologies A/S.

3.	 Patent title: Lightweight assemblable appliance and 
respective method for production of biogas and liquid 
fertilizer. Publication number: WO/2014/203047. Pub-
lication date: 24 Dec 2014. Inventors: Efrati, Oshik 
Moshe; Teller, Yair; Lanzer, Erez; Miller, Yariv; Eilon, 
Tal; Zak, Shoham. Applicants: Ecogas Israel Ltd.

5 � Summary, perspectives, and conclusions

The present review aims to cater the wider reader base, and 
efforts have been made to pay more attention towards the 
technical aspects linking to the conventional approaches to 
benefit the rural community and concerned stakeholders at 
large. The agricultural utilities of BGS have been covered in 
the post-introduction section of the manuscript. While gath-
ering preliminary data during the literature survey, we have 
encountered some challenges that limit BGS applications in 
agriculture fields, despite the immense potential to compete 
with the available chemical and organic fertilizers and for-
mulations of biocontrol activities. Here, we have reviewed 
the available literature and technological interventions in 
the area of bioslurry management and proposed some solu-
tions with special reference to the bio/nanotechnology-based 
approaches aiding improvements and value addition to the 

Fig. 11   An economic value 
analysis of Organic manures 
based on the NPK content (A1: 
BGS, A2: CM; A3: BGS + 
N-DOC; A4: BGS+K-DOC; 
A5: BGS + J-DOC; A6: J-BGS; 
CM: cattle manure; N-DOC: 
neem deoiled cake; J-DOC: 
Jatropha deoiled cake; K-DOC: 
Karanja deoiled cake; BGS: 
biogas slurry from CM; J-BGS: 
BGS from the AD of J-DOC; 
combinations in A3 to A6 
(50:50); MT: metric ton; INR: 
Indian rupees)
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BGS. BGS is the by-product of anaerobic digestion, where 
microbes are the key players, and hence we have focused our 
review towards microbially inspired approaches to upgrade 
the BGS. In situ value addition designated to the methodolo-
gies operated within the digester, while ex situ approaches 
deal with the recovered digestates.

To enhance the microbial activity during AD of biomass, 
the C/N ratio is critical, which can be balanced through opt-
ing ACD of livestock manure with other organic materials 
such as NEDOCs. This, in addition, facilitates nutrient-
rich media for the microbial and enzymatic activities dur-
ing digestion, which could serve twin benefits of improved 
BGSY and recovery of nutrient-enriched digestate. The 
mechanism of nanoparticle-microbe interaction was also 
taken into consideration and the possible routes to develop 
an understanding of how NPs influence the interspecies 
H2 transfer, and direct interspecies electron transfer, has 
been discussed. As per the reviewed literature, NPs such as 
FeNPs (nZVI) have been reported to have a potential role 
in establishing direct interspecies electron transfer between 
syntrophic bacteria and methanogens. FeNP interaction dur-
ing AD also has considerable effects on reducing H2S lev-
els. Collectively, NP treatment facilitates higher biomethane 
yields with quality improvements and reduction in HRTs. In 
recent developments [149, 150], biomass material has been 
treated with laser irradiation coupled with nanoparticles 
during AD to achieve biostimulation of methanogens for 
improved biogas production.

To maximize the full potential of BGS as a nutrient 
source, both solid and liquid fractions need to be exploited. 
Recovery of nitrogen from the LFD is also a promising area 
to generate revenues. Several chemical methods have been 
reported for such recoveries; we have reviewed some of the 
latest and energy-efficient developments in the area (NAR 
system; V-GPM; solar energy-driven lab-scale greenhouse 
setup; hydrophobic membrane-based ammonia recovery 
system link coupled with an electromethanogenic microbial 
electrolysis cell; microalgal and microbial-based biosorption 
methodologies, etc.). Not only the biogas production; NPs 
can also be investigated for the recovery/removal of nitro-
gen from the digestates. In one such study, Zhang et al. [87] 
studied the role of ZnO NPs on the removal of nitrogen from 
the sludge in the CANON process. Here they have found 
ZnO NPs enhance the functioning of ANOB and AAOB, and 
suppress the activity of NOB, leading to improvements in 
nitrogen removal. After recovery/removal of nitrogen from 
the LFD, the solid digestate can serve as a rich source of 
phosphorus fertilizer.

Taking the account of post-recovery amendments in 
the BGS, we have reviewed the research efforts in the area 
of biomass conversion and waste valorization to develop 
conceptual understanding and technical realizations of the 
plausible strategies. For developing BGS-derived products, 

another key challenge is the consistent quality of the slurry. 
There must be quality parameters for the procurement of 
BGS from various stakeholders. Rath and Joshi [35] recom-
mended electrical conductivity and dissolved solid contents 
as two preferable parameters for on-site quality assessment 
of BGS. However, extensive studies are required to stand-
ardize the methods of BGS quality assessment and conse-
quently the cost as per quality.

Referring to Fig. 11, it has been demonstrated through the 
theoretical calculations that adding NEDOCs can improve 
nutrient levels (such as N and P) in BGS. The combined 
formulations of BGS and NEDOCs (optimized ratios) can 
be utilized as a nutrient-enriched low-cost substrate for 
the mass multiplication of AIMs. Such investigations can 
potentially be replaced the requirements of expensive car-
bon sources such as sucrose to achieve the ideal C/N ratio 
for microbial growth during solid-state fermentation [39]. 
Bioprospecting of the beneficial microbes through multi-
substrate interactions can also be done to produce bioactive 
compounds offering anti-phytopathogenic activities. Further 
research is recommended in the area of developing sustain-
able feedstock combinations (BGS amended with different 
NEDOCs) through optimization studies to produce platform 
chemicals. The expense of resources in phase fractionation 
(separation of solid and liquid phases) of BGS can also be 
reduced through the enrichment strategies using DOCs and 
AIMs.

The role of NPs in biostimulation of microbial activities 
during AD with opportunities and challenges to improve 
biogas yields coupled with the recovery of quality diges-
tates is discussed in Section 3.3. Interestingly, we have 
also found reports on the synthesis of nanoparticles from 
NEDOCs such as Madhuca latifolia [232] and Jatropha 
curcas [233]. Hence, NEDOCs and BGS can be further 
explored as low-cost reducing and capping agents for the 
synthesis of nanoparticles. Application of such biofabricated 
nanomaterials in the improvement of AD of biomass waste, 
product recovery, and value addition of BGS will substan-
tially encourage greener, eco-friendly, and economically 
viable routes to transform challenges into opportunities in 
the real world. Adding to this, several studies are available 
that report application of NPs (at low/optimized dose) in 
promoting microbial activity. Hence, it could be an innova-
tive approach for the researchers to explore the possibilities 
of utilizing BGS enriched formulations (a) to deliver AIMs 
and nanoparticles to the plants, (b) to stimulate the process 
of vermicomposting, etc. However, the valorization method-
ologies inspired by nanotechnology-based approaches have 
the risk of nanotoxicity on the environment and ecosystem 
concerned. In this regard, we have reviewed the life-cycle 
analysis studies to access the environmental impacts of such 
introductions. In one such study, Hijazi et al. [192] reported 
that the environmental impact of electricity production from 
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the nanoparticle (CoNPs, NiNPs, FeNPs, and Fe3O4 NPs)-
treated biomass was lesser as compared to the untreated 
biomass (control). Hassanein et al. [198] fertilized Lactuca 
sativa with the diluted effluent recovered from the digester 
fed with NP mixture (FeNPs 1000 mgL−1, NiNPs 120 
mgL−1, and CoNPs 54 mgL−1), and reported higher levels 
of N, P, K, Zn, Mn, Cu, and Na in the plant biomass which 
could be due to the increased nutrient uptake and translo-
cation efficiency as a consequence of NP treatment. The 
recorded values of Fe, Ni, and Co in the plant biomass were 
below the reported toxic limits.

While reviewing the available reports, it has been 
observed that one of the reasons behind the toxicity of NPs is 
attributed to their aqueous solubility (AQS) [147]. To exten-
uate the effect of nanotoxicity during AD, nanoparticle co-
aggregation can be explored, which is reported to decrease 
the availability of free ions in the aqueous medium, thus 
capable of reducing toxic effects. We have also compared the 
influence of nanoparticles and their bulk counterparts on the 
AD during biogas production. Studies favored NP applica-
tion, though it has also been realized that certain aspects of 
NPs such as concentration, size, type, and biomass material 
to which NPs acted upon and their interaction with other 
trace elements/NPs (hetero-aggregation) in the system are 
of key significance, and hence application-based optimiza-
tion studies are critical to prevent their (NPs) overexploi-
tation and related environmental consequences thereof. In 
AD systems, the presence of antibiotics (norfloxacin, and 
sulfamethazine) can escalate the toxicity potential of NPs 
(such as ZnO NPs) [234]. Hence, apart from nanotoxicity, 
the risk of other emerging complex pollutants will also be 
concerned and investigated further. Tang et al. [27] reported 
a low risk of pollution with the repeated applications of BGS 
in crop fields. However, detailed studies are warranted for 
comparative assessment of heavy metals, pathogens, pesti-
cides, and other contaminants present in digested (BGS) and 
undigested manures.

The valuation of BGS has multifaceted outlooks, ranging 
from agronomic to economic values. BGS and its derived 
products (such as solid pellets, liquid fertilizer, organic com-
posts, and other value-added products) are in great demand 
as they offer multiple benefits to the soil and plants, hence 
considered one of the preferred bio-agri input for organic 
farmers. Some of the bioslurry-based products are already 
available in the market [35]. The economic benefits asso-
ciated with the BGS application in agriculture fields have 
been reviewed [3, 13, 36, 130, 224]. Talking about commer-
cial viability, competition with the available conventional 
fertilizers and some consumers also has negative percep-
tion towards digestates [13] limits their market acceptance. 
However, the technical limitations for such observations are 
covered in earlier sections. There is a need to develop more 
robust models for the economic and agronomic assessments 

of such biomass wastes. Integrated studies based on bio/
nanotechnology interventions can promote niche develop-
ment for generating the value-added products from different 
waste biomass of agriculture origin, thus promoting rural 
development and benefiting society at large. Overall, it has 
been concluded that chemical fertilizers are considered a 
readily available form of nutrients to the crop plants, though 
their extensive usage in agriculture fields reportedly has 
adverse impacts on normal ecological functioning at vari-
ous levels. The area of organic farming is traditionally in 
use, much promising, and diverse but emerging challenges 
like effectivity, productivity, and commercial exploitation 
precisely with the use of organic manures derived from live-
stock wastes processing such as BGS need further attention. 
Here, based on an extensive literature survey and critical 
assessment of available information to the best of our access, 
we have proposed integrated approaches for improving the 
agriculture potential of BGS, which is principally an amal-
gamation of applied aspects of bio/nanotechnology.
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