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Today, clinical evaluation of tumor heterogeneity is an emergent issue to improve clin-

ical oncology. In particular, intra-tumor heterogeneity (ITH) is closely related to cancer 

progression, resistance to therapy, and recurrences. It is interconnected with complex 

molecular mechanisms including spatial and temporal phenomena, which are often 

peculiar for every single patient. This review tries to describe all the types of ITH includ-

ing morphohistological ITH, and at the molecular level clonal ITH derived from genomic 

instability and nonclonal ITH derived from microenvironment interaction. It is important 

to consider the different types of ITH as a whole for any patient to investigate on cancer 

progression, prognosis, and treatment opportunities. From a practical point of view, 

analytical methods that are widely accessible today, or will be in the near future, are 

evaluated to investigate the complex pattern of ITH in a reproducible way for a clinical 

application.

Keywords: intra-tumor heterogeneity, morphohistological intra-tumor heterogeneity, clonal intra-tumor 

heterogeneity, functional phenotypic plasticity, stochastic plasticity, cancer spreading, genomic instability

BACKGROUND

Today, the knowledge and the clinical evaluation of tumor heterogeneity are extremely important to 
improve clinical oncology. Inter-tumor heterogeneity exceeds the boundaries of speci�c tumors and 
also of their molecular classi�cations (1, 2), which makes the clinical approach very complex. However, 
the most complex issue is intra-tumor heterogeneity (ITH) as a spatial and temporal phenomenon 
more or less distinct in every single patient. �is is closely related with cancer progression, resistance 
to therapy, and recurrences. Because of ITH in primary tumors and metastases, and because of the 
wide clinical heterogeneity among patients, it is necessary to apply clinical research methods directly 
to patients’ material in today’s clinical practice to be able to better de�ne a speci�c e�ective treatment. 
For any type of tumor, only few molecular biomarkers are being used in diagnostics at the moment, 
and a minor part of available treatment targets is applied. Hopefully, wider clinical research directly 
performed on patients will be increasingly di�used as a requirement in the near future, with the goal 
to obtain more e�cient and personalized therapy protocols (3). Moreover, phase three clinical trials 
in oncology have recently encountered wide criticisms (4–6), because of the long time, the high cost, 
and not always satisfying results. �ey are essentially based on a patient’s randomization process, 
which is unable to cover the entire range of clinical heterogeneity. Sophisticated methods of analysis 
allow penetration in the very high complexity of cancer biology; in clinical research, those methods 
can be directly applied on the patient to cover variability in toto. �erefore, only a wide clinical 
application of research methods can lead to a correct interpretation of the clinical reality. New types 
of clinical research approaches that consider heterogeneity have recently been suggested in oncology. 
�ose approaches, such as N1 trials, basket, umbrella, and platform studies, have been proposed to 
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FIGURE 1 | Different types of intra-tumor heterogeneity (ITH) in an organoid 

structured multiclonal tumor: the primary clone is blue (the peripheral area is 

light blue and the central one is darker), the other clones are of different size 

and multicolor.
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overcome the limits of classical clinical trials and to shorten the 
time for a wide clinical application (7, 8).

In most papers, when it is reported about ITH, it is mostly 
dealt with clonal genetic evolution only, but ITH itself is a very 
complex matter because it is related to di�erent sources and 
shows di�erent patterns. Recently, also heterogeneity of drug 
distribution has been shown to be relevant in cancer treatment 
(9). �ere are several types of ITHs that can be observed on the 
morphological–histological and molecular level (Figure 1). All 
these should be taken into consideration when research is applied 
to clinics, because each patient needs to be considered as a whole 
also from this point of view for more e�ective and reproducible 
analyses.

On the morphological level, di�erent histological heterogene-
ity patterns with di�erent levels of di�erentiation are frequently 
observed in the same tumor, and it is well known that apart areas 
of the same tumor can have di�erent patterns of gene expres-
sion also without any clonal evolution, e.g., the central part of 
the tumor compared to the external border (10). If these aspects 
of ITH are ignored, this can a�ect the reproducibility of clinical 
analyses and misinterpretation of the results.

On the molecular level, it is possible to distinguish at least two 
large categories of ITH, one of which is mostly clonal, transmitted 
to the daughter cells, and the other one is functional nonclonal 
(11–13). Recent literature reports have especially focused on the 
genetic clonal evolution of tumors based on DNA mutations 
and copy number alterations (CNAs). �ere is a lower extent of 
information on epigenetic evolution, which is also mostly clonal. 
Gene promoter methylation, general hypomethylation of tumor 
DNA, and histone methylation and deacetylation are very com-
mon in cancer and are as relevant as genetic alterations (14). �e 

interaction between clonal genomic instability of cancer and the 
microenvironment leads to a nonclonal phenotypical functional 
plasticity which is related to autocrine and paracrine interac-
tions with a quite wide phenotype range. Besides phenotypical 
functional plasticity, ITH is also related to a stochastic type of 
plasticity that can a�ect any single cell. Even in cell lines, each cell 
is di�erent from the others with respect to e�ciency and e�cacy 
of the single cell machinery with variable time and level of gene 
expression.

Methodologically, to study patients, two separate phases 
should be distinguished: one should include more or less local-
ized tumors for which surgical treatment is possible; the second 
one should involve advanced cancer and/or cancer recurrences. 
In the �rst case, a high level of molecular information to perform 
an e�ective adjuvant therapy to avoid recurrences is needed. �is 
should be the main strategy to reduce cancer mortality together 
with early diagnosis procedures. �e related clinical information 
is obtained from the analysis of primary tumor tissues: DNA, 
RNA, and proteins can be analyzed using extractive as well as 
in  situ methods. �e molecular methods that are applied by 
maintaining the morphology, such as immunohistochemistry 
(IHC) and/or in  situ hybridization (ISH), can be speci�cally 
useful to study heterogeneity, preserving microenvironment 
interactions and to evaluate new types of therapy, such as immu-
notherapy (15).

As for recurrences, nowadays, an important tool, the “liquid 
biopsy,” is available. Cell-free plasma DNA (ctDNA) can be a 
useful instrument to analyze in those cases, giving important 
information for a more tailored treatment (16). New research 
methods and a closer clinical application are also appealing for 
circulating tumor cells (CTCs). �is type of analysis gives further 
information especially on heterogeneity (17).

Intra-tumor heterogeneity analysis is the key for more e�cient 
treatments of cancer in our patients, but only if highly reproduc-
ible clinical research is performed. We should consider that 
di�erent aspects of ITH could be themselves one of the major 
sources of research irreproducibility, together with preclinical 
conditions of the biological materials and standardization of the 
analytical methods (11, 12).

MORPHO-HISTOLOGICAL ITH

Quite o�en, di�erent histological patterns are present in cancer, 
which are related to di�erent levels of di�erentiation and to 
metaplastic changes. It was shown in lung cancer that the di�erent 
histological patterns of the same tumor can correlate with di�erent 
molecular alterations (18). Even the same histotype of tumor can 
have several levels of di�erentiation, related to a di�erent grade 
of atypical cells that is measured by nuclear variation and other 
characteristics. A good example of a standardized analysis of cancer 
histological heterogeneity is prostate cancer. �e Gleason score ena-
bles to measure the di�erent levels of di�erentiation in a tumor and 
can give a speci�c grade, which is closely related to prognosis (19).

�ere is a relationship between histological pattern and 
molecular alterations. It was shown that in lung adenocarcino-
mas, the mutant allele frequencies were higher in solid areas of 
the same tumor (18).
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FIGURE 2 | Schematic representation of an organoid tumor with peripheral cells (yellow) surrounded by stroma components and phenotypically different from the 

central cells (gray). On the upper part, two metastases are schematically represented.
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�e other important issue for the morphological pattern of a 
tumor is to consider distinct areas of the same tumor. Sampling 
from the border of the tumor, including the surrounding stroma 
and the sub-border in comparison with the central part of the 
tumor, can give distinctive information (Figures 1 and 2). O�en, 
the border has a higher level of cellularity and higher neo-
angiogenesis than the central part, and it is well known that gene 
expression di�ers in central or periphery location (10). At pre-
sent, the tissue area of the tumor submitted to molecular analysis 
is hardly ever disclosed in the reports, and this could be one of 
the major issues referred to the low level of reproducibility not 
only of medicobiological research but also of diagnostics. Speci�c 
and standardized types of multiple sampling in larger tumors and 
microdissection in multiple sites in smaller tumors are the main 
tools that can improve reproducibility of molecular analysis in 
solid tumors, also taking ITH into account.

CLONAL ITH

For many years, it has been reported that tumor progression is 
associated with clonal evolution of the tumor cells (20). More 
recently, it has been clearly shown that this is the case in cancer 
(21). Genetic clonal evolution of cancer is related to genomic 
instability as a major feature of the carcinogenetic process. In 
recent literature, a wide description of speci�c genetic mecha-
nisms involved in DNA instability has been documented. �ere 
is evidence on increased altered DNA replication when polymer-
ases E or D are mutated (Pol-E) (22), or mismatched repair genes 
are mutated, or their promoters are methylated [microsatellite 
instability (MSI)] (23), or a chromosomal instability (CIN) with 
CNAs is present (24–26). �ose mechanisms, once described in 
speci�c tumor types, are now reported to be di�erently related to 

progression and prognosis in several tumors, such as in cancer 
of endometrium, colon, pancreas, breast, lung, prostate, and 
kidney. Pol-E and MSI are connected with high ITH associated 
with a high number of DNA mutations (called ultra-mutated 
and hypermutated tumors, respectively) and with in�ltration 
of tumor lymphocytes (TIL) due to the presence of a multitude 
of neo-antigens (27). �ose tumors are associated with a better 
prognosis, especially for Pol-E. Neo-antigens are not only related 
to driver mutations but also related to passenger mutations, 
showing that also the latest are directly involved in cancer pro-
gression. On the other hand, a high level of CNA is also related 
to ITH, but in this case, TILs are rarer and the prognosis tends to 
be worse (27–34). Recently, it has also been shown in pancreatic 
cancer that CNAs increase in number from primary tumor to 
local lymph nodes, to distant metastases (35).

Clonal cancer evolution is related not only to DNA structural 
alterations involving protein coding genes but also to epigenetic 
mechanisms that are at the basis for altered gene expression. 
Noncoding gene alterations can be drivers in cancer progression 
(36, 37). Hypomethylation of DNA in cancer cells can trigger 
cancer-germline genes with their activation (38) and the hypo-
methylation of intra-genomic endo-parasitic DNA repeats such 
as L1 with their reactivation and retrotransposition can increase 
genomic instability (39, 40). L1 hypomethylation is present in 
NSCLC already in stage I tumors (41) and is related to worse 
survival in colon cancer stage II (42).

It is well known that tumor-suppressor genes can be meth-
ylated at the promoter level with loss of gene expression as 
one of the basic mechanisms of tumor progression, and this 
alteration can be transmitted to the next cell generations (43, 
44). Methylation patterns in lung adenocarcinomas are present 
with higher ITH as compared with somatic mutation in the same 
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FIGURE 3 | High-grade ovary serus carcinoma: (A) p16 clonal type 

intra-tumor heterogeneity (ITH) and (B) Ki67 stochastic plasticity.
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tumors, suggesting to be later events in cancer progression (45). 
A CpG island methylator phenotype �rst described in colorectal 
cancer (46) was then reported in many di�erent types of cancer 
as a generic disruption to epigenetic regulation (47, 48). Recently, 
it was shown that genome-wide methylation analysis can de�ne 
pancreatic cancer subtypes (49).

Also, on the protein level, histone modi�cation through 
methylation, deacetylation, phosphorylation, and ubiquitination 
can again silence tumor-suppressor genes or activate oncogenes 
(50–52). A new pathway was discovered in PTEN-de�cient breast 
and prostate cancers with methylation of histone H3K4me3 that 
activates TNFa/NF-kB (53).

All the clonal alterations can be spatial—within the primary 
tumor (Figures 2 and 3A), sometimes involving few cells with 
di�culties for the speci�c detection—and temporal, with the 
acquisition of new alterations (54). �ey can be de�ned as ubiqui-
tous or truncal when, as driver mutations, they are involved in the 
carcinogenetic process from the initial phases, or shared, when 
they are shared by several di�erent clones, and private, when they 
are speci�c of a single clone (21).

Clonal evolution is closely related to the applied cancer treat-
ments; ITH is connected with biological therapy resistance by 
inducing the development of minor resistant clones (55, 56). 
Cytotoxic therapy also in�uences ITH with the risk to select more 
aggressive clones (57, 58).

NONCLONAL ITH

One of the major sources of functional gene expression ITH is 
related to the interaction of cancer cells with the microenvironment 
(Figure 1). �ere is an autocrine interaction within the same clone 
cells, among di�erent clones in a synergistic and antagonistic way 
(59–61), and a paracrine interaction with stroma components. 
All are related to clonal evolution and tumor progression (62). 
�e microenvironment in�uences cell phenotype in any type of 
clones; the interaction can vary from area to area of the primary 
tumor, and the stroma of the tumor could be heterogeneous itself 
(63–67). All these complex interactions are known as functional 
phenotypic plasticity, which is well recognized by pathologists 
that study, e.g., epithelial–mesenchymal transition (EMT) or as 
stemness of cancer cells (68). Intermediate expression patterns 
of cells in a di�erent functional status can be recognized with 
the use of speci�c biomarkers showing the continuous evolving 

functional plasticity in cancer (69). �ere is not only the paracrine 
in�uence among cancer and stroma cells but also some kind of 
interaction with the di�erent collagen types of the stroma that can 
also have an impact on treatment outcomes (70).

Clonal genetic alterations and the microenvironment in�u-
ence each other: DNA alterations are permissive for the growth 
of cancer cells, but the microenvironment may favor the devel-
opment of speci�c clones in comparison with others and the 
microenvironment may change in time.

In thyroid cancer, the close association of EMT and cancer 
stem-like cells (CSCs) as well as the role of exosomes and of the 
microenvironment in the metastatic phenotype were shown (71).

A crucial selection is driven by the speci�c microenviron-
ment induced by clinical treatments. �e selection and the 
development of new prevalent clones are likely to be driven by 
clones resistant to therapy, and the new treatment associated 
with the microenvironment drives the clonal genetic evolution. 
�is gives an idea of how the di�erent clonal and nonclonal 
interactions are closely related in the clinical progression 
and in a speci�c way for any single patient. Recently, it has 
been suggested that tumors should be classi�ed in a di�erent 
way considering ITH and its development. Tumors can be 
characterized by the level of clonal evolution over time and its 
interaction with the resources available at the microenviron-
ment level (72).

A common phenomenon recognized, e.g., in immune-histo-
chemical analysis, is that positivity for a speci�c antigen varies 
from cell to cell in the same tumor and in the same area of the 
tumor, from negative cells to highly positive (Figure 3B). �is is 
related to another type of nonclonal ITH, the so-called stochastic 
plasticity (11–13). Each cell even in a cell line in culture has dif-
ferent e�cacy on the transcriptional and translational level (73), 
and chaperone proteins such as Hsp90 may modulate phenotypic 
response. As a consequence, any phenotypic expression of a nor-
mal or an altered genome is further modulated di�erently in every 
single cell (74). Stochastic plasticity has been recently shown to 
in�uence resistance to chemotherapy modulating the dynamics of 
key players in response to treatment (75). DNA damage-inducing 
agents increase the expression of p53 and at the same time of 
inhibitor of apoptosis proteins, and resistance to chemotherapy 
can be caused by stochastic �uctuations in protein levels (75).

Cancer should not be considered just as an agglomerate of 
cells, but as a functional organoid structure: the central part of 
the tumor can be hypoxic and the border well oxygenated with 
molecular metabolic exchanges between the two parts, e.g., 
lactate produced by the hypoxic cells can be metabolized on the 
mitochondrial level by the activity of lactate dehydrogenase in the 
peripheral cells with a higher level of oxygenation (Figure 2). �ere 
is an intra-tumor metabolic heterogeneity with di�erent pathway 
activation, which has recently been de�ned in kidney cancer (76). 
Tumor hypoxia in�uences not only the evolution of cancer cells 
but also the development of the stromal microenvironment (77).

ITH IN METASTATIC SPREAD

Intra-tumor heterogeneity usually refers to intra-primary-tumor 
heterogeneity, but it is also related to inter- and intra-metastatic 
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FIGURE 4 | Proposal of tumors larger than 2-cm sampling for in situ analyses: (A) multiple sampling locations and (B) organization in the inclusion block.
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heterogeneity. �ere are several reports in literature denying 
signi�cant di�erences between primary tumors and metastases, 
but this is sometimes due to an inadequate number of analyzed 
samples as well as to the limited number of used biomarkers 
(26, 78). Clonal selection is the main mechanism underpinning 
those di�erences (79); therefore, it easily explains the reduced 
intra-metastatic heterogeneity reported (80). More aggressive 
and lethal clones can arise from minor subclones of the primary 
tumor even of relatively low grade (81, 82).

Monoclonal seeding of metastases has recently been dueled, 
suggesting the possibility of polyclonal seeding (80). Inter-
metastatic exchange of cancer clones that evidence the potential-
ity of metastatic sites to act as a primary tumor was also detected 
(83), and this can raise relevant considerations in favor of surgical 
treatment of the major metastases.

A recent work has shown that in most cases of colon cancer, 
the subclonal origin of the local lymph-node metastases is dif-
ferent from the distant metastases in other organs, denying the 
possibility that the latest can derive from the metastatic lymph 
nodes as o�en suggested (84).

�e microenvironment di�ers between primary tumor and 
metastases in�uencing the phenotype of tumor cells (85). Usually, 
clinical biomarkers are only searched for in primary tumors, 
although treatments and outcomes could be better de�ned by 
their analysis in the metastatic tissues (86). Furthermore, by com-
paring the expression of biomarkers’ pro�le between primary and 
metastasis, the molecular classi�cation of breast cancer can vary 
during cancer spreading in comparison with the primitive site. 
Clinical relevance of a speci�c biomarker has also been shown to 
vary if the biomarker was detected in the primary tumor or in the 
lymph-node metastasis (87).

METHODS TO STUDY ITH

Sampling
Fixed (mostly in formalin) and para�n-embedded (FFPE) tis-
sues are the main resource of clinical tissue, and they are the only 
tissues available for any patient. �e methods reported herea�er 
are those adapted to that type of tissues.

Most genes are not involved in clonal evolution, so it is possible 
to obtain reproducible quantitative analysis on the mRNA level 
comparing multiple samples of the same tumor taken from simi-
lar tumor areas, such as the in�ltration sub-border. However, this 
is not the case, with an important di�erence in gene expression, 
if a speci�c microdissected area of the tumor is compared with 
the analysis of the entire tumor (12). To that purpose, accurate 
microdissection is required for analyses. Microdissection must 
avoid residual normal tissues that can modify the results of the 
analysis, as it is shown for several prognostic clinical signatures in 
breast cancer. �e risk category changed along with the quantity 
of normal gland present in the analyzed tissue (88). An accurate 
sampling and analysis of primary tumors can give critical clinical 
information also about stroma and immune-score characteristics, 
as it has been recently shown in colon cancer (89). For analysis 
of macromolecules, microdissection is essential for comparable 
results and the microdissected area should be described in the 
report.

A preliminary type of sampling standardization has been 
proposed for solid tumors larger than 2 cm for IHC and ISH 
analyses, and it is going to be tested in the most common tumors 
for a large number of cases using the current clinical immune-
histochemical biomarkers (Figure  4). �is procedure has been 
proposed for a multicentric study involving di�erent working 
groups of the European Society of Pathology. Today, there is an 
urgent necessity to standardize sampling procedures in light of 
the hugely confusing data reported in the scienti�c literature 
about frequency of ITH in any type of tumor.

Extractive Methods
Nowadays, nucleic acids extraction from clinical tissues can be 
a reproducible practice if it is standardized and checked with 
speci�c controls for FFPE tissues (90, 91). For clinical research 
activities, also samples �xed with Bouin’s solution, which has a 
higher nucleic acid level of degradation, can be used with speci�c 
precautions (92). To check the �nal progression of cancer, also 
autopsy tissues can be used in many cases (93–95).

Next-generation sequencing (NGS) sensitivity is high enough 
to detect most clonal DNA alterations. Whole-exome sequencing 
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(WES) of DNA in clinical tissues of primary tumors can detect 
several alterations present in the tumor clones that could be use-
ful for treatments. Actionable mutations could suggest the use 
of speci�c biological drugs for that speci�c tumor. Actionable 
mutations have been detected in 90% of patients by WES (mean 
4.9 per patient), a 7.5-fold, a 2.0-fold, and a 1.9-fold increase over 
the amount obtained by using the most common NGS gene pan-
els, namely CHPv2, OCP, and FoundationOne, respectively (96). 
Seventy percent of the patients have an actionable alteration with 
the availability of an approved drug, but in only 20%, the drugs 
were approved for that speci�c type of tumor (on-label) (97). 
Recently, it has also been shown that not only non-synonymous 
mutations are involved in drug response or resistance but also 
synonymous ones, e.g., in response to anti-EGFR therapy in colon 
cancer and head and neck squamous carcinomas (98, 99). �ese 
�gures show the importance of clinical research directly applied 
to patients and the necessity of new types of clinical studies.

Speci�c attention should be given not only to a correct 
technology in NGS but also to a careful interpretation and to 
the presence of artifacts due to �xation, such as false transition 
mutations (100).

DNA and RNA single cell sequencing have already been devel-
oped, and in case of DNA, it can give important information on 
ITH (101–103), but we should be very careful in the interpreta-
tion of RNA data because the di�erent level of expression in every 
single cell could be due to stochastic plasticity.

Several methods have been used to study epigenetics in FFPE 
tissues. For a genome-wide methylation analysis, it is possible 
to use NGS-related methods or microarrays in a representative 
tumor sample or in di�erent microdissected tumor areas (104), 
but also other speci�c methods, such as methylation-speci�c 
multiple ligation-dependent probe ampli�cation, have been 
used (105). To quantify all the four known DNA-methylated 
derivatives of cytosine, namely 5 methylC, 5 hydoxymethylC, 
5 formylC, and 5 carmoxylC, in FFPE tumor samples, liquid 
chromatography/mass spectrometry methods have been devel-
oped (104). Although it is less precise than LC/MS methods, also 
ELISA-based immunoquanti�cation technology is available to 
detect the abovementioned methylated derivatives of cytosine in 
a simpler way (106).

Liquid Biopsy
�e term “liquid biopsy” was originally introduced for CTCs, 
recovered from (liquid) peripheral blood (17). �is method has 
rapidly improved to be shortly used also on the clinical level, the 
low number of collected cells being the major limit. Recently, cir-
culating clusters of cells instead of single CTCs have been shown 
in breast cancer patients, which are related to higher spreading, 
worse prognosis, and chemo-resistance (107). �is evidence 
could explain the presence of polyclonal seeding in the cancer 
metastatic process.

Liquid biopsies do not only contain CTCs but also cell-free 
nucleic acids and exosomes. For the presence of tumor-speci�c 
(somatic) variations in cancers, the fraction of circulating cell-free 
plasma tumor DNA (ctDNA), together with the larger amount 
of circulating cell-free DNA from normal cells, can be used as 

speci�c blood-based analyses for cancer patients’ care. �us, the 
use of a patient’s “liquid biopsy” can allow identifying residual 
micro-metastatic cancer and investigating speci�c mutations 
without any invasive intervention (16). “Liquid biopsy” can theo-
retically o�er a real-time assessment of molecular tumor genotype 
(qualitatively) and existing tumor burden (quantitatively) and in 
this way also ITH information. �e major limitation for plasma 
tumor DNA has been the low detection rate; however, new tech-
niques, such as digital PCR, have increased sensitivity (16). �e 
ideal assays for liquid biopsies ctDNA would allow interrogating 
mutations in several genes at the same time, which represents a 
technical challenge because the total amount of ctDNA and its 
quality are both relatively low (56). �e analysis of ctDNA can 
be helpful during the follow-up of patients to detect both trun-
cal and private mutations. However, there is the need to better 
understand the contribution of each dynamic cell population in a 
heterogeneous tumor to ctDNA (56). It is manifest that CTCs and 
ctDNA can come from di�erent and heterogeneous metastatic 
sites; therefore, sensitivity and reproducibility in detecting tumor 
range still have to be established (108, 109). Furthermore, in the 
scenario of tumor heterogeneity it should be highlighted that these 
low invasive methods that can be repeated many times during the 
follow-up, are especially useful, because the same cancer therapy 
can drive the selection pressure that causes clonal evolution (55).

CRISPR Barcoding in Heterogeneity
Detection of preexisting resistant subclones could be hard from a 
methodological point of view, because of their rarity. Sensitivity of 
the current methods is not enough to comprehensively consider 
cancer individual cells in heterogeneous cancer-cell populations 
(110). Recently, Guernet et  al. developed a highly sophisticated 
CRISPR-barcoding system that enables the functional investigation 
of speci�c mutations, in a context that closely mimics the complexity 
of cancer (111). �e high-resolution tracking of single speci�c cancer 
cells allows identifying even rare preexisting resistant subclones that 
can be involved in acquired resistance to therapy. Using CRISPR/
Cas9 technology, the fastest ever genome engineering technology, 
and speci�c DNA barcodes, a strategy to recapitulate and trace the 
emergence of subpopulations of cancer cells containing a mutation 
of interest has been developed. �e method has already been used to 
study mechanisms of lung cancer cell resistance to EGFR inhibitors 
and to investigate on combined drug therapies. Highly complex 
barcodes inserted in a speci�c genome location have been used 
to simultaneously trace the fates of many thousands of genetically 
labeled cancer cells (111). �is methodology could signi�cantly 
improve the understanding of ITH and its relationship with tumor 
progression.

Molecular Morphology
�e complexity of ITH is strictly related to the biology of the 
tumor, to treatment possibilities, and to recurrence probability. 
As a consequence, we need more sophisticated, sensitive, and 
morphology-related methods that can provide information on 
di�erent clones or di�erent cell types at the molecular level and 
their relationship with the microenvironment. Localized complex 
phenomena, such as tumor budding, can be studied only by 

https://www.frontiersin.org/Medicine
https://www.frontiersin.org
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morphology-related methods that show close localized relation-
ship between cancer cells and stroma (65). ITH is indeed detect-
able not only among cancer cells but also at the tumor stroma 
level (112). Recently, molecular morphology has demonstrated its 
utility in predicting the e�cacy of immunotherapy (15).

IHC for proteins and ISH for DNA and RNA can be success-
fully used in a reproducible way in FFPE tissues. �e interplay of 
these methods in digital analysis is going to gain a more objective 
quantitative evaluation.

FISH (and other similar methods) for DNA and IHC for 
proteins have been performed for many years also at the clinical 
level, but today, we also have reproducible in  situ methods for 
mRNAs and noncoding RNAs and developing tools to detect 
most genetic, genomic, and epigenetic types of alterations. ITH 
can be studied at the in situ level for gene ampli�cation and CIN 
with FISH (113, 114), for single nucleotide mutation (115), for 
fusion transcripts detection (116), for repetitive RNAs related 
to hypomethylation (117), and for in  situ detection of histone 
modi�cation (118). For proteins, more sophisticated methods, 
such as matrix-assisted laser desorption/ionization imaging can 
be used (119). Most of those in situ techniques are not very widely 
di�used as methods for clinical research, and pathologists should 
improve their experience in this �eld.

Pre-analytical conditions of tissues are a basic prerequisite 
for reproducible results even for in situ methods. Technical CEN 
speci�cations are already available for extractive methods in 
FFPE tissues (DNA, RNA, and proteins) and for ctDNA from 
plasma as supported by SPIDIA4P EU project1 and developed 
by the European Committee for Standardization.2 For in  situ 
methods, ISO documents are ongoing as described in SPIDIA4P 
EU project.

CONCLUSION

�ere is the necessity to consider ITH from a practical point of 
view to improve diagnosis and treatment in cancer. �e major 
remarks could be the following:

 – Clinical tumor heterogeneity on the inter- or intra-tumor 
level limits the utility and the application of tumor 

1 Standardisation and improvement of generic pre-analytical tools and procedures 

for in-vitro diagnostics (SPIDIA and SPIDIA4P). Available from: http://www.

spidia.eu/about-the-projects/.
2 European Committee for Standardization (CEN). Available from https://www.

cen.eu/Pages/default.aspx.

molecular classi�cations based on few molecular common 
biomarkers.

 – �ere is an increasing necessity to apply clinical research 
directly to clinics, a research performed for the today’s patients 
with new types of studies to shorten the time for wide clinical 
application.

 – ITH in this type of research is crucial, because it is closely 
related to cancer progression, therapy resistance, and 
recurrences.

 – ITH shows di�erent aspects in cancer, on the morphologi-
cal–histological level, and on the molecular one. Molecular 
ITH can be divided into clonal and nonclonal. �e clonal one 
is related to di�erent types of genomic instability that also 
in�uence aggressiveness and treatment. �e nonclonal one is 
functional, microenvironment related, or stochastic, notably 
single cell e�ciency related. Clonal and microenvironment 
ITHs are closely connected and in�uence each other.

 – All these types of ITH a�ect cancer progression and treat-
ment e�cacy and should be considered as a whole for any  
patient.

 – At least two types of ITH methodological approaches should 
be considered: in surgically treated tumors, a careful analysis 
of tissues should drive the adjuvant therapy, and in recurrent 
cancer, the follow-up should consider the inclusion of blood 
analysis of ctDNA and, in a near future, also CTCs.

 – Actionable mutations and resistance alterations should also 
be detected in minor clones to establish a better and tailored 
treatment.

 – For tissues, multiple microdissection of tissues should be 
performed, and for larger tumors, a standardized multiple 
sampling procedure should be adopted to increase analysis 
reproducibility.

 – Pathologists should improve their experience in in situ meth-
ods to better study clonal and microenvironment interactions.

AUTHOR CONTRIBUTIONS

All co-authors of this manuscript contributed for conception or 
design of the work (mostly GS), dra�ing the work or revising it 
critically for important intellectual content, and �nal approval of 
the version to be published.

ACKNOWLEDGMENTS

�e authors wish to thank Dr. Valentina Melita for her language 
editing work on the manuscript.

REFERENCES

1. Uhlen M, Zhang C, Lee S, Sjostedt E, Fagerberg L, Bidkhori G, et  al. A 

pathology atlas of the human cancer transcriptome. Science (2017) 18:357. 

doi:10.1126/science.aan2507 

2. Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ, et  al. �e 

genomic landscapes of human breast and colorectal cancers. Science (2007) 

318:1108–13. doi:10.1126/science.1145720 

3. Ellsworth RE, Blackburn HL, Shriver CD, Soon-Shiong P, Ellsworth 

DL. Molecular heterogeneity in breast cancer: state of the science and 

implications for patient care. Semin Cell Dev Biol (2017) 64:65–72. 

doi:10.1016/j.semcdb.2016.08.025 

4. Biankin AV, Piantadosi S, Hollingsworth SJ. Patient-centric trials for 

therapeutic development in precision oncology. Nature (2015) 526:361–70. 

doi:10.1038/nature15819 

5. Davis C, Naci H, Gurpinar E, Poplavska E, Pinto A, Aggarwal A. Availability 

of evidence of bene�ts on overall survival and quality of life of cancer 

drugs approved by European Medicines Agency: retrospective cohort 

study of drug approvals 2009-13. BMJ (2017) 359:j4530. doi:10.1136/ 

bmj.j4530 

https://www.frontiersin.org/Medicine
https://www.frontiersin.org
https://www.frontiersin.org/Medicine/archive
http://www.spidia.eu/about-the-projects/
http://www.spidia.eu/about-the-projects/
https://www.cen.eu/Pages/default.aspx
https://www.cen.eu/Pages/default.aspx
https://doi.org/10.1126/science.aan2507
https://doi.org/10.1126/science.1145720
https://doi.org/10.1016/j.semcdb.2016.08.025
https://doi.org/10.1038/nature15819
https://doi.org/10.1136/
bmj.j4530
https://doi.org/10.1136/
bmj.j4530


8

Stanta and Bonin ITH for Clinical Use

Frontiers in Medicine | www.frontiersin.org April 2018 | Volume 5 | Article 85

6. Schork NJ. Personalized medicine: time for one-person trials. Nature (2015) 

520:609–11. doi:10.1038/520609a 

7. Klement GL, Arkun K, Valik D, Ro�dal T, Hashemi A, Klement C, et  al. 

Future paradigms for precision oncology. Oncotarget (2016) 7:46813–31. 

doi:10.18632/oncotarget.9488 

8. Woodcock J, LaVange LM. Master protocols to study multiple therapies, 

multiple diseases, or both. N Engl J Med (2017) 377:62–70. doi:10.1056/

NEJMra1510062 

9. Garattini S, Fuso Nerini I, D’Incalci M. Not only tumor but also therapy 

heterogeneity. Ann Oncol (2018) 29:13–9. doi:10.1093/annonc/mdx646 

10. Hlubek F, Brabletz T, Budczies J, Pfei�er S, Jung A, Kirchner T. Heterogeneous 

expression of Wnt/beta-catenin target genes within colorectal cancer. Int 

J Cancer (2007) 121:1941–8. doi:10.1002/ijc.22916 

11. Stanta G. Tissue Heterogeneity as a pre-analytical source of variability. Recent 

Results Cancer Res Fortschritte der Krebsforschung Progres dans les recherches 

sur le cancer (2015) 199:35–43. doi:10.1007/978-3-319-13957-9_4

12. Stanta G, Bonin S. A practical approach to tumor heterogeneity in clinical 

research and diagnostics. Pathobiology (2017). doi:10.1159/000477813 

13. Stanta G, Jahn SW, Bonin S, Hoe�er G. Tumour heterogeneity: principles 

and practical consequences. Virchows Arch (2016) 469:371–84. doi:10.1007/

s00428-016-1987-9 

14. Liu F, Wang L, Perna F, Nimer SD. Beyond transcription factors: how 

oncogenic signalling reshapes the epigenetic landscape. Nat Rev Cancer  

(2016) 16:359–72. doi:10.1038/nrc.2016.41 

15. McLaughlin J, Han G, Schalper KA, Carvajal-Hausdorf D, Pelekanou V, 

Rehman J, et  al. Quantitative assessment of the heterogeneity of PD-L1 

expression in non-small-cell lung cancer. JAMA Oncol (2016) 2:46–54. 

doi:10.1001/jamaoncol.2015.3638 

16. Parsons HA, Beaver JA, Park BH. Circulating plasma tumor DNA. Adv Exp 

Med Biol (2016) 882:259–76. doi:10.1007/978-3-319-22909-6_11 

17. Alix-Panabieres C, Pantel K. Circulating tumor cells: liquid biopsy of cancer. 

Clin Chem (2013) 59:110–8. doi:10.1373/clinchem.2012.194258 

18. Dietz S, Harms A, Endris V, Eichhorn F, Kriegsmann M, Longuespee R, et al. 

Spatial distribution of EGFR and KRAS mutation frequencies correlates with 

histological growth patterns of lung adenocarcinomas. Int J Cancer (2017) 

141:1841–8. doi:10.1002/ijc.30881 

19. Epstein JI, Egevad L, Amin MB, Delahunt B, Srigley JR, Humphrey PA, et al. 

�e 2014 International Society of Urological Pathology (ISUP) consensus 

conference on Gleason grading of prostatic carcinoma: de�nition of grading 

patterns and proposal for a new grading system. Am J Surg Pathol (2016) 

40:244–52. doi:10.1097/PAS.0000000000000530 

20. Sporn MB. �e war on cancer. Lancet (1996) 347:1377–81. doi:10.1016/

S0140-6736(96)91015-6 

21. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. 

Intratumor heterogeneity and branched evolution revealed by multiregion 

sequencing. N Engl J Med (2012) 366:883–92. doi:10.1056/NEJMoa1113205 

22. Briggs S, Tomlinson I. Germline and somatic polymerase epsilon and delta 

mutations de�ne a new class of hypermutated colorectal and endometrial 

cancers. J Pathol (2013) 230:148–53. doi:10.1002/path.4185 

23. Yamamoto H, Imai K. Microsatellite instability: an update. Arch Toxicol 

(2015) 89:899–921. doi:10.1007/s00204-015-1474-0 

24. Burrell RA, McGranahan N, Bartek J, Swanton C. �e causes and con-

sequences of genetic heterogeneity in cancer evolution. Nature (2013) 

501:338–45. doi:10.1038/nature12625 

25. Tanaka K, Hirota T. Chromosomal instability: a common feature and a 

therapeutic target of cancer. Biochim Biophys Acta (2016) 1866:64–75. 

doi:10.1016/j.bbcan.2016.06.002 

26. Turajlic S, Swanton C. Metastasis as an evolutionary process. Science (2016) 

352:169–75. doi:10.1126/science.aaf2784 

27. van Gool IC, Eggink FA, Freeman-Mills L, Stelloo E, Marchi E, de Bruyn M, 

et al. POLE proofreading mutations elicit an antitumor immune response in 

endometrial cancer. Clin Cancer Res (2015) 21:3347–55. doi:10.1158/1078-

0432.CCR-15-0057 

28. Campbell PJ, Yachida S, Mudie LJ, Stephens PJ, Pleasance ED, Stebbings LA,  

et al. �e patterns and dynamics of genomic instability in metastatic pancre-

atic cancer. Nature (2010) 467:1109–13. doi:10.1038/nature09460 

29. Cancer Genome Atlas Network. Comprehensive molecular characterization 

of human colon and rectal cancer. Nature (2012) 487:330–7. doi:10.1038/

nature11252 

30. Cancer Genome Atlas Research Network, Kandoth C, Schultz N, Cherniack 

AD, Akbani R, Liu Y, et al. Integrated genomic characterization of endome-

trial carcinoma. Nature (2013) 497:67–73. doi:10.1038/nature12113 

31. Gerlinger M, Horswell S, Larkin J, Rowan AJ, Salm MP, Varela I, et  al. 

Genomic architecture and evolution of clear cell renal cell carcinomas 

de�ned by multiregion sequencing. Nat Genet (2014) 46:225–33. doi:10.1038/ 

ng.2891 

32. Hieronymus H, Schultz N, Gopalan A, Carver BS, Chang MT, Xiao Y, et al. 

Copy number alteration burden predicts prostate cancer relapse. Proc Natl 

Acad Sci U S A (2014) 111:11139–44. doi:10.1073/pnas.1411446111 

33. Jamal-Hanjani M, Wilson GA, McGranahan N, Birkbak NJ, Watkins TBK, 

Veeriah S, et al. Tracking the evolution of non-small-cell lung cancer. N Engl 

J Med (2017) 376:2109–21. doi:10.1056/NEJMoa1616288 

34. Yates LR, Gerstung M, Knappskog S, Desmedt C, Gundem G, Van Loo P, et al. 

Subclonal diversi�cation of primary breast cancer revealed by multiregion 

sequencing. Nat Med (2015) 21:751–9. doi:10.1038/nm.3886 

35. Rausch V, Krieg A, Camps J, Behrens B, Beier M, Wangsa D, et  al. Array 

comparative genomic hybridization of 18 pancreatic ductal adenocarcinomas 

and their autologous metastases. BMC Res Notes (2017) 10:560. doi:10.1186/

s13104-017-2886-0 

36. Forrest ME, Khalil AM. Review: regulation of the cancer epigenome by 

long non-coding RNAs. Cancer Lett (2017) 407:106–12. doi:10.1016/j.

canlet.2017.03.040 

37. Yao X, Xing M, Ooi WF, Tan P, Teh BT. Epigenomic consequences of 

coding and noncoding driver mutations. Trends Cancer (2016) 2:585–605. 

doi:10.1016/j.trecan.2016.09.002 

38. Van Tongelen A, Loriot A, De Smet C. Oncogenic roles of DNA hypometh-

ylation through the activation of cancer-germline genes. Cancer Lett (2017) 

396:130–7. doi:10.1016/j.canlet.2017.03.029 

39. Madakashira BP, Sadler KC. DNA methylation, nuclear organization, and 

cancer. Front Genet (2017) 8:76. doi:10.3389/fgene.2017.00076 

40. Scott EC, Devine SE. �e role of somatic L1 retrotransposition in human 

Cancers. Viruses (2017) 9:131. doi:10.3390/v9060131 

41. Imperatori A, Sahnane N, Rotolo N, Franzi F, Nardecchia E, Libera L, et al. 

LINE-1 hypomethylation is associated to speci�c clinico-pathological 

features in stage I non-small cell lung cancer. Lung Cancer (2017) 108:83–9. 

doi:10.1016/j.lungcan.2017.03.003 

42. Swets M, Zaalberg A, Boot A, van Wezel T, Frouws MA, Bastiaannet E, et al. 

Tumor LINE-1 methylation level in association with survival of patients 

with stage II colon cancer. Int J Mol Sci (2016) 27:18. doi:10.3390/ijms180 

10036 

43. Heyn H, Vidal E, Ferreira HJ, Vizoso M, Sayols S, Gomez A, et al. Epigenomic 

analysis detects aberrant super-enhancer DNA methylation in human cancer. 

Genome Biol (2016) 17:11. doi:10.1186/s13059-016-0879-2 

44. Olkhov-Mitsel E, Bapat B. Strategies for discovery and validation of methyl-

ated and hydroxymethylated DNA biomarkers. Cancer Med (2012) 1:237–60. 

doi:10.1002/cam4.22 

45. Quek K, Li J, Estecio M, Zhang J, Fujimoto J, Roarty E, et al. DNA methylation 

intratumor heterogeneity in localized lung adenocarcinomas. Oncotarget 

(2017) 28(8):21994–2002. doi:10.18632/oncotarget.15777 

46. Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP. CpG 

island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A 

(1999) 96:8681–6. doi:10.1073/pnas.96.15.8681 

47. Hughes LA, Melotte V, de Schrijver J, de Maat M, Smit VT, Bovee JV, et al. 

�e CpG island methylator phenotype: what’s in a name? Cancer Res (2013) 

73:5858–68. doi:10.1158/0008-5472.CAN-12-4306 

48. Miller BF, Sanchez-Vega F, Elnitski L. �e emergence of pan-cancer CIMP 

and its elusive interpretation. Biomolecules (2016) 6:45. doi:10.3390/

biom6040045 

49. Mishra NK, Guda C. Genome-wide DNA methylation analysis reveals 

molecular subtypes of pancreatic cancer. Oncotarget (2017) 8:28990–9012. 

doi:10.18632/oncotarget.15993 

50. Biswas S, Rao CM. Epigenetics in cancer: fundamentals and beyond. 

Pharmacol �er (2017) 173:118–34. doi:10.1016/j.pharmthera.2017.02.011 

51. Cole AJ, Cli�on-Bligh R, Marsh DJ. Histone H2B monoubiquitination: 

roles to play in human malignancy. Endocr Relat Cancer (2015) 22:T19–33. 

doi:10.1530/ERC-14-0185 

52. Kim KH, Roberts CW. Targeting EZH2 in cancer. Nat Med (2016) 22:128–34. 

doi:10.1038/nm.4036 

https://www.frontiersin.org/Medicine
https://www.frontiersin.org
https://www.frontiersin.org/Medicine/archive
https://doi.org/10.1038/520609a
https://doi.org/10.18632/oncotarget.9488
https://doi.org/10.1056/NEJMra1510062
https://doi.org/10.1056/NEJMra1510062
https://doi.org/10.1093/annonc/mdx646
https://doi.org/10.1002/ijc.22916
https://doi.org/10.1007/978-3-319-13957-9_4
https://doi.org/10.1159/000477813
https://doi.org/10.1007/s00428-016-1987-9
https://doi.org/10.1007/s00428-016-1987-9
https://doi.org/10.1038/nrc.2016.41
https://doi.org/10.1001/jamaoncol.2015.3638
https://doi.org/10.1007/978-3-319-22909-6_11
https://doi.org/10.1373/clinchem.2012.194258
https://doi.org/10.1002/ijc.30881
https://doi.org/10.1097/PAS.0000000000000530
https://doi.org/10.1016/S0140-6736(96)91015-6
https://doi.org/10.1016/S0140-6736(96)91015-6
https://doi.org/10.1056/NEJMoa1113205
https://doi.org/10.1002/path.4185
https://doi.org/10.1007/s00204-015-1474-0
https://doi.org/10.1038/nature12625
https://doi.org/10.1016/j.bbcan.2016.06.002
https://doi.org/10.1126/science.aaf2784
https://doi.org/10.1158/1078-0432.CCR-15-0057
https://doi.org/10.1158/1078-0432.CCR-15-0057
https://doi.org/10.1038/nature09460
https://doi.org/10.1038/nature11252
https://doi.org/10.1038/nature11252
https://doi.org/10.1038/nature12113
https://doi.org/10.1038/ng.2891
https://doi.org/10.1038/ng.2891
https://doi.org/10.1073/pnas.1411446111
https://doi.org/10.1056/NEJMoa1616288
https://doi.org/10.1038/nm.3886
https://doi.org/10.1186/s13104-017-2886-0
https://doi.org/10.1186/s13104-017-2886-0
https://doi.org/10.1016/j.canlet.2017.03.040
https://doi.org/10.1016/j.canlet.2017.03.040
https://doi.org/10.1016/j.trecan.2016.09.002
https://doi.org/10.1016/j.canlet.2017.03.029
https://doi.org/10.3389/fgene.2017.00076
https://doi.org/10.3390/v9060131
https://doi.org/10.1016/j.lungcan.2017.03.003
https://doi.org/10.3390/ijms18010036
https://doi.org/10.3390/ijms18010036
https://doi.org/10.1186/s13059-016-0879-2
https://doi.org/10.1002/cam4.22
https://doi.org/10.18632/oncotarget.15777
https://doi.org/10.1073/pnas.96.15.8681
https://doi.org/10.1158/0008-5472.CAN-12-4306
https://doi.org/10.3390/biom6040045
https://doi.org/10.3390/biom6040045
https://doi.org/10.18632/oncotarget.15993
https://doi.org/10.1016/j.pharmthera.2017.02.011
https://doi.org/10.1530/ERC-14-0185
https://doi.org/10.1038/nm.4036


9

Stanta and Bonin ITH for Clinical Use

Frontiers in Medicine | www.frontiersin.org April 2018 | Volume 5 | Article 85

53. Zhao D, Lu X, Wang G, Lan Z, Liao W, Li J, et al. Synthetic essentiality of 

chromatin remodelling factor CHD1 in PTEN-de�cient cancer. Nature 

(2017) 542:484–8. doi:10.1038/nature21357 

54. Beksac AT, Paulucci DJ, Blum KA, Yadav SS, Sfakianos JP, Badani KK. 

Heterogeneity in renal cell carcinoma. Urol Oncol (2017) 35:507–15. 

doi:10.1016/j.urolonc.2017.05.006 

55. Misale S, Yaeger R, Hobor S, Scala E, Janakiraman M, Liska D, et  al. 

Emergence of KRAS mutations and acquired resistance to anti-EGFR 

therapy in colorectal cancer. Nature (2012) 486:532–6. doi:10.1038/

nature11156 

56. Vilar E, Tabernero J. Cancer: pinprick diagnostics. Nature (2012) 486:482–3. 

doi:10.1038/486482a 

57. Donada M, Bonin S, Barbazza R, Pettirosso D, Stanta G. Management of 

stage II colon cancer—the use of molecular biomarkers for adjuvant therapy 

decision. BMC Gastroenterol (2013) 13:36. doi:10.1186/1471-230X-13-36 

58. Landau DA, Carter SL, Stojanov P, McKenna A, Stevenson K, Lawrence MS, 

et al. Evolution and impact of subclonal mutations in chronic lymphocytic 

leukemia. Cell (2013) 152:714–26. doi:10.1016/j.cell.2013.01.019 

59. Marusyk A, Tabassum DP, Altrock PM, Almendro V, Michor F, Polyak K. 

Non-cell-autonomous driving of tumour growth supports sub-clonal hetero-

geneity. Nature (2014) 514:54–8. doi:10.1038/nature13556 

60. Tissot T, �omas F, Roche B. Non-cell-autonomous e�ects yield lower 

clonal diversity in expanding tumors. Sci Rep (2017) 7:11157. doi:10.1038/

s41598-017-11562-w 

61. Zhou H, Neelakantan D, Ford HL. Clonal cooperativity in heterogenous can-

cers. Semin Cell Dev Biol (2017) 64:79–89. doi:10.1016/j.semcdb.2016.08.028 

62. Kleppe M, Levine RL. Tumor heterogeneity confounds and illuminates: 

assessing the implications. Nat Med (2014) 20:342–4. doi:10.1038/nm.3522 

63. Dunne PD, Alderdice M, O’Reilly PG, Roddy AC, McCorry AMB, Richman S, 

et  al. Cancer-cell intrinsic gene expression signatures overcome intratu-

moural heterogeneity bias in colorectal cancer patient classi�cation. Nat 

Commun (2017) 8:15657. doi:10.1038/ncomms15657 

64. Espinosa I, Catasus L, D’ Angelo E, Mozos A, Pedrola N, Bertolo C, et al. 

Stromal signatures in endometrioid endometrial carcinomas. Mod Pathol 

(2014) 27:631–9. doi:10.1038/modpathol.2013.131 

65. Galvan JA, Zlobec I, Wartenberg M, Lugli A, Gloor B, Perren A, et  al. 

Expression of E-cadherin repressors SNAIL, ZEB1 and ZEB2 by tumour and 

stromal cells in�uences tumour-budding phenotype and suggests heteroge-

neity of stromal cells in pancreatic cancer. Br J Cancer (2015) 112:1944–50. 

doi:10.1038/bjc.2015.177 

66. Mani NL, Schalper KA, Hatzis C, Saglam O, Tavassoli F, Butler M, et  al. 

Quantitative assessment of the spatial heterogeneity of tumor-in�ltrat-

ing lymphocytes in breast cancer. Breast Cancer Res (2016) 29(18):78. 

doi:10.1186/s13058-016-0737-x 

67. Shi L, Zhang Y, Feng L, Wang L, Rong W, Wu F, et  al. Multi-omics study 

revealing the complexity and spatial heterogeneity of tumor-in�ltrating 

lymphocytes in primary liver carcinoma. Oncotarget (2017) 8:34844–57. 

doi:10.18632/oncotarget.16758 

68. Denisov EV, Skryabin NA, Gerashchenko TS, Tashireva LA, Wilhelm J, 

Buldakov MA, et al. Clinically relevant morphological structures in breast 

cancer represent transcriptionally distinct tumor cell populations with 

varied degrees of epithelial-mesenchymal transition and CD44(+)CD24(-) 

stemness. Oncotarget (2017) 8:61163–80. doi:10.18632/oncotarget.18022 

69. Marotta LL, Almendro V, Marusyk A, Shipitsin M, Schemme J, Walker SR, 

et al. �e JAK2/STAT3 signaling pathway is required for growth of CD44(+)

CD24(-) stem cell-like breast cancer cells in human tumors. J Clin Invest 

(2011) 121:2723–35. doi:10.1172/JCI44745 

70. Chien J, Kuang R, Landen C, Shridhar V. Platinum-sensitive recurrence 

in ovarian cancer: the role of tumor microenvironment. Front Oncol  

(2013) 3:251. doi:10.3389/fonc.2013.00251 

71. Hardin H, Zhang R, Helein H, Buehler D, Guo Z, Lloyd RV. �e evolving 

concept of cancer stem-like cells in thyroid cancer and other solid tumors. 

Lab Invest (2017) 97:1142–51. doi:10.1038/labinvest.2017.41 

72. Maley CC, Aktipis A, Graham TA, Sottoriva A, Boddy AM, Janiszewska M, 

et al. Classifying the evolutionary and ecological features of neoplasms. Nat 

Rev Cancer (2017) 17:605–19. doi:10.1038/nrc.2017.69 

73. Li GW, Xie XS. Central dogma at the single-molecule level in living cells. 

Nature (2011) 475:308–15. doi:10.1038/nature10315 

74. Burga A, Casanueva MO, Lehner B. Predicting mutation outcome from early 

stochastic variation in genetic interaction partners. Nature (2011) 480:250–3. 

doi:10.1038/nature10665 

75. Paek AL, Liu JC, Loewer A, Forrester WC, Lahav G. Cell-to-cell vari-

ation in p53 dynamics leads to fractional killing. Cell (2016) 165:631–42. 

doi:10.1016/j.cell.2016.03.025 

76. Okegawa T, Morimoto M, Nishizawa S, Kitazawa S, Honda K, Araki H, et al. 

Intratumor heterogeneity in primary kidney cancer revealed by metabolic 

pro�ling of multiple spatially separated samples within tumors. EBioMedicine 

(2017) 19:31–8. doi:10.1016/j.ebiom.2017.04.009 

77. Feron O. Pyruvate into lactate and back: from the Warburg e�ect to symbiotic 

energy fuel exchange in cancer cells. Radiother Oncol (2009) 92:329–33. 

doi:10.1016/j.radonc.2009.06.025 

78. Brannon AR, Vakiani E, Sylvester BE, Scott SN, McDermott G, Shah RH, 

et al. Comparative sequencing analysis reveals high genomic concordance 

between matched primary and metastatic colorectal cancer lesions. Genome 

Biol (2014) 15:454. doi:10.1186/s13059-014-0454-7 

79. Russnes HG, Navin N, Hicks J, Borresen-Dale AL. Insight into the hetero-

geneity of breast cancer through next-generation sequencing. J Clin Invest 

(2011) 121:3810–8. doi:10.1172/JCI57088 

80. Wei Q, Ye Z, Zhong X, Li L, Wang C, Myers RE, et al. Multiregion whole-ex-

ome sequencing of matched primary and metastatic tumors revealed 

genomic heterogeneity and suggested polyclonal seeding in colorectal 

cancer metastasis. Ann Oncol (2017) 28:2135–41. doi:10.1093/annonc/ 

mdx278 

81. Ha�ner MC, Mosbruger T, Esopi DM, Fedor H, Heaphy CM, Walker DA, 

et al. Tracking the clonal origin of lethal prostate cancer. J Clin Invest (2013) 

123:4918–22. doi:10.1172/JCI70354 

82. Talmadge JE, Fidler IJ. AACR centennial series: the biology of cancer metas-

tasis: historical perspective. Cancer Res (2010) 70:5649–69. doi:10.1158/0008-

5472.CAN-10-1040 

83. Gundem G, Van Loo P, Kremeyer B, Alexandrov LB, Tubio JM, Papaemmanuil E,  

et  al. �e evolutionary history of lethal metastatic prostate cancer. Nature 

(2015) 520:353–7. doi:10.1038/nature14347 

84. Naxerova K, Reiter JG, Brachtel E, Lennerz JK, van de Wetering M, Rowan A, 

et al. Origins of lymphatic and distant metastases in human colorectal cancer. 

Science (2017) 357:55–60. doi:10.1126/science.aai8515 

85. Comen EA. Tracking the seed and tending the soil: evolving concepts in 

metastatic breast cancer. Discov Med (2012) 14:97–104. 

86. Cummings MC, Simpson PT, Reid LE, Jayanthan J, Skerman J, Song S, et al. 

Metastatic progression of breast cancer: insights from 50 years of autopsies. 

J Pathol (2013) 232:23–31. doi:10.1002/path.4288

87. Bonin S, Pracella D, Barbazza R, Sulfaro S, Stanta G. In stage II/III lymph 

node-positive breast cancer patients less than 55 years of age, keratin 8 

expression in lymph node metastases but not in the primary tumour is an 

indicator of better survival. Virchows Arch (2015) 466(5):571–80. doi:10.1007/

s00428-015-1748-1 

88. Elloumi F, Hu Z, Li Y, Parker JS, Gulley ML, Amos KD, et al. Systematic bias in 

genomic classi�cation due to contaminating non-neoplastic tissue in breast 

tumor samples. BMC Med Genomics (2011) 4:54. doi:10.1186/1755-8794-4-54 

89. Mlecnik B, Bindea G, Kirilovsky A, Angell HK, Obenauf AC, Tosolini M, et al. 

�e tumor microenvironment and immunoscore are critical determinants 

of dissemination to distant metastasis. Sci Transl Med (2016) 8:327ra326. 

doi:10.1126/scitranslmed.aad6352 

90. Bonin S, Hlubek F, Benhattar J, Denkert C, Dietel M, Fernandez PL, et al. 

Multicentre validation study of nucleic acids extraction from FFPE tissues. 

Virchows Arch (2010) 457:309–17. doi:10.1007/s00428-010-0917-5 

91. Bonin S, Stanta G. Nucleic acid extraction methods from �xed and paraf-

�n-embedded tissues in cancer diagnostics. Expert Rev Mol Diagn (2013) 

13:271–82. doi:10.1586/erm.13.14 

92. Bonin S, Petrera F, Rosai J, Stanta G. DNA and RNA obtained from Bouin’s 

�xed tissues. J Clin Pathol (2005) 58:313–6. doi:10.1136/jcp.2004.016477 

93. Bonin S, Petrera F, Stanta G. PCR and RT-PCR analysis in archival post-

mortem tissues. In: Fuchs J, Podda M, editors. Encyclopedia of Diagnostic 

Genomics and Proteomics. New York: Marcel Dekker Inc. (2005). p. 985–8.

94. Carithers LJ, Ardlie K, Barcus M, Branton PA, Britton A, Buia SA, et  al.  

A novel approach to high-quality postmortem tissue procurement: the GTEx 

project. Biopreserv Biobank (2015) 13:311–9. doi:10.1089/bio.2015.0032 

https://www.frontiersin.org/Medicine
https://www.frontiersin.org
https://www.frontiersin.org/Medicine/archive
https://doi.org/10.1038/nature21357
https://doi.org/10.1016/j.urolonc.2017.05.006
https://doi.org/10.1038/nature11156
https://doi.org/10.1038/nature11156
https://doi.org/10.1038/486482a
https://doi.org/10.1186/1471-230X-13-36
https://doi.org/10.1016/j.cell.2013.01.019
https://doi.org/10.1038/nature13556
https://doi.org/10.1038/s41598-017-11562-w
https://doi.org/10.1038/s41598-017-11562-w
https://doi.org/10.1016/j.semcdb.2016.08.028
https://doi.org/10.1038/nm.3522
https://doi.org/10.1038/ncomms15657
https://doi.org/10.1038/modpathol.2013.131
https://doi.org/10.1038/bjc.2015.177
https://doi.org/10.1186/s13058-016-0737-x
https://doi.org/10.18632/oncotarget.16758
https://doi.org/10.18632/oncotarget.18022
https://doi.org/10.1172/JCI44745
https://doi.org/10.3389/fonc.2013.00251
https://doi.org/10.1038/labinvest.2017.41
https://doi.org/10.1038/nrc.2017.69
https://doi.org/10.1038/nature10315
https://doi.org/10.1038/nature10665
https://doi.org/10.1016/j.cell.2016.03.025
https://doi.org/10.1016/j.ebiom.2017.04.009
https://doi.org/10.1016/j.radonc.2009.06.025
https://doi.org/10.1186/s13059-014-0454-7
https://doi.org/10.1172/JCI57088
https://doi.org/10.1093/annonc/
mdx278
https://doi.org/10.1093/annonc/
mdx278
https://doi.org/10.1172/JCI70354
https://doi.org/10.1158/0008-5472.CAN-10-1040
https://doi.org/10.1158/0008-5472.CAN-10-1040
https://doi.org/10.1038/nature14347
https://doi.org/10.1126/science.aai8515
https://doi.org/10.1002/path.4288
https://doi.org/10.1007/s00428-015-1748-1
https://doi.org/10.1007/s00428-015-1748-1
https://doi.org/10.1186/1755-8794-4-54
https://doi.org/10.1126/scitranslmed.aad6352
https://doi.org/10.1007/s00428-010-0917-5
https://doi.org/10.1586/erm.13.14
https://doi.org/10.1136/jcp.2004.016477
https://doi.org/10.1089/bio.2015.0032


10

Stanta and Bonin ITH for Clinical Use

Frontiers in Medicine | www.frontiersin.org April 2018 | Volume 5 | Article 85

95. Saito T, Kondo C, Shitara K, Ito Y, Saito N, Ikehara Y, et  al. Comparison 

of intratumoral heterogeneity of HER2 expression between primary tumor 

and multiple organ metastases in gastric cancer: clinicopathological study 

of three autopsy cases and one resected case. Pathol Int (2015) 65:309–17. 

doi:10.1111/pin.12290 

96. Uzilov AV, Ding W, Fink MY, Antipin Y, Brohl AS, Davis C, et al. Development 

and clinical application of an integrative genomic approach to personalized 

cancer therapy. Genome Med (2016) 8:62. doi:10.1186/s13073-016-0313-0 

97. Schwaederle M, Daniels GA, Piccioni DE, Fanta PT, Schwab RB,  

Shimabukuro KA, et al. On the road to precision cancer medicine: analysis 

of genomic biomarker actionability in 439 patients. Mol Cancer �er (2015) 

14:1488–94. doi:10.1158/1535-7163.MCT-14-1061 

98. Bonin S, Donada M, Bussolati G, Nardon E, Annaratone L, Pichler M, et al. 

A synonymous EGFR polymorphism predicting responsiveness to anti-

EGFR therapy in metastatic colorectal cancer patients. Tumour Biol (2016) 

37:7295–303. doi:10.1007/s13277-015-4543-3 

99. Tan DSW, Chong FT, Leong HS, Toh SY, Lau DP, Kwang XL, et  al. Long 

noncoding RNA EGFR-AS1 mediates epidermal growth factor receptor 

addiction and modulates treatment response in squamous cell carcinoma. 

Nat Med (2017) 23:1167–75. doi:10.1038/nm.4401 

100. Lee WC, Kopetz S, Wistuba II, Zhang J. Metastasis of cancer: when and how? 

Ann Oncol (2017) 28:2045–7. doi:10.1093/annonc/mdx327 

101. Liu J, Adhav R, Xu X. Current progresses of single cell DNA sequencing 

in breast cancer research. Int J Biol Sci (2017) 13:949–60. doi:10.7150/ijbs. 

19627 

102. Martelotto LG, Baslan T, Kendall J, Geyer FC, Burke KA, Spraggon L, et al. 

Whole-genome single-cell copy number pro�ling from formalin-�xed 

para�n-embedded samples. Nat Med (2017) 23:376–85. doi:10.1038/ 

nm.4279 

103. Wang J, Song Y. Single cell sequencing: a distinct new �eld. Clin Transl Med 

(2017) 6:10. doi:10.1186/s40169-017-0139-4 

104. Tang J, Fang F, Miller DF, Pilrose JM, Matei D, Huang TH, et  al. Global 

DNA methylation pro�ling technologies and the ovarian cancer methylome. 

Methods Mol Biol (2015) 1238:653–75. doi:10.1007/978-1-4939-1804- 

1_34 

105. Berbegall AP, Villamon E, Navarro S, Noguera R. Multiplex ligation-de-

pendent probe ampli�cation (MLPA). In: Stanta G, editor. Guidelines for 

Molecular Analysis in Archive Tissues. Berlin, Heidelberg: Springer (2011). 

p. 215–24.

106. Chowdhury B, Cho IH, Hahn N, Irudayaraj J. Quanti�cation of 5-methylcy-

tosine, 5-hydroxymethylcytosine and 5-carboxylcytosine from the blood of 

cancer patients by an enzyme-based immunoassay. Anal Chim Acta (2014) 

852:212–7. doi:10.1016/j.aca.2014.09.020 

107. Cheung KJ, Padmanaban V, Silvestri V, Schipper K, Cohen JD, Fairchild AN, 

et al. Polyclonal breast cancer metastases arise from collective dissemination 

of keratin 14-expressing tumor cell clusters. Proc Natl Acad Sci U S A (2016) 

113:E854–63. doi:10.1073/pnas.1508541113 

108. Diaz LA Jr, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. 

J Clin Oncol (2014) 32:579–86. doi:10.1200/JCO.2012.45.2011 

109. Pantel K, Diaz LA Jr, Polyak K. Tracking tumor resistance using ‘liquid 

biopsies’. Nat Med (2013) 19:676–7. doi:10.1038/nm.3233 

110. Marino FZ, Accardo M, Franco R. CRISPR-barcoding in non small cell 

lung cancer: from intratumor genetic heterogeneity modeling to cancer 

therapy application. J �orac Dis (2017) 9:1759–62. doi:10.21037/jtd.2017. 

06.27 

111. Guernet A, Mungamuri SK, Cartier D, Sachidanandam R, Jayaprakash A, 

Adriouch S, et al. CRISPR-barcoding for intratumor genetic heterogeneity 

modeling and functional analysis of oncogenic driver mutations. Mol Cell 

(2016) 63:526–38. doi:10.1016/j.molcel.2016.06.017 

112. Liu L, Mayes PA, Eastman S, Shi H, Yadavilli S, Zhang T, et al. �e BRAF and 

MEK inhibitors dabrafenib and trametinib: e�ects on immune function and 

in combination with immunomodulatory antibodies targeting PD-1, PD-L1, 

and CTLA-4. Clin Cancer Res (2015) 21(7):1639–51. doi:10.1158/1078-0432.

CCR-14-2339 

113. Penner-Goeke S, Lichtensztejn Z, Neufeld M, Ali JL, Altman AD, Nachtigal MW, 

et al. �e temporal dynamics of chromosome instability in ovarian cancer 

cell lines and primary patient samples. PLoS Genet (2017) 13:e1006707. 

doi:10.1371/journal.pgen.1006707 

114. Stahl P, Seeschaaf C, Lebok P, Kutup A, Bockhorn M, Izbicki JR, et  al. 

Heterogeneity of ampli�cation of HER2, EGFR, CCND1 and MYC in 

gastric cancer. BMC Gastroenterol (2015) 15:7. doi:10.1186/s12876-015- 

0231-4 

115. Grundberg I, Ki�emariam S, Mignardi M, Imgenberg-Kreuz J, Edlund K, 

Micke P, et al. In situ mutation detection and visualization of intratumor het-

erogeneity for cancer research and diagnostics. Oncotarget (2013) 4:2407–18. 

doi:10.18632/oncotarget.1527 

116. Ki�emariam S, Mignardi M, Ali MA, Bergh A, Nilsson M, Sjoblom T.  

In situ sequencing identi�es TMPRSS2-ERG fusion transcripts, somatic 

point mutations and gene expression levels in prostate cancers. J Pathol 

(2014) 234:253–61. doi:10.1002/path.4392 

117. Desai N, Sajed D, Arora KS, Solovyov A, Rajurkar M, Bledsoe JR, et  al. 

Diverse repetitive element RNA expression de�nes epigenetic and immu-

nologic features of colon cancer. JCI Insight (2017) 2:e91078. doi:10.1172/

jci.insight.91078 

118. Gomez D, Shankman LS, Nguyen AT, Owens GK. Detection of histone 

modi�cations at speci�c gene loci in single cells in histological sections. Nat 

Methods (2013) 10:171–7. doi:10.1038/nmeth.2332 

119. Alberts D, Pottier C, Smargiasso N, Baiwir D, Mazzucchelli G, Delvenne P, 

et  al. MALDI imaging-guided microproteomic analyses of heterogeneous 

breast tumors – a pilot study. Proteomics Clin Appl (2018) 12:1700062. 

doi:10.1002/prca.201700062 

Con�ict of Interest Statement: �e authors declare that the research was con-

ducted in the absence of any commercial or �nancial relationships that could be 

construed as a potential con�ict of interest.

Copyright © 2018 Stanta and Bonin. �is is an open-access article distributed under 

the terms of the Creative Commons Attribution License (CC BY). �e use, distribution 

or reproduction in other forums is permitted, provided the original author(s) and the 

copyright owner are credited and that the original publication in this journal is cited, 

in accordance with accepted academic practice. No use, distribution or reproduction 

is permitted which does not comply with these terms.

https://www.frontiersin.org/Medicine
https://www.frontiersin.org
https://www.frontiersin.org/Medicine/archive
https://doi.org/10.1111/pin.12290
https://doi.org/10.1186/s13073-016-0313-0
https://doi.org/10.1158/1535-7163.MCT-14-1061
https://doi.org/10.1007/s13277-015-4543-3
https://doi.org/10.1038/nm.4401
https://doi.org/10.1093/annonc/mdx327
https://doi.org/10.7150/ijbs.19627
https://doi.org/10.7150/ijbs.19627
https://doi.org/10.1038/nm.4279
https://doi.org/10.1038/nm.4279
https://doi.org/10.1186/s40169-017-0139-4
https://doi.org/10.1007/978-1-4939-1804-1_34
https://doi.org/10.1007/978-1-4939-1804-1_34
https://doi.org/10.1016/j.aca.2014.09.020
https://doi.org/10.1073/pnas.1508541113
https://doi.org/10.1200/JCO.2012.45.2011
https://doi.org/10.1038/nm.3233
https://doi.org/10.21037/jtd.2017.06.27
https://doi.org/10.21037/jtd.2017.06.27
https://doi.org/10.1016/j.molcel.2016.06.017
https://doi.org/10.1158/1078-0432.CCR-14-2339
https://doi.org/10.1158/1078-0432.CCR-14-2339
https://doi.org/10.1371/journal.pgen.1006707
https://doi.org/10.1186/s12876-015-
0231-4
https://doi.org/10.1186/s12876-015-
0231-4
https://doi.org/10.18632/oncotarget.1527
https://doi.org/10.1002/path.4392
https://doi.org/10.1172/jci.insight.91078
https://doi.org/10.1172/jci.insight.91078
https://doi.org/10.1038/nmeth.2332
https://doi.org/10.1002/prca.201700062
https://creativecommons.org/licenses/by/4.0/

	Overview on Clinical Relevance of Intra-Tumor Heterogeneity
	Background
	Morpho-Histological ITH
	Clonal ITH
	Nonclonal ITH
	ITH in Metastatic Spread
	Methods to Study ITH
	Sampling
	Extractive Methods
	Liquid Biopsy
	CRISPR Barcoding in Heterogeneity
	Molecular Morphology

	Conclusion
	Author Contributions
	Acknowledgments
	References


