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Abstract: Inflammation is a protective response that develops against tissue injury and infec-
tion. Chronic inflammation, on the other hand, is the key player in the pathogenesis of many 
inflammatory disorders including cancer. The cytokine storm, an inflammatory response flaring 
out of control, is mostly responsible for the mortality in COVID-19 patients. Anti-inflammatory 
drugs inhibit cyclooxygenases (COX), which are involved in the biosynthesis of prostaglandins 
that promote inflammation. The conventional non-steroidal anti-inflammatory drugs (NSAIDs) 
are associated with gastric and renal side-effects, as they inhibit both the constitutive COX-1 and 
the inducible COX-2. The majority of selective COX-2 inhibitors (COXIBs) are without gastric 
side-effects but are associated with cardiac side-effects on long-term use. The search for anti- 
inflammatory drugs without side-effects, therefore, has become a dream and ongoing effort of the 
Pharma companies. As PGE2 is the key mediator of inflammatory disorders, coming up with a 
strategy to reduce the levels of PGE2 alone without affecting other metabolites may form a better 
choice for the development of next generation anti-inflammatory drugs. In this direction the 
options being explored are on synthesis of PGE2-mPGES-1; PGE2 degradation through a specific 
PG dehydrogenase, 15-PGDH, and by blocking its activity mediated through a specific PGE 
receptor, EP4. As leukotrienes formed via the 5-lipoxygenase (5-LOX) pathway also play an 
important role in the mediation of inflammation, efforts are also being made to target both COX 
and LOX pathways. This review focuses on addressing the following three points: 1) How 
NSAIDs and COXIBs are associated with gastric, renal and cardiac side-effects; 2) Should the 
focus be on the targets upstream or downstream of PGE2; and 3) the status of alternative targets 
being explored for the discovery and development of anti-inflammatory drugs without side- 
effects.
Keywords: inflammation, cyclooxygenase, COX, NSAIDs, COXIBs, microsomal PGE 
synthase-1, mPGES-1, 15-hydroxy prostaglandin dehydrogenase, 15-PGDH, 5-lipoxygenase, 
5-LOX

Introduction
Inflammation is the body’s general response to protect itself against injury or 
infection. An acute inflammation process is a short-term reaction, which occurs in 
response to injury or infection. During this phase the immune system releases an 
army of white blood cells to surround and defend the area, leading to a visible 
redness and swelling. In view of this, inflammation is crucial; without it, simple 
infections could be dangerous. A prolonged or chronic inflammation, on the other 
hand, is the root cause of many inflammatory disorders, including cancer.
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The prostaglandin (PG) biosynthesis or cyclooxygen-
ase (COX) pathway is an essential component of inflam-
matory responses, generating a class of physiologically 
active lipid mediators called prostanoids. The COX path-
way is activated by lipopolysaccharides (LPS),1 

cytokines,2 xenobiotics, including metal compounds3,4 

and fluoride.5,6 Membrane bound unsaturated 20-carbon 
containing fatty acid, arachidonic acid (AA), is the most 
predominant precursor for PG biosynthesis. A variety of 
stimuli, both physiological as well as pathological, lead to 
the release of AA by the action of various phospholipases, 
gets oxygenated via COX, lipoxygenase (LOX), and cyto-
chrome P450 dependent monooxygenase (MOX) 
enzymes7 to generate prostaglandins (PGs), leukotrienes 
(LTs) and epoxy eicosatrienoic acids (EETs), collectively 
termed as eicosanoids. In the case of PGs formed via the 
COX pathway, AA is initially converted to an unstable 
prostaglandin G2 (PGG2), which is further reduced by the 
peroxidase activity of the same enzyme to a stable pros-
taglandin H2 (PGH2). PGH2 is further converted to biolo-
gically active PGs such as prostaglandin D2 (PGD2), 
prostaglandin E2 (PGE2), prostaglandin F2α (PGF2α), pros-
tacyclin (PGI2), and thromboxane A2 (TxA2) by the action 
of various cell-specific terminal synthases.8

Among these PGs, PGE2 is the major inflammatory 
mediator and its biological actions are mediated by signal-
ing via various G-protein coupled receptors, which 
include EP1 (405 aa), EP2 (362 aa), EP3, and EP4 (513 
aa). EP3 has multiple splicing isoforms such as EP3α (366 
aa), EP3β (362 aa), and EP3γ (365 aa). The distribution and 
relative abundance of these receptors vary, for example, in 
mouse EP2 is the least abundant receptor, while EP3 and 
EP4 are the most dominant (widely distributed) receptors, 
and EP1 mRNA is restricted to organs such as the kidneys, 
stomach, and lungs.9,10 Their signaling mechanism 
involves G-protein mediated activation of downstream 
targets such as kinases via second messengers such as 
cAMP, Ca2+, and inositol phosphates. EP1 induces Ca2+ 

elevation with activation by agonist via unidentified G 
protein, whereas EP2 and EP4 receptors couple Gs for 
their biological action by a raise in cAMP levels. EP3, 

which exists in multiple splicing isoforms,9 inhibits ade-
nylyl cyclase by coupling with Gi, leading to a decrease in 
cAMP levels. In humans, PGs are important physiological 
mediators, hence the dysregulation of its synthesis has 
links with inflammation, pain, cancer, cardiovascular dis-
ease, asthma, osteoporosis, male sexual dysfunction, etc.11 

As a result, the COX, catalyzing the first step in the 

biosynthesis of PGs, has become the target for developing 
anti-inflammatory drugs.

Nonsteroidal Anti-Inflammatory 
Drugs (NSAIDs) and Their Targets
Many of the available anti-inflammatory drugs are non- 
steroidal in nature (NSAIDs) and target COX isoforms as 
part of their therapeutic action. The Greek physician 
Hippocrates used an extract of willow bark and leaves in 
the treatment of fever and inflammation for the first time 
about 3,500 years ago. Later on, the active compound of 
the extract was identified as salicylic acid in the 17th 

century. Acetylsalicylic acid, the acetyl derivative of sal-
icylic acid (aspirin), was introduced in 1869 by Bayer,12 

but the mode of action was unknown when the drug was 
out in the market. After almost a century, the molecular 
mechanistic role of aspirin was studied by Vane13 and 
colleagues, and the findings that all these NSAIDs inhibit 
the COX enzyme have now become a platform for devel-
oping novel NSAIDs. The most common side-effects asso-
ciated with these NSAIDs, the extent of which varies 
depending on the type of NSAID, are gastrointestinal 
symptoms such as stomach pain, constipation, diarrhea, 
stomach ulcers, etc. In addition, kidney and liver problems 
have also been reported.14 Though these classical NSAIDs 
such as aspirin, indomethacin, ibuprofen, etc. have been in 
use for more than a century, it is not clear how these 
therapeutic and side-effects are being mediated by 
NSAIDs simultaneously.

With the discovery of an inducible isoform of COX, 
COX-2,15,16 it became very clear that there are two iso-
forms of COX, the constitutive isoform, COX-1, which is 
cytoprotective and mediates various physiological func-
tions while the inducible isoform; and COX-2, which is 
the mediator of inflammation. The classical NSAIDs inhi-
bit both the isoforms of COX – COX-1 and COX-2. This 
discovery of COX-2 has led to the development of selec-
tive COX-2 inhibitors (COXIBs); celecoxib, co-developed 
by G. D. Searle and Pfizer in 1999, followed by rofecoxib 
by Merck, and many others subsequently, which became 
the block buster drugs.

Current Targets and Their 
Limitations
As pointed out above the NSAIDs in general have gastric 
and renal side-effects. Aspirin was shown to cause damage 
in the gastric system in a rat model by decreasing the 
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plasma membrane protein of tight junctions, occludin 
expression, which was reversed by pretreatment with 
another drug mosapride.17 High-dose of ibuprofen caused 
jejunal perforations even in short-courses.18 Another anti- 
inflammatory drug, naproxen, causes gastric antral ulcera-
tions, and an increase of lipid peroxide levels, but the 
effect was reversed with curcumin.19 Similarly perforated 
jejunal ulcers20 and small bowel ulcerations21 have been 
reported with the usage of NSAIDs. The simultaneous use 
of proton pump inhibitors and non-selective short-course 
NSAIDs increases the risk of bowel injury.22 Similarly a 
combination of ibuprofen and acetaminophen causes kid-
ney and liver problems even at a therapeutic dosage.23,24 

Another drug, rofecoxib, is associated with increased renal 
and arrhythmia risks.25 Diclofenac, an NSAID, has also 
been found to increase the risk of heart attacks and strokes 
by 50% within days of ingestion. This study, performed in 
around 6.3 million cases over a period of 20 years from 
1996–2016,26 also reported that the drug causes a lot of 
acidity and gastric intolerance in Indian patients. The 
adverse reactions with NSAIDs are high in patients who 
are under long-term medication and these adverse effects 
were attributed due to the targeting COX-1 enzyme, which 
is cytoprotective.

The COX-2 selective drugs, COXIBs, became the most 
preferred anti-inflammatory drugs as they have good anti- 
inflammatory activity, and some exhibited reduced gastro-
intestinal toxicity.27,28 However, very soon it became clear 
that COXIBs are associated with cardiac side-effects on 
long-term use in arthritic patients.29,30 As a result, some of 
the COXIBs such as rofecoxib were withdrawn from the 
market while others like celecoxib are still on the market 
with a warning label for use in patients with cardiovascu-
lar problems.31 Though COX-2 was originally identified in 
inflammatory tissues, it is now evident that it is also 
expressed constitutively in tissues like kidney, brain, and 
testis.32,33

The side-effects associated with COXIBs were attrib-
uted to the simultaneous reduction of prostacyclin, also a 
product of COX-2, which is a natural inhibitor of platelet 
aggregation and also involved in renal hemodynamics, and 
the control of blood pressure.30 Also the inhibition of 
COX was shown to shunt the arachidonic acid metabolism 
towards the 5-LOX pathway, leading to increased levels of 
leukotrienes, which were also a contributing factor for the 
side-effects of COX inhibitors.34–36 With these develop-
ments the search has begun for anti-inflammatory drugs 
without gastric and cardiac side-effects. The new era of 

anti-inflammatory agents that have emerged include NO- 
NSAIDs, Biologicals, cytokine inhibitors, etc, which are 
out of the scope of the present review. This review will 
focus particularly on the targets of eicosanoid pathways, 
which are at different stages of development.37

COX-2/5-LOX Dual Inhibitors Spare 
Gastrointestinal and Cardiac Side- 
Effects?
In addition to the key role of biologically active prosta-
glandins formed through the cyclooxygenase pathway in 
inflammation, there is a growing body of information on 
the involvement of other arachidonic acid metabolites such 
as leukotrienes formed via the 5-lipoxygenase pathway.38 

Though several molecules have been developed with the 
objective of COX/LOX dual inhibitors, none of them 
reached the market in view of their unfavorable 
toxicity.34,39

In this direction the German pharmaceutical company, 
Merckle GmbH, together with Euro Alliance partners Alfa 
Wassermann and Lacer, developed licofelone (ML3000), 
which is a COX/LOX dual inhibitor, the first member of 
this new class of analgesic and anti-inflammatory drugs.40 

It was shown to decrease the production of proinflamma-
tory PGs and LTs with the potential to combine good 
analgesic and anti-inflammatory effects with excellent gas-
trointestinal tolerability.41 It is currently under evaluation 
for the treatment for osteoarthritis (OA), the most common 
form of arthritis. Although Phase III trials have been 
successfully completed in OA patients no dates for regu-
latory submission have been given (https://www.clinical 
trialsarena.com/projects/licofelone/).42 Later studies indi-
cate that licofelone suppresses PGE2 formation by inhibit-
ing mPGES-1, in addition to inhibition of COX-1 and 
COX-2.43 Our studies in this direction have resulted in 
the isolation of a natural product, chebulagic acid isolated 
from Terminalia chebula and 6-hydroxy salvinolone iso-
lated from the roots of Premna integrifolia with COX-2/5- 
LOX dual inhibition and with potent anti-inflammatory 
and anticancer effects.44–46 However, further well- 
designed pre-clinical and clinical trials are required for 
evaluation of their efficacy and safety and further 
development.

Thus, the evolution of anti-inflammatory drugs, target-
ing COX and/or LOX enzymes, ie, from NSAIDs to 
COXIBs to CLOXIBs, have not resulted in the develop-
ment of anti-inflammatory drugs without side-effects.47 
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Hence there is a need to explore novel targets for the 
development of anti-inflammatory drugs without side- 
effects.

Prostaglandins and Inflammation: 
Search for Novel Anti-Inflammatory 
Drug Targets
In view of several complications reported with anti-inflam-
matory drugs targeting COX and LOX enzymes, there is a 
need for alternate target(s) for treatment of inflammatory 
disorders. The COX enzyme is responsible for the forma-
tion of a stable intermediate, PGH2, which forms the 
precursor for the formation of prostaglandins (PGE2, 
PGF2a, PGD2, TXB2, PGI2, etc.) by tissue-specific 
enzymes.8 By targeting COX and/or LOX pathways, as 
seen in NSAIDs, COXIBs, and CLOXIBs, they not only 
block the formation of PGE2-, the major mediator of 
inflammation, but also block the formation of other down-
stream metabolites, which are essential for homeostatic 
functions.48,49 Also targeting these PLA2 or COX path-
ways is known to affect the production of histamine.50 

Hence, the selection of a target and its validation in 
terms of other linked functions is very essential to come 
up with safe and effective drugs.

Targeting PGE2: The Possible 
Effects and Limitations
It is recognized that the key lipid mediator that is 
involved in chronic inflammation is PGE2, which has 
been implicated in tumor development.51 Also, PGE2 is 
a key PG that mediates several biological functions, such 
as blood pressure, fertility, immune responses, etc. Its 
action is mediated through the G-protein-coupled recep-
tors, EP1-4.52 Dysregulation of PGE2 production is also 
linked with several complications.53 As a result, PGE2 

metabolism and signaling formed as one of the areas 
being investigated actively so as to identify the most 
ideal therapeutic target (Figure 1). The significant eleva-
tion in microsomal PGE Synthase (mPGES) level has 
been observed in patients with myositis54 and gastric 
ulcers.55 Based on these studies, it is very clear that 
PGE2 is the major mediator of inflammation and hence 
the enzymes involved in PGE synthesis are being 
explored for development of anti-inflammatory drugs.56

The synthesis of PGE2 from endoperoxide PGH2 is 
mediated by prostaglandin E synthases (PGES). There 
are three different PGE synthases such as cytosolic PGE 

synthase (cPGES) and two membrane-bound PGE 
synthases, mPGES-1 and mPGES-2. Of these, mPGES-2 
and cPGES are constitutive enzymes, whereas mPGES-1 
is an inducible enzyme. While mPGES-2 and cPGES are 
responsible for maintenance of constitutive levels of 
PGE2, mPGES-1 is mainly responsible for the synthesis 
of enhanced levels of PGE2 during inflammation. While 
COX-1 and cPGES function in coordination to maintain 
constitutive levels of PGE2, COX-2 and mPGES-1 are 
responsible for elevated levels of PGE2 under inflamma-
tory conditions.57 Unlike NSAIDs, inhibitors of mPGES- 
1, which reduces the PGE2 production without affecting 
the synthesis of other PGs, may form better anti-inflam-
matory drug candidates without side-effects. Especially, 
mPGES-1 is the only inducible enzyme and in many 
pathological conditions it is co-induced with COX-2.58 

Also, mPGES-1 is having an association in other inflam-
matory diseases of the brain such as ischemic stroke, 
Alzheimer’s disease, Parkinson’s disease, epilepsy, brain 
cancer, etc.58

Overexpression of mPGES-1 was reported in several 
types of cancers such as colorectal, gastric adenoma, gastric 
cancer, breast cancer, pancreatic cancer, papillary thyroid, 
ovarian cancer, head and neck cancer, lung cancer, etc.59 The 
in vitro/in vivo models with mPGES-1 knockout, RNA 
interference with siRNA or genetic deletion have a negative 
effect on tumor growth, which collectively indicates a role 
for mPGES-1 in cancer.59 The rest of the PGE synthases are 
constitutively expressing enzymes and may not form good 
targets for anti-inflammatory drug development. Bergqvist 
et al60 reported recently how selective inhibitors of mPGES- 
1 are beneficial. They have shown that mPGES-1 inhibitor, 
CIII, decreased PGE2 production and increased PGF2α and 
TXB2 whereas NS-398 (COX-2 inhibitor) blocked the entire 
PGs production in A549 lung cancer cells. Hence, the selec-
tive inhibitors of mPGES-1, reducing the production of only 
PGE2 with no effects on other PGs, may form a better target 
for the development of anti-inflammatory drugs without 
side-effects.

mPGES-1: A Better Target?
The mPGES-1, the terminal enzyme involved in the produc-
tion of inducible prostaglandin E2, has become an attractive 
target for development of anti-inflammatory drugs. It is a 
homo trimer with three subunits of 16 kDa each with 152 
amino acids. Microsomal prostaglandin E synthase-1, a 
membrane associated protein, is a member of the 
Membrane Associated Proteins in Eicosanoid and 
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Glutathione metabolism (MAPEG) super family.59 MAPEG 
proteins are small proteins of 14–18 kDa and have a similar 
3D structure. mPGES-1 is the terminal enzyme in the bio-
synthesis of PGE2. The first report on selective inhibitors of 
mPGES-1 came from the group of Riendeau et al61 in 2005, 
where they have shown a reduction in levels of PGE2 in IL- 
1β induced A549 cells.61 In contrast to COX-2 inhibition, 
mPGES-1 inhibition was associated with lower risk of car-
diovascular side-effects, as it results in increasing PGI2 

levels.62 Recently, Eli Lilly developed a compound inhibiting 
mPGES-1, LY3031207, but the study was terminated after in 
Phase I trial in view of drug induced liver injury.63 Glenmark 
Pharmaceuticals molecule, GRC 27864, a potent, selective, 
and orally bioavailable inhibitor of mPGES-1, is currently in 
Phase II clinical trials for evaluation of efficacy and safety in 
patients with moderate osteoarthritic pain (https://www. 

prnewswire.com/in/news-releases/glenmark-initiates-phase- 
iib-dose-range-finding-study-for-novel-molecule-grc- 
27864-669501853.html).64 These details and the progress in 
the development of mPGES-1 inhibitors over time have been 
reviewed recently.65

As of today there are no approved inhibitors of mPGES-1 
in clinical practice due to different issues with the com-
pounds themselves.66 In another study, Ding et al67 have 
developed a molecule based on a structure-based design of 
mPGES-1 inhibitors, which was found to be orally bioavail-
able and effective against both human and mouse mPGESs. 
Also, DREAM-in-CDM (Drug Repurposing Effort Applying 
Integrated Modeling-in vitro/in vivo-Clinical Data Mining), 
is another novel approach for structure-based screening of 
FDA-approved drugs against mPGES-1 drug repurposing.68 

For example, lapatinib, a known anti-cancer drug, was 

Figure 1 Cyclooxygenase pathway showing the formation of PGE2 and other metabolites. Inhibition of both COX-1 and COX-2 non-selectively by NSAIDs (green triangles) 
and selective inhibition of COX-2 by COXIBs (red triangles) is also shown. The potential targets in the COX pathway at various levels – Synthesis (1), Catabolism (2) and 
Signaling (3) are also indicated. 
Abbreviations: COX, cyclooxygenase; PGG2, prostaglandin G2; PGD2, prostaglandin D2; PGE2, prostaglandin E2; PGI2, prostacyclin; PGF2, prostaglandin F2α; TXA2, 
thromboxane A2.
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identified as a potent inhibitor of mPGES-1, using this novel 
approach, and it can be used in treatment of inflammation, 
pain, and inflammation-related diseases.68 Design and devel-
opment of a specific inhibitor of mPGES-1 is a challenging 
task as there are interspecies differences in the structure of 
mPGES-1 in humans and rodents. Also, the structural simi-
larity of the mPGES-1 with others like Huntingtin interacting 
protein 12, microsomal glutathione-S-transferase (GST)-1- 
like 1 and protein tyrosine kinase 2 beta (PTK2B),59 makes 
the task much more challenging.

mPGES-1/5-LOX Dual Inhibitors
As discussed, the NSAIDs, COXIBs, and COX/5-LOX dual 
inhibitors (CLOXIBs), being used in the treatment of many 
inflammatory diseases, are associated with gastrointestinal, 
renal, and cardiovascular problems, as they are involved in 
blocking not only the PGE2 formation but also are inhibiting 
the formation of cytoprotective prostacyclin and other eico-
sanoids. In light of the above, attempts are being made to 
target microsomal prostaglandin E synthase-1 (mPGES-1) 
and 5-LOX, so as to spare COXs and thus the cytoprotective 
PGs. Several mPGES-1 inhibitors are being developed as 
potential candidates for the treatment of inflammatory dis-
orders, including cancer.59,69,70 Licofelone, originally iden-
tified as a dual inhibitor blocking both COX and 5-LOX 
pathways, has also been shown to inhibit mPGES-1 activity 
with an IC50 value of 6 μM.43 Compared to licofelone, 
which inhibits both COXs and 5-LOX, mPGES-1/5-LOX 
dual inhibitors spare COX1/2 and thus may form better 
candidates for the development of next generation anti- 
inflammatory drugs. Further in-depth studies, however, are 
required to evaluate their efficacy in treating various inflam-
matory disorders and their safety.

Limiting the PGE2 Levels: Role of 
15-Hydroxyprostaglandin 
Dehydrogenase (15-PGDH)
As pointed above, PGE2 has been identified as the key 
mediator of inflammation and as a result the enzymes limit-
ing the formation of PGE2 have been exploited as the targets 
for the discovery and development of anti-inflammatory 
drugs: at PLA2 level, steroidal; COX-1 and/or -2 -non-ster-
oidal/COX-2 specific; mPGES level. However, the effective 
level of PGE2 in the tissues ultimately depends on its rate of 
formation or anabolism and its rate of degradation or cata-
bolism. The key enzyme involved in the catabolism of PGE2 

has been identified as 15-PGDH (15-Hydroxyprostaglandin 

dehydrogenase). In fact, recent reports indicate the impor-
tance of PGE2 catabolism, on various inflammatory disor-
ders, including cancer.71 15-hydroxy prostaglandin 
dehydrogenase (15-PGDH), a dimer with a molecular weight 
of 25–29 kDa, catalyzes the reversible oxidation of the 15- 
hydroxyl group of prostaglandins to produce a 15-keto meta-
bolite with reduced biological activity.72 It exists in two 
isoforms, PGDH-1 and 15-PGDH-2. PGDH-1, NAD+ 

dependent enzyme, catalyzes the conversion of PGE2 to 15- 
keto-PGE2. 15-PGDH-2, on the other hand, is NADP+ 

dependent and has a much broader range of substrates and 
can also use NAD+ as a cofactor.72 Contrary to COX-2 which 
is being overexpressed in lung and many other tumors, 15- 
PGDH was found to be under-expressed. In inflammation 
associated human colon cancer upregulation of PGE2 is 
considered as a key event.73 15-PGDH a PGE2 catabolizing 
enzyme is downregulated in colon cancer.74 15d-PGJ2, a 
peroxisome proliferator activated receptor-γ ligand, which 
has anticarcinogenic activities, upregulates the expression 
of 15-PGDH in the HCT119 human colon cancer cell line.75 

15-PGDH and miR-21 are inversely correlated in colorectal 
cancer (CRC) patients. It has been reported that dysregulated 
expression of miR-21 contributes to the loss of PGDH 
expression and promotes CRC progression via accumulation 
of PGE2.76 miR-21 also induces loss of 15-PGDH in early 
gastric tubular adenocarcinoma.77 It was shown that inhibi-
tion of 15-PGDH enhances KRAS-driven tumor progression 
via all -trans retinoic acid (ATRA) depletion in the pancreas.-
78 Thus, downregulation of 15-PGDH expression in lung and 
other tumors suggest that this enzyme is a tumor suppressor. 
Docosahexaenoic acid (DHA), a polyunsaturated fatty acid 
of omega 3 class, significantly reduces PGE2 levels in line 
with upregulation of 15-PGDH in endothelial cells.79 It was 
revealed that NAD+ triggered reactive oxygen species (ROS) 
mediate degradation of 15-PGDH and drove cells to undergo 
EMT transition.80 It was shown that 15-PGDH-derived 15- 
keto-PGE2 from hepatocytes is able to activate PPAR-γ and 
inhibit inflammatory cytokine production in Kupffer cells 
and that this paracrine mechanism negatively regulates the 
LPS-induced necro-inflammatory response in the liver.81

In addition to its pro-inflammatory and pathogenic role, 
PGE2 is an important mediator for bone formation, gastric 
ulcer healing, and dermal wound healing. Elevation of 
PGE2 using a 15-PGDH inhibitor was proved to be valu-
able for the management of diseases that require elevated 
PGE2.82 Inhibitors of 15-PGDH are anticipated to elevate 
the in vivo levels of PGE2 and promote healing and tissue 
regeneration.83 PGDH inhibition attenuated acute 
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inflammation and weight loss and decreased mortality in 
murine pulmonary fibrosis.84 7,3ʹ,4ʹ-Trimethoxyflavone 
(TMF), a potent inhibitor of 15-PGDH, facilitated in 
vitro wound healing in a HaCaT cell scratch model, 
which was completely inhibited by adding both 15- 
PGDH and NAD+ as a cofactor, confirming the involve-
ment of PGE2 in its wound healing effect.85 Recently it 
was shown that inhibition of 15-PGDH could alleviate 
LPS-induced acute kidney injury by regulating the apop-
tosis, autophagy, and oxidative stress rather than inflam-
mation in mice.86

The foregoing studies clearly indicate that 15-PGDH is 
weakly expressed in many types of inflammatory disorders 
and cancers, where COX-2 and mPGES-1 are overexpressed. 
Such a situation eventually leads to accumulation of PGE2 

levels and disease manifestation. As a result, the pharmaco-
logical inhibition of 15-PGDH, which elevates PGE2 levels, 
may not be a right choice for treating inflammatory disorders. 
On the contrary agents which induce 15-PGDH could be 
explored for the treatment of inflammatory disorders. This 
in fact appears to be the mechanism by which many of the 
disease modifying anti-rheumatic drugs (DMARDs) like 
hydroxychloroquine bring in therapeutic efficacy in osteo 
arthritis and rheumatoid arthritis, where 15- 
Hydroxyprostaglandin dehydrogenase is upregulated.87 

Similarly, the beneficial effects of hydroxychloroquine in 
the case of COVID-19 patients may also be mediated through 
similar induction of 15-PGDH and decreased PGE2 levels. 
However, the impact of long-term use of such DMARDs on 
normal physiological functions requiring high levels of PGE2 

such as bone formation, gastric ulcer healing, and dermal 
wound healing needs to be assessed. In such a scenario the 
alternative target which will not affect other normal functions 
could be the specific receptors of PGE2, which mediate 
inflammatory responses.

PGE2 (EP) Receptors as Potential 
Targets
The targets discussed so far, starting from PLA2, COX, 
and/or LOX, mPGES-1, 15-PGDH, mediate not only 
inflammatory pathogenesis but also are involved in key 
homeostatic functions. As a result, it is quite expected to 
have therapeutic efficacy on one side and side-effects on 
the other. Hence there is a need to identify a target that is 
exclusively involved in mediating inflammatory patholo-
gies. In this direction the PGE2 receptor(s) mediating the 
inflammatory responses may form the right choice.

Prostaglandins mediate their effects through a class of 
G-protein-coupled receptors (GPCRs). PGE2 also mediates 
its effects through GPCRs, EP 1–4, which are expressed 
tissue specifically.52 Among these four receptors, the EP3 

and EP4 have high affinity towards PGE2, while the EP1 

and EP2 receptors are activated only by the high levels of 
PGE2. In view of their pathogenic link with inflammation 
and cancer, the antagonists of EP receptors have become 
potential drug targets and constitute an intense area of 
research in anti-inflammatory drug discovery.88

The developments on the therapeutic roles of EP recep-
tor ligands have recently been reviewed10 in diseases such 
as Ulcerative colitis (EP4 agonists: rivenprost, KAG-308, 
ONO-AE1-329), Glaucoma and intraocular hypertension 
(EP2 agonist: taprenepag isopropyl), Solid tumors (EP4 
antagonists: grapiprant, ONO-AE3-208, GW627368X, 
AH23848), Colorectal cancer (EP1 antagonist: ONO- 
8711 and EP4 antagonist: ONO-AE-227), Cardiovascular 
diseases (EP3 agonists: GR 63799X, MB-28767, ONO- 
AE-248, TEI-3356, and EP4 agonists: EP4RAG), etc. 
From these studies it is observed that EP4 receptor antago-
nists show greater potential in treating pain, inflammation, 
and solid tumors.10 Hence it is important to solve the EP 
receptors (even ligand-bound EP receptors) structures in 
high resolution for rational drug design. It is also impor-
tant to develop antagonists specific to EP4, which is the 
key receptor mediating inflammatory disorders, without 
affecting other receptors of PGE2, which mediate homeo-
static functions of PGE2. Targeting EP receptors thus 
appear promising, but safety profiles of these targets 
have not been studied.89 Further in-depth studies on the 
efficacy and safety of targeting EP receptors may form 
rewarding exercise for the Pharma companies.

Conclusions and Future Directions
In conclusion, the discovery and development of anti-inflam-
matory drugs is mostly based on targeting prostaglandin 
biosynthesis, to limit the formation of Prostaglandin E2 via 
the cyclooxygenases. This approach though resulted in put-
ting forth a number of drugs into the market, it has major 
limitations due to the undesirable side-effects. Hence there is 
now a shift in identifying the targets downstream of COXs, 
which limit the levels of PGE2 or block its specific receptors. 
Also, efforts are being made for simultaneous targeting of the 
5-LOX pathway which is involved in the formation of 
inflammatory leukotrienes. The efforts made so far in this 
direction include:
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a. Inhibitors of Phospholipases, which are involved in the 
release of arachidonic acid from membrane phospholipids.

b. Inhibitors of the COX enzymes – (NSAIDs).
c. Specific COX-2 (COXIBs) and COX-2 and 5-LOX 

dual inhibitors (CLOXIBs).
The drugs developed in this direction, though approved 

and in the market, have undesirable side-effects, as they 
affect the formation of other key metabolites mediating 
physiological functions. The focus, therefore, is now on 
downstream targets such as:

(a) PGE synthases, specifically the inducible isoform – 
mPGES-1.

(b) Enzymes involved in the metabolism of PGE2, 
specifically 15-PGDH.

(c) PGE receptors, specifically EP4 which mediates 
inflammation.

Figure 2 summarizes the past, present, and future drug 
targets for the discovery and development of anti-inflam-
matory drugs. Hopefully, some of these novel approaches 
might lead to next generation anti-inflammatory drugs 
with enhanced efficacy and safety in the near future.

Abbreviations
AA, arachidonic acid; COX, cyclooxygenase; COX-1, 
cyclooxygenase-1; COX-2, cyclooxygenase-2; mPGES-1, 
microsomal prostaglandin E synthase-1; mPGES-2, micro-
somal prostaglandin E synthase-2; cPGES, cytosolic prosta-
glandin E2 synthase; PGs, prostaglandins; PGE2, 

prostaglandin E2; 15-PGDH, 15-hydroxyprostaglandin dehy-
drogenase; LOX, lipoxygenase; NSAIDs, non-steroidal anti- 
inflammatory drugs; COXIBs, cyclooxygenase-2 specific 
inhibitors; EP1, EP2, EP3 & EP4, E prostanoid receptor sub-
types 1,2,3 and 4; PGG2, prostaglandin G2; PGH2, 

Figure 2 The metabolism of arachidonic acid via the cyclooxygenase and lipoxygenase pathways showing the possible up-stream (A), down-stream (B), and combination 
targets (C) for the discovery and development of anti-inflammatory drugs. 
Abbreviations: COX1, cyclooxygenase 1; COX2, cyclooxygenase 2; NSAIDs, non-steroidal anti-inflammatory drugs; COXIBs, COX-2 inhibitors; mPGES, microsomal 
prostaglandin E synthase; cPGES, cytosolic prostaglandin E2 synthase; 15-PGDH, 15-hydroxyprostaglandin dehydrogenase; EP4, prostaglandin E2 (PGE2) receptor-4.
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prostaglandin H2; PGD2, prostaglandin D2; PGF2α, prosta-
glandin F2α; PGI2, prostacyclin; TxA2, thromboxane.
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