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Distributed Denial of Service (DDoS) attacks are one of the biggest concerns for security professionals. Traditional middle-box
based DDoS attack defense is lack of network-wide monitoring �exibility. With the development of so	ware-de
ned networking
(SDN), it becomes prevalent to exploit centralized controllers to defend against DDoS attacks. However, current solutions su�er
with serious southbound communication overhead anddetection delay. In this paper, we propose a cross-planeDDoS attack defense
framework in SDN, called OverWatch, which exploits collaborative intelligence between data plane and control plane with high
defense e�ciency. Attack detection and reaction are two key procedures of the proposed framework. We develop a collaborative
DDoS attack detection mechanism, which consists of a coarse-grained �ow monitoring algorithm on the data plane and a 
ne-
grainedmachine learning based attack classi
cation algorithm on the control plane.We propose a novel defense strategy ooading
mechanism to dynamically deploy defense applications across the controller and switches, by which rapid attack reaction and
accurate botnet location can be achieved. We conduct extensive experiments on a real-world SDN network. Experimental results
validate the e�ciency of our proposed OverWatch framework with high detection accuracy and real-time DDoS attack reaction,
as well as reduced communication overhead on SDN southbound interface.

1. Introduction

Distributed Denial of Service (DDoS) attacks in TCP/IP
networks are typically explicit attempts to disrupt legitimate
users access to services, which are o	en launched by botnet
computers that are simultaneously and continuously sending
a large number of service requests to the victims [1]. �e vic-
tims either respond so slowly as to be unusable or crash com-
pletely. According to Arbor Networks, which o�ers services
to protect against DDoS attacks, they observed over 124,000
DDoS attacks per week since 2016, and they believe this
number is growing rapidly [2]. Besides, since breaking the
100Gbps barrier in 2010, DDoS attacks are also increasing in
size, making themmore and more di�cult to defend against.
�erefore, protecting network-wide resources from these
frequent and large volume DDoS attacks necessitates the
research community to focus on developing high-e�cient de-
fense frameworks that can be appropriately deployed in time.

Former DDoS attack defense in traditional networks in-
volves the use of middle-box devices, which are generally

complicated integration of customized hardware and so	-
ware [3–6]. Although they are superior in defense perfor-
mance, it is found that middle-box based DDoS attack detec-
tion is in�exible with network evolution, for example, hard to
support new network architectures or protocols. Moreover,
these devices are usually independently deployed in a net-
work and have di�erent communication interfaces. �is hin-
ders them from a holistic perception of network status, which
is becoming extremely critical for network-wide defense
against increasingly frequent and large volume DDoS attacks
[7].

Recently, extensive research e�orts have been conducted
to apply so	ware-de
ned networking (SDN) in diagnosing
and defending DDoS attacks in a global point of view [8–12].
Di�erent from traditional networks and information-centric
networks (ICN) [13], in which the forwarding and routing
decision can only be made locally, the centralized controller
in SDN can quickly install reaction rules on switches and
run DDoS attack defense applications without additional
cost of middle-box devices. In this context, DDoS attacks
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can be detected and defeated in an early stage. However,
existing approaches which build DDoS attack defense appli-
cations upon the control plane are challenging to provide
high defense performance. On the one hand, DDoS attack
detection methods o	en require analysis techniques that are
more advanced than de facto SDN data plane allows. �us,
the controller needs to poll �ow statistics or packets from
data plane switches frequently for attack detection and botnet
location [8, 10, 14, 15], which increases southbound overhead
and detection delay signi
cantly. On the other hand, the
potential advantages in exploiting collaborative intelligence
of SDN have not been well investigated as e�ective DDoS
attack defense requires extremely accurate detection and rap-
id reaction in both.Otherwise, itmay result in SDNcontroller
saturation attack in the worst case, as discussed in [16, 17].

In this paper, in order to protect hosts and servers from
high volume DDoS attacks inside a particular network (e.g.,
autonomous system), we design and implement a high-
ef
cient cross-plane DDoS attack defense framework with
collaborative intelligence in a pure SDN environment, called
OverWatch. OverWatch overcomes the aforementioned
problems of existing SDN-based methods by collaboratively
splitting defense functionalities across data plane and control
plane and enabling both planes with abilities to intelligently
detect and react to DDoS attacks in cooperation. �e main
di�erence between traditional frameworks in SDN and
OverWatch is that we take the data plane into consideration
for cross-plane optimization. In the proposed OverWatch
framework, defense procedure is divided into two phases:
detection phase and reaction phase.

In the detection phase, a lightweight �ow monitoring
algorithm is proposed to serve the data plane as DDoS attack
sensor. We focus on two key features of DDoS attack tra�c:
volume feature and asymmetry feature. �e proposed �ow
monitoring algorithm captures DDoS attack tra�c in a
coarse-grained manner by polling the values of SDN switch
counters. On the control plane, a machine learning based
DDoS attack classi
er and a botnet tracking algorithm are
utilized to locate a DDoS attack in 
ner granularity, for exam-
ple, attack type and botnet locations. Speci
cally, features
extracted from attack tra�c and holistic information of the
network are fed into DDoS attack classi
er and botnet
tracker, respectively, to determine the attack type and botnet
locations.

In the reaction phase, based on the results obtained from
the detection phase, a novel defense strategy ooadingmech-
anism is proposed to enable DDoS attack defense actuators to
be executed on the SDN switches automatically. �us, SDN
controller can be free from conducting speci
c defensive
actions, resulting in a dynamic attack reaction e�ciency.
More speci
cally, we concentrate on exploiting the com-
putational resources of switch CPUs and the �exibility of
southbound interface, in order to deploy defense actuators on
the switches which are closest to the botnet.

�e main contributions of this paper can be summarized
as follows:

(i) We design a cross-plane DDoS attack defense frame-
work in SDN that exploits collaborative intelligence

between data plane and control plane with high
defense e�ciency.

(ii) We develop a collaborative DDoS attack detection
mechanism, which consists of a coarse-grained �ow
monitoring algorithm on the data plane and a 
ne-
grained machine learning based attack classi
cation
algorithm on the control plane.

(iii) We propose a novel defense strategy ooadingmech-
anism to dynamically deploy defense applications
across the controller and switches, by which rapid
attack reaction and accurate botnet location can be
achieved.

(iv) We conduct extensive experiments on a real-world
network with a FPGA-based OpenFlow switch proto-
type, a Ryu controller, and laptops generating DDoS
attack tra�c. Experimental results validate the e�-
ciency of our proposed OverWatch framework with
high detection accuracy and real-time DDoS attack
defending reaction, as well as reduced communica-
tion overhead on SDN southbound interface.

�e rest of this paper is organized as follows. Section 2
covers background and motivation of this paper. Section 3
presents the architecture of our proposed OverWatch frame-
work. Sections 4 and 5 are mechanisms of two phases (detec-
tion phase and reaction phase) in OverWatch. Section 6
presents the experimental results. Finally, this paper is con-
cluded in Section 7.

2. Background and Motivation

2.1. Middle-Boxes Based Defense Mechanisms. Characteris-
tics of DDoS attacks have been widely studied, and research-
ers have proposed various methods to detect/defend DDoS
attacks. Traditionally, DDoS attack defense applications are
deployed on middle-box devices [3, 4, 19], which are special-
ized equipment or so	ware that detects and reacts to DDoS
attacks from a single spot on the network. �e middle-boxes
can provide high DDoS attack detection performance. How-
ever, due to various interfaces provided by them, di�erent
middle-boxes seldom share information, causing them and
network operators to lack holistic view of DDoS attacks [20].
Mahimkar et al. in [19] proposed amethod to deploy middle-
boxes dynamically in the protected network, but without the
global perspective of a network, where deploying them could
be a nerve-racking problem. For example, assuming an attack
is detected on multiple middle-boxes alone the attack trace,
the most e�ective defense strategy would be processing mali-
cious packets on the devices close to the source side.However,
attack trace-back could not be accomplished without global
information of network.

2.2. SDN-Based Defense Mechanisms. SDN provides a stan-
dard interface for a centralized controller to manage each
switch under control remotely. �is enables the SDN con-
troller to obtain the entire network information and to make
defense strategies in holistic views [8–11, 15, 18, 21]. In the

eld of network monitoring, many researches focus on how
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to reduce monitoring overhead while ensuring accuracy [11,
14, 22–24]. Among them, Braga et al. in [8] proposes using
Support Vector Machine (SVM) to detect DDoS attacks on
the SDNcontroller. Chowdhury et al. in [14] proposes Payless,
which includes an OpenFlow monitoring method based on
an adaptive statistics collection algorithm. It can reduce the
bandwidth of southbound channel but the accuracy is also
reduced. Xu and Liu in [9] proposes a method to control
granularity of �owbyutilizing pre
xmasks to reduce the con-
sumption of Ternary Content-AddressableMemory (TCAM)
[25] resources while detecting DDoS attacks. Zhang in [11]
proposes a prediction-based method to control the granular-
ity of measurement while detecting abnormal tra�c in order
to reduce the monitoring overhead.

Moreover, many DDoS attack defense methods and sys-
tems are proposed based on SDN [26, 27]. Fresco [26] is a typ-
ical SDN-based security framework. It can poll statistics from
data plane to detect di�erent attacks. Once malicious behav-
iors are detected, it pushes the defense logic by installing
forwarding rules on data plane switches. For example, if SYN
�ood attacks are detected by the defense application, the
controller modi
es switch rules to redirect suspected �ow
onto control plane to 
lter outmalicious packets fromnormal
ones.

2.3. Motivation of Cross-Plane Collaborative Defense. Al-
though signi
cant achievements have been made along this
line, for example, Shin et al. in [16] enable SDN switches
with more functionalities in detecting and defending SYN
�oods to eliminate the bottleneck between data plane and
control plane, two critical problems of the existing SDN-
based DDoS attack defense methods need to be pointed out
here. First, both of detection and reaction process for DDoS
attacks require to upload malicious tra�c to the centralized
controller, which introduces large amount of overhead for
southbound interface andworkload to the controller. Second,
the controller-based DDoS attack defense mechanism breaks
the initial idea of the separation of the control plane fromdata
plane devices, as it requires the controller to process mali-
cious packets directly. Such issues prevent SDN controller
to be an intelligent centre while conducting DDoS attack
defense.

Ideally, the controller in a well-de
ned DDoS attack
defense framework should concentrate on attack analysis
(e.g., attack classi
cation and tra�c trace-back). �us, in-
stead of implementing certain defense applications, the con-
troller should be responsible for conducting 
ne-grained
attack detection and making high level defense strategies,
leveraging its global view of the whole network and abundant
computational resources. Moreover, as data plane is where
packets are proceeded, the switches in SDN should be enabled
with new packets processing functions for DDoS attack
detection and reaction, which are not implemented by cur-
rent SDN-based DDoS attack defense approaches so far. For-
tunately, most SDN switches (e.g., OpenFlow switches) con-
sist of one or more CPUs running an operating system with
abundant computational resource that is currently far from
utilized [28, 29]. �is inspires us to liberate the controller

from heavy tra�c and exploit the underutilized computing
capabilities in switches to perform speci
c DDoS attack
defense functions. �erefore, this goal could be achieved
by modifying existing SDN devices. Sonchack et al. in [30]
proposed a framework enabling security mechanisms to be
loaded from controller to switches dynamically. Motivated
by their work of leveraging computational resources on SDN
switch CPUs to conduct defense mechanisms, we aim to
design a collaborative DDoS attack defense framework. By
exploiting the intelligence of the central controller, we focus
on designing 
ne-grained attack detection mechanisms and
automatic defense reaction by analyzing the detected DDoS
attack tra�c.

3. Proposed OverWatch Framework

3.1. Architecture Overview. As illustrated in Figure 1, the
architecture of our proposed OverWatch framework is in-
spired by Knowledge Plane [31]. In OverWatch, DDoS attack
sensors and defense actuators run on data plane switches.
Meanwhile, DDoS attack classi
er (responsible for classifying
attacks), a botnet tracker (responsible for locating sources of
attack tra�c), and the library for defense actuators are located
over the control plane.

Once OverWatch starts running, DDoS attack sensors
keep monitoring every �ow on the data plane constantly. If
any abnormal �ow is captured (i.e., DDoS attack tra�c), the
speci
c switch noti
es control planewith information includ-
ing an alert message and occurring attack features. Over the
control plane, OverWatch leverages uploaded attack features
to 
nd out DDoS attack types and its global perspective to
locate the attack sources. Next, the controller requests defense
actuator library to implement speci
c defense actuators on
the switches that are close to botnet. Last but not least,
the loaded actuator will be executed on the speci
c switch,
defending against certain DDoS attacks in the 
rst place.
A	er the attack is eliminated, the defense actuators used for
defense will be removed from certain switches.

Our ultimate objective is that the network can detect
DDoS attack threats accurately and react to them automat-
ically. To achieve this, defense ability needs to be introduced
both into control plane and data plane. We introduce design
of the data plane and control plane in the following subsec-
tions, respectively.

3.2. Data Plane Design. �e data plane in OverWatch is not
just a group of forwarding entities, inside which there is a
group of so	ware sensors and actuators to detect and react
to DDoS attacks. �is leads to our three key functionalities
to enhance the SDN switches: First, the data plane switches
should be capable of capturingmain features ofDDoS attacks.
Second, a	er the reaction strategies are made by the control
plane, reaction functionalities should be loaded from control
plane to data plane dynamically. Finally, these actuators can
be executed on data plane to 
lter out attack packets. We
introduce these key functionalities below.

3.2.1. DDoS Attack Sensor. We propose an algorithm which
runs on the data plane devices to detect DDoS attacks as a
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Figure 2: �e process procedure of actuator chain when multiple actuators are loaded on the same switch.

DDoS attack sensor. Generally, there are plenty of approaches
that are able to capture key features of DDoS attacks, for
example, large volume of tra�c and asymmetry in two-way
tra�c. However, in the context of SDN, the limitation of low-
endCPUon SDN switch comparedwithmiddle-boxes causes
most of them to be inappropriately deployed.

�us, we propose a lightweight �ow monitoring algo-
rithm which recognizes DDoS attacks through reading
hardware counters to server as DDoS attack sensors in
OverWatch. �e details of this algorithm are illustrated in
Section 4. Here, we only list the two functions that can be
completed by DDoS attack sensors: (1) capturing changes
in �ow characteristics without inspecting packets and (2)
recording the DDoS attack tra�c by physical port or �ow ID.
By this means, the sensors on the data plane are capable of
capturing DDoS attacks in the 
rst place.

3.2.2. DDoS Attack Defense Actuator. �e DDoS defense
actuators, to be speci
c, are a set of switch so	ware tools to
conduct various defense mechanisms independently. Di�er-
ent from traditional SDN switches, which are only capable
of performing basic match-action processes, switches in
OverWatch are enabled with di�erent packet processing
mechanisms by using so	ware resources.

Various types of DDoS attacks may be conducted simul-
taneously to maximize the attack e�ect. On this occasion,
multiple actuators are required to run on a single switch.
�us, we design the actuator chain, which aims to enable
multiactuators to work independently, as shown in Figure 2.
When a SDN switch startup, the agent process initializes an
empty linked list. Once an recently loaded actuator is com-
piled, it is added to the tail of the list.Whenmultiple actuators
link into the list, a chain of actuators forms. Packets from
hardware 
rstly enter the head of the chain. If the metadata
contains a packet that matches the speci
c ID of the current
actuator, this actuator will process the packet and send it back
to hardware with a modi
ed metadata (revealing the speci
c
hardware module sent to). Otherwise, the packet will bypass
the current actuator until a matched actuator ID is found. By
this means, defense actuators in the same switch are able to
work independently.

3.2.3. Defense Strategy Enabling. Once attacks are identi
ed,
the control plane makes a set of strategies to react. Enabling
defense actuators on the data plane dynamically is a key step
for executing these strategies.

�e enabling procedure is inspired by the work of OFX
but there are some key di�erences between them. First, there
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is no �ow table maintained on the so	ware so not all the
packets need to be redirected to the so	ware. Second, the
packets redirected to the so	ware will be processed by a spe-
ci
c actuator according to a metadata. �e defense strategy
enabling mechanism can be illustrated as Figure 3. Firstly,
source code of a defense actuator is loaded from controller
to local memory of a designated switch. �en, the code is
compiled in the embedded operating system (usually Linux-
based). A	erwards, the actuator registers to the agent process,
during which an exclusive ID is assigned to the actuator.
Furthermore, before the startup function of the actuator is
executed, it sends a standard message to the agent process,
indicating the speci
c packet types it processes. �e agent
process adds a high priority rule to the hardware match
table, accordingly. In this way, packets that match such rule
are polled from hardware with metadata navigating to the
speci
c actuator. Once the above steps are completed, the
actuator is executed to perform speci
c DDoS attack defense
function.

3.3. Control Plane Design. �e control plane is brain to
OverWatch. It inspects the current DDoS attack (e.g., attack
types and its traces) and makes proper strategy to defend it.
According to our overall objective, the heart of the control
plane is its intelligence ability to inspect current DDoS attack
and reason proper strategies, which means the control plane
should be able to (1) classify DDoS attacks and (2) track the
botnets. To be speci
c, on the one hand, the control plane
should determine exact attack types (SYN �ood, UDP �ood,
DNS �ood, etc.). On the other hand, it should also locate
sources of occurring attack so as to defendDDoS attacks from
the source, which proves to be more e�ective than defending
from the destination. �is argues that the control plane is
responsible for the following three functionalities.

3.3.1. Attack Classi�cation. As we use di�erent defense actu-
ators according to particular attack types, in order to perform
defense mechanism more e�ectively, OverWatch is required
to identify attack types 
rstly.

To achieve this, when DDoS attack tra�c is 
rstly
captured by data plane sensors, the abnormal tra�cmatching
a speci
c rule is mirrored (by sampling) for tra�c feature
extraction. In order to reduce overhead of southbound
interface in OverWatch to a greater extent, feature extraction
is conducted on the switch so	ware, rather than on the
controller. �en the features are polled to the controller for
classi
cation. On the controller, there runs a DDoS attack
classi
cation module that leverages the extracted tra�c
features as input to verify the attack type. To guarantee the
accuracy and reduce the false-positive rate during classi
ca-
tion, a machine learning method is utilized in this module,
which we will demonstrate in Section 4.

3.3.2. Botnet Tracking. Botnet tracking is another key issue
in DDoS attack defense as it determines where the defense
actuators should be deployed. Generally, DDoS attack is
conducted by several botnets. As attack �ows travel closer
to the victim, the malicious tra�c becomes larger due
to tra�c merger. �is prevents us from e�ective defense
measurements. In order to process attack tra�c e�ectively,
actuators should be deployed at positions close to botnets.
�is argues that the controller inOverWatch is ought to locate
switches that are close to botnets.

Fortunately, this can be accomplished by leveraging
holistic info of the network topology maintained by the
controller and data from malicious packets received from
data plane switches. In the next section, we propose a �exible
botnet tracking algorithm suitable to be deployed on the SDN
controller, which is able to locate the group of switches that
are in the upstream of attack tra�c.

3.3.3. Attack Reaction. When attack types and botnet loca-
tions of a DDoS attack are both determined, the control
plane needs to perform highly automatic defense reaction
immediately. In OverWatch, the control plane reacts by
loading speci
c defense actuators onto directed data plane
devices.

As shown in Figure 4, the reaction procedure for attacks
in a typical SDN controller is quite straightforward. �e
defense library module, which contains various source
codes of DDoS attack defense actuators, 
rstly registers
to event listener. Once an attack is determined, a 2-tuple
{DPID, AttackType} (DPID [32] is used to represent Data
Path IDentity in the context of SDN) is sent to the event
manager, indicating the defense strategy made by the built-
in applications. �is tuple is then received by the defense
library. �e defense library loads source code of speci
c
actuator which matches AttackType in the received 2-tuple
and noti
es defense enabler. Finally, the actuator is loaded to
designated switches through southbound channel. In order to
support such mechanisms, certain modi
cations need to be
done for existing SDN controllers, which we will describe in
Section 5.

4. Detection Phase of OverWatch

As OpenFlow [32] is the leading reference implementation of
the SDN paradigm, it is reasonable to implement OverWatch
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in such an environment. �erefore, in this section, we in-
troduce how we implement OverWatch into a typical SDN
controller (Ryu controller [33]) and FPGA-based OpenFlow
switches [18]. To describe the work�ow of our OverWatch
prototype clearly, we divide the working process of Over-
Watch into two phases: detection phase and reaction phase.
�e main goal in detection phase is to classify attack types as
well as locate the botnets. We describe this phase in detail as
follows.

4.1. Cross-Plane Attack Detection. �e work�ow in detection
phase is shown in Figure 5. Firstly, the DDoS attack sensor
constantly monitors data plane tra�c by reading counter-
values of each �ow periodically. If attack �ows are captured,
the sensor noti
es the OpenFlow switch agent of the speci
c
�ow ID to indicate the abnormal �ow. �en, the switch
agent modi
es the action of hardware lookup table by a
OFPT FLOW MODmessage (de
ned in OpenFlow speci
cation
since 1.0) to mirror the sample packets from the abnormal
�ows onto local memory. �e bu�ered packets have two
uses: First, they are copied by the so	ware-de
ned feature
extraction module (SDFE), which extracts key features of
di�erent packets for attack classi
cation on the control plane.
Second, the packets themselves are also obtained by switch
agent and sent to the controller for botnet tracking.

A	er the DDoS attack data (i.e., abnormal �ow ID,
sampled packets, and tra�c features) is sent to the control
plane encapsulated in a OFPT PKT IN message (also de
ned
in OpenFlow speci
cation since 1.0), it is 
rstly received by
the OpenFlow control agent. �en, this agent extracts packet
payload and passes it to the eventmanager. (NB. In Ryu, event
manager is responsible for distributing messages received
from data plane.) A	erward, the data is split into two parts,
which are data related to tra�c features and data related to
botnet tracking (i.e., a {DPID, FLOW ID, Pkt Buff} three-
tuple). �e above two kinds of data are polled by DDoS
attack classi
er and botnet tracker, respectively, inside which

the DDoS attack type and 
rst-hop-switch of current DDoS
attack are both determined.

From aforementioned, the detection phase is divided
into two stages: a coarse-grained data plane detection stage
and a 
ne-grained control plane detection stage. We discuss
approaches we applied in both stages below.

4.2. Coarse-Grained Detection on Data Plane. As aforemen-
tioned, the data plane is where packets are forwarded; lever-
aging computing resources on the data plane to determine an
attack coarsely and locally is quite reasonable. �erefore, on
the data plane, we 
rst present a lightweight �ow monitoring
algorithm that we utilize as a DDoS attack sensor on switches.
It runs on the switch so	ware as a monitor thread. Unlike
many other monitoring methods, this algorithm aims to
extract the key features of DDoS attack tra�c by means of
polling countervalues from an OpenFlow switch.

Generally, there are fundamental di�erences between a
typical DDoS attack and normal network behaviors that we
leverage to monitor DDoS attacks. Large tra�c rate is one
important feature for DDoS attacks. Moreover, during an
attack, there is also huge rate di�erence between �ows coming
into a victim server and �ows out of the server. �ey are
de
ned as volume feature and asymmetry feature. Numerous
researches have drawn the fact that typical DDoS attacks
could be determined by verifying the above two features from
tra�c.

Fortunately, the above two features can be determined
by polling switch countervalues from hardware pipeline. We

de
ne�Byte
�� and�Pkt

�� as the byte and packet count of a speci
c

�ow at time ��. �e two features can be expressed as follows.

Byte Count per Second (���) at Time ��. It describes the average
byte rate of a �ow, port, or switch between time ��−1 and ��:

��� =
�Byte
�� − �Byte

��−1
�� − ��−1

. (1)

Packet Count per Second (���) at Time ��. It describes the
average packet rate of a �ow, port, or switch between time
��−1 and ��:

��� =
�Pkt
�� − �Pkt

��−1
�� − ��−1

. (2)

Byte Count Asymmetry (�Byte
�� ) at Time ��. It describes the

average byte rate asymmetry of pair-�ow or port between
time ��−1 and ��:

�Byte
�� =

�in
��

�out
��

. (3)

Packet Count Asymmetry (�Pkt
�� ) at Time ��. It describes the

average packet rate asymmetry of pair-�ow, port, or switch
between time ��−1 and ��:

�Pkt
�� =

�in
��

�out
��

. (4)
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We present our prediction-based algorithm to capture
great changes of the above four metrics. �is algorithm
leverages previous metric samples from a speci
c �ow to
estimate a future value range. If the actual values of the four
metrics fall into the range we predict, this indicates that the
current �ow is normal. Otherwise, the deviation between the
predicted values and observed values indicates an abnormal
�ow caused by a DDoS attack.

Speci
cally, we leverage WMA (Weighted Moving-
Average) to calculate prediction value for each metric. And
Pauta criterion in Gaussian distribution is also utilized to
get a reasonable prediction range. �e pseudocode of this
algorithm is shown in Algorithm 1.

4.3. Fine-Grained Detection on Control Plane. As a cen-
tralized and o	en high-performance platform, the control
plane holds advantages of abundant computing resources and
holistic info of the whole network.�us, on the control plane,
two functionalities are developed: DDoS attack classi
cation
and botnet tracking. Both of them are essential for attack
reaction as they determine which actuator is to be deployed
and on which data plane switch it is to be deployed. We
introduce our machine learning based classi
cationmodel as
well as a lightweight botnet tracking algorithm below.

4.3.1. Autoencoder-Based Attack Classi�cation. Machine
learning has gained much attention in the community of
network security as it improves the accuracy and reduces

globals: V[�] //Vector List of DDoS attack feature metrics
�� //Current time
� //Number of Vectors in the list

while 1 do
if �� = ��−1 + Δ� then

Update the list V[�] of history records.
for all 	 ∈ {1, 2, 3, 4} do
Use WMA to calculate the prediction value V

predict
�+1

for next time interval:

V
predict
�+1 =

�
∑
�=1

��Vactual
�

�
∑
�=1

�� = 1

Use ratio metric predict to compare prediction
value and actual value.

Calculate ideal value Videal� and standard deviation
� for ratio metric.
Use Pauta criterion to calculate the prediction range:

� ←� V
ideal
� + 3 × �

� ←� V
ideal
� − 3 × �

end for

if each predict is out of the (�, �) range then
Trigger alert to controller;

else
Continue;

end if
end if

end while

Algorithm 1: Lightweight �ow monitoring algorithm.
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Figure 6: Schematic representation of autoencoder and DDoS attack classi
er model: (a) autoencoder for �1; (b) autoencoder for �2; (c)
the model of DDoS attack classi
er.

false-positive rate while classifying di�erent types of abnor-
mal tra�c. To determine the attack type from real-time ex-
tracted tra�c features, amachine learningmethod, combined
with autoencoder [34] and so	max classi
er [35], is utilized
in the module of DDoS attack classi
er.

As shown in Figure 6, each autoencoder contains three
layers: input layer, hidden layer, and output layer. Two autoen-
coders (�1 and �2) are stacked with each other in a way that
the outputs of 
rst hidden layer are fed into the inputs of the
second. �en, the outputs of the second hidden layer are fed
into a so	max classi
er. Finally, all layers stacked together,
forming the DDoS attack classi
er. Generally, if the extracted
tra�c features are fed into the input layer, the output vector of
the model indicates to which attack type the features belong.
We introduce the structure below.

�e autoencoder has three layers: an input layer of �
nodes for a record of � features (i.e., � = {�1, �2, . . . , ��}),
a hidden layer of � nodes for learning key patterns of input
record, and a output layer of � nodes for reconstruction of

the input (i.e., �̂ = �). �e network 
nds optimal values of
weight matrix (i.e., � ∈ �×� and �	 ∈ �×�) and bias

vector (i.e., �1 ∈ �×1 and �	1 ∈ �×1) together, while trying to
learn the key patterns of an input record (e.g., a DDoS attack
record).�e second autoencoder feeds the outputs of the 
rst
one as its input. It uses the same methods to calculate the
optimal weight matrix � ∈ 
×� and bias vector �2 ∈ 
×1.

�en, a so	max classi
er builds a mapping relationship
between the hidden layer of the former autoencoder (i.e.,
� = {ℎ1, ℎ2, . . . , ℎ�}) and � types of DDoS attacks (i.e.,
� = {�1, �2, . . . , ��}). Similarly, �is network 
nds optimal

values of weight matrix (i.e.,� ∈ �×�) and bias vector (i.e.,
�3 ∈ �×1) too, while polling the output close to the label
value, which indicates the real DDoS type. Before this model
is able to classify any record collected fromDDoS tra�c, each

layer needs to be trained with backpropagation algorithm
[36], separately. �en, they are stacked together and 
ne-
tuned to improve the performance of the entire model. �e
brief training process for the 
rst autoencoder is shown in
Algorithm 2, and the other two layers share similar training
process.

A	er the training process with historical DDoS attack
dataset, this model can be utilized to perform attack classi-

cation with run tra�c records.

4.3.2. Collaborative Botnet Tracking. �ecollaborative botnet
tracking aims to locate the switches close to the botnets, thus
making the defense actuators more e�ective in defending
DDoS attacks. We propose a botnet tracking algorithm based
on the collaboration of the data and control plane and
implement it in the controller as a built-in module, called
botnet tracker.

Before diving into the details of the algorithm, two
prerequisites need to be stressed out: �e 
rst one is that
the whole network info (link state, topology info, forward-
ing rule, etc.) is maintained on the controller. �e second
prerequisite is that the info maintained by the controller can
be accessed by other built-in applications on the controller.
Fortunately, both prerequisites can be satis
ed by leveraging
an enhanced topology viewer [37], a built-in module in
Ryu. More speci
cally, the key procedure in the algorithm
is to obtain the last hop of a sampled packet. �is could be
achieved by extracting the source MAC address of the packet
and leveraging the network info on the controller to locate
the last hop switch.

Based on above, we propose our botnet tracking algo-
rithm. Speci
cally, we consider a set � consisting a set of
switches that have captured DDoS attacks on themselves� =
{�1, �2, . . . , ��}. And � is the total set of data plane switches a
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Require: Weight matrix of the hidden layer: �
Bias vector of the hidden layer: �1

Ensure: Training dataset  
for all number of training iterations do

Train the single layer autoencoder using back-
propagation:
{�1, �2, . . . , ��} ← Sample minibatch of  //get batches
of tra�c records
Update �,�	, �, �	 by using gradient descent method to
minimize the loss function:

Loss = ( 1
2!
�
∑
�=1

‖�� − �̂�‖2) + �
2

��−1
∑
�=1

�
∑
�=1

�+1
∑
�=1

(����)
2

end for

Algorithm 2: DDoS attack classi
er training process.
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Figure 7: Implementation and work�ow of OverWatch in response phase.

controller maintains � = {#1, #2, . . . , #�}. We take one element
�� from set� at a time, and use the sampled packets collected
from �� to determine the last hop switch #�. If #� ∈ �, then we
eliminate �� from set �. Otherwise, �� is one of the switches
we are searching for.We use this method to traverse set� and
obtain a subset � (� ⊆ �) consisting of all �� whose last hop
is not included in �. In this way, we are able to locate all the
switches which are likely close to botnets.

5. Reaction Phase of OverWatch

In this section, we express how we design and implement
the reaction phase of OverWatch. A	er the attack type and

switches that are close to botnets are addressed in the former
phase, OverWatch is supposed to react to the occurring
attack e�ciently. �us, 
rst, we illustrate the work�ow of
the reaction phase in our prototype. �en, two reaction
applications are introduced in the second part.

5.1. Attack Mitigation. �e work�ow of reaction phase in
OverWatch is depicted in Figure 7. From aforementioned, the
speci
c attack type and the most close-in switches can be
determined in the detection phase, respectively. �en, both
results are sent back to the event manager. �is triggers the
defense library, which has registered to the event manager, to
poll up the messages. �is module 
rstly leverages the attack
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type tomatch a particular actuator so as to indicate the source
code which is required to be loaded onto data plane. �en,
it invokes functions provided by OpenFlow control agent to
download the speci
c source code onto the switch whose
DPIDmatches the received message from the event manager.

In OverWatch, the source code of designated actua-
tor is encapsulated inside a OFPT EXPERIMENTER message
(de
ned in OpenFlow speci
cation since 1.1) and sent to
the speci
c switch through OpenFlow channel. �e corre-
sponding switch agent running on that switch receives the
message and loads the codes of the actuator in the running
space. �en, the source code is compiled to an executable

le and then registered back to the switch agent, which later
allocates an exclusive ID to the speci
c actuator so that it
could be added to the actuator chain.Meanwhile, the actuator
also noti
es the switch agent of the packet type it processes.
Once this is received by the agent, the agent generates a
high priority �ow rule and adds it to the �ow table using a
OFPT FLOW MODmessage.

A	er the rule modi
cation takes e�ect, packets that
match the higher priority rule are redirected to the actuator
chain with metadata that could match a certain ID of the
actuator, in which they are going to be processed. In addition,
packets sent back to the hardware are also allocated with
metadata to match the lower priority rule so that they can be
forwarded by the switch’s original rules.

5.2. Intelligent Reaction Applications. We develop two sample
applications of DDoS defense actuators to exemplify the
feasibility of OverWatch. �is includes SYN proxy and DNS
re�ection 
lter. �ese two actuators are motivated by (1) the
functionality that Avant-Guard [16] proposed as a data plane
extension to defend SYN �ood and (2) the example DNS

lter proposed in SDPA [38] to 
lter out DNS refection attack
packets on OpenFlow switches.

5.2.1. SYN Proxy. In a SYN �ood, attackers send numerous
SYN packets to exhaust memory resources of victim by
enforcing it maintaining a large number of semiconnected
states, so the victim will not respond to a�rmed connection
request. To 
lter out these malicious SYN requests, an
OpenFlow rule is preloaded to lookup table so that all SYN
packets will be polled onto an actuator called SYN proxy. If a
SYN packet is received by it, 
rstly, to prevent multiple SYN
requests sending to the victim, it calculates a cookie to record
the request using harsh table, and then the actuator generates
a response packet sent back to the source and drops the
initial SYN request packet. If, during a certain time interval,
an a�rmed ACK packet is received from a source that has
been recorded in the harsh table, the proxy will generate TCP
handshake packets to build up validation between the legal
source and its destination. Otherwise, the proxy simply drops
the malicious packets. In this way, the proxy eliminates the
threat of SYN �ood.

5.2.2. DNS Filter. Botnets in a DNS re�ection attack send
DNS requests to name servers using the victim host’s IP
address. �us, the victim will be �ooded by these massive
DNS responses. To 
lter out these unsolicited DNS response,

Figure 8: Diagram of our testbed network.

once the actuator (DNS 
lter) is loaded on the data plane,
two high priority OpenFlow lookup rules, which redirect
the packets whose UDP source or destination port equals
53, are loaded as well. A	er the redirected DNS packets are
received by the 
lter, each DNS request packet is recorded by
a 
ve-tuple (source IP, destination IP, source port, destination
port, protocol) in memory. If the upcoming packet is a DNS
response packet and matches one of the tuples of request, it
is sent to hardware pipeline to match a lower priority rule
for forwarding. On the contrary, the 
lter drops the packet
to protect the victim.

6. Experiment and Evaluation

6.1. Experiment Setup. To evaluate the performance of our
proposedOverWatch framework,wemodi
ed a FPGA-based
(Altera EP4SGX180) OpenFlow switch [28] to support the
aforementioned data plane functions. We also modi
ed Ryu
controller to enable proposed controller-based mechanisms
(including the adding of three built-in applications: DDoS
attack classi
er, botnet tracker, and defense library).

Figure 8 illustrates the testbed of our experiment. It
consists of a FPGA-based OpenFlow switch prototype with
8 Gigabit ports, a 1.99GHz Intel Celeron J1900 CPU and a
2GBmemory that runsUbuntu 14.04 on it, a control platform
with a quad-core Intel i7 CPU and a dual NVIDIA-GTX1080
GPU (used for training machine learning based classi
er)
with 16GB of RAM running Ryu controller, and up to eight
laptop hosts, which represent DDoS attackers, victims, and
normal tra�c generators, respectively.

6.2. E	ciency of Coarse-GrainedDetection. In order to evalu-
ate the performance of the algorithm running as DDoS attack
sensors, we 
rstly add two rules to enable tra�c forwarding
from �1 and �2 to �8 (�1, �2 → �8). �en, Stacheldraht
[39] is utilized to conduct DDoS attacks from �1 and �2
to �8 within 20 seconds. �e detection results in the DDoS
attack sensor, together with volume and asymmetry features
of attack �ow (�1 → �8), are depicted in Figure 9. �ese
depicted results demonstrate that the four metrics in the
DDoS attack sensor are able to capture great changes in
volume and asymmetry features as soon as the attack occurs,
which also evidently shows the e�ectiveness of the algo-
rithm.
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Figure 9:�e coarse-grained detection results during a SYN �ood attack [18]: (a) byte rate and volume metric of byte in monitored �ow; (b)
packet rate and volume metric of packet in monitored �ow; (c) byte count asymmetry and asymmetry metric of byte in monitored pair-�ow;
(d) packet count asymmetry and asymmetry metric of packet in monitored pair-�ow.

Next, we use FTP to transfer a 4GB data block from �1
to �8. �e detection results of four metrics are shown in
Figure 10. It is found that even though three of the metrics
dramatically change in the algorithm result, the asymmetry
feature of packet count barely changes.�is is because during
the data transfer, the receiver�8 keeps sending ACK packets
to �1, which ensures a rough equivalence of packet count
in both directions. �is explanation can be testi
ed by using
Wireshark to capture packets from�1 or�8. �erefore, such
mechanisms in the proposed algorithm enable the DDoS
attack sensor to reduce the misjudgment rate of DDoS attack
detection.

To demonstrate the advantage of communication over-
head reduction in OverWatch, we move the DDoS attack
sensor to the controller side and use the same algorithm to
poll switch countervalues through OpenFlow channel. We
set this typical controller-based DDoS detection method as a
baseline method, Besides, we also implement another mech-
anism, which optimizes the baseline method by utilizing

an adaptive polling algorithm proposed in Payless [14] to
reduce communication overhead of southbound interface.
�en, we implement these three methods in a scenario where
di�erent times of DDoS attacks are conducted from random
hosts within 1 minute. Wireshark is utilized to capture all the
packets of southbound interface during the experiment. �e
total amount of southbound overhead is shown in Figure 11.
It is found that OverWatch has orders of magnitude less
overhead than the other two methods. �is is achieved by
ooading the DDoS attack sensor onto data plane. And
comparedwith Avant-Guard, which can reach similar results,
there is no modi
cation introduced in the switch hardware.

6.3. E	ciency of Fine-Grained Detection. To demonstrate the
performance of the DDoS attack classi
er in OverWatch,
we collected network tra�c from the testbed as training
dataset. Speci
cally, we use �1 and �2 to send DDoS attack
tra�c to �8. Hosts from �3 to �6 communicated with each
other randomly for web browsing, video transferring, and
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Figure 10: �e coarse-grained detection results during big data block transferring using FTP [18]: (a) the changes of three metric values
except asymmetry metric of packet; (b) the changes of packet count asymmetry and asymmetry metric of packet in monitored pair-�ow.
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Figure 11: Overhead of southbound interface in OverWatch, base-
line method, and baseline method optimized by Payless within 1
minute [18].

online gaming, which led to background tra�c variation.We
mirrored all the tra�c to �7 by tcpdump, so that the tra�c
can be leveraged as dataset. We collected 12 hours of tra�c
data in total, including 6 hours of normal tra�c and 6 hours
of attack tra�c. DDoS attacks in the conducted experiment
consist of 6 types: UDP �ood, SYN �ood, ICMP �ood, and
their permutations. �ey are all generated by Stacheldraht.
And Table 1 shows the distribution of records in the dataset.
�e features we extracted from tra�c �ows during the classi-

cation are listed in Table 2, while Table 3 lists the parameters
in our experiment. In the training and evaluation process, the

Table 1: Number of records in training dataset.

Tra�c class
Records number

Training Test

Normal tra�c 17539 9824

Attack tra�c

SYN �ood 2831 1566

UDP �ood 2706 1591

ICMP �ood 2519 1630

SYN & UDP �ood 3054 1321

UDP & ICMP �ood 2936 1729

SYN & ICMP �ood 3144 1538

features are real-valued positive numbers by digitization and
max-min normalization to improve accuracy.

We evaluate the performance of the classi
er using
parameters including confusion matrix, precision, recall,
and &-measure. In a confusion matrix, each row of the
matrix represents the instances in a predicted class while
each column represents the instances in an actual class. In
binary classi
cation, precision is the fraction of relevant
instances among the retrieved instances, while recall is the
fraction of relevant instances that have been retrieved over
the total amount of relevant instances. Both of them indicate
the performance of the classi
er. '-measure considers both
parameters above to compute a score, which is the harmonic
average of the parameters, where &-measure reaches its best
value at 1 and worst at 0. Figure 12 illustrates the confusion
matrix of our evaluation. It is observed that our DDoS attack
classi
er has fairly good accuracy for detecting single type of
DDoS attacks, reaching about 96%. �e detection accuracy
for mixed attacks is lower but still reaches around 83%.
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Table 2: Features extracted from di�erent packets.

Packet type # Feature description

TCP

1
Fraction of TCP packets with SYN
�ag set

2
Fraction of TCP packets with ACK
�ag set

3 Entropy of src IP addresses

4 Entropy of dst IP addresses

5 Entropy of src ports

6 Entropy of dst ports

7 Entropy of TCP sequences

UDP

8
Fraction of dst port ≤ 1024 UDP
packets

9
Fraction of dst port > 1024 UDP
packets

10 Entropy of src IP addresses

11 Entropy of dst IP addresses

12 Entropy of length for UDP packets

ICMP

13 Entropy of src IP addresses

14 Entropy of dst IP addresses

15 Entropy of TTL values

16 Fraction of ICMP packets in total

Table 3: Autoencoder training parameters.

Parameter Value

Learning rate 0.1

Batch size 5

Epoch limit 3500

More speci
cally, we demonstrate the precision, recall and&-
measure for 8 types of tra�c in Figure 13. Except the mixed
tra�c of SYN andUDP �ood as well as SYN and ICMP �ood,
the 3 parameters for classi
cation of all types tra�c reach
above 90%, which is quite acceptable in classifying DDoS
attacks in real network.

We claim that the performance of the autoencoder-
based classi
er is not necessarily better than other machine
learning approaches, but these results demonstrate the great
feasibility of leveragingmachine learning approaches to serve
OverWatch as a DDoS attack classi
er, which is the main
purpose of the evaluation above.

6.4. Performance of Attack Reaction. We also evaluated the
performance of defense actuators on the data plane. We set
a scenario where we redirected packets from a certain port
to a defense actuator, which performs no operations to the
packets, and then send the packets back to a designated port.
We compare this forwarding path with another two baseline
methods. �e 
rst one is direct hardware forwarding; the
second one is redirecting the packets to the Ryu controller
and then sending them back to a designated port. �e main
goal here is to evaluate how much performance gain is
introduced by the defense actuator in OverWatch, compared
with traditional SDN-based defense mechanisms. According
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to the evaluation result shown in Figure 14, defense actuators
in OverWatch perform several orders of magnitude better
than the controller-based reaction mechanisms. Moreover,
though the forwarding performance for actuators is evidently
lower compared with hardware path, this could be improved
if high-e�cient data path (e.g., DPDK [40]) is utilized for
the communication between so	ware and hardware on the
switch.

7. Conclusion

To overcome the challenges of southbound bottleneck and
the lack of collaborative intelligence in SDN-based DDoS
attack defense mechanisms, in this paper, we introduced
OverWatch, a SDN-based high-e�cient cross-plane DDoS
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Figure 14: Di�erent bits rate according to packet size using di�erent
paths in the testbed.

attack defense framework with collaborative intelligence. It
is collaboratively splitting defense functionalities across data
and control plane and enabling both planes to detect and
defend against DDoS attacks on di�erent levels. �rough
experiments, it can be concluded that OverWatch is capable
of high accuracy detection and real-time defending reaction.
Meanwhile, the communication overhead on SDN south-
bound interface is also greatly reduced. All these outcomes
demonstrate the feasibility of OverWatch in large-scale net-
works. We anticipate that OverWatch becomes a building
block in the SDN-based network security applications.
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