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1. INTRODUCTION

FOLLOWING the derivation by Haldane (1924, 1926) of the basic equations
describing the changes in gene frequency with random mating for various
methods of selection, Owen (1952, 1953) developed the idea of a genetical
system in which the genotypic viabilities differ between females and males
as well as between the genotypes themselves. In particular, he showed that,
in this situation, it is possible for two distinct stable equilibrium states to
exist. Some special cases of such a system have been investigated and dis-
cussed by Li (1963, 1967), and Bodmer (1965) has analysed the situation in
considerable detail; however, apart from these contributions, Owen's
interesting model has been given relatively little attention. It is the purpose
of this paper to examine, in a general way and on the basis of the equations
obtained by Owen, some of the properties of such a system.

2. THE MATHEMATICAL MODEL

First we summarise the mathematical equations, derived by Owen,
which describe the system. With some slight modifications of Owen's
notation, we consider a pair of alleles A, a at a single genetic locus in a
random mating diploid population. Let the relative viabilities of the three
genotypes AA, Aa and aa be denoted respectively by the non-negative
numbers a, h and b where i = 1 corresponds to females and i = 2 to males.
Thus the model is specified by these six viability parameters. Furthermore,
let p1 and p2 be the gene frequencies of the allele A in females and males
respectively in a specified generation. Then it is shown in Owen (1953)
that, assuming random mating, the relationships between the gene ratios

(1=1,2) (1)

in successive generations are given by the equations

— 2auiu2+h(u1+u2) ( — 1 2) 2—

h(u5+u2)+2b
'

—

The pair of recurrence relations (2) describe the dynamics of the
system.

At equilibrium u'1 = u1, u' = u2 and setting u2 = u1t the values of the

ratio u1 are given by the equations
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2b1 2b2with = —1, 62 = —l
1 2

(4)

c1=?_i, C2=2_1

and where t satisfies the cubic equation

f(t) = t3—3cct2+3flt— 1 = 0 (5)

with 3cc = C1c2+c1+C2, 3fl = C2c1+c2+C1. (6)

Considering the question of stability, we note that the basic equations (2)
can be written in the form

U'1 = cI1(u, u2), u' = '12(u1, u2) (7)

and considering small displacements x1, x2 in the values of u1, u2 giving rise

to corresponding changes x'1, x in z4, u, we have

I1(u+x, u2+x2)

= cI1(u1, u2) +xi +x2 (8)
au1 u2

approximately.
For displacements near the equilibrium, we have then

x'1 = b11 x1+b12 x2, x'2 = b21 x1+b22 x2 (9)

where —
GUI

= 2a(uj+u2)+h(l—u)—2auj
10

h(u1+u2)+2b (

(using (2), and substituting the equilibrium values of u1, u2 after differen-

tiating) for i,j 1, 2.
The difference equations (9) have solutions of the form

= A2+BA, 4z) = C1+D4) (11)

where A, B, C and D are determined by the (b5) and by the initial values of
the displacements x1 and x2, and ) and 2 are the latent roots of the matrix
B = (b5). Thus the question of stability near the equilibrium is determined

by examining the absolute magnitudes of 1 and 2, which are thus some-
times called the stability roots of the equilibrium state.

3. THE INITIAL PROGRESS OF NEW GENES

Necessary and sufficient conditions for a new gene, arising in a popula-
tion by migration or mutation, to increase in frequency and become estab-
lished in that population have been derived and discussed for a variety of

genetical systems by different writers (Bodmer and Parsons, 1960; Parsons,
1961a, b; Parsons, 1962; Mandel, 1963; Bodmer, 1965).
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Suppose that the allele A is introduced with low frequency into a popu-
lation consisting initially only of genes a. This implies that we are consider-

ing the stability of the equilibrium state represented by u1 = u2 = 0, so that
we have to solve the pair of difference equations (9) with

(i,j = 1, 2) (12)

The latent roots of the matrix (bj) in this case are clearly

and zero, so that the solutions are

— fh1 h2ln—i — oh!. 1i ri X1 X21' 1 '°'1 L2)

h h h n—
4) =

21b2
+ (xj+x2) (14)

from which it follows immediately that the necessary and sufficient condi-
tion for the frequency of the newly introduced allele to increase is

h1 h2+->2
Oi 02

which is the result found by Parsons (196la) and Bodmer (1965) on the basis
of somewhat different methods of approach.

In the situation in which there is no difference in viabilities of the same
genotype between sexes, which was first discussed by Fisher (1922), the con-
dition (15) reduces to h> b which is precisely the condition obtained by
Bodmer and Parsons (1960). It might be noted that, in this model, a
selective advantage in both sexes of the newly formed heterozygotes over the
entrenched wild homozygotes is not a necessary condition for the invading
allele to become established in the population. However, as Parsons
(1961 a) has observed, it is necessary that a selective disadvantage of the
heterozygote in one sex must be balanced by a corresponding selective
advantage of the heterozygote in the other sex.

4. LETHAL HOMOZYGOTES

Owen suggests that in the case where one allele A is lethal in both sexes
when in the homozygous condition AA there are at most two non-trivial
equilibria of which only one is stable. However, analysis of the situa-
tion reveals the following. If AA is lethal in both sexes, we would have
a1 = a2

= 0, which implies

(16)

and

3c c1—c2— 1, 3fl = c2—c1— 1 (17)

and hence the cubic equation (5) reduces to

f(t) = (t+ l){t2_ (c1—c2) t— l} = 0 (18)
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which has roots

— c1—c2—'../(c1—c2)2+4 ci_c2+/(ci_c2)2+4
19

2
'

2

only the last of which is positive and could therefore potentially lead to a
non-trivial equilibrium state of the system. Thus when homozygotes of one
kind are lethal in both sexes, there exists at most one non-trivial equilibrium
state, and we proceed to derive the conditions under which it does exist, and
to show that when it exists it is stable.

In order for the equilibrium to exist, we must have, from equation (3),
the condition that

(20)

which is

ci_cs+,/(cj_e2)2+4 >2c1 (21)

and this reduces to the condition

c1c2< 1 (22)

(except when c, = c2
= — 1, recalling that c, 62 —1) which is equiva-

lent to the condition

(23)

and the latter in turn can be shown to be equivalent to the stability con-
ditions found by Bodmer (1965).

It can also be shown that the equilibrium, when it exists, is always stable.
For, in equations (9) and (10) we have

b —b — h1(l—u1)11 12 ( )
h1(u1+u2) +2b1

b —b — h2(l—u2)
21 22 ( )

h2(uj+u2) +2b2

so that the stability roots are

I h(1 —u1) h2(I —u2) I+ and zero.

Ih1(u1+u2) +2b1 h2(uj+u2) +2b2j

Examining the non-zero stability root, it can be written

1—u1 + 1—u2 1—u1 + 1—u2

(u1 + u2) + 1 + c1 (u1 + u2) + 1 + c2

—

1+1 (1 + t) + (c2 — c1)

= u1(l +t2)
(26)

l+t

using equations (18) and (20) and recalling that u2 = u1t.
Moreover, we note from (3) that

(27)
l+t 1+t
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and

1 — = 1— 1 —c2t = (1 +c2)t
(28)l+t 1+t

and hence

u(l+t2) (1—u1)+t(l—u2)
1+1 1+1

(1+c1)+(1+c2)t2

(l+t)2

(29)

with the inequality being strict unless b1 = b2
= 0. Thus we have shown

that the non-zero stability root lies between zero and 1, and that therefore
the equilibrium, when it exists, is stable.

By way of illustration, we will show that the results obtained by Li (1963)
follow very quickly from the equations derived above. Thus in Li's example
(designated in his paper as Case I) in which there is selection against the
viable homozygote in one sex (females) but not in the other, we would have

= 1 —
2s, c2 = 1, (0 <s 1) (30)

so that the single positive root of (18) would be

t = —s+/].-s2 (31)

from which it follows that

t—c1 _s+,/1+s2_(1_2s)
1

1+1 l—s+\/1+s2

s—1+\/1+s20 (32)
1 —s+\/l +s2

and this leads immediately to

(lS)
(33)

2\/1 +s2

which is equivalent to equation (6) of Li (1963).

Moreover,

/1+2_l
u2 = = {\/l+s2__s} "

1+2 + (1— s)

= (1+s)_./1+s2 >0 (34)
(1 —s)-J-\/1 +s2

and this leads directly to

(35)

which is equivalent to equations (5) of Li (1963).
D2
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Next we consider Case II of Li (1963) in which there is differential
selection against the viable homozygote in both sexes. This leads to the
conditions

= 1 —
2s1, c2 = 1 —

2s2, (0 <s1 1, 0 < s2 1) (36)

so that the single positive root of (18) would be

I = (s2_si)+/1+(s2_si)2 (37)

from which it follows that

(s1+ s2 — I) + / 1 + (s1— s2)2
>0 (38)

(1 —s1+s2) +/1 + (s1—s2)2

and, after a little algebra, that

— s1(s1—s2) + (1 —s1) {1 —v/l + (s1_s2)2}— (39)
Si —

and it can readily be verified by means of some algebra that the latter is
identical with equation (13) of Li (1963).

The numerical example (s = 0325, s2 = 0.10) given by Li (1963) can
be readily verified by substituting these numerical values in equation (39),
which leads at once to u1 = 025.

5. UNCONDITIONAL ADVANTAGE OF ONE GENE

In the classical model without differential viability between sexes, it is
well known that if one gene has an unconditional selective advantage over
its allele then the gene ratio changes monotonically from one generation to
the next until ultimately the inferior allele is eliminated altogether. Thus,
dropping the suffixes temporarily to consider this case, we would have

au+hu = U.— (40)
hu + b

and if say a < Ii < b then clearly

au+h<hu+b (41)

and

(42)

and hence no equilibrium state can exist.
In Owen's model with differential viability between sexes when one gene

has an unconditional selective advantage over its allele in both sexes, we
can show that the system has the following properties:

(i) The sum of the gene ratios changes monotonically from one genera-
tion to the next.

(ii) The gene ratio in both sexes is bounded by the average value of the
gene ratios in the previous generation.

(iii) Changes in the gene ratios in the individual sexes are not necessarily
monotonic.

(iv) No equilibrium slate can exist (Bodmer, 1965).
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Thus, if we consider the basic equations (2) with al <h1 <b in both
sexes, then

u1<W(u), u'2<F(u) (43)

where

1'(u) = 2u1u2 + U1 + U2
(44)

u1+u2+2

and W(u) can be written in the form

(u _u)22F(u) U1U2 1 (45)
u1+u2+2

whence

u'1<(u1+u2), u'2<(u1+u2) (46)

which establishes properties (1) and (ii) above.

Property (iii) can readily be demonstrated by taking u1 = 0. For we
would thus have

h1u2 47U1 —
h1u2+2b1

(

so that

0< u'1 < u2. (48)

Finally, property (iv) follows as an immediate corollary of property (i);
or else it can be adduced directly from equations (3) and (4) by observing
that, under the conditions given,

c1, c2> 1, C1, C2< 1 (49)

and hence no equilibrium is possible since clearly

= <0 whenever t 1 (50)

and

U1 =
C2t_t2

< whenever t  1. (51)

6. SUFFICIENT CONDITIONS FOR THE EXISTENCE OF NON-TRIVIAL

EQUILIBRIA

In this section we will show that if

h1 h2— + — >2
01

(52)
h1 h2and
b1 b2
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or if

a1 a2

(53)
and

b1 b2

then there exists at least one non-trivial state of equilibrium.
For this it is convenient to note that, in the notation of equation (5),

f(c1) = (c1c2— 1) (1 —c1C1) (54)

and that

= (l—C1C2)(l—c1C1) (55)

so that

CJ (± = 1

ClC2f() (56)
cit c1c2— 1

Taking the pair of inequalities (52), the second member of this pair can
be written

_!_+'_> (57)
l+c1 l+c2

which implies either

c1c2<l (58)

or else

(l+c1)(l+c2) = 0 (59)

and the latter reduces to

c1c2 1 (60)

with equality only when c1 = = — 1, in view of the conditions

1 +c1 0, 1 +c2 0. (61)

Thus it follows that the conditions (52) together imply

dc2  1—

(62)
dc2 1

the equality in either case holding only when c1 c2 = — I or C1 = C2 = —1.

We can now identify four distinct cases as follows:

(i) c1>0, C1>0.

This implies that (62) holds with strict inequality, and hence, when

c1C1 1, it follows from (54) that f(c1) 0 and from (56) that f(c1) and

f () have opposite signs and hencef(t) = 0 has at least one root inside the
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I t—c1interval whose boundaries are c1 and —. But u1 = is positive every-

where inside this interval, and hence there is a non-trivial equilibrium.
If c1C1 = 1 we have

f(c1) =f() = o

and

I —
C1=

l—Ct

is indeterminate at I = c1. However,

c2t—l c1c2—l= att=c1
C2t—12 c1(C2—c1)

and u1>0 because C2 < = c1 and hence both the numerator and the

denominator are negative. Thus again in this case there is a non-trivial
equilibrium; moreover, it is interesting to note that it is unique since

= t—C1 = —c1<0

for all values of t except I = c1.

(ii) c1>0,C10.

In this case f(c1) <0 and hencef(t) = 0 has at least one root t>c1 and
u1>0 for all t>c1.

(iii) c1 0, C1> 0.

In this case it follows from (55) thatf() >0 and hence thatf(t) = 0

has at least one root in the interval 0<1< and u1 >0 everywhere in

this interval.

(iv) c1 0, C1 0.

Clearly under these conditions

=
l—C1t

>0

for all positive values oft; and sincej(t) = 0 must have at least one positive
root it follows that there exists at least one non-trivial equilibrium.

Similarly, it follows that conditions (53) imply

c1c2>l, C1C2>l (63)

and hence c1 and C1 must both be positive and the same argument goes
through as in (i) above.
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We have thus proved that either of (52) or (53) are sufficient conditions
for the existence of at least one non-trivial equilibrium.

7. Moi'o'roi'iic APPROACH NEAR EQUILIBRIUM

Some time ago Edwards (1967) raised the question of the monotonic
convergence of the gene frequency and Mandel (1968) showed that in the
classical model in which there are no viability differentials between sexes,
the change in gene frequency (or, what amounts to the same thing, the gene
ratio) is always in the same direction.

In Owen's model, we can show that the gene ratios are changing mono-
tonically when the population is near an equilibrium state. Beginning with
the set of equations (10) we have, for example,

b — 2a1u2+h1(l—u1) — (1-+-C1)u2+1—u111 —

h1(u1+u2) +2b1 u1+u2+ (1 +c1)

The denominator in expression (64) is clearly positive. We now con-
sider the numerator and set

R = (1+C1)u2+ I—u1 (65)

= u1t+u1—t+c1+l—u1 (using (3))

= (1+c1)+t(u1—l)

whence R = (1 +c1) + (1 +C1)tu2 > 0.
(66)

1 +t

In fact, it can be shown that, for all i, j = 1, 2

b = (l+c)uj+(l+Cj)(u+u—u) > 0 (67)
u1 + (1 + c) + (u1 + u2)

=

Thus we have shown that the elements of the 2 x 2 matrix (b15) are non-
negative and hence the latent roots A and A2 are real and the dominant latent
root is positive. These properties follow from a theorem of Frobenius (1912)
on the latent roots of matrices with non-negative elements. They can also
be derived very easily by observing that the characteristic equation of the
matrix (b1) is

A2 — (b11 + b22) A + (b11b22 — b12b21)
= 0 (68)

whose discriminant is

A = (b11 + b22)2 — 4(b11b22
—

b12b21)

(b11—b22)2+4b12b21 (69)

which is clearly non-negative so that the roots are real. Moreover

= b11+b22 0 (70)

with equality only when b11 = b22
= 0, which can occur only when both

homozygotes in both sexes are lethal; in this case only heterozygotes of
either sex would be present in the population and changes in gene frequency
are therefore zero. Otherwise the dominant latent root is positive and it
follows that oscillations of the gene ratio do not occur when the population
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is sufficiently close to an equilibrium state, that is to say changes in the gene
ratio are monotonic.

8. STABLE EQJILIBRIUM IN THE ABSENCE OF HETEROSIS

It is easy to show, by means of a numerical example, that there exist
stable equilibria in the absence of heterosis in either sex.

Thus if we take the situation in which, for example, the viability para-
meters are

a1r—1, h1=2, b13 71
a2=3, h2=2, b2=l 5 ( )

we have

c1=2, C1=0 72
c2=0, C2=2 (

and hence

(73)

so that equation (5) reduces to

f(t) = (i—i) (t2—3t+ 1) = 0 (74)

whose roots are 0382, 1 and 2618.
When t 0382, u1 = —l6l8; when I = 1, u1 = —1. Hence both of

these roots of (74) can be ignored. However, when t = 26l8, u1 06l8
and u2 = tu1 = 1 6 18 and hence the population is in equilibrium when the
gene ratios have these values. In order to determine the stability, we can
calculate the bj from equations (67) and find that the matrix is

B = (0.382 0.191\
\l.309 0382J

so that the characteristic equation of B is

X2—O.764A—O•l04 = 0 (76)

and the stability roots are therefore 0882 and —0118. The equilibrium is
therefore stable.

This is interesting, as already remarked, because the heterozygote does
not have a selective advantage over both homozygotes in either females or
males. Moreover, it is interesting to note that, apart from the disparity
between the equilibrium gene ratios in the two sexes, the population dynamics
of this system are identical with those of a system in which there are no
viability differences between sexes and in which the viability parameters
have the values a =3, h = 4, b = 3.

9. Two STABLE POLYMORPHIC EQUILIBRIA

We apply the results of the previous sections to the examples given by
Owen (1953) of genetical systems with two distinct stable equilibria in which
both alleles are present in the population.
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It will be noted along the way that there appear to be one or two errors
in the presentation of Owen's results; these are merely computational, and
not errors in principle, and are quickly rectified.

In Owen's first example, the six viability parameters have the values

a1 = 05, h1 = 1, b1 = 05
177

a2 = 2l5, h2
= 1, b2 = 215 5

so that

c1=C1=0 178
c2=C2=33 5

so that the cubic equation (5) reduces to

f(t)
= (t—l)(t2—2•3t+l) = 0 (79)

with roots 05821, 1 and 1.7179.

Since, from equation (3), u1 = t in this case, it follows that there is an
equilibrium state of the population corresponding to each root of equation
(79), and these equilibria are characterised by the gene ratios as follows:

I. u1 = 0•5821, u2 = 0•3388

II. u1 = l0000, u2 = 10000 (80)
III. u1 = l7l79, u2 = 29512

corresponding to the values given by Owen (1953).
The stability of each equilibrium can be tested by calculating the stability

roots. These are obtained as the latent roots of the matrix B = (b5) the
elements of which are obtained from equations (67). Thus, for the equili-
brium I, we find that

B — (0.3939 05206
81—

'0•4057 0.6061

and hence the characteristic equation is

A2—A+O•0275 = 0 (82)

so that the stability roots are 0.9717 and 00283, and hence the equilibrium
is stable. (Note that these values of the stability roots differ somewhat from

those given by Owen.)
For equilibrium II we obtain

B= (83)
43 43

63 63

and hence the characteristic equation is

A2— ( +) A = 0 (84)

so that the stability roots are zero and = 10159 agreeing with the values

found by Owen and this equilibrium is unstable.
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Finally, for equilibrium III we obtain

B (0.3939 0.1764\ (85)
\l.1973 06061J

and hence the characteristic equation and the stability roots are identical
with those for equilibrium I, which follows intuitively from the fact that in
this example the system is invariant under the gene substitution A—ia.
Owen's values for the stability roots of this equilibrium do not correspond.

In Owen's second example, the viability parameters are

a1 = O5, h1 = 1, b1 = 0.5
(86)a2=41, h2=l, b2=3.5J

so that

c1=C1=0 (87)
c2=6, C2==72 J

and thus the cubic equation (5) becomes

f(t) = t3—7•2t2+6t—l = 0. (88)

By inspection, equation (88) has a root close to t = = 0.7071, and

using Newton's method we can obtain a better approximation at t 07057.
The residual quadratic equation is then

t2—64943t+l4l70 = 0 (89)

with roots at t = 0226l and t = 62682. Hence there are three equilibria,
characterised by the following gene ratios:

I. u1 = 62682, u2 = 392903
II. u1 = 07057, u2 04980 (90)

III. u1 = 0•2261, u2 = 0•051l

These values do not agree with those given by Owen (1953), due to the fact
that Owen appears inadvertently to have interchanged the values of and fi.
This in fact makes the transformation A—pa, which is thus the problem solved
by Owen.

In order to examine the stability of the three equilibria, we note that for
equilibrium I the (big) have the values

B — (0.7307 00215
91—

54010 02494

and the characteristic equation of B is

A2—O98O1A+O•O661 = 0 (92)

with roots 090725 and 007285 so that this equilibrium is stable and the
values of the stability roots agree with those given by Owen.

For equilibrium II, we obtain

B — (0.3595 04538
93—

0•5590 0•7666
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and the characteristic equation

A2—1•126lA+O•02l9=0 (94)

so that the stability roots are 1•1063 and 00198, showing that this equilibrium
is unstable, and differing, incidentally, from the values obtained by Owen.

Lastly, for equilibrium III the (b) have the values

B = (0.6460 07830' (95)
\0•1879 0.3850/

and the characteristic equation of B is

)t2—l•O3lOA+O1Ol6 = 0 (96)

with roots 0•92065 and 0 11035 which agrees with the values found by Owen
and the equilibrium is stable.

As a final remark, it is interesting to note that the stability roots for the
equilibria of the system cited by Li (1967) can be obtained very quickly

using equations (67). Li's example is characterised by the system of para-
meters

a1=7, h=3, b1=71 (97
a2=7, h2=15, b2=7J

and leads to a pair of symmetrically located stable equilibria given by the
gene ratios

1 3

U1, U2
(98)

and u1=3,

each of which is characterised by stability roots whose values are 0-9672 and
0-0328; together with an unstable equilibrium at u1 = = 1 with stability
roots 10l8 and zero.

10. SUMMARY

Owen's model of a genetical system in which the genotypic viabilities
differ between sexes as well as between genotypes is discussed, and some of
its properties are described.
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