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Abstract. Although OWL is rather expressive, it has a very serious limitation
on datatypes; i.e., it does not support customised datatypes. It has been pointed
out that many potential users will not adopt OWL unless this limitation is over-
come. Accordingly, the Semantic Web Best Practices and Development Working
Group sets up a task force to address this issue. This paper makes the following
two contributions: (i) it provides a brief summary of OWL-related datatype for-
malisms, and (ii) it provides a decidable extension of OWL DL, called OWL-Eu,
that supports customised datatypes.

1 Introduction

The OWL Web Ontology Language [3] is a W3C recommendation for expressing on-
tologies in the Semantic Web. Datatype support [16, 17] is one of the most useful fea-
tures OWL is expected to provide, and has brought extensive discussions in the RDF-
Logic mailing list [18] and Semantic Web Best Practices mailing list [20]. Although
OWL adds considerable expressive power to the Semantic Web, the OWL datatype for-
malism (or simply OWL datatyping) is much too weak for many applications; in partic-
ular, OWL datatyping does not provide a general framework for customised datatypes,1

such as XML Schema derived datatypes.
It has been pointed out that many potential users will not adopt OWL unless this

limitation is overcome [19], as it is often necessary to enable users to define their own
datatypes and datatype predicates for their ontologies and applications. For instance,
when using a computer sales ontology, a user may need to describe a PC with mem-
ory size greater than or equal to 512Mb, unit price less than 700 pounds and delivery
date earlier than 15/03/2004. In this context, ‘greater than or equal to 512’, ‘less than
700’ and ‘earlier than 15/12/2004’ can be seen as customised datatypes, with the base
datatypes being integer, integer and date, respectively.

After reviewing the design of OWL, and the needs of various applications and (po-
tential) users, the following requirements for an extension to OWL DL have been iden-
tified:

1. It should provide customised datatypes; therefore, it should be based on a datatype
formalism which is compatible with OWL datatyping, provides facilities to con-

1 A widely discussed example would be the ‘BigWheel’ example discussed in,
e.g., http://lists.w3.org/Archives/Public/public-swbp-wg/2004Apr/
0061.html.
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struct customised datatypes and, most importantly, guarantees the computerability
of the kinds of customised datatypes it supports.

2. It should overcome other important limitations of OWL datatyping, such as the ab-
sence of negated datatypes and the un-intuitive semantics for unsupported datatypes
(which will be further explained in Section 4).

3. It should satisfy the small extension requirement, which is two folded: on the one
hand, the extension should be a substantial and necessary extension that overcomes
the above mentioned limitations of OWL datatyping; on the other hand, following
W3C’s ‘one small step at a time’ strategy, it should only be as large as is necessary
in order to satisfy the requirements.

4. It should be a decidable extension of OWL DL.

This paper makes two main contributions. Firstly, it provides an overview of relevant
(to OWL) datatype formalisms, namely those of XML, RDF and OWL itself. Secondly,
and most importantly, it presents an extension of OWL DL,2 called OWL-Eu (OWL
with unary datatype Expressions), which satisfies the above requirements.

The rest of the paper is organised as follows. Section 2 briefly introduces the OWL
Web Ontology Language. Section 3 describes OWL-related datatype formalisms. Sec-
tion 4 summarises the limitations of OWL datatyping. Section 5 presents the OWL-Eu
language, showing how it satisfies the above four requirements. Section 6 describes
some related works, and Section 7 concludes the paper and suggests some future
works.

2 An Overview of OWL

OWL is a standard (W3C recommendation) for expressing ontologies in the Seman-
tic Web. The OWL language facilitates greater machine understandability of Web re-
sources than that supported by RDFS by providing additional constructors for building
class and property descriptions (vocabulary) and new axioms (constraints), along with
a formal semantics. The OWL recommendation actually consists of three languages of
increasing expressive power: OWL Lite, OWL DL and OWL Full. OWL Lite and OWL
DL are, like DAML+OIL, basically very expressive Description Logics (DLs); they are
almost3 equivalent to the SHIF(D+) and SHOIN (D+) DLs. OWL Full provides the
same set of constructors as OWL DL, but allows them to be used in an unconstrained
way (in the style of RDF). It is easy to show that OWL Full is undecidable, because it
does not impose restrictions on the use of transitive properties [10]; therefore, when we
mention OWL in this paper, we usually mean OWL DL.

Let C, RI, RD and I be the sets of URIrefs that can be used to denote classes,
individual-valued properties, data-valued properties and individuals respectively. An
OWL DL interpretation is a tuple I = (∆I ,∆D, ·I , ·D) where the individual domain
∆I is a nonempty set of individuals, the datatype domain ∆D is a nonempty set of data
values, ·I is an individual interpretation function that maps

2 cf. Section 2 for the differences of three sub-languages of OWL.
3 They also provide annotation properties, which Description Logics don’t.
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Table 1. OWL individual-valued property descriptions

Abstract Syntax DL Syntax Semantics
ObjectProperty(R) R RI ⊆ ∆I × ∆I

ObjectProperty(S inverseOf(R)) R− (R−)I ⊆ ∆I × ∆I

Table 2. OWL class descriptions

Abstract Syntax DL Syntax Semantics
Class(A) A AI ⊆ ∆I

Class(owl:Thing) � �I =∆I

Class(owl:Nothing) ⊥ ⊥I = ∅
intersectionOf(C1, C2, . . .) C1 � C2 (C1 � C2)

I = CI
1 ∩ CI

2

unionOf(C1, C2, . . .) C1 � C2 (C1 � C2)
I = CI

1 ∪ CI
2

complementOf(C) ¬C (¬C)I = ∆I \ CI

oneOf(o1, o2, . . .) {o1}� {o2} ({o1}� {o2})I = {o1I , o2
I}

restriction(R someValuesFrom(C)) ∃R.C (∃R.C)I = {x | ∃y.〈x, y〉 ∈ RI ∧ y ∈ CI}
restriction(R allValuesFrom(C)) ∀R.C (∀R.C)I = {x | ∀y.〈x, y〉 ∈ RI → y ∈ CI}
restriction(R hasValue(o)) ∃R.{o} (∃R.{o})I = {x | 〈x, oI〉 ∈ RI}
restriction(R minCardinality(m)) � mR (� mR)I = {x | �{y.〈x, y〉 ∈ RI} ≥ m}
restriction(R maxCardinality(m)) � mR (� mR)I = {x | �{y.〈x, y〉 ∈ RI} ≤ m}
restriction(T someValuesFrom(u)) ∃T.u (∃T.u)I = {x | ∃t.〈x, t〉 ∈ TI ∧ t ∈ uD}
restriction(T allValuesFrom(u)) ∀T.u (∀T.u)I = {x | ∃t.〈x, t〉 ∈ TI → t ∈ uD}
restriction(T hasValue(w)) ∃T.{w} (∃T.{w})I = {x | 〈x, wD〉 ∈ TI}
restriction(T minCardinality(m)) � mT (� mT )I = {x | �{t | 〈x, t〉 ∈ TI} ≥ m}
restriction(T maxCardinality(m)) � mT (� mT )I = {x | �{t | 〈x, t〉 ∈ TI} ≤ m}

– each individual name a ∈ I to an element aI ∈ ∆I ,
– each concept name CN ∈ C to a subset CNI ⊆ ∆I ,
– each individual-valued property name RN ∈ RI to a binary relation RNI ⊆

∆I × ∆I and
– each data-valued property name TN ∈ RD to a binary relation TNI ⊆ ∆I×∆D,

and ·D is a datatype interpretation function. More details of ∆D and ·D will be pre-
sented in Section 3.3.

The individual interpretation function can be extended to give semantics to class
and individual-valued property descriptions shown in Tables 1 and 2, where A ∈ C is
a concept URIref, C,C1, . . . , Cn are concept descriptions, R ∈ RI is an individual-
valued property URIref, R1, . . . , Rn are individual-valued property descriptions and
o, o1, o2 ∈ I are individual URIrefs, u is a data range (cf. Definition 8), T ∈ RD is a
data-valued property and � denotes cardinality.

An OWL DL ontology can be seen as a DL knowledge base [11], which consists
of a set of axioms, including class axioms, property axioms and individual axioms.4

Table 3 presents the abstract syntax, DL syntax and semantics of OWL axioms.

4 Individual axioms are also called facts.
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Table 3. OWL axioms

Abstract Syntax DL Syntax Semantics
Class(A partial C1 . . . Cn) A � C1 � . . . � Cn AI ⊆ CI

1 ∩ . . . ∩ CI
n

Class(A complete C1 . . . Cn) A ≡ C1 � . . . � Cn AI = CI
1 ∩ . . . ∩ CI

n

EnumeratedClass(A o1 . . . on) A ≡ {o1} � . . .� {on} AI = {o1I , . . . , oIn}
SubClassOf(C1, C2) C1 � C2 CI

1 ⊆ CI
2

EquivalentClasses(C1 . . . Cn) C1 ≡ . . . ≡ Cn CI
1 = . . . = CI

n

DisjointClasses(C1 . . . Cn) Ci � ¬Cj , CI
1 ∩ CI

n = ∅,
(1 ≤ i < j ≤ n) (1 ≤ i < j ≤ n)

SubPropertyOf(R1, R2) R1 � R2 RI
1 ⊆ RI

2
EquivalentProperties(R1 . . . Rn) R1 ≡ . . . ≡ Rn RI

1 = . . . = RI
n

ObjectProperty(R super(R1) ... super(Rn) R � Ri RI ⊆ RI
i

domain(C1) ... domain(Ck) � 1R � Ci RI ⊆ CI
i × ∆I

range(C1) ... range(Ch) 	 � ∀R.Ci RI ⊆ ∆I × CI
i

[Symmetric] R ≡ R− RI = (R−)I

[Functional] Func(R) {〈x, y〉 | �{y.〈x, y〉 ∈ RI} ≤ 1}
[InverseFunctional] Func(R−) {〈x, y〉 | �{y.〈x, y〉 ∈ (R−)I} ≤ 1}
[Transitive]) Trans(R) RI = (RI)+

AnnotationProperty(R)
Individual(o type(C1) . . . type(Cn) o : Ci, 1 ≤ i ≤ n oI ∈ CI

i , 1 ≤ i ≤ n

value(R1, o1) . . . value(Rn, on) 〈o, oi〉 : Ri,1 ≤ i ≤ n 〈oI , oIi 〉 ∈ RI
i , 1 ≤ i ≤ n

SameIndividual(o1 . . . on) o1 = . . . = on oI1 = . . . = oIn
DifferentIndividuals(o1 . . . on) oi �= oj , 1 ≤ i < j ≤ n oIi �= oIj , 1 ≤ i < j ≤ n

3 Datatype Formalisms

In this section we will provide a brief overview of the XML, RDF and OWL datatype
formalisms.

3.1 XML Schema Datatypes

W3C XML Schema Part 2 [4] defines facilities for defining simple types to be used in
XML Schema as well as other XML specifications.

Definition 1. An XML Schema simple type d is characterised by a value space, V (d),
which is a non-empty set, a lexical space, L(d), which is a non-empty set of Unicode [6]
strings, and a set of facets, F (d), each of which characterizes a value space along
independent axes or dimensions. �

XML Schema simple types are divided into disjoint built-in simple types and de-
rived simple types. Derived datatypes can be defined by derivation from primitive or
existing derived datatypes by the following three means:

– Derivation by restriction, i.e., by using facets on an existing type, so as to limit the
number of possible values of the derived type.

– Derivation by union, i.e., to allow values from a list of simple types.
– Derivation by list, i.e., to define the list type of an existing simple type.

Example 1. The following is the definition of a derived simple type (of the base
datatype xsd:integer) which restricts values to integers greater than or equal to 0 and
less than 150, using the facets minInclusive and maxExclusive.
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<simpleType name = “humanAge”>
<restriction base = “xsd:integer”>

<minInclusive value = “0”/>
<maxExclusive value = “150”/>

</restriction>
</simpleType> ♦

3.2 Datatypes in RDF

According to [8], RDF allows the use of datatypes defined by any external type systems,
e.g., the XML Schema type system, which conform to the following specification.

Definition 2. A datatype d is characterised by a lexical space, L(d), which is an non-
empty set of Unicode strings; a value space, V (d), which is an non-empty set, and a
total mapping L2V (d) from the lexical space to the value space. �

This specification allows the use of non-list XML Schema built-in simple types
as datatypes in RDF, although some built-in XML Schema datatypes are problematic
because they do not fit the RDF datatype model.5 Furthermore, comparisons between
Definition 1 and 2 show that RDF does not take XML Schema facets into account,
which are essential to define derived simple types.

In RDF, data values are represented by literals.

Definition 3. All literals have a lexical form being a Unicode string. Typed literals are
of the form “s”ˆˆu, where s is a Unicode string, called the lexical form of the typed lit-
eral, and u is a datatype URI reference. Plain literals have a lexical form and optionally
a language tag as defined by [1], normalised to lowercase. �

Example 2. Boolean is a datatype with value space {true, false}, lexical space
{“true”, “false”,“1”,“0”} and lexical-to-value mapping {“true”�→ true, “false”�→
false, “1”�→ true, “0”�→ false}. “true”ˆˆxsd:boolean is a typed literal, while “true”
is a plain literal. ♦

The associations between datatype URI references (e.g., xsd:boolean) and
datatypes (e.g., boolean) can be provided by datatype maps defined as follows.

Definition 4. A datatype map Md is a partial mapping from datatype URI references
to datatypes. �

Note that XML Schema derived simple types are not RDF datatypes because XML
Schema provides no mechanism for using URI references to refer to derived simple
types.

The semantics of RDF datatypes are defined in terms of Md-interpretations, which
extend RDF-interpretations and RDFS-interpretations (cf. RDF Semantics [8]) with ex-
tra conditions for datatypes.

5 Readers are referred to [8] for more details.
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Definition 5. Given a datatype map Md, an RDFS Md-interpretation I of a vocabu-
lary V (a set of URIrefs and plain literals) is any RDFS-interpretation of V ∪ {u |
∃ d.〈u, d〉 ∈ Md} which introduces

– a non-empty set IR of resources, called the domain (or universe) of I,
– a set IP (the RDF-interpretation requires IP to be a sub-set of IR) called the set

of properties in I,
– a set IC (the RDFS-interpretation requires IC to be a sub-set of IR) called the set

of classes in I, and
– a distinguished subset LV of IR, called the set of literal values, which contains all

the plain literals in V,
– a mapping IS from URIrefs in V to IR,
– a mapping IEXT , called the extension function, from IP to the powerset of IR×

IR,
– a mapping ICEXT , called the class extension function, from IC to the set of

subsets of IR,
– a mapping IL from typed literals in V into IR,

and satisfies the following extra conditions:

1. LV = ICEXT (IS(rdfs:Literal)),
2. for each plain literal pl, IL(pl) = pl,
3. for each pair 〈u, d〉 ∈ Md,

(a) ICEXT (d) = V (d) ⊆ LV,
(b) there exist d ∈ IR s.t. IS(u) = d,
(c) IS(u) ∈ ICEXT (IS(rdfs:Datatype)),
(d) for “s”ˆˆu′ ∈ V,IS(u′) = d, if s ∈ L(d), then IL(“s”ˆˆu′) = L2S(d)(s),

otherwise, IL(“s”ˆˆu′) ∈ IR \ LV,
4. if d ∈ ICEXT (IS(rdfs:Datatype)), then 〈d, IS(rdfs:Literal)〉 ∈ IEXT (rdfs:

subClassOf). �

According to Definition 5, LV is a subset of IR, i.e., literal values are resources. Con-
dition 1 ensures that the class extension of rdfs:Literal is LV. Condition 2 ensures
that the plain literals are interpreted as themselves. Condition 3a asserts that RDF(S)
datatypes are classes (because datatypes are interpreted using the class extension func-
tion ICEXT ), condition 3b ensures that there is a resource d for datatype d in Md, and
condition 3c ensures that the class rdfs:Datatype contains the datatypes used in any
satisfying Md-interpretation. Condition 3d explains why the range of IL is IR rather
than LV (because, for “s”ˆˆu, if s �∈ L(IS(u)), then IL(“s”ˆˆu) �∈ LV); note that this
is different from OWL datatypes (cf. Definition 9). Condition 4 requires that RDF(S)
datatypes are sub-classes of rdfs:Literal.

3.3 Datatypes in OWL

OWL datatyping adopts the RDF specification of datatypes and data values. It extends
RDF datatyping by (i) allowing different OWL reasoners to provide different supported
datatypes, and (ii) introducing the use of so called enumerated datatypes.
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Definition 6. Given a datatype map Md, a datatype URI reference u is called a sup-
ported datatype URI reference w.r.t. Md if there exists a datatype d s.t. Md(u) = d
(in this case, d is called a supported datatype w.r.t. Md ); otherwise, u is called an
unsupported datatype URI reference w.r.t. Md . �
Definition 7. Let y1, . . . , yn be typed literals. An enumerated datatype is of the form
oneOf(y1 . . . yn). �

Definition 8. An OWL data range has one of the forms: (i) a datatype URI reference,
(ii) an enumerated datatype, or (iii) rdf:Literal. �

The semantics of OWL DL datatypes are defined in terms of OWL datatype inter-
pretations.

Definition 9. An OWL datatype interpretation w.r.t. to a datatype map
Md is a pair (∆D, ·D), where the datatype domain ∆D = PL ∪⋃

for each supported datatype URIref u w.r.t. Mp
V (Mp(u)) (PL is the value

space for plain literals, i.e., the union of the set of Unicode strings and the set of pairs
of Unicode strings and language tags) and ·D is a datatype interpretation function,
which has to satisfy the following conditions:

1. rdfs:LiteralD = ∆D;
2. for each plain literal l, lD = l ∈ PL;
3. for each supported datatype URIref u (let d = Md(u)):

(a) uD = V (d) ⊆ ∆D,
(b) if s ∈ L(d), then (“s”ˆˆu)D = L2V (d)(s),
(c) if s �∈ L(d), then (“s”ˆˆu)D is not defined;

4. for each unsupported datatype URIref u, uD ⊆ ∆D, and (“s”ˆˆu)D ∈ uD.
5. each enumerated datatype oneOf(y1 . . . yn) is interpreted as yD

1 ∪ . . . ∪ yD
n . �

The above definition shows that OWL datatyping is similar to RDF datatyping, except
that (i) RDF datatypes are classes, while OWL DL datatypes are not classes,6 and (ii)
in RDF ill-defined typed literals are interpreted as resources in IR\LV, while in OWL
DL the interpretation of ill-defined typed literals are undefined.

4 Limitations of OWL Datatyping

OWL datatyping has the following serious limitations, which discourage potential users
from adopting OWL DL in their SW and ontology applications [15, 19].

1. OWL does not support customised datatypes (except enumerated datatypes).
Firstly, XML Schema derived simple types are not OWL DL datatypes, because
of the problem of datatype URI references for XML Schema derived simple types.
Secondly, OWL does not provide a mechanism to tell which (customised) datatypes
can be used together so that the language is still decidable.

6 In fact, classes and datatypes in OWL DL use different interpretation functions; cf. Section 2.
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2. OWL does not support negated datatypes. For example, ‘all integers but 0’, which
is the relativised negation of the enumerated datatype oneOf(“0”ˆˆxsd:integer), is
not expressible in OWL. Moreover, negated datatypes are necessary in the negated
normal form (NNF)7 of datatype-related class descriptions in, e.g., DL tableaux
algorithms.

3. An OWL DL datatype domain seriously restricts the interpretations of typed literals
with unsupported datatype URIrefs. For example, given the datatype map Md1 =
{xsd:integer �→ integer, xsd:string �→ string}, “1.278e-3”ˆˆxsd:float has to
be interpreted as either an integer, a string or a string with a language tag, which is
counter-intuitive.

5 OWL-Eu

This section presents OWL-Eu and elaborates how OWL-Eu satisfies the four require-
ments (listed in Section 1) in the following four sub-sections.

5.1 Supporting Customised Datatypes

OWL-Eu supports customised datatypes through unary datatype expressions based on
unary datatype groups. Intuitively, an unary datatype group extends the OWL datatyping
with a hierarchy of supported datatypes.8

Definition 10. A unary datatype group G is a tuple (Md,B,dom), where Md is the
datatype map of G, B is the set of primitive base datatype URI references in G and
dom is the declared domain function. We call S the set of supported datatype URI
references of G, i.e., for each u ∈ S, Md(u) is defined; we require B ⊆ S. We assume
that there exists a unary datatype URI reference owlx:DatatypeBottom �∈ S. The
declared domain function dom has the following properties: for each u ∈ S, if u ∈
B, dom(u) = u; otherwise, dom(u) = v, where v ∈ B. �

Definition 10 ensures that all the primitive base datatype URIrefs of G are supported
(B ⊆ S) and that each supported datatype URIref relates to a primitive base datatype
URIref through the declared domain function dom.

Example 3. G1 = (Md1,B1, dom1) is a unary datatype group, where

– Md1 = {xsd:integer �→ integer, xsd:string �→ string, xsd:nonNegativeInteger
�→≥0, xsdx:integerLessThanN �→<N},

– B1 = {xsd:string, xsd:integer}, and

7 A concept is in negation normal form iff negation is applied only to atomic concept names,
nominals or datatypes.

8 Note that in [15] datatype groups allow arbitrary datatype predicates, while here we consider
only datatypes, which can be regarded as unary datatype predicates.
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– dom1 = {xsd:integer �→ xsd:integer, xsd:string �→ xsd:string, xsd:nonNega-
tiveInteger �→ xsd:integer, xsdx:integerLessThanN �→ xsd:integer}.

According to Md1, we have S1 = {xsd:integer, xsd:string, xsd:nonNega- tiveIn-
teger, xsdx:integerLessThanN}, hence B1 ⊆ S1. Note that the value space of <N is

V (<N) = {i ∈ V (integer) | i < L2S(integer)(N)},

and by <N we mean there exists a supported datatype <N for each integer
L2S(integer)(N). ♦

Based on a unary datatype group, OWL-Eu provides a formalism (called datatype
expressions) for constructing customised datatypes using supported datatypes.

Definition 11. Let G be a unary datatype group. The set of G-unary datatype expres-
sions in abstract syntax (corresponding DL syntax can be found in Table 4 on page 162),
abbreviated Dexp(G), is inductively defined as follows:

1. atomic expressions: if u is a datatype URIref, then u ∈ Dexp(G);
2. relativised negated expressions: if u is a datatype URIref, then not(u) ∈

Dexp(G);
3. enumerated datatypes: if l1, . . . , ln are literals, then oneOf(l1, . . . , ln) ∈

Dexp(G);
4. conjunctive expressions: if {E1, ..., En} ⊆ Dexp(G), then and(E1, ..., En) ∈

Dexp(G);
5. disjunctive expressions: if {E1, ..., En} ⊆ Dexp(G), then or(E1, ..., En) ∈

Dexp(G). �

Example 4. G-unary datatype expressions can be used to represent XML Schema non-
list simple types. Given the unary datatype group G1 presented in Example 3 (page 160),

– built-in XML Schema simple types integer, string, nonNegativeInteger are
supported datatypes in G1;

– the XML Schema derived simple type (using only one facet)

<simpleType name = “lessThan5”>
<restriction base = “xsd:integer”>

<maxExclusive value = “5”/>
</restriction>

</simpleType>,

i.e. <5, is a supported datatype in G1;
– the XML Schema derived simple type (using more than one facet) “humanAge”

presented in Example 1 (page 156) can be represented by the following conjunctive
expression

and(xsd:nonNegativeInteger, xsdx:integerLessThan150);
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Table 4. Syntax and semantics of datatype expressions (OWL-Eu data ranges)

Abstract Syntax DL Syntax Semantics
a datatype URIref u u uD

oneOf(l1, . . . , ln) {l1, . . . , ln} {lD1 } ∪ . . . ∪ {lDn }
not(u) u (Md(u))D \ uD if u ∈ S \ B

∆D \ uD otherwise
and(E1, . . . , En) E1 ∧ . . . ∧ En ED

1 ∩ . . . ∩ ED
n

or(P, Q) E1 ∨ . . . ∨ En ED
1 ∪ . . . ∪ ED

n

– the following XML Schema derived union simple type

<simpleType name = “cameraPrice”>
<union>

<simpleType>
<restriction base = “xsd:nonNegativeInteger”>

<maxExclusive value = “100000”/>
</restriction>

</simpleType>
<simpleType>

<restriction base = “xsd:string”>
<enumeration value = “low”/>
<enumeration value = “medium”/>
<enumeration value = “expensive”/>

</restriction>
</simpleType>

</union>
<simpleType>

can be represented by the following disjunctive expression

or(
and(xsd:nonNegativeInteger, xsdx:integerLessThan100000)
oneOf(“low”ˆˆxsd:string,“medium”ˆˆxsd:string, “expensive”ˆˆxsd:string)

). ♦

Definition 12. A datatype interpretation ID of a unary datatype group G =
(Md,B, dom) is a pair (∆D, ·D), where ∆D (the datatype domain) is a non-empty set
and ·D is a datatype interpretation function, which has to satisfy the following conditions:

1. (rdfs:Literal)D = ∆D and (owlx:DatatypeBottom)D = ∅;
2. for each plain literal l, lD = l ∈ PL and PL ⊆ ∆D;9

3. for any two primitive base datatype URIrefs u1, u2 ∈ B: uD
1 ∩ uD

2 = ∅;
4. for each supported datatype URIref u ∈ S (let d = Md(u)):

(a) uD = V (d) ⊆ ∆D, L(u) ⊆ L(dom(u)) and L2S(u) ⊆ L2S(dom(u));
(b) if s ∈ L(d), then (“s”ˆˆu)D = L2V (d)(s); otherwise, (“s”ˆˆu)D is not de-

fined;
5. ∀u �∈ S, uD ⊆ ∆D, and “v”ˆˆu ∈ uD.

9 PL is the value space for plain literals; cf. Definition 9 on page 159.
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Moreover, we extend ·D to G unary datatype expression as shown in Table 4
(page 162). Let E be a G unary datatype expression, the negation of E is of the form
¬E, which is interpreted as ∆D \ ED. �

In Definition 12, Condition 3 ensures that the value spaces of all primitive base
datatypes are disjoint with each other. Condition 4a ensures that each supported
datatype is a derived datatype of its primitive base datatype. Please note the difference
between a relativised negated expression and the negation of a unary datatype expres-
sion: the former one is a kind of unary datatype expression, while the latter one is the
form of negation of all kinds of unary datatype expressions.

Now we introduce the kind of basic reasoning mechanisms required for a unary
datatype group.

Definition 13. Let V be a set of variables, G = (Md,B, dom) a unary datatype group.
A datatype conjunctions of G of the form

C =

k∧

j=1

uj(vj) ∧
l∧

i=1

�=i (v
(i)
1 , v

(i)
2 ), (1)

where the vj are variables from V, v
(i)
1 , v

(i)
2 are variables appear in

∧k
j=1 uj(vj), uj

are datatype URI references from S and �=i are the inequality predicates for primitive
base datatypes Md(dom(ui)) where ui appear in

∧k
j=1 uj(vj).

A predicate conjunction C is called satisfiable iff there exist an interpretation
(∆D, ·D) of G and a function δ mapping the variables in C to data values in ∆D

s.t. δ(vj) ∈ uD
j (for all 1 ≤ j ≤ k) and {δ(v(i)

1 ), δ(v(i)
2 )} ⊆ uD

i and δ(v(i)
1 ) �= δ(v(i)

2 )
(for all 1 ≤ i ≤ l). Such a function δ is called a solution for C w.r.t. (∆D, ·D). �

We end this section by elaborating the conditions that computable unary datatype
groups require.

Definition 14. A unary datatype group G is conforming iff

1. for any u ∈ S \ B: there exist u′ ∈ S \ B such that u′D = uD, and
2. the satisfiability problems for finite datatype conjunctions of the form (1) is decid-

able. �

5.2 Small Extension: From OWL DL to OWL-Eu

In this section, we present a small extension of OWL DL, i.e., OWL-Eu. The underpin-
ning DL of OWL-Eu is SHOIN (G1), i.e., the SHOIN DL combined with a unary
datatype group G (1 for unary). Specifically, OWL-Eu (only) extends OWL data range
(cf. Definition 8) to OWL-Eu data ranges defined as follows.

Definition 15. An OWL-Eu data range is a G unary datatype expression. Abstract (as
well as DL) syntax and model-theoretic semantics of OWL-Eu data ranges are presented
in Table 4 (page 162). �
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The consequence of the extension is that customised datatypes, represented by
OWL-Eu data ranges, can be used in datatype exists restrictions (∃T.u) and datatype
value restrictions (∀T.u), where T is a datatype property and u is an OWL-Eu data
range (cf. Table 2 on page 155). Hence, this extension of OWL DL is as large as is
necessary to support customised datatypes.

Example 5. PCs with memory size greater than or equal to 512 Mb and with price
cheaper than 700 pounds can be represented in the following OWL-Eu concept descrip-
tion in DL syntax (cf. Table 4 on page 162):

PC � ∃memorySizeInMb.<512 � ∃priceInPound. <700,

where <512 is a relativised negated expression and <700 is a supported datatype
in G1. ♦

5.3 Decidability of OWL-Eu

Theorem 5.19 of [15] indicates that we can combine any decidable DL that provides the
conjunction (�) and bottom (⊥) constructors with a conforming unary datatype group
and the combined DL is still decidable. Therefore, OWL-Eu is decidable.

Theorem 1. (Theorem 6.2 of [15]) The knowledge base satisfiability problem of OWL-
Eu is decidable if the combined unary datatype group is conforming.

5.4 Overcoming the Limitations of OWL Datatyping

This section summarises how OWL-Eu overcomes the limitations of OWL datatyp-
ing presented in Section 4. Firstly, OWL-Eu is a decidable extension (Theorem 1) of
OWL DL that supports customised datatypes with unary datatype expressions (cf. Ex-
ample 4). Secondly, Definition 12 defines the negations of datatype expressions and
OWL-Eu provides relativised negated datatype expression (Definition 11). Thirdly, ac-
cording to Definition 12, the datatype domain in an interpretation of a datatype group
is a superset of (instead of equivalent to) the value spaces of primitive base datatypes
and plain literals; hence, typed literals with unsupported predicates are interpreted more
intuitively.

6 Related Work

The concrete domain approach [2, 14] provides a rigorous treatment of datatype pred-
icates, rather than datatypes.10 In the type system approach [12], datatypes are consid-
ered to be sufficiently structured by type systems; however, it does not specify how the
derivation mechanism of a type system affects the set of datatypes D. [5] suggests some
solutions to the problem of referring to an XML Schema user defined simple type with
a URI reference; however, it does not address the computability issue of combining the
SHOIN DL with customised datatypes.

10 The reader is referred to Section 5.1.3 of [15] for detailed discussions on concrete domains.
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7 Discussion

Although OWL is rather expressive, it has a very serious limitation on datatypes; i.e.,
it does not support customised datatypes. It has been pointed out that many potential
users will not adopt OWL unless this limitation is overcome. Accordingly, the Semantic
Web Best Practices and Development Working Group sets up a task force to address this
issue. As discussed above, a solution for the problem should cover much more than just
a standard way of referring to an XML Schema user defined simple type with a URI
reference.

In this paper, we propose OWL-Eu, an extension of OWL DL that supports cus-
tomised datatypes. The underpinning of OWL-Eu is the SHOIN (G1) DL, a combi-
nation of SHOIN and a unary datatype group. OWL-Eu is decidable if the combined
unary datatype group is conforming; the conformability of a unary datatype group pre-
cisely specifies the conditions on the set of supported datatypes. OWL-Eu provides a
general framework for integrating OWL DL with customised datatypes, such as XML
Schema non-list simple types.

We have implemented a prototype extension of the FaCT [9] DL system to support
TBox reasoning of the SHIQ(G1) DL, a sub-language of OWL-Eu. As for future work,
we are planing to extend the DIG1.1 interface [7] to support OWL-Eu and to implement
a Protégé [13] plug-in to support XML Schema non-list simple types, i.e. users should
be able to define and/or import customised XML Schema non-list simple types based
on a set of supported datatypes, and to exploit our prototype through the extended DIG
interface.
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