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The owl captures prey using sound localization. In the classical model, the owl infers sound 

direction from the position in a brain map of auditory space with the largest activity. 

However, this model fails to describe the actual behavior. While owls accurately localize 

sources near the center of gaze, they systematically underestimate peripheral source 

directions. Here we demonstrate that this behavior is predicted by statistical inference, 

formulated as a Bayesian model that emphasizes central directions. We propose that there is 

a bias in the neural coding of auditory space, which, at the expense of inducing errors in the 

periphery, achieves high behavioral accuracy at the ethologically relevant range. We then 

show that the owl's map of auditory space decoded by a population vector is consistent with 

the behavioral model. Thus, a probabilistic model describes both how the map of auditory 

space supports behavior and why this representation is optimal.

Behavioral experiments have shown that owls are very accurate at localizing sounds near the 

center of gaze but systematically underestimate the direction of sources in the periphery of 

the horizontal plane1,2 (Fig. 1a). This underestimation is also observed in cats3, monkeys4, 

ferrets5, and humans6. The localization of sources in the horizontal direction depends on the 

timing of the signals received at the two ears, termed interaural time difference7 (ITD). 

Processing of ITD at multiple stages of the owl's auditory system8–10 ultimately leads to a 

representation of auditory space in the optic tectum (OT; homolog of mammalian superior 

colliculus) where stimulation induces head saccades11.

The classical view of auditory-space coding in the owl is that sound source direction is 

represented in a place code12,13. In this framework, the direction of a sound source is 

determined by the position in a topographic map of auditory space with the greatest activity 

level. However, this model has not been directly compared to the owl's behavior. Thus, 
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although considerable progress has been made in determining how ITD is encoded13, it 

remains unclear how ITD is decoded to support the owl's localization behavior.

The estimation of sound source direction from ITD is an inherently ambiguous problem 

because of the non-unique dependence of ITD on sound direction2. Bayesian inference has 

been used to show how combining prior and sensory information can explain biased 

perception of ambiguous sensory signals14,15. Here we consider the hypothesis that a 

Bayesian estimator, with a prior distribution that emphasizes directions near the center of 

gaze (Fig. 1b), can explain the owl's localization based on ITD. This provides an opportunity 

to address an open question in neuroscience: the degree to which perception and behavior 

are consistent with statistical inference.

Results

Bayesian model of behavior

Under the Bayesian model, the owl's estimate of source direction depends on two factors: 

the statistical dependence of ITD on direction, and a bias for particular directions. The 

direction-dependence of ITD is known to be approximately sinusoidal from direct 

measurements of the sound signals reaching the owl's tympanic membranes2. ITD is also 

subject to variability due to the type of sound signal, environmental conditions, and noise in 

the neural computation of ITD16–19. Therefore, we modeled ITD as a sinusoidal function of 

source direction that is corrupted by Gaussian noise (Fig. 1d; amplitude = 260 μs, angular 

frequency = 0.0143 rad/degree). Note that the maximal ITDs are not at positive and negative 

ninety degrees because the facial ruff of the owl causes a phase shift relative to the owl's 

head2. The conditional probability over ITD given a source direction defined by this model 

p(ITD|θ) is called the likelihood function. The owl's localization behavior shows a clear bias, 

corresponding to an underestimation of directions away from the center of gaze. We 

modeled this bias using a Gaussian-shaped probability density of sound-source directions 

that peaks at the center of gaze and decays for peripheral directions (Fig. 1b). This bias 

constitutes the prior for Bayesian inference p(θ). While we include the prior in the model to 

capture the behavior, we note that the actual distribution of target directions measured in 

behavioral studies of the interaction between barn owls and prey is consistent with a 

centrality prior20 (Fig. 2). The likelihood function and the prior are combined according to 

Bayes' rule to give the posterior density p(θ|ITD), which is the probability density over 

sound-source direction given a value of ITD (Fig. 1b). The Bayesian estimate of source 

direction θ given a value of ITD is taken to be the mean of θ under the posterior p(θ|ITD). 

This leads to a probabilistic model of the relationship between direction and ITD with two 

parameters: the width of the prior probability density and the variance of the noise 

corrupting the computed ITD.

After determining the two parameters, the performance of the Bayesian estimator is 

consistent with the owl's localization behavior (Fig. 1e; root-mean-square error (RMSE) 

between the average behavior and the average Bayesian estimate was 1.66 deg). In addition, 

the precision of the Bayesian estimator is comparable to the behavioral precision measured 

for owls1,2 (s.d of direction estimates for the model 9.0 ± 0.5 deg and 13.91 ± 5.26 deg for 

the owl2). Differences between the average Bayesian estimate and the behavior are primarily 
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due to two features of the owl's behavior: the asymmetry in the maximal leftward and 

rightward headturns and the nonsmooth variation of the behavioral data with target direction 

that are not matched by the model.

We tested the Bayesian model using data from two independent experiments: one that alters 

the relationship between ITD and sound direction, and another that changes noise in the 

measured ITD. The removal of the facial ruff, the heart-shaped array of dense feathers that 

collects and shapes incoming sound, alters the relationship between direction and ITD (Fig. 

1f). This manipulation produces a corresponding change in the owl's behavior where the owl 

no longer reaches a plateau of direction estimates for sources in the periphery2 (Fig. 1g). We 

simulated the ruff removal by increasing the frequency and decreasing the amplitude of the 

sinusoid that describes the measured mapping of direction to ITD (Fig. 1f and 

Supplementary Fig. 1; amplitude = 230 μs, angular frequency = 0.0175 rad/degree). The 

parameters were determined by fitting the sinusoid to the measured mapping of direction to 

ITD after ruff removal2. Using unchanged parameters for the widths of the likelihood and 

the prior, the Bayesian model predicted the owl's behavior under ruff-removed conditions 

(Fig. 1g; RMSE between the average behavior and the average Bayesian estimate was 0.44 

deg).

We used a second, independent test of the Bayesian model, by examining direction estimates 

under varying interaural correlation, i.e. the degree of similarity of the sounds reaching the 

left and right ears. Changes in interaural correlation represent a means to increase the 

variability in ITD. In particular, as the interaural correlation decreases, the ITD determined 

by the peak in a cross-correlation of the left and right input signals21,22 is influenced more 

by the independent noise at the left and right ears than by the coherent source signal21. 

Behaviorally, owls show a greater underestimation of sound source direction when 

interaural correlation decreases21.

We used a cross-correlation model to determine how interaural correlation affects the 

variability of the measured ITD21,22. For a fixed ITD of the input signals, we observed an 

exponential decrease in the variability of ITD as interaural correlation increases, where the 

standard deviation of ITD reaches a minimum for interaural correlation values greater than 

0.5 (Fig. 3a). We tested the Bayesian model using values of the standard deviation of the 

noise corrupting ITD that followed this exponential relationship, with a minimum value of 

41.2 μs set by fitting the parameters of the Bayesian model to the behavioral data, as 

described above. Using this type of noise, the model predicted direction estimates that 

became increasingly biased toward zero as interaural correlation decreased (Fig. 3b), 

consistent with the owl's behavior (Fig. 3c). The model predictions show a qualitative match 

with observations of the owl's sound-localizing behavior when interaural correlation is 

manipulated21. In particular, direction estimates of the model and the owl decrease toward 

zero for interaural correlation values less than 0.5 (Fig. 3b,c). Given the asymmetry in the 

owl's estimates for directions on the left and right sides (Fig. 3c), the model captures the 

central feature of the owl's behavior, which is an increased bias toward zero as interaural 

correlation decreases.
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Assessment of Bayesian model parameters

The presence of a prior distribution that emphasizes central directions is necessary to explain 

the owl's localization behavior. The sinusoidal direction-dependence of ITD produces a 

likelihood function that has multiple equivalent peaks for any given ITD (Fig. 1b). 

Therefore, estimates of a given source direction computed from the likelihood function 

alone would be expected to fall into multiple distinct regions, rather than into a single cluster 

as is seen in the owl's behavior1,2. As a consequence, a maximum likelihood estimator fails 

to capture the bias in the owl's localization behavior (Fig. 4a). The prior distribution must be 

incorporated into the estimation process to induce the owl to consistently localize directions 

near the more central of the two possible directions.

The standard deviation of the prior in the model was 23.3 degrees. This causes the estimator 

to favor directions near the center of gaze, but is wide enough to allow for detection of 

sources in the periphery. Support for this shape of the prior is given by the observation that a 

Bayesian estimator using a wider or flat prior fails to capture the bias in the owl's 

localization behavior (Fig. 4b,c).

The likelihood function used in the Bayesian model is consistent with the natural variation 

of ITD. The standard deviation of the noise corrupting ITD was 41.2 μs. To assess the 

plausibility of this value, we used barn owl head-related transfer functions19 to determine 

the natural variability in ITD of the signals received at the ears. For horizontal directions 

ranging over the frontal hemisphere, we measured the variability of ITD computed for a 

bank of natural sounds at different elevations23. Across horizontal directions, the median 

standard deviation of ITD was 24.4 μs (19 directions, interquartile range 6.7 μs). The 

standard deviation of ITD did not vary with the magnitude of the horizontal direction (r2 = 

0.02, P = 0.68). While lower than the standard deviation of the noise corrupting ITD in the 

model, this value does not take into account variability due to environmental conditions16 

nor from the neural computation of ITD17,18.

Neural decoding

We then asked how the Bayesian estimate of source direction could be implemented in the 

neural circuitry of the owl's auditory system. Neural decoding of directional variables has 

often been investigated using the population vector24,25. The population vector is obtained 

by averaging the preferred direction vectors of neurons in the population, weighted by the 

firing rates of the neurons (Fig. 1c). It can be shown that if (i) the neural tuning curves are 

proportional to the likelihood function, (ii) the preferred directions are distributed according 

to the prior, and (iii) the neural population is large enough, then the population vector will 

be consistent with the Bayesian estimate26 (Supplementary Discussion).

To test the consistency of a population vector decoder with a Bayesian estimator, we 

constructed a model network using 500 neurons with preferred directions drawn from the 

prior distribution and tuning curves that are proportional to the likelihood function. Example 

tuning curves from the model network are shown in Figure 6a. We computed the population 

vector estimate of direction under both the normal condition and the ruff-removed 
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condition2. In each simulation, the firing rates of neurons were drawn independently from 

Poisson distributions with mean values given by the values of the tuning curves.

The population vector estimate using the model network shown in Figure 6a matched both 

the owl's behavior and the Bayesian estimate in both conditions (Fig. 1e,g), with an error of 

less than 2 degrees. The RMSE between the average behavior and the average population 

vector estimate was 1.44 deg in the normal condition and 0.39 deg in the ruff removal 

condition. The RMSE between the average estimates of the Bayesian model and the 

population vector was 0.22 deg in the normal condition and 0.05 deg in the ruff removal 

condition.

We examined the accuracy of the population vector in approximating a Bayesian estimate as 

a function of population size and correlation of firing-rate variability. In these simulations, 

firing rates of the neurons were drawn from a multivariate Gaussian distribution with mean 

given by the firing-rate values of the tuning curves and correlation matrix with entries that 

depend on the product of the tuning curve values between neurons. The Gaussian model 

with multiplicative noise produces neural responses where the variance increases with the 

mean firing rate, as in the Poisson case. The Gaussian model was used for computational 

convenience. In the behaviorally relevant range, the RMSE in the approximation of the 

Bayesian estimate by the population vector decreased as , where N is the number of 

neurons, for each value of the correlation coefficient (Fig. 5). Given the large number of 

neurons in the output layers of the OT, the population vector decoder of OT responses 

should approximate the Bayesian estimate with an error of less than two degrees. The 

robustness of this approximation indicates that the structure of the neural noise will not 

determine the form of the population code that produces the optimal representation of 

auditory space.

Predicting the neural representation

We used the neural population model to predict the representation of auditory space in the 

owl's OT. The model consists of a population of neurons with preferred directions covering 

the frontal hemisphere, but with greatest density near the center of gaze (Fig. 6a). Note that 

the population vector estimates shown in Figure 1 were computed from the same population. 

As a function of stimulus direction, the tuning curves were approximately Gaussian-shaped 

with widths that increase with eccentricity (Fig. 6a,b), in accordance with the Gaussian 

likelihood function that describes the statistical dependence of ITD on sound-source 

direction.

The nonuniform population predicted by the model is consistent with the representation of 

auditory space in the owl's OT. First, tuning curves of midbrain neurons can be described 

using Gaussian functions27. Second, the widths of the tuning curves in the model increase 

with eccentricity and fall directly in the bounds measured for space-specific neurons in OT28 

(Fig. 6b). The increase in width with eccentricity is due to the sinusoidal function of 

direction that appears in the likelihood function. This occurs because the sine function 

describing the mapping from direction to ITD changes faster for directions near the center of 

gaze than for directions near the side of the head. Therefore, for preferred directions near the 
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center of gaze, a small range of source directions will produce ITDs that are near the 

preferred ITD of the neuron. In contrast, for preferred directions near the side of the head, a 

larger range of directions will produce ITDs that are near the preferred ITD of the neuron, 

thus leading to wider tuning curves for neurons with peripheral preferrred directions. 

Finally, the distribution of preferred directions in the model is consistent with the the 

experimental distribution; that is, with the auditory space map in the OT. Assuming that cell 

density is homogeneous in OT, the physical distance between points corresponding to 

different preferred directions in OT's auditory space map will be proportional to the number 

of cells that lie between those directions. Thus, the shape of the auditory-space map on each 

side should be described by a curve that is proportional to the cumulative distribution 

function of the unilateral density of preferred directions. To determine the unilateral 

distribution, we fit the relationship between preferred direction and position in the OT space 

map measured in ref. 28 with a curve that is proportional to a cumulative Gaussian-

distribution function (Fig. 6c; mean 6.8, s.d. 20.3 degrees). The bilateral density of preferred 

direction was obtained by linearly combining two Gaussians with means given by the 

estimated unilateral value and its negative. The density of preferred directions predicted by 

the Bayesian model is consistent with the measured density in OT, where locations 

representing central directions cover a greater area than locations representing peripheral 

directions (Fig. 6d; measured density: mean 0, s.d. 20.3 deg; Bayesian model density: mean 

0, s.d. 23.3 deg.). Therefore, the shapes of the tuning curves in OT are consistent with the 

likelihood function and the shape of the auditory space map is consistent with the prior 

distribution.

Discussion

We have described a principle that explains both the sound-localizing behavior and the 

neural representation of auditory space in the owl. This principle is the implementation of 

approximate Bayesian inference using a population vector. The idea that source direction is 

decoded from the auditory space map using a population vector revises the classical place-

coding model of sound localization in barn owls12,13. To decode source direction, the 

population vector utilizes the entire OT population and takes into account the 

overrepresentation of frontal space. Thus, the population-vector estimate is biased toward 

the center of gaze by the uneven distribution of preferred directions (Fig. 1c). This model 

provides an explanation for the owl's underestimation of source direction, which is a 

common perceptual bias in sound localization across species3–6.

The model presented here provides a theoretical explanation for the representation of 

auditory space in the owl that is more complete than previous theories. Previously, 

principles of optimal coding used to explain the neural representation of ITD have not 

addressed the issue of behavior29. Here, we used optimal Bayesian inference and naturalistic 

constraints to analyze the function of the localization pathway in the owl. Having 

localization behavior that is consistent with the Bayesian estimator ensures that the owl will 

strike sources near the center of gaze more accurately, at the expense of underestimating the 

direction of sound sources in the periphery. Note that, even though the prior emphasizes 

central directions, sounds arising from behind the owl will lead to head turns toward the 

sound source and allow for localization after multiple head turns (Fig. 1). Given that owls 
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strongly rely on capturing animals in the dark and the inherent uncertainty in sound 

localization cues, maximizing the ability to localize within the sound-localizing ‘fovea’ may 

be the key for survival.

In our analysis of the owl's behavior, we find that a prior that emphasizes central directions 

is necessary to explain the observed bias in sound localization. The shape of the prior in the 

model comes directly from fitting the model to the behavioral data. The need for the prior is 

due to the ambiguous direction-dependence of ITD2. The presence of a bias in localization is 

not restricted to the case of the owl; the dependence of sound localization on a prior that 

emphasizes central directions is consistent with the biases seen in sound localization across 

species3–6. In fact, multiple studies of human lateralization of tones, narrowband sounds, 

and broadband sounds show that a centrality weighting function is necessary to predict 

human behavior30. Whether, and how, a prior is used in the sound localization behavior of 

other species remain open questions.

Behavioral experiments show that when the owl is engaged in capturing prey, the actual 

distribution of target directions is consistent with the centrality prior in the Bayesian 

model20 (Fig. 2). This behavior alternates between chase and periods when the owl and prey 

are immobile. The majority of the time when the owl and its prey are immobile, before a 

sound produced by the prey initiates chase, occurs with the owl facing its prey. The owl 

likely integrates information during the chase and utilizes multiple head turns to accurately 

track prey, and thereby ends up facing the prey more often than not. This indicates that 

sounds from a target source that the owl is engaged in capturing may, in natural conditions, 

occur with greatest frequency from directions in front of the owl. Thus, considering sources 

of interest that the owl engages with31, sound directions can show a distribution consistent 

with the prior20. Certainly, the initial location of arbitrary sound sources should be 

uniformly distributed in space. Even so, maximizing the ability to localize within within the 

sound-localizing ‘fovea’ may represent an efficient strategy, across trials.

The model presented here describes the owl's localization behavior in the horizontal 

dimension using ITD as the sound localization cue. A complete account of the owl's sound 

localization behavior will require additional sound localization cues, integration of auditory 

and visual information, and temporal integration of sensory signals. These computations can 

naturally be incorporated into a Bayesian framework. Although the general solution will 

require additional components, this model describes how the owl solves the ethologically 

relevant problem of determining the horizontal direction of a sound source13.

Bayesian approaches to modeling perception and behavior have a powerful theoretical basis 

and may serve as a unifying principle across species and modalities. A significant open 

question has been how probabilistic information, in particular a prior distribution, can be 

represented in a neural system32. It has been suggested that a prior can be implemented in 

the distribution of neural tuning curves26,32,33. In particular, maximizing the mutual 

information between a stimulus and a population response leads to a population code where 

the prior is encoded in the density of preferred stimuli and the widths of the tuning curves33. 

In addition, a population of Poisson neurons with divisive normalization can implement 

Bayesian inference if the tuning curves are proportional to the likelihood and the preferred 
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stimuli are drawn from the prior density26. The analysis here uses a similar argument to 

show that a population vector can implement an approximate Bayesian inference. Our 

analysis also predicts that the prior is encoded in the density of preferred stimuli and the 

shapes of the tuning curves are determined solely by the likelihood function. The population 

vector implementation of Bayesian inference does not require a particular distribution of 

neural noise. The prediction of both the distribution of preferred stimuli and the shapes of 

the tuning curves were supported by experimental data (Fig. 6). This analysis provides a 

reinterpretation of a neural decoder that is generally viewed as suboptimal for heterogeneous 

populations34,35. We note that a Bayesian estimate from the posterior distribution 

conditioned on the neural responses does not match the owl's behavior unless the 

distribution of model preferred directions is wider than the measured distribution in OT and 

the model tuning curves are much sharper than the measured tuning curves (Supplementary 

Fig. 2). The conditions for optimality of the population vector, though not trivial, are likely 

to occur in other cases, as non-uniform representations of stimulus parameters are 

common26,33,36. For example, the oblique effect in visual perception has been described as 

Bayesian inference with a prior emphasizing cardinal axes37 and distributions of preferred 

locations are non-uniform, with a higher density of cells on the horizontal and vertical 

axes26,33,38. This provides a solution to what has been an open issue in applying Bayesian 

models across multiple levels of analysis from behavior to neural implementation.

Methods

Behavior

Behavioral data were provided by ref. 2. The mean and standard deviation of direction 

estimates are taken from the combined results for three owls.

ITD model

ITD was modeled as a sinusoidal function of source direction, corrupted by Gaussian noise. 

The amplitude and frequency of the sinusoid A sin(ωθ) were fit to the mapping between 

azimuth and the ITD in the signals received near the tympanic membranes measured by ref. 

2. The period corresponds to the interpeak distance and the amplitude is the average 

magnitude of the positive and negative extrema. The fit was performed for the mapping 

measured for an owl in the normal condition and for the owl after the facial ruff feathers 

were removed2.

Bayesian estimate of direction

The Bayesian estimate of stimulus direction θ from ITD is given by the mean of θ under the 

posterior distribution p(θ|ITD). The mean direction is found by first computing the vector 

that points in the mean direction as , where 

u(θ) is a unit vector pointing in direction θ and the proportionality follows from Bayes' rule:
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The direction estimate is computed from the mean vector using the inverse tangent function 

as

Alternative models of behavior: flat prior and maximum likelihood

To test the performance of a Bayesian estimator with a flat prior, we used a prior 

distribution that was constant over the circle.

The maximum likelihood estimate is the direction that maximizes the likelihood function 

p(ITD|θ).

Natural variability of ITD

We measured the variability in the ITD of the signals received at the owl's ears due to signal 

type and elevation using head-related transfer functions19 (HRTF). The HRTF is the transfer 

function that describes the mapping from a sound signal at a direction in space to the sound 

signal measured near the tympanic membrane. For each horizontal direction, we computed 

the ITD in the signals obtained by filtering a source signal with HRTFs at the horizontal 

direction and over the range of elevations covering the frontal hemisphere in five degree 

steps, measured in double polar coordinates. Source signals were taken from a set of 200 

natural sound segments obtained by randomly selecting 20 segments of 100 ms each from 

10 natural sound signals23. ITD was computed from the peak in the cross-correlation of the 

left and right signals, with the range of possible ITDs limited to ±260 μs.

We used the cross-correlation model of ref. 21, where input signals are first filtered with a 

bank of gammatone bandpass filters, then cross-correlation is performed in each frequency 

channel, and finally the resulting cross-correlation outputs from each frequency channel are 

linearly combined using a frequency-dependent weighting that matches the owl's sensitivity 

to frequency.

Variability of ITD and interaural correlation

We used the cross-correlation model to determine how variability in ITD depends on 

interaural correlation. Interaural correlation was varied by adding independent noise to the 

left and the right ear input signals. The noise and input signals were Gaussian signals with a 

flat spectrum up to 12 kHz21. Here, we are calculating the variability in ITD solely due to 

interaural correlation; this dependence does not depend on sound direction in the model. 

Therefore, the ITD of the input signals was 0 μs. Interaural correlation was given by 1/

(1+k2) where k is the ratio of the root-mean-square amplitudes of the noise and target sound 

signals21.
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Optic tectum model

The model consisted of a population of N direction-selective neurons. The preferred 

directions were drawn independently from the Gaussian-shaped prior distribution on 

direction. The prior density is given by , where the constant Z 

normalizes the density over the circle.

The neural tuning curves, as a function of ITD, are proportional to the likelihood function 

and are given by , where µn = A sin(ωθn) and θn is 

the preferred direction. Responses to a given stimulus direction were simulated by first 

generating an ITD value according to ITD = A sin(ωθ)+η, where η is drawn from a zero-

mean Gaussian distribution with variance . The tuning curves as a function of direction 

are found by inserting the sinusoidal mapping from direction to ITD into the above equation 

and are given by . Note that the width 

parameter  is the same for all neurons. The maximum firing rate was set to 10 spikes/s. 

During simulations, the neurons have independent Poisson distributed firing rates with mean 

values given by the neural tuning curves an(ITD(θ)).

To determine the density of preferred directions in OT, we obtained measured pairs of 

preferred direction and auditory space map position from Figure 13A in ref. 28 using the 

Matlab function grabit.m (MATLAB Central, Mathworks).

Population vector

The population vector is computed as a linear combination of the preferred direction vectors 

of the neurons, weighted by the firing rates

where u(θn) is a unit vector pointing in the nth neuron's preferred direction and rn(ITD) is the 

firing rate of the nth neuron, drawn either from a Poisson or Gaussian distribution as 

described above. The direction estimate is found by computing the direction of the 

population vector using the inverse tangent, as described above for the Bayesian estimate.

Modeling correlated variability

To test the effect of correlated firing rate variability on the approximation of the Bayesian 

estimator by the population vector, simulations were performed where the neurons have 

independent Gaussian distributed firing rates with mean values given by the neural tuning 

curves an(ITD(θ)) and covariance matrix Σ with entries 

, where ρ is the correlation 

Fischer and Peña Page 10

Nat Neurosci. Author manuscript; available in PMC 2012 February 01.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



coefficient between neurons and δij = 1 if i = j and δij = 0 if i ≠ j. This form of the covariance 

matrix causes the variance to equal the mean, as in the Poisson model.

For all simulations, direction estimates were obtained for the population vector and the 

Bayesian estimators over 150 trials.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Models of the owl's behavior. (a) Owl's behavior, modified from ref. 2. The solid gray line is 

the identity. (b) The Bayesian estimate is the direction of the vector found by averaging unit 

vectors in each direction weighted by the posterior density (medium gray). The posterior is 

proportional to the product of the likelihood (light gray) and the prior (black). All probablity 

densities were normalized by their peak for display. The source direction is 70 degrees, at 

one of the peaks of the likelihood. (c) The population vector (gray) is the average of the 

preferred direction vectors of the neurons, weighted by the firing rates (black). (d) Measured 
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relationship between direction and interaural time difference (ITD) (black) under normal 

conditions2, along with the sinusoidal approximation (gray). (e) Owl's behavior2 (medium 

gray circle, dotted line), Bayesian estimator (black square, solid line), and population vector 

(light gray diamond, dashed line) under the normal condition. Error bars represent the 

standard deviation over trials. (f) Measured relationship between direction and ITD (black) 

under ruff-removed conditions2, along with the sinusoidal approximation (gray). (g) Owl's 

behavior2, Bayesian estimator, and population vector under the ruff-removed condition.
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Figure 2. 
Measured prior distribution of target direction. The relative frequency of different 

oppositions between an owl and two types of prey (vole on the left and spiny mouse on the 

right) during prey capture (modified from Fig. 3 in ref. 20). Front is the prey positioned at 0 

deg relative to the owl's center of gaze, front-side corresponds to the regions centered at ± 

45 deg, side corresponds to the regions centered at ± 90 deg, side-back corresponds to the 

regions centered at ± 135 deg, and back corresponds to the region centered at 180 deg.
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Figure 3. 
Predicted behavior under varying levels of interaural correlation. (a) Variability of ITD with 

interaural correlation. ITD was estimated from the peak of the cross-correlation of the left 

and right input signals. (b) Direction estimates from the Bayesian model using levels of the 

standard deviation of the noise corrupting ITD that follow the exponential relationship 

shown in (a) with a minimum value of 41.2 μs, estimated from the behavioral data (s.d. = 

219.34 exp(−11.31×IC)+41.2, where IC is the interaural correlation). Symbols correspond to 

four different source directions (± 55, ± 75 degrees). Error bars represent the standard 

deviation over trials. (c) The predicted trend is similar to observations in behaving owls 

(modified from Fig. 1 in ref. 21).

Fischer and Peña Page 17

Nat Neurosci. Author manuscript; available in PMC 2012 February 01.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 4. 
Performance of alternative estimators. (a) Owl's behavior2 (bold black) and maximum 

likelihood (ML) estimate (gray). The thin black line is the identity. Error bars represent the 

standard deviation over trials. (b) Owl's behavior2 (bold black) and Bayesian estimate using 

the mean of the posterior distribution when using a Gaussian-shaped prior that is wider than 

the optimal value (gray). (c) Owl's behavior2 (bold black) and Bayesian estimate using the 

mean of the posterior distribution when using a flat prior (gray).
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Figure 5. 
Population vector approximation to Bayesian estimator. The root-mean-square (RMS) 

difference in direction estimates between the population vector and the Bayesian estimator 

for different correlation coefficients in the noise between neurons (black circles 0.25, white 

circles 0.5, black squares 0.75).
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Figure 6. 
Predicted midbrain representation of auditory space. (a) Example tuning curves in the model 

optic tectum (OT) population. (b) Plot of model tuning curve half-widths (black circles) 

along with experimental data measured in the OT28 (solid lines, showing plus/minus 1 

standard deviation, as reported in ref. 28). Gray and white circles correspond to the tuning 

curves highlighted in (a). The two outlier points correspond to receptive fields in the 

periphery that wrap around the owl's head, and which are indeed observed in the owl's OT 

data as well28. (c) Measured values of space map positions of OT neurons (modified from 

ref. 28) together with the fit by a scaled cumulative Gaussian distribution function (solid 

line). (d) The model prior density of preferred direction (dashed gray) and the measured 

bilateral density (solid black) found by combining the unilateral densities derived from the 

cumulative Gaussian in (c).
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