
OWLIM: A family of scalable semantic
repositories
Barry Bishopa, Atanas Kiryakova, Damyan Ognyanoffa, Ivan Peikova, Zdravko Tasheva, Ruslan Velkova

aOntotext AD, 135 Tsarigradsko Chaussee, Sofia 1784, Bulgaria

Abstract. An explosion in the use of RDF, first as an annotation language and later as a data representation language, has
driven the requirements for Web-scale server systems that can store and process huge quantities of data, and furthermore
provide powerful data access and mining functionalities. This paper describes OWLIM, a family of semantic repositories that
provide storage, inference and novel data-access features delivered in a scalable, resilient, industrial-strength platform.

Keywords: Cluster, database, inference, OWL, priming, ranking, RDF, RDFS, reasoner, rules, semantic repository, semantic-
Web, SPARQL, text-search, triple-store

1. Introduction

This report gives an overview of the OWLIM [3]
family of semantic repositories that are widely used
in both commercial and research environments.

There is no formal definition of the term ‘semantic
repository’ so for the purposes of this article we use
this term for Database Management Systems
(DBMS) that can be used to store, query and manage
data structured according to the Resource Description
Framework [1] (RDF) standard(s). Compared to
Relational Database Management Systems (RDBMS),
such systems use flexible ontological schemata
where data is processed by an inference-engine
according to a well-defined semantics.

Section 2 gives a brief overview of the emerging
RDF landscape and outlines some desirable
properties of systems that store and process RDF data.
Section 3 introduces the OWLIM family of semantic
repositories and describes many of its features that
make it a world-leading RDF storage, reasoning and
query-answering platform. Section 4 covers some
advanced features of BigOWLIM that go beyond the
RDF/RDFS [5]/OWL [4] language stack and show
how other AI and text-processing related functions
are combined to enable novel, but powerful data-
mining applications. A summary of the current state
of the OWLIM family is given in section 4 together
with some comments regarding recent independent
evaluations that have been carried out. Section 5

concludes with a summary of the information
presented and some indications for the future
evolution of the OWLIM family.

2. Background

The Resource Description Framework (RDF) was
originally designed as a metadata data model for the
purpose of annotating Web resources (pages) with
machine-processable information leading to the
concept of the semantic Web [6]. Due in part to its
simple and flexible data model, it has become widely
used for general purpose knowledge management
and modeling, the most notable being “Linked
Data” [2] a concept outlined by Tim Berners-
Lee [13]. The principle idea behind Linked Data is
that RDF graphs are published on the Web and can
be navigated in just the same way that a Web
browser is used to browse the current HTML Web. In
order for this to function, publishers should adhere to
a number of principles involving the use of URIs to
identify concepts, the ability to use URIs to get
information about concepts and provide links to other
RDF graphs.

Linking Open Data (LOD) is a W3C Semantic
Web Education and Outreach community project
aiming to extend the Web by publishing open
datasets as RDF and by creating RDF links between
concepts from different data sources. One of the

central datasets of LOD is DBPedia [21] – an RDF
extract of the Wikipedia open encyclopedia – which
serves as a ‘hub’ in the LOD graph, because of the
many mappings between it and the other LOD
datasets. Currently LOD includes more than 40
datasets, containing some 13 billion statements,
joined together with many millions of link statements.

While the principles of Linked Data allow for an
open and decentralized Web of data, there are
intrinsic problems to do with the consumption of
such data. While it is technically possible to execute
queries spanning multiple datasets published via a
number of separate servers, in reality the distributed
nature of the data prevents the evaluation of queries
with multiple joins happening in reasonable time. To
compound the problem, the inference required to
properly answer queries according to the intended
semantics adds additional computational overhead.

From this environment we see the emerging
requirements for software components that can
manage the volume of data available and provide
mechanisms for the consumption of this data. We call
these software components ‘Semantic Repositories’
and they must be able to store huge volumes of RDF
data, perform the necessary inference according to
the semantics of the data and provide a powerful
query-answering mechanism that operates in real-
time.

The following section introduces the OWLIM
family of semantic repositories and describes in
detail the qualities that make them desirable tools for
exploiting the Web of data.

3. OWLIM semantic repository (RDF database)

OWLIM is a family of semantic repository
solutions, that each boast a pure Java, native RDF
database implementation. Currently there are two
variants of OWLIM optimized for different operating
environments: SwiftOWLIM is an in-memory, full-
featured RDF database, inference-engine and query-
answering engine. It uses highly optimized indexes
and data structures to be able to process tens of
millions of RDF statements on standard desktop
hardware. Partly due to its in-memory nature, it is the
world’s fastest semantic repository being able to load
data at over 50,000 statements per second on a 1000
USD machine using with inference. SwiftOWLIM is
essentially open-source, but is based upon the free-
for-use, but not open source Triple Reasoning and
Rule Entailment Engine [16] (TRREE). BigOWLIM

is the commercial version published under an
RDBMS-style license and is positioned as an
enterprise-grade database management system that
can handle tens of billions of statements. BigOWLIM
uses a number of storage and query optimizations
that allow it to sustain outstanding performance even
when managing tens of billions of statements. On top
of this, BigOWLIM incorporates a number of
advanced features and alternative data access
methods that seamlessly integrate with standard
query answering to provide a powerful, hybrid data
mining platform. In the following sections,
‘OWLIM’ will be used when describing qualities
common to both engines.

Both variants of OWLIM are full-featured
semantic repositories each packaged as a Storage and
Inference Layer (SAIL) for the Sesame openRDF [9]
framework.

OWLIM is compatible with all the common RDF
syntaxes (XML, N3, N-Triples, Turtle, TRIG, TRIX)
and supports the SPARQL [7] and SeRQL query
languages. Furthermore, the Sesame HTTP
components and Web applications allow OWLIM to
be used as a server database system with
comprehensive administration utilities.

The rest of this section describes various features
of OWLIM related to the management of RDF data.

3.1. Inference Engine

The inferencing strategy in OWLIM is one of total
materialization (apart from the owl:sameAs
optimization discussed in section 3.3) based on R-
Entailment (as defined by ter Horst [10]) where
Datalog [11] like rules with inequality constraints
operate directly on a single ternary relation that
represents all triples. In addition, free variables in
rule heads are treated as blank nodes (a feature that
must be used with caution in order to avoid an
infinite recursive expansion).

Total materialization involves computing all the
entailed statements at load time. While this
introduces additional reasoning cost when loading
statements in to a repository, the desirable
consequence is that query evaluation can proceed
extremely quickly.

Several standard rule sets are included in all
editions of OWLIM and these include (in more or
less increasing levels of complexity): ‘empty’ (no
inference), OWL-Horst [8], RDFS, owl-max (RDFS
plus most of OWL-Lite) and OWL2-RL [15]. The

desired semantics are chosen by selecting the rule set
when a repository is first created.

OWL2-RL has the highest complexity due to the
sheer number of rules and the use of RDF lists. Rules
prp-spo2 and prp-key have proved to be the most
troublesome, because they do not have a
straightforward mapping to R-Entailment. Instead a
set of recursive rules are used to ‘iterate’ property
chains and lists of keys. In fact, prp-key has such
poor performance with the current implementation of
the rule language, that two versions of the OWL2-RL
rule set are provided, one with this rule (conformant)
and one without (reduced). Users not making use of
the OWL HasKey constructor will benefit greatly
from using the reduced rule-set.

In addition to the standard semantics, user-defined
rule-sets can be used. In this case the user provides
the full pathname to a custom rule file that contains
definitions of axiomatic triples, rules and consistency
checks. For ease of use, the rule files for the standard
included semantics are provided and users can
modify or extend these for their specific purposes.

3.2. Consistency checks

Consistency checks are used to ensure that the data
model is in a consistent state and are applied
whenever an update transaction is committed. The
syntax is similar to that of rules, except that the
consequences are optional.

Consistency checks that have no consequences
will indicate a consistency violation whenever their
premises are satisfied. This syntax is suitable for such
activities as ensuring that owl:Nothing has no
members, e.g.

Consistency: cls-nothing2
 x rdf:type owl:Nothing

 or that no pair of individuals have both

owl:sameAs and owl:differentFrom
relationships, i.e.

Consistency: eq-diff1
 x owl:sameAs y
 x owl:differentFrom y

Consistency checks that have consequences are

similar to normal rules, except that the entailments
are not added to the data model, rather they are used

to ensure that the inferred statements exist in the
repository. If they are not present then a consistency
violation is indicated.

3.3. owl:sameAs optimization

owl:sameAs is an OWL predicate used to declare
that two different URIs denote one and the same real-
world concept. Most often, it is used to align
identifiers from different datasets that refer to the
same real-world entity. For instance, in DBPedia, the
URI of Vienna is http://dbpedia.org/page/Vienna,
while in Geonames [22] it is
http://sws.geonames.org/2761369/. DBpedia contains
the statement

(S1) dbpedia:Vienna owl:sameAs geonames:2761369

which declares that the two URIs are equivalent.
owl:sameAs is probably the most important OWL
predicate when it comes to linking data from
different data sources.

Following the formal definition of OWL (OWL 2
RL, to be more specific), whenever two URIs are
declared equivalent, all statements that involve one
of the URIs should be “replicated” with the other
URI at the same position. For instance, in Geonames,
the city of Vienna is defined as part of
http://www.geonames.org/2761367/ (the first-order
administrative division in Austria with the same
name), which, in turn, is part of Austria
(http://www.geonames.org/2782113):

(S2) geonames:2761369 gno:parentFeature
geonames:2761367
(S3) geonames:2761367 gno:parentFeature
geonames:2782113

Since as gno:parentFeature is a transitive
relationship, in the course of inference it will be
derived that the city of Vienna is also part of Austria:

(S4) geonames:2761369 gno:parentFeature
geonames:2782113

Due to the semantics of owl:sameAs, from (S1) it
should be inferred that statements (S2) and (S4) also
hold for Vienna when it is referred with its DBpedia
URI:

(S5) dbpedia:Vienna gno:parentFeature
geonames:2761367

(S6) dbpedia:Vienna gno:parentFeature
geonames:2782113

These are true statements and when querying RDF
data, no matter which one of the equivalent URIs is
used in the explicit statements, the same results will
be returned. When we consider that Austria, too, has
an equivalent URI in DBpedia,

(S7) geonames:2782113 owl:sameAs
dbpedia:Austria

we should also infer that:

(S8) dbpedia:Vienna gno:parentFeature
dbpedia:Austria
(S9) geonames:2761369 gno:parentFeature
dbpedia:Austria
(S10) geonames:2761367 gno:parentFeature
dbpedia:Austria

In the above example, we had two alignment
statements (S1 and S7), two statements carrying
specific factual knowledge (S2 and S3), one
statement inferred due to a transitive property (S4),
and seven statements inferred as a result of
owl:sameAs alignment (S5, S7, S8, S9, S10, and the
inverse statements of S1 and S7). As we see,
inference without owl:sameAs inflated the dataset
by 25% (one new statement on top of 4 explicit ones),
while owl:sameAs related inference increased the
dataset by 175% (7 new statements). Considering
that Vienna also has a URI in UMBEL [23], which is
also declared equivalent to the one in DBpedia, the
addition of one more explicit statement for this
alignment, will trigger the inference of 4 new implicit
statements (duplicates of S1, S5, S6, and S8).
Although this is a small example, it provides a good
indication about the performance implications of
using owl:sameAs alignment in LOD. Also, because
owl:sameAs is a transitive, reflexive, and
symmetric relationship, given a set of N equivalent
URIs, N2 owl:sameAs statements will be generated
for each pair of URIs (we should admit though that in
reality, there are not that many examples of large
owl:sameAs equivalence classes). Therefore,
although owl:sameAs is useful for interlinking
RDF datasets, its semantics causes considerable
inflation in the number of inferred statements that
should be considered during inference and query
evaluation (either through forward- or through
backward-chaining).

To overcome this problem, BigOWLIM handles
owl:sameAs in a specific manner. In its indices,

each set of equivalent URIs (an equivalence class
with respect to owl:sameAs) is represented by a
single super-node. This way, BigOWLIM does not
inflate the indices and, at the same time, retains the
ability to enumerate all the required solutions to
query requests. Special care is taken to ensure that
this ‘trick’ does not hinder the ability to distinguish
explicit from implicit statements.

Equivalence expansion can be switched on and off
when executing queries, so that when desired, only
one URI is used for a particular resource when
returning query results. This can make a dramatic
difference to the number of ‘duplicated’ results
returned.

3.4. Retraction of assertions

As mentioned above, OWLIM materializes all
inferred statements at load time and whenever new
statements are added to the repository. This has the
highly desirable advantage that query answering is
very fast, due to the fact that no further inference
needs to be done. Updates that simply add new
statements are treated in the same way as at load time,
i.e. new statements are fed to the inference engine
that applies the inference rules (making joins across
new statements with existing statements) until no
new inferences are obtained. Since the semantics
(both standard and custom) must be monotonic,
insert operations incrementally add to the set of
explicit and inferred statements. However, retracting
explicit statements that are used to infer other
statements becomes more complicated. In
SwiftOWLIM, this is achieved by simply
invalidating all inferred statements and re-computing
the full-closure whenever an update is committed.
This has the advantage of simplicity of
implementation, but the disadvantage of poor update
performance and lack of scalability.

BigOWLIM has a specific optimization for
handling delete operations that updates the full-
closure incrementally. This technique labels
statements to be deleted and then uses forward-
chaining to identify those statements that can be
inferred from them, followed by backward chaining
to identify those inferred statements that are still
supported by other means.

The result is that delete performance is only
slightly worse than the insertion of new statements.
This allows the repository to handle rapidly changing
data even when answering queries over tens of
billions of statements.

3.5. Transaction management

OWLIM supports the ‘read committed’ transaction
isolation level. It guarantees that changes will not
impact query evaluation, before the entire transaction
they are part of is successfully committed. It does not
guarantee that execution of a single transaction is
performed against a single state of the data in the
repository. Regarding concurrency, multiple
update/modification/write transactions can be
initiated and stay open simultaneously, i.e. one
transaction does not need to be committed in order to
allow another transaction to complete Furthermore,
update transactions are processed in sequence and do
not block read requests in any way, i.e. hundreds of
SPARQL queries can be evaluated in parallel (the
processing is properly multi-threaded) while update
transactions are being handled on separate threads.

One should note that OWLIM performs
materialization, making sure that all the statements
which can be inferred from the current state of the
repository are indexed and persisted (except for those
compressed due to the owl:sameAs optimisation, see
section 3.3). By the time the commit method
completes, all reasoning activities related to changes
introduced by the corresponding transaction will
have already been performed.

3.6. Benchmarks

There are few widely accepted benchmarks for
semantic repositories and all of them fail to address
all aspects of the functioning of a particular engine.
The Berlin SPARQL Benchmark [17] (BSBM)
evaluates the performance of query engines in an e-
commerce use case: searching products and
navigating through related information. Randomized
query mixes (each consisting of 25 queries) are
evaluated continuously through a client application
that communicates with the repository through a
SPARQL end-point. However, the benchmark does
not require any inference to take place in the
repository and is targeted purely at measuring query-
answering performance. Recent evaluation
results [19] for some of the most popular engines
show that BigOWLIM has the best loading
performance for the 100 million dataset being three
times faster than the second best. BigOWLIM also
has the best query performance for the reduced query
mix.

The Lehigh University Benchmark [18] (LUBM)
is probably the most popular benchmarking

framework for semantic repositories. It uses a
relatively simple OWL ontology describing a
university organization structure with synthetically
generated datasets. The data generated for each
university includes a number of departments and
related individuals together with relevant descriptions
and relations between them. The framework
separately measures loading and query performance
and inference is required in order to answer queries
correctly. However, some important aspects of
semantic repositories are not measured in this
benchmark, such as update or delete performance.

 LUBM(8000) includes data for 8000 universities
and contains about 1.1 Billion explicit statements. It
is a commonly used as a benchmark, because it is
processable by a reasonable cross-section of the best
performing semantic repository products.
BigOWLIM will load this dataset in 14 hours on a
computer costing less than 2000 US dollars
(2.93GHz quad-core, 12GB memory and three
320GB disks in a RAID 0 configuration) and will
answer all queries correctly within 46 minutes.

However, BigOWLIM has been measured with
much larger datasets, including LUBM(90000) that
contains over 12 Billion explicit statements (nearly
21 Billion after inference). The loading time of this
dataset with OWL-Horst semantics is approximately
290 hours on a machine with 2 quad-core, 2.5GHz
processors and 64GB memory.

Another independent benchmark in the context of
a commercial image retrieval system [20] compared a
number of the leading semantic repositories. An
excerpt from the conclusion states that “In our tests,
BigOWLIM provides the best average query
response time and answers the maximum number of
queries for both the datasets ... it is clear to see that
execution speed-wise BigOWLIM outperforms
AllegroGraph and Sesame for almost all of the
dataset queries.”

3.7. Triplesets

Triplesets are an extension to the RDF data model
that offers greater flexibility than standard named
graphs. There are many situations when it is desirable
to label a subset of statements from a repository
independent of their context, where there is a many
to many relationship between the names of subsets
and the triples they contain. In these situations, where
statements conceptually belong to more than one set,
triplesets can be used to associate a name (URI) with
any combination of statements, irrespective of their

context and/or membership of some other tripleset,
see the example in Fig. 1.

In principle, the model extends the idea of a ‘quad’
(subject predicate object context) to include an
unbounded list of tripleset identifiers. Note how
some of the statements (shown as dashed horizontal
lines) from the named graphs are associated with
more than one tripleset.

Fig. 1 Example associations of triplesets with statements

The tripleset data model has been present in
OWLIM for some years, but is not accessible through
the standard interfaces of Sesame that adhere to the
standard RDF data model. However, the Ontology
Representation and Data Integration [14] (ORDI)
framework that uses OWLIM for its implementation
does expose this feature through a Java API that
allows statements to be associated and disassociated
with tripleset identifiers. Furthermore queries can be
executed that execute over only those statements
associated with specified.

4. Beyond RDF and SPARQL

4.1. RDF Rank

RDF Rank is a technique to measure the relevance
of entities by examining their interconnectedness. A
numerical weighting is computed for every node
(URIs and literals) in the entire RDF graph and
stored in a special index. The weights are floating
point numbers with values between 0 and 1, and are
made available via a special system predicate so that

the popularity of entities can be used to order query
results. At a high level, the approach is similar to the
way in which internet search engines order results,
such as how Google orders results using PageRank.

4.2. Full text search

Full-text search (FTS) concerns retrieving text
documents out of a large collection using keywords
or, more generally, by tokens (represented as
sequences of characters). Formally, the query
represents an unordered set of tokens and the result is
set of documents, relevant to the query. In a simple
FTS implementation, relevance is Boolean: a
document is either relevant to the query, when it
contains all the query tokens, or not. More advanced
FTS implementations deal with a degree of relevance
of the document to the query, usually judged on some
sort of measure of the frequency of appearance of
each of the tokens in the document normalized versus
the frequency of their appearance in the entire
document collection. Such implementations return an
ordered list of documents, where the most relevant
documents come first.

When compared to a structured query, e.g.
SPARQL, FTS is a different information access
method based on a different query syntax and
semantics, where the results are also displayed in a
different form. FTS and databases usually require
different types of indices too. The ability to combine
these two types of information access methods is
very useful for a wide range of applications. Many
relational DBMS support some sort of FTS (which is
integrated into the SQL syntax) and maintain
additional indices that allow efficient evaluation of
FTS constraints. Typically, relational DBMS allow
the user to define a query, which requires specific
tokens to appear in a specific column of a specific
table. In SPARQL there is no standard way for the
specification of FTS constraints. In general, there is
neither a well defined nor widely accepted concept
for FTS in RDF data. Nevertheless, some semantic
repository vendors offer some sort of FTS in their
engines. This section documents the FTS supported
by BigOWLIM.

Two approaches are implemented in BigOWLIM,
a proprietary implementation called ‘Node Search’,
and a Lucene-based implementation called ‘RDF
Search’. Both approaches enable OWLIM to perform
complex queries against character data, each with
their functional differences outlined in Table 1. There
can be considerable differences between the indexing

default

urn:context1

urn:context2

urn:tripleset X

urn:tripleset Y

urn:tripleset Z

Statements from any
named graph can be
associated with any
number of triplesets

and search speed of the two FTS implementations.
Performance-conscious users are recommended to
experiment with the performance of both methods
using datasets and queries representative for the
intended application.

Node Search (when indexing only literals) is
similar to typical FTS implementations in relational
DBMS. However, Node Search can also index the
URIs of all entities, i.e. the subjects and objects of all
statements. This makes it particularly useful for
executing queries when the exact spelling of an
entity’s URI is not known.

Table 1 Comparison of Full-Text Search implementations

 Node Search RDF Search
Query
format

List of tokens List of tokens
(with Lucene
query extensions)

Result
format

Unordered set of
nodes

Ordered list of
URIs

Textual
representati
on

For literals: the
string value. For
URIs and B-
nodes:
tokenized URL

Concatenation of
the text
representations of
the nodes from the
molecule (1-step
neighbourhood in
the graph) of the
URI

Relevance Boolean, based
on presence of
the query tokens
in the text

Vector-space
model, reflecting
the degree of
relevance of the
text and the RDF
rank of the URI

Implementat
ion

Proprietary full-
text indexing
and search
implementation

The Lucene
engine is
integrated and
used for indexing
and search

RDF Search is a novel information retrieval

concept that allows for the efficient extraction of
RDF resources from huge datasets, where ordering of
the results by relevance is crucial.

Both techniques embed full-text search patterns in
to standard query formats, i.e. SPARQL or SeRQL.
Extra statement patterns are added that use special
system predicates thus enabling powerful hybrid
queries.

BigOWLIM integrates Lucene [24] – a high-
performance, full-featured text search engine – to
index the entire repository, i.e. all nodes including

both URI local names and literals. For each node in
the repository its surrounding molecule is computed,
i.e. the collection of statements where this node
appears as the subject or object. Then each molecule
is converted into a single string document by
concatenating the textual representation of all the
nodes in the molecule and this document is indexed
by Lucene. If a node’s RDF Rank is available it is
stored in Lucene's index as a boosting factor that will
later on influence the selection order.

The facility for integrating a Lucene query with a
normal SPARQL query is achieved with a special
system predicate. The query in Fig. 2 gives an
example of this. The intention here is to retrieve
entity identifiers and labels, where those labels
contain a token similar to ‘air’ and a token similar to
‘plane’.

PREFIX rdfs: <http://.../rdf-schema#>
PREFIX onto: <http://www.ontotext.com/>

SELECT * WHERE {
 ?entity rdfs:label ?label .
 ?label onto:luceneQuery "air~ AND plain~".}

Fig. 2 An example RDF Search query using Lucene

This combination of ranking RDF molecules
together with full-text search provides a powerful
mechanism for querying/analysing datasets even
when the schema is not known. This allows for
keyword-based search over both literals and URIs
with the results ordered by
importance/interconnectedness.

FactForge [25] is a demonstrator for this
technology that includes eight of the central LOD
datasets. This publicly available and free to use Web
application uses Node Search (for auto-completion of
entered tokens), RDF Search for retrieving
statements and RDF Rank for ordering results by
relevance. This combination of technologies provides
for powerful, user-guided data-mining over a large
proportion of the core LOD datasets.

4.3. Replication cluster

BigOWLIM can be used in a cluster configuration
where replication is used to improve resilience and
provide scalable query answering.

The query performance of the cluster represents
the sum of the throughputs that can be handled by
each of the instances. In a simple configuration of 3
or 4 worker nodes, hundreds of thousands of query
requests can be answered per hour while at the same

time processing thousands of updates per hour – with
non-trivial inference.

In a cluster configuration, there are two types of
nodes: Masters and workers. Masters act as the
gateway to the cluster and all read/write requests go
through these nodes. A cluster can have more than
one master node, but only one is allowed to operate
in read/write mode. The other master nodes operate
in read-only mode, otherwise known as ‘hot-standby’.
They can be used for marshalling read requests and
can take over handling updates if the current
read/write master fails. Worker nodes are standard
BigOWLIM instances exposed by the Sesame HTTP
server – a servlet running in Tomcat or similar. Read
and write requests are passed to the workers from the
master nodes. This simple arrangement allows for a
great deal of flexibility in the design of a cluster
topology. The example given in Fig. 3 has two
master nodes and three worker nodes. At any
moment in time, clients of the cluster can send read
requests (queries) to either master node, but updates
can only be handled by the master in read/write mode.
If this master node should fail, the hot standby master
can be brought in to read/write mode and from then
on will handle both read requests and updates, as
well as taking over responsibility for ensuring the
synchronization of all the worker nodes.

Each master node implements a JMX MBean [26]
that is accessible using standard Java instrumentation
tools, such as JConsole [26], and can be used to
monitor and control the cluster while it is running.
Typical activities supported include the monitoring
of the health of each node, statistics gathering,
adding and removing worker nodes.

Fig. 3 A typical replication cluster configuration

During normal operation, a master node will keep

track of the size of each worker’s read request queue,
such that each read request is sent to the worker with
the shortest read queue. Update requests are handled
differently. First of all, the update is tested against a
single worker node. If the update is successful and
subsequent consistency checks pass then the update
request is considered ‘safe’ and is passed to the rest
of the worker nodes. Master nodes take additional
care to ensure that the states of all worker nodes are
properly synchronized and if an anomaly is detected,
the problem worker node is released from the cluster.
The monitor and control JMX interface can be used
to return worker nodes to the cluster and initiate their
synchronization.

In the event of a failure of a worker node, the
performance degradation is graceful with respect to
the number of healthy workers. The cluster can
remain operational with just a single worker node.

4.4. RDF Priming

RDF Priming is a technique that is used to select a
subset of available statements for use as the input to
query answering. It is based upon the concept of
spreading-activation [10] as developed in the field of
cognitive science.

RDF Priming is a scalable and customizable
implementation of the popular connectionist method
on top of RDF graphs. It allows the ‘priming’ of
large datasets with respect to concepts relevant to the
context and to the query. It is implemented in the
BigOWLIM engine and controlled using SPARQL
ASK queries.

The priming module is highly configurable, where
the starting nodes, initial activation values, activation
pathways, decay factors, threshold values and
number of cycles can be individually set.
Additionally, the number of worker threads used for
computing and propagating activation values in a
priming cycle can be specified.

The principles can be explained by way of the
following example. Consider the following query that
might be executed over the DBPedia:

PREFIX dbp: <http://dbpedia.org/property/>
PREFIX dbr: <http://dbpedia.org/resource/>
SELECT * WHERE {
 ?x dbp:class dbr:V8.}

Worker 1

Read/Write
Master

Hot standby
Master

Worker 2 Worker 3

Standard BigOWLIM instances

Dispatches queries
and updates to

workers
(read/write)

Dispatches queries
to workers
(read only)

This query will return around 20 results for
various engine and car types. However, if the agent
using BigOWLIM is operating with a particular
interest in certain concepts and those related to them,
say the Ford Motor company and a particular make
of car, then these two entities could be used to start a
priming cycle that selects statements ‘close’ to these
concepts. A sequence of SPARQL ASK queries can
be used to set up the priming parameters, including
some weightings for suitable predicates. The
following query can be used to specify the two
starting nodes mentioned earlier:

PREFIX onto: <http://www.ontotext.com#>
PREFIX dbr: <http://dbpedia.org/resource/>
ASK { dbr:1955_Ford onto:activateNode
 dbr:Ford_Motor_Company }

After initiating the spreading of activations with
another ASK query, the selected statements will be
used as input to subsequent queries. Re-running the
example query will return a smaller result set
containing members of the V8 DBPedia class more
closely related to the Ford Motor company and the
chosen model of car.

It should be noted that RDF Priming is different
from RDF Rank, in that RDF Priming involves
selecting a subset of statements by propagating
activation values in multiple hops starting from the
specified entities. RDF Rank on the other hand,
simply counts the number of connections for each
node.

4.5. Notifications

Notifications are a publish/subscribe mechanism
for registering and receiving events from a
BigOWLIM repository whenever new triples
matching a certain graph pattern are inserted. The
user of the notifications API registers for
notifications by providing a graph pattern involving
triple patterns combined by means of joins and
unions at any level. The order of the triple patterns is
not significant.

In general, notifications will be sent for all
incoming triples that contribute to a solution of the
graph pattern. Furthermore, any statements inferred
from newly inserted statements will also be subject to
handling by the notification mechanism, i.e. new
implicit statements will also be notified to clients
when the requested triple pattern matches.

The purpose of the notification service is to enable
the efficient and timely discovery of newly added

RDF data. Therefore it should be treated as a
mechanism for giving the client a hint that certain
new data is available and should not be used as an
asynchronous SPARQL evaluation engine.

5. Conclusion

The emerging Web of data has provided new
challenges for software components that must expose
this data and enable its widespread consumption.
The OWLIM family of semantic repositories is
ideally suited to this task due to its ability to store,
reason and answer queries using the massive datasets
involved. In addition to world-leading RDF
processing performance, OWLIM offers a range of
advanced features that seamlessly integrate with
existing query standards and provide a variety of
alternative data access methods.

OWLIM continues to evolve with various new
features planned for the near future. The next release
of OWLIM will include enhanced support for geo-
spatial data and some of the widely accepted geo-
spatial vocabularies. Specialized indices will be used
to access spatial data and a range of SPARQL
extension functions will allow for expressive queries
using 2D and 3D geometry.

The next release will also include interfaces that
support the JENA RDF framework, enabling
OWLIM to be used with both Sesame and JENA, the
two most widely used RDF frameworks.

Later releases will include more advanced full-text
search and indexing options based on Lucene, with
the ability to create and use multiple Lucene indices
each parameterized according to the task at hand.
Configuration parameters will allow better control
over what statements to include in the RDF molecule.
The size of the molecule (number of statement ‘hops’
from each node) will be controllable as well the
choice of which statements to include based on the
selected predicates or the selected language tags of
literals.

Later releases will expose the existing support for
the extended RDF model based on triplesets.

The current set of advanced features and world-
leading performance have helped to position
OWLIM as the semantic repository of choice for all
environments that manage RDF data, particularly for
Web-scale applications. The future evolution of
OWLIM towards better compatibility and even more
powerful data management features will ensure the
continued uptake of this technology.

The development of OWLIM has been partly
supported by SEKT [27], TAO [28], TripCom [29],
LarKC [30], SOA4ALL [31], and other FP6 and FP7
European research projects.

References

1. Klyne, G; Carrol , J. J; (eds). (2004). Resource
Description Framework (RDF): Concepts and Abstract
Syntax. W3C Recommendation 10 Feb. 2004.
http://www.w3.org/TR/rdf-concepts/

2. Christian Bizer, "The Emerging Web of Linked Data,"
IEEE Intelligent Systems, pp. 87-92,
September/October, 2009

3. Atanas Kiryakov, Damyan Ognyanov, Dimitar Manov,
OWLIM – a Pragmatic Semantic Repository for OWL,
In Proc. of Int. Workshop on Scalable Semantic Web
Knowledge Base Systems (SSWS 2005), WISE 2005,
20 Nov, New York City, USA. Springer-Verlag LNCS
series, LNCS 3807, pp.182-192.

4. Dean, M; Schreiber, G. – editors; Bechhofer, S; van
Harmelen, F; Hendler, J; Horrocks, I.; McGuinness, D.
L; Patel-Schneider, P. F.; Stein, L. A. (2004). OWL
Web Ontology Language Reference. W3C
Recommendation, 10 Feb. 2004.
http://www.w3.org/TR/owl-ref/

5. BRICKLEY, D.; GUHA, R.V, RDF Vocabulary
Description Language 1.0: RDF Schema, W3C (10 Feb
2004) http://www.w3.org/TR/rdf-schema

6. BERNERS-LEE, T., HENDLER, J., AND LASSILA,
O. (2001) "The Semantic Web". Scientific American,
May 2001

7. Eric Prud’hommeaux and Andy Seaborne. SPARQL
Query Language for RDF. Technical report, W3C,
2006.

8. ter Horst, H. J. Combining RDF and Part of OWL with
Rules: Semantics, Decidability, Complexity. In Proc. of
ISWC 2005, Galway, Ireland, November 6-10, 2005.
LNCS 3729, pp. 668-684

9. J.Broekstra and A.Kampman, “RDF(S) manipulation,
storage and querying using Sesame” In Demo Proc. of
the 3rd Intl. Semantic Web. Conf., Hiroshima, 2004

10. Brian McBride, Jena: A Semantic Web Toolkit, IEEE
Internet Computing, v.6 n.6, p.55-59, November 2002

11. Hervé Gallaire, Jack Minker (Eds.): Logic and Data
Bases, Symposium on Logic and Data Bases, Centre
d'études et de recherches de Toulouse, 1977. Advances
in Data Base Theory, Plenum Press, New York, 1978,
ISBN 0-306-40060-X.

12. Collins A.M., Loftus E.F., A spreading-activation
theory of semantic processing (1975) Psychological
Review, 82 (6), pp. 407-428.

13. Berners-Lee, T. (2006). Design Issues: Linked
Data. http://www.w3.org/DesignIssues/LinkedD
ata.html

14. Kiryakov, A; Ognyanov, D; Kirov, V. (2004) An
Ontology Representation and Data Integration (ORDI)
Framework. DIP project deliverable
D2.2. http://dip.semanticweb.org

15. Motik, B; Cuenca Grau, B; Horrocks, I; Wu, Z; Fokoue,
A; Lutz, C. (eds.) (2009). OWL 2 Web On-tology
Language Profiles. W3C Candidate Recom-mendation
11 June 2009. http://www.w3.org/TR/owl2-profiles/

16. TRREE – Triple Reasoning and Rule Entailment
Engine. Home page. http://ontotext.com/trree/

17. Schmidt1, M; Hornung1, T; Meier1, M; Pinkel, C;
Lausen, G, Semantic Web Information
Management, Springer Berlin Heidelberg 2010, pp.
371-393

18. Guo Y., Pan Z., Heflin J., LUBM: A benchmark for
OWL knowledge base systems, (2005) Web Semantics,
3 (2-3), pp. 158-182.

19. Bizer, Ch., Schultz, A.: BSBM Results for Virtuoso,
Jena TDB, BigOWLIM (November
2009). http://www4.wiwiss.fu-berlin.de/bizer/Berlin
SPARQLBenchmark/results/V5/index.html

20. Thakker , D., Osman, T., Gohil, S., Lakin, P, A
Pragmatic Approach to Semantic Repositories
Benchmarking. In Proc. of the 7th Extended Semantic
Web Conference, ESWC 2010.

21. Auer1, S; Bizer, C; Kobilarov, G; Lehmann1, J;
Cyganiak, R; Ives, Z, DBpedia: A Nucleus for a Web
of Open Data, Springer Berlin / Heidelberg (2007),
Lecture Notes in Computer Science, pp. 722-735

22. The GeoNames geographical database,
homepage: http://www.geonames.org/

23. Upper Mapping and Binding Exchange Layer,
homepage: http://www.umbel.org/

24. Apache Lucene, a high-performance, full-featured text
search engine library,
homepage: http://lucene.apache.org/

25. FactForge, a reason-able view to the web of data,
homepage: http://factforge.net/

26. Java Management Extensions (JMX),
homepage: http://download-
llnw.oracle.com/javase/1.5.0/docs/guide/jmx/

27. Semantic Enabled Knowledge Technologies (SEKT),
European Research Project,
homepage: http://www.sekt-project.com/

28. Transitioning Applications to Ontologies (TAO),
European Research Project, homepage: http://www.tao-
project.eu/

29. Triple Space Communication (TripCom), European
Research Project, homepage: http://www.tripcom.org/

30. LarKC: The Large Knowledge Collider (LarKC),
European Research Project,
homepage: http://www.larkc.eu/

31. Service Oriented Architectures for All (SOA4All),
European Research Project,
homepage: http://www.soa4all.eu/

http://www.w3.org/DesignIssues/LinkedData.html�
http://www.w3.org/DesignIssues/LinkedData.html�
http://dip.semanticweb.org/�
http://www.w3.org/TR/owl2-profiles/�
http://ontotext.com/trree/�
http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/results/V5/index.html�
http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/results/V5/index.html�
http://www.geonames.org/�
http://www.umbel.org/�
http://lucene.apache.org/�
http://factforge.net/�
http://download-llnw.oracle.com/javase/1.5.0/docs/guide/jmx/�
http://download-llnw.oracle.com/javase/1.5.0/docs/guide/jmx/�
http://www.sekt-project.com/�
http://www.tao-project.eu/�
http://www.tao-project.eu/�
http://www.tripcom.org/�
http://www.larkc.eu/�
http://www.soa4all.eu/�

	1. Introduction
	2. Background
	3. OWLIM semantic repository (RDF database)
	3.1. Inference Engine
	3.2. Consistency checks
	3.3. owl:sameAs optimization
	3.4. Retraction of assertions
	3.5. Transaction management
	3.6. Benchmarks
	3.7. Triplesets

	4. Beyond RDF and SPARQL
	4.1. RDF Rank
	4.2. Full text search
	4.3. Replication cluster
	4.4. RDF Priming
	4.5. Notifications

	5. Conclusion

