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1.  Introduction 

This report gives an overview of the OWLIM [3] 
family of semantic repositories that are widely used 
in both commercial and research environments. 

There is no formal definition of the term ‘semantic 
repository’ so for the purposes of this article we use 
this term for Database Management Systems 
(DBMS) that can be used to store, query and manage 
data structured according to the Resource Description 
Framework [1] (RDF) standard(s). Compared to 
Relational Database Management Systems (RDBMS), 
such systems use flexible ontological schemata 
where data is processed by an inference-engine 
according to a well-defined semantics. 

Section 2 gives a brief overview of the emerging 
RDF landscape and outlines some desirable 
properties of systems that store and process RDF data. 
Section 3 introduces the OWLIM family of semantic 
repositories and describes many of its features that 
make it a world-leading RDF storage, reasoning and 
query-answering platform. Section 4 covers some 
advanced features of BigOWLIM that go beyond the 
RDF/RDFS [5]/OWL [4] language stack and show 
how other AI and text-processing related functions 
are combined to enable novel, but powerful data-
mining applications. A summary of the current state 
of the OWLIM family is given in section 4 together 
with some comments regarding recent independent 
evaluations that have been carried out. Section 5 

concludes with a summary of the information 
presented and some indications for the future 
evolution of the OWLIM family. 

2. Background 

The Resource Description Framework (RDF) was 
originally designed as a metadata data model for the 
purpose of annotating Web resources (pages) with 
machine-processable information leading to the 
concept of the semantic Web [6]. Due in part to its 
simple and flexible data model, it has become widely 
used for general purpose knowledge management 
and modeling, the most notable being “Linked 
Data” [2] a concept outlined by Tim Berners-
Lee [13]. The principle idea behind Linked Data is 
that RDF graphs are published on the Web and can 
be navigated in just the same way that a Web 
browser is used to browse the current HTML Web. In 
order for this to function, publishers should adhere to 
a number of principles involving the use of URIs to 
identify concepts, the ability to use URIs to get 
information about concepts and provide links to other 
RDF graphs. 

Linking Open Data (LOD) is a W3C Semantic 
Web Education and Outreach community project 
aiming to extend the Web by publishing open 
datasets as RDF and by creating RDF links between 
concepts from different data sources. One of the 



central datasets of LOD is DBPedia [21] – an RDF 
extract of the Wikipedia open encyclopedia – which 
serves as a ‘hub’ in the LOD graph, because of the 
many mappings between it and the other LOD 
datasets. Currently LOD includes more than 40 
datasets, containing some 13 billion statements, 
joined together with many millions of link statements. 

While the principles of Linked Data allow for an 
open and decentralized Web of data, there are 
intrinsic problems to do with the consumption of 
such data. While it is technically possible to execute 
queries spanning multiple datasets published via a 
number of separate servers, in reality the distributed 
nature of the data prevents the evaluation of queries 
with multiple joins happening in reasonable time. To 
compound the problem, the inference required to 
properly answer queries according to the intended 
semantics adds additional computational overhead. 

From this environment we see the emerging 
requirements for software components that can 
manage the volume of data available and provide 
mechanisms for the consumption of this data. We call 
these software components ‘Semantic Repositories’ 
and they must be able to store huge volumes of RDF 
data, perform the necessary inference according to 
the semantics of the data and provide a powerful 
query-answering mechanism that operates in real-
time. 

The following section introduces the OWLIM 
family of semantic repositories and describes in 
detail the qualities that make them desirable tools for 
exploiting the Web of data. 

3. OWLIM semantic repository (RDF database) 

OWLIM is a family of semantic repository 
solutions, that each boast a pure Java, native RDF 
database implementation. Currently there are two 
variants of OWLIM optimized for different operating 
environments: SwiftOWLIM is an in-memory, full-
featured RDF database, inference-engine and query-
answering engine. It uses highly optimized indexes 
and data structures to be able to process tens of 
millions of RDF statements on standard desktop 
hardware. Partly due to its in-memory nature, it is the 
world’s fastest semantic repository being able to load 
data at over 50,000 statements per second on a 1000 
USD machine using with inference. SwiftOWLIM is 
essentially open-source, but is based upon the free-
for-use, but not open source Triple Reasoning and 
Rule Entailment Engine [16] (TRREE). BigOWLIM 

is the commercial version published under an 
RDBMS-style license and is positioned as an 
enterprise-grade database management system that 
can handle tens of billions of statements. BigOWLIM 
uses a number of storage and query optimizations 
that allow it to sustain outstanding performance even 
when managing tens of billions of statements. On top 
of this, BigOWLIM incorporates a number of 
advanced features and alternative data access 
methods that seamlessly integrate with standard 
query answering to provide a powerful, hybrid data 
mining platform. In the following sections, 
‘OWLIM’ will be used when describing qualities 
common to both engines. 

Both variants of OWLIM are full-featured 
semantic repositories each packaged as a Storage and 
Inference Layer (SAIL) for the Sesame openRDF [9] 
framework. 

OWLIM is compatible with all the common RDF 
syntaxes (XML, N3, N-Triples, Turtle, TRIG, TRIX) 
and supports the SPARQL [7] and SeRQL query 
languages. Furthermore, the Sesame HTTP 
components and Web applications allow OWLIM to 
be used as a server database system with 
comprehensive administration utilities. 

The rest of this section describes various features 
of OWLIM related to the management of RDF data. 

3.1.  Inference Engine 

The inferencing strategy in OWLIM is one of total 
materialization (apart from the owl:sameAs 
optimization discussed in section 3.3) based on R-
Entailment (as defined by ter Horst [10]) where 
Datalog [11] like rules with inequality constraints 
operate directly on a single ternary relation that 
represents all triples. In addition, free variables in 
rule heads are treated as blank nodes (a feature that 
must be used with caution in order to avoid an 
infinite recursive expansion).  

Total materialization involves computing all the 
entailed statements at load time. While this 
introduces additional reasoning cost when loading 
statements in to a repository, the desirable 
consequence is that query evaluation can proceed 
extremely quickly. 

Several standard rule sets are included in all 
editions of OWLIM and these include (in more or 
less increasing levels of complexity): ‘empty’ (no 
inference), OWL-Horst [8], RDFS, owl-max (RDFS 
plus most of OWL-Lite) and OWL2-RL [15]. The 



desired semantics are chosen by selecting the rule set 
when a repository is first created. 

OWL2-RL has the highest complexity due to the 
sheer number of rules and the use of RDF lists. Rules 
prp-spo2 and prp-key have proved to be the most 
troublesome, because they do not have a 
straightforward mapping to R-Entailment. Instead a 
set of recursive rules are used to ‘iterate’ property 
chains and lists of keys. In fact, prp-key has such 
poor performance with the current implementation of 
the rule language, that two versions of the OWL2-RL 
rule set are provided, one with this rule (conformant) 
and one without (reduced). Users not making use of 
the OWL HasKey constructor will benefit greatly 
from using the reduced rule-set. 

In addition to the standard semantics, user-defined 
rule-sets can be used. In this case the user provides 
the full pathname to a custom rule file that contains 
definitions of axiomatic triples, rules and consistency 
checks. For ease of use, the rule files for the standard 
included semantics are provided and users can 
modify or extend these for their specific purposes. 
 

3.2. Consistency checks 

Consistency checks are used to ensure that the data 
model is in a consistent state and are applied 
whenever an update transaction is committed. The 
syntax is similar to that of rules, except that the 
consequences are optional. 

Consistency checks that have no consequences 
will indicate a consistency violation whenever their 
premises are satisfied. This syntax is suitable for such 
activities as ensuring that owl:Nothing has no 
members, e.g. 

 
Consistency: cls-nothing2 
     x rdf:type owl:Nothing 
    ----------------------- 
      
 or that no pair of individuals have both 

owl:sameAs and owl:differentFrom 
relationships, i.e. 

 
Consistency: eq-diff1 
     x owl:sameAs y 
     x owl:differentFrom y 
    ---------------------- 
 
Consistency checks that have consequences are 

similar to normal rules, except that the entailments 
are not added to the data model, rather they are used 

to ensure that the inferred statements exist in the 
repository. If they are not present then a consistency 
violation is indicated. 

 

3.3. owl:sameAs optimization 

owl:sameAs is an OWL predicate used to declare 
that two different URIs denote one and the same real-
world concept. Most often, it is used to align 
identifiers from different datasets that refer to the 
same real-world entity. For instance, in DBPedia, the 
URI of Vienna is http://dbpedia.org/page/Vienna, 
while in Geonames [22] it is 
http://sws.geonames.org/2761369/. DBpedia contains 
the statement 
 

(S1) dbpedia:Vienna owl:sameAs geonames:2761369 
 

which declares that the two URIs are equivalent. 
owl:sameAs is probably the most important OWL 
predicate when it comes to linking data from 
different data sources. 

Following the formal definition of OWL (OWL 2 
RL, to be more specific), whenever two URIs are 
declared equivalent, all statements that involve one 
of the URIs should be “replicated” with the other 
URI at the same position. For instance, in Geonames, 
the city of Vienna is defined as part of 
http://www.geonames.org/2761367/ (the first-order 
administrative division in Austria with the same 
name), which, in turn, is part of Austria 
(http://www.geonames.org/2782113):  

 
(S2)  geonames:2761369 gno:parentFeature 
geonames:2761367 
(S3)  geonames:2761367 gno:parentFeature 
geonames:2782113 
 

Since as gno:parentFeature is a transitive 
relationship, in the course of inference it will be 
derived that the city of Vienna is also part of Austria: 

 
(S4)  geonames:2761369 gno:parentFeature 
geonames:2782113 
 

Due to the semantics of owl:sameAs, from (S1) it 
should be inferred that statements (S2) and (S4) also 
hold for Vienna when it is referred with its DBpedia 
URI: 

 
(S5)  dbpedia:Vienna gno:parentFeature 
geonames:2761367 



(S6)  dbpedia:Vienna gno:parentFeature 
geonames:2782113 

 
These are true statements and when querying RDF 
data, no matter which one of the equivalent URIs is 
used in the explicit statements, the same results will 
be returned. When we consider that Austria, too, has 
an equivalent URI in DBpedia,  

 
(S7)  geonames:2782113 owl:sameAs 
dbpedia:Austria 
 

we should also infer that: 
 
(S8)   dbpedia:Vienna gno:parentFeature 
dbpedia:Austria 
(S9)   geonames:2761369 gno:parentFeature 
dbpedia:Austria 
(S10) geonames:2761367 gno:parentFeature 
dbpedia:Austria 

 
In the above example, we had two alignment 
statements (S1 and S7), two statements carrying 
specific factual knowledge (S2 and S3), one 
statement inferred due to a transitive property (S4), 
and seven statements inferred as a result of 
owl:sameAs alignment (S5, S7, S8, S9, S10, and the 
inverse statements of S1 and S7). As we see, 
inference without owl:sameAs inflated the dataset 
by 25% (one new statement on top of 4 explicit ones), 
while owl:sameAs related inference increased the 
dataset by 175% (7 new statements). Considering 
that Vienna also has a URI in UMBEL [23], which is 
also declared equivalent to the one in DBpedia, the 
addition of one more explicit statement for this 
alignment, will trigger the inference of 4 new implicit 
statements (duplicates of S1, S5, S6, and S8). 
Although this is a small example, it provides a good 
indication about the performance implications of 
using owl:sameAs alignment in LOD. Also, because 
owl:sameAs is a transitive, reflexive, and 
symmetric relationship, given a set of N equivalent 
URIs, N2 owl:sameAs statements will be generated 
for each pair of URIs (we should admit though that in 
reality, there are not that many examples of large 
owl:sameAs equivalence classes). Therefore, 
although owl:sameAs is useful for interlinking 
RDF datasets, its semantics causes considerable 
inflation in the number of inferred statements that 
should be considered during inference and query 
evaluation (either through forward- or through 
backward-chaining). 

To overcome this problem, BigOWLIM handles 
owl:sameAs in a specific manner. In its indices, 

each set of equivalent URIs (an equivalence class 
with respect to owl:sameAs) is represented by a 
single super-node. This way, BigOWLIM does not 
inflate the indices and, at the same time, retains the 
ability to enumerate all the required solutions to 
query requests. Special care is taken to ensure that 
this ‘trick’ does not hinder the ability to distinguish 
explicit from implicit statements. 

Equivalence expansion can be switched on and off 
when executing queries, so that when desired, only 
one URI is used for a particular resource when 
returning query results. This can make a dramatic 
difference to the number of ‘duplicated’ results 
returned. 

3.4. Retraction of assertions 

As mentioned above, OWLIM materializes all 
inferred statements at load time and whenever new 
statements are added to the repository. This has the 
highly desirable advantage that query answering is 
very fast, due to the fact that no further inference 
needs to be done. Updates that simply add new 
statements are treated in the same way as at load time, 
i.e. new statements are fed to the inference engine 
that applies the inference rules (making joins across 
new statements with existing statements) until no 
new inferences are obtained. Since the semantics 
(both standard and custom) must be monotonic, 
insert operations incrementally add to the set of 
explicit and inferred statements. However, retracting 
explicit statements that are used to infer other 
statements becomes more complicated. In 
SwiftOWLIM, this is achieved by simply 
invalidating all inferred statements and re-computing 
the full-closure whenever an update is committed. 
This has the advantage of simplicity of 
implementation, but the disadvantage of poor update 
performance and lack of scalability. 

BigOWLIM has a specific optimization for 
handling delete operations that updates the full-
closure incrementally. This technique labels 
statements to be deleted and then uses forward-
chaining to identify those statements that can be 
inferred from them, followed by backward chaining 
to identify those inferred statements that are still 
supported by other means. 

The result is that delete performance is only 
slightly worse than the insertion of new statements. 
This allows the repository to handle rapidly changing 
data even when answering queries over tens of 
billions of statements. 



3.5. Transaction management 

OWLIM supports the ‘read committed’ transaction 
isolation level. It guarantees that changes will not 
impact query evaluation, before the entire transaction 
they are part of is successfully committed. It does not 
guarantee that execution of a single transaction is 
performed against a single state of the data in the 
repository. Regarding concurrency, multiple 
update/modification/write transactions can be 
initiated and stay open simultaneously, i.e. one 
transaction does not need to be committed in order to 
allow another transaction to complete Furthermore, 
update transactions are processed in sequence and do 
not block read requests in any way, i.e. hundreds of 
SPARQL queries can be evaluated in parallel (the 
processing is properly multi-threaded) while update 
transactions are being handled on separate threads. 

One should note that OWLIM performs 
materialization, making sure that all the statements 
which can be inferred from the current state of the 
repository are indexed and persisted (except for those 
compressed due to the owl:sameAs optimisation, see 
section 3.3). By the time the commit method 
completes, all reasoning activities related to changes 
introduced by the corresponding transaction will 
have already been performed. 

3.6. Benchmarks 

There are few widely accepted benchmarks for 
semantic repositories and all of them fail to address 
all aspects of the functioning of a particular engine. 
The Berlin SPARQL Benchmark [17] (BSBM)  
evaluates the performance of query engines in an e-
commerce use case: searching products and 
navigating through related information. Randomized 
query mixes (each consisting of 25 queries) are 
evaluated continuously through a client application 
that communicates with the repository through a 
SPARQL end-point. However, the benchmark does 
not require any inference to take place in the 
repository and is targeted purely at measuring query-
answering performance. Recent evaluation 
results [19] for some of the most popular engines 
show that BigOWLIM has the best loading 
performance for the 100 million dataset being three 
times faster than the second best. BigOWLIM also 
has the best query performance for the reduced query 
mix. 

The Lehigh University Benchmark [18] (LUBM) 
is probably the most popular benchmarking 

framework for semantic repositories. It uses a 
relatively simple OWL ontology describing a 
university organization structure with synthetically 
generated datasets. The data generated for each 
university includes a number of departments and 
related individuals together with relevant descriptions 
and relations between them. The framework 
separately measures loading and query performance 
and inference is required in order to answer queries 
correctly. However, some important aspects of 
semantic repositories are not measured in this 
benchmark, such as update or delete performance. 

 LUBM(8000) includes data for 8000 universities 
and contains about 1.1 Billion explicit statements. It 
is a commonly used as a benchmark, because it is 
processable by a reasonable cross-section of the best 
performing semantic repository products. 
BigOWLIM will load this dataset in 14 hours on a 
computer costing less than 2000 US dollars 
(2.93GHz quad-core, 12GB memory and three 
320GB disks in a RAID 0 configuration) and will 
answer all queries correctly within 46 minutes. 

However, BigOWLIM has been measured with 
much larger datasets, including LUBM(90000) that 
contains over 12 Billion explicit statements (nearly 
21 Billion after inference). The loading time of this 
dataset with OWL-Horst semantics is approximately 
290 hours on a machine with 2 quad-core, 2.5GHz 
processors and 64GB memory. 

Another independent benchmark in the context of 
a commercial image retrieval system [20] compared a 
number of the leading semantic repositories. An 
excerpt from the conclusion states that “In our tests, 
BigOWLIM provides the best average query 
response time and answers the maximum number of 
queries for both the datasets ... it is clear to see that 
execution speed-wise BigOWLIM outperforms 
AllegroGraph and Sesame for almost all of the 
dataset queries.” 

3.7. Triplesets 

Triplesets are an extension to the RDF data model 
that offers greater flexibility than standard named 
graphs. There are many situations when it is desirable 
to label a subset of statements from a repository 
independent of their context, where there is a many 
to many relationship between the names of subsets 
and the triples they contain. In these situations, where 
statements conceptually belong to more than one set, 
triplesets can be used to associate a name (URI) with 
any combination of statements, irrespective of their 



context and/or membership of some other tripleset, 
see the example in Fig. 1. 

In principle, the model extends the idea of a ‘quad’ 
(subject predicate object context) to include an 
unbounded list of tripleset identifiers. Note how 
some of the statements (shown as dashed horizontal 
lines) from the named graphs are associated with 
more than one tripleset. 

 
Fig. 1 Example associations of triplesets with statements 

The tripleset data model has been present in 
OWLIM for some years, but is not accessible through 
the standard interfaces of Sesame that adhere to the 
standard RDF data model. However, the Ontology 
Representation and Data Integration [14] (ORDI) 
framework that uses OWLIM for its implementation 
does expose this feature through a Java API that 
allows statements to be associated and disassociated 
with tripleset identifiers. Furthermore queries can be 
executed that execute over only those statements 
associated with specified. 

4. Beyond RDF and SPARQL 

4.1. RDF Rank 

RDF Rank is a technique to measure the relevance 
of entities by examining their interconnectedness. A 
numerical weighting is computed for every node 
(URIs and literals) in the entire RDF graph and 
stored in a special index. The weights are floating 
point numbers with values between 0 and 1, and are 
made available via a special system predicate so that 

the popularity of entities can be used to order query 
results. At a high level, the approach is similar to the 
way in which internet search engines order results, 
such as how Google orders results using PageRank. 

4.2. Full text search 

Full-text search (FTS) concerns retrieving text 
documents out of a large collection using keywords 
or, more generally, by tokens (represented as 
sequences of characters). Formally, the query 
represents an unordered set of tokens and the result is 
set of documents, relevant to the query. In a simple 
FTS implementation, relevance is Boolean: a 
document is either relevant to the query, when it 
contains all the query tokens, or not. More advanced 
FTS implementations deal with a degree of relevance 
of the document to the query, usually judged on some 
sort of measure of the frequency of appearance of 
each of the tokens in the document normalized versus 
the frequency of their appearance in the entire 
document collection. Such implementations return an 
ordered list of documents, where the most relevant 
documents come first. 

When compared to a structured query, e.g. 
SPARQL, FTS is a different information access 
method based on a different query syntax and 
semantics, where the results are also displayed in a 
different form. FTS and databases usually require 
different types of indices too. The ability to combine 
these two types of information access methods is 
very useful for a wide range of applications. Many 
relational DBMS support some sort of FTS (which is 
integrated into the SQL syntax) and maintain 
additional indices that allow efficient evaluation of 
FTS constraints. Typically, relational DBMS allow 
the user to define a query, which requires specific 
tokens to appear in a specific column of a specific 
table. In SPARQL there is no standard way for the 
specification of FTS constraints. In general, there is 
neither a well defined nor widely accepted concept 
for FTS in RDF data. Nevertheless, some semantic 
repository vendors offer some sort of FTS in their 
engines. This section documents the FTS supported 
by BigOWLIM. 

Two approaches are implemented in BigOWLIM, 
a proprietary implementation called ‘Node Search’, 
and a Lucene-based implementation called ‘RDF 
Search’. Both approaches enable OWLIM to perform 
complex queries against character data, each with 
their functional differences outlined in Table 1. There 
can be considerable differences between the indexing 

default 

urn:context1 

urn:context2 

urn:tripleset X 

urn:tripleset Y 

urn:tripleset Z 

Statements from any 
named graph can be 
associated with any 
number of triplesets 



and search speed of the two FTS implementations. 
Performance-conscious users are recommended to 
experiment with the performance of both methods 
using datasets and queries representative for the 
intended application. 

Node Search (when indexing only literals) is 
similar to typical FTS implementations in relational 
DBMS. However, Node Search can also index the 
URIs of all entities, i.e. the subjects and objects of all 
statements. This makes it particularly useful for 
executing queries when the exact spelling of an 
entity’s URI is not known. 

 
Table 1 Comparison of Full-Text Search implementations 

 Node Search RDF Search 
Query 
format 

List of tokens List of tokens 
(with Lucene 
query extensions) 

Result 
format 

Unordered set of 
nodes 

Ordered list of 
URIs 

Textual 
representati
on 

For literals: the 
string value. For 
URIs and B-
nodes: 
tokenized URL 

Concatenation of 
the text  
representations of 
the nodes from the 
molecule (1-step 
neighbourhood in 
the graph) of the 
URI 

Relevance Boolean, based 
on presence of 
the query tokens 
in the text 

Vector-space 
model, reflecting 
the degree of 
relevance of the 
text and the RDF 
rank of the URI 

Implementat
ion 

Proprietary full-
text indexing 
and search 
implementation 

The Lucene 
engine is 
integrated and 
used for indexing 
and search 

 
RDF Search is a novel information retrieval 

concept that allows for the efficient extraction of 
RDF resources from huge datasets, where ordering of 
the results by relevance is crucial. 

Both techniques embed full-text search patterns in 
to standard query formats, i.e. SPARQL or SeRQL. 
Extra statement patterns are added that use special 
system predicates thus enabling powerful hybrid 
queries. 

BigOWLIM integrates Lucene [24]  – a high-
performance, full-featured text search engine – to 
index  the entire repository, i.e. all nodes including 

both URI local names and literals. For each node in 
the repository its surrounding molecule is computed, 
i.e. the collection of statements where this node 
appears as the subject or object. Then each molecule 
is converted into a single string document by 
concatenating the textual representation of all the 
nodes in the molecule and this document is indexed 
by Lucene. If a node’s RDF Rank is available it is 
stored in Lucene's index as a boosting factor that will 
later on influence the selection order. 

The facility for integrating a Lucene query with a 
normal SPARQL query is achieved with a special 
system predicate. The query in Fig. 2 gives an 
example of this. The intention here is to retrieve 
entity identifiers and labels, where those labels 
contain a token similar to ‘air’ and a token similar to 
‘plane’. 
 
PREFIX rdfs: <http://.../rdf-schema#> 
PREFIX onto: <http://www.ontotext.com/> 
 
SELECT * WHERE { 
 ?entity rdfs:label ?label . 
 ?label onto:luceneQuery "air~ AND plain~".} 
 

Fig. 2 An example RDF Search query using Lucene 

This combination of ranking RDF molecules 
together with full-text search provides a powerful 
mechanism for querying/analysing datasets even 
when the schema is not known. This allows for 
keyword-based search over both literals and URIs 
with the results ordered by 
importance/interconnectedness. 

FactForge [25] is a demonstrator for this 
technology that includes eight of the central LOD 
datasets. This publicly available and free to use Web 
application uses Node Search (for auto-completion of 
entered tokens), RDF Search for retrieving 
statements and RDF Rank for ordering results by 
relevance. This combination of technologies provides 
for powerful, user-guided data-mining over a large 
proportion of the core LOD datasets. 

4.3. Replication cluster 

BigOWLIM can be used in a cluster configuration 
where replication is used to improve resilience and 
provide scalable query answering. 

The query performance of the cluster represents 
the sum of the throughputs that can be handled by 
each of the instances. In a simple configuration of 3 
or 4 worker nodes, hundreds of thousands of query 
requests can be answered per hour while at the same 



time processing thousands of updates per hour – with 
non-trivial inference. 

In a cluster configuration, there are two types of 
nodes: Masters and workers. Masters act as the 
gateway to the cluster and all read/write requests go 
through these nodes. A cluster can have more than 
one master node, but only one is allowed to operate 
in read/write mode. The other master nodes operate 
in read-only mode, otherwise known as ‘hot-standby’. 
They can be used for marshalling read requests and 
can take over handling updates if the current 
read/write master fails. Worker nodes are standard 
BigOWLIM instances exposed by the Sesame HTTP 
server – a servlet running in Tomcat or similar. Read 
and write requests are passed to the workers from the 
master nodes. This simple arrangement allows for a 
great deal of flexibility in the design of a cluster 
topology. The example given in Fig. 3 has two 
master nodes and three worker nodes. At any 
moment in time, clients of the cluster can send read 
requests (queries) to either master node, but updates 
can only be handled by the master in read/write mode. 
If this master node should fail, the hot standby master 
can be brought in to read/write mode and from then 
on will handle both read requests and updates, as 
well as taking over responsibility for ensuring the 
synchronization of all the worker nodes. 

Each master node implements a JMX MBean [26] 
that is accessible using standard Java instrumentation 
tools, such as JConsole [26], and can be used to 
monitor and control the cluster while it is running. 
Typical activities supported include the monitoring 
of the health of each node, statistics gathering, 
adding and removing worker nodes. 

 
Fig. 3 A typical replication cluster configuration 

 
During normal operation, a master node will keep 

track of the size of each worker’s read request queue, 
such that each read request is sent to the worker with 
the shortest read queue. Update requests are handled 
differently. First of all, the update is tested against a 
single worker node. If the update is successful and 
subsequent consistency checks pass then the update 
request is considered ‘safe’ and is passed to the rest 
of the worker nodes. Master nodes take additional 
care to ensure that the states of all worker nodes are 
properly synchronized and if an anomaly is detected, 
the problem worker node is released from the cluster. 
The monitor and control JMX interface can be used 
to return worker nodes to the cluster and initiate their 
synchronization. 

In the event of a failure of a worker node, the 
performance degradation is graceful with respect to 
the number of healthy workers. The cluster can 
remain operational with just a single worker node. 

 

4.4. RDF Priming 

RDF Priming is a technique that is used to select a 
subset of available statements for use as the input to 
query answering. It is based upon the concept of 
spreading-activation [10] as developed in the field of 
cognitive science. 

RDF Priming is a scalable and customizable 
implementation of the popular connectionist method 
on top of RDF graphs. It allows the ‘priming’ of 
large datasets with respect to concepts relevant to the 
context and to the query. It is implemented in the 
BigOWLIM engine and controlled using SPARQL 
ASK queries. 

The priming module is highly configurable, where 
the starting nodes, initial activation values, activation 
pathways, decay factors, threshold values and 
number of cycles can be individually set. 
Additionally, the number of worker threads used for 
computing and propagating activation values in a 
priming cycle can be specified. 

The principles can be explained by way of the 
following example. Consider the following query that 
might be executed over the DBPedia: 
 
PREFIX dbp: <http://dbpedia.org/property/> 
PREFIX dbr: <http://dbpedia.org/resource/> 
SELECT * WHERE { 
  ?x dbp:class dbr:V8.} 
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This query will return around 20 results for 
various engine and car types. However, if the agent 
using BigOWLIM is operating with a particular 
interest in certain concepts and those related to them, 
say the Ford Motor company and a particular make 
of car, then these two entities could be used to start a 
priming cycle that selects statements ‘close’ to these 
concepts. A sequence of SPARQL ASK queries can 
be used to set up the priming parameters, including 
some weightings for suitable predicates. The 
following query can be used to specify the two 
starting nodes mentioned earlier: 
 
PREFIX onto: <http://www.ontotext.com#> 
PREFIX dbr:  <http://dbpedia.org/resource/> 
ASK { dbr:1955_Ford onto:activateNode 
      dbr:Ford_Motor_Company } 
 

After initiating the spreading of activations with 
another ASK query, the selected statements will be 
used as input to subsequent queries. Re-running the 
example query will return a smaller result set 
containing members of the V8 DBPedia class more 
closely related to the Ford Motor company and the 
chosen model of car. 

It should be noted that RDF Priming is different 
from RDF Rank, in that RDF Priming involves 
selecting a subset of statements by propagating 
activation values in multiple hops starting from the 
specified entities. RDF Rank on the other hand, 
simply counts the number of connections for each 
node. 

4.5. Notifications 

Notifications are a publish/subscribe mechanism 
for registering and receiving events from a 
BigOWLIM repository whenever new triples 
matching a certain graph pattern are inserted. The 
user of the notifications API registers for 
notifications by providing a graph pattern involving 
triple patterns combined by means of joins and 
unions at any level. The order of the triple patterns is 
not significant. 

In general, notifications will be sent for all 
incoming triples that contribute to a solution of the 
graph pattern. Furthermore, any statements inferred 
from newly inserted statements will also be subject to 
handling by the notification mechanism, i.e. new 
implicit statements will also be notified to clients 
when the requested triple pattern matches. 

The purpose of the notification service is to enable 
the efficient and timely discovery of newly added 

RDF data. Therefore it should be treated as a 
mechanism for giving the client a hint that certain 
new data is available and should not be used as an 
asynchronous SPARQL evaluation engine. 

5. Conclusion 

The emerging Web of data has provided new 
challenges for software components that must expose 
this data and enable its widespread  consumption. 
The OWLIM family of semantic repositories is 
ideally suited to this task due to its ability to store, 
reason and answer queries using the massive datasets 
involved. In addition to world-leading RDF 
processing performance, OWLIM offers a range of 
advanced features that seamlessly integrate with 
existing query standards and provide a variety of 
alternative data access methods. 

OWLIM continues to evolve with various new 
features planned for the near future. The next release 
of OWLIM will include enhanced support for geo-
spatial data and some of the widely accepted geo-
spatial vocabularies. Specialized indices will be used 
to access spatial data and a range of SPARQL 
extension functions will allow for expressive queries 
using 2D and 3D geometry. 

The next release will also include interfaces that 
support the JENA RDF framework, enabling 
OWLIM to be used with both Sesame and JENA, the 
two most widely used RDF frameworks. 

Later releases will include more advanced full-text 
search and indexing options based on Lucene, with 
the ability to create and use multiple Lucene indices 
each parameterized according to the task at hand. 
Configuration parameters will allow better control 
over what statements to include in the RDF molecule. 
The size of the molecule (number of statement ‘hops’ 
from each node) will be controllable as well the 
choice of which statements to include based on the 
selected predicates or the selected language tags of 
literals. 

Later releases will expose the existing support for 
the extended RDF model based on triplesets.  

The current set of advanced features and world-
leading performance have helped to position 
OWLIM as the semantic repository of choice for all 
environments that manage RDF data, particularly for 
Web-scale applications. The future evolution of 
OWLIM towards better compatibility and even more 
powerful data management features will ensure the 
continued uptake of this technology. 



The development of OWLIM has been partly 
supported by SEKT [27], TAO [28], TripCom [29], 
LarKC [30], SOA4ALL [31], and other FP6 and FP7 
European research projects. 
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