Ownership Consolidation and Product Characteristics:
 A Study of the U.S. Daily Newspaper Market

Online Appendix

Ying Fan
Department of Economics, University of Michigan

C Invertibility of the Penetration Function

In this appendix, I show that the invertibility result in BLP can be extended to a multiple discrete choice model. I only show the extension for a model where the number of products that an individual can buy is limited to at most two. The result can be easily extended to a model in which consumers can choose up to $\bar{n} \leq J$ products, where J is the total number of products available in a choice set.

Penetration Function

Let $\Phi(\cdot)$ represent the distribution function of the random term $\boldsymbol{\varsigma}_{i}$. The penetration function in Section 2.1 is given by

$$
\begin{aligned}
\lrcorner_{j}(\boldsymbol{\delta}, \boldsymbol{x} ; \boldsymbol{\sigma}, \kappa)= & \int \Psi_{j}^{(1)}\left(\boldsymbol{\delta}, \boldsymbol{x}, \boldsymbol{\varsigma}_{i} ; \boldsymbol{\sigma}\right) d \Phi\left(\boldsymbol{\varsigma}_{i}\right) \\
& +\sum_{j^{\prime} \neq j} \int\left(\Psi_{j, j^{\prime}}^{(2)}\left(\boldsymbol{\delta}, \boldsymbol{x}, \boldsymbol{\varsigma}_{i} ; \boldsymbol{\sigma}, \kappa\right)-\Psi_{j}^{(3)}\left(\boldsymbol{\delta}, \boldsymbol{x}, \boldsymbol{\varsigma}_{i} ; \boldsymbol{\sigma}, \kappa\right)\right) d \Phi\left(\boldsymbol{\varsigma}_{i}\right),
\end{aligned}
$$

where

$$
\Psi_{j}^{(1)}\left(\boldsymbol{\delta}, \boldsymbol{x}, \boldsymbol{\varsigma}_{i} ; \boldsymbol{\sigma}\right)=\frac{\exp \left(\delta_{j}+\vartheta_{i j}\right)}{1+\sum_{h=1}^{J} \exp \left(\delta_{h}+\vartheta_{i h}\right)},
$$

is the probability that newspaper j is chosen as the first newspaper $\left(\vartheta_{i j}\right.$ is the deviation of household i 's utility from the mean utility), and the probability that newspaper j is chosen as the second newspaper when j^{\prime} is the first best is given by the difference between the followings:

$$
\begin{aligned}
\Psi_{j, j^{\prime}}^{(2)}\left(\boldsymbol{\delta}, \boldsymbol{x}, \boldsymbol{\varsigma}_{i} ; \boldsymbol{\sigma}, \kappa\right) & =\frac{\exp \left(\delta_{j}+\vartheta_{i j}\right)}{\exp (\kappa)+\sum_{h \neq j^{\prime}} \exp \left(\delta_{h}+\vartheta_{i h}\right)}, \\
\Psi_{j}^{(3)}\left(\boldsymbol{\delta}, \boldsymbol{x}, \boldsymbol{\varsigma}_{i} ; \boldsymbol{\sigma}, \kappa\right) & =\frac{\exp \left(\delta_{j}+\vartheta_{i j}\right)}{\exp (\kappa)+\sum_{h=1}^{J} \exp \left(\delta_{h}+\vartheta_{i h}\right)}
\end{aligned}
$$

Invertibility

Since all statements in this section are true for any given $(\boldsymbol{x}, \boldsymbol{\sigma}, \kappa)$, these arguments in \mathscr{J}_{j} are omitted for expositional simplicity.

The proof of the invertibility result is slightly different from that in BLP. BLP define a function $F: R^{J} \rightarrow R^{J}$ pointwise as $F_{j}(\boldsymbol{\delta})=\delta_{j}+\ln s_{j}-\ln \mathscr{J}_{j}(\boldsymbol{\delta})$ and show that F is a contraction when an upper bound on the value taken by F is imposed. For a single discrete choice model, the value of δ_{j} that solves $\sum_{h=1}^{J} s_{h}=\sum_{h=1}^{J} \delta_{h}(\boldsymbol{\delta})$ when $\delta_{j^{\prime}}=-\infty$ for $\forall j^{\prime} \neq j$ is the upper bound of the j th dimension of a fixed point of F. In a multiple discrete choice model, however, this value does not exist when $\left(\sum_{h=1}^{J} s_{h}\right)$ is larger than $1 .{ }^{24}$

I first prove the existence and uniqueness of the solution to $\breve{J}_{j}(\boldsymbol{\delta}, \boldsymbol{x} ; \boldsymbol{\sigma}, \kappa)=s_{j}$ for all j directly without using the function F. I then verify that all conditions in BLP hold so that F is indeed a contraction mapping - when an upper bound is imposed.

The following inequalities, which will be proven at the end of this section, are useful in the proof:

$$
\begin{align*}
\partial \mathscr{J}_{j} / \partial \delta_{j} & <\jmath_{j} \tag{C.4}\\
\partial \mathscr{J}_{j} / \partial \delta_{j} & >0 \tag{C.5}\\
\partial \mathscr{J}_{j} / \partial \delta_{h} & <0 \text { when } h \neq j \tag{C.6}\\
\sum_{h=1}^{J}\left(\partial \mathscr{J}_{j} / \partial \delta_{h}\right) & >0 \tag{C.7}
\end{align*}
$$

Inequalities (C.5), (C.6) and (C.7) imply that the Jacobian of δ has a dominant diagonal. Therefore, there is a unique solution to the equation system of $\mathscr{J}_{j}(\boldsymbol{\delta})=s_{j}$ for all $j .{ }^{25}$

I now prove that all conditions in the theorem in BLP hold.
Condition (1): Inequalities (C.4) and (C.6) imply that

$$
\begin{aligned}
& \partial F_{j}(\boldsymbol{\delta}) / \partial \delta_{j}=1-\left(\partial \delta_{j} / \partial \delta_{j}\right) / \delta_{j}>0 \\
& \partial F_{j}(\boldsymbol{\delta}) / \partial \delta_{h}=-\left(\partial \delta_{j} / \partial \delta_{h}\right) / \mathscr{\delta}_{j}>0 \text { when } h \neq j .
\end{aligned}
$$

Also, inequality (C.7) implies that

$$
\sum_{h=1}^{J} \partial F_{j}(\boldsymbol{\delta}) / \partial \delta_{h}=1-\sum_{h=1}^{J}\left(\partial \delta_{j} / \partial \delta_{h}\right) / \delta_{j}<1 .
$$

[^0]Condition (2): Given the monotonicity of F in all dimensions of $\boldsymbol{\delta}$, a lower bound of function F is $\underline{\delta}=\min _{j}\left(\lim _{\delta \rightarrow-\infty^{J}} F_{j}(\boldsymbol{\delta})\right)$.

Condition (3): I have already shown that the equation system of $\mathscr{J}_{j}(\boldsymbol{\delta})=s_{j}$ has a unique solution. This implies that the mapping F has a unique fixed point. Denote the fixed point by $\boldsymbol{\delta}^{*}$. Then, $F_{j}\left(\boldsymbol{\delta}^{*}\right)=\delta_{j}^{*}$ for all j. Note that $F_{j}\left(\delta^{*}+\Delta\right)-\left(\delta_{j}^{*}+\Delta\right)=\ln s_{j}-\ln \delta_{j}\left(\delta^{*}+\Delta\right)$ is strictly decreasing in Δ as implied by inequality (C.7). Therefore, $F_{j}\left(\delta^{*}+\Delta\right)<\left(\delta_{j}^{*}+\Delta\right)$ for any $\Delta>0$. Define $\bar{\delta}_{j}=\delta_{j}^{*}+\Delta$. Then, $F_{j}(\overline{\boldsymbol{\delta}})<\bar{\delta}_{j}$ for any j. By inequality (C.6), $F_{j}(\boldsymbol{\delta})<\delta_{j}$ for any $\boldsymbol{\delta}$ such that $\delta_{j}=\bar{\delta}_{j}$ and $\delta_{j^{\prime}} \leq \bar{\delta}_{j^{\prime}}$ for all j^{\prime}.

I now show inequalities (C.4) to (C.7). Three observations are important:

$$
0<\Psi_{j}^{(1)}, \Psi_{j, j^{\prime}}^{(2)}, \Psi_{j}^{(3)}<1 ; \Psi_{j, j^{\prime}}^{(2)}>\Psi_{j}^{(3)} ; \Psi_{j}^{(1)}>\Psi_{j}^{(3)} .
$$

Inequalities (C.4) and (C.6) follow directly from the three observations:

$$
\begin{aligned}
\partial \delta_{j} / \partial \delta_{j} & =\int \Psi_{j}^{(1)}\left(1-\Psi_{j}^{(1)}\right) d \Phi(\varsigma)+\sum_{j^{\prime} \neq j} \int\left[\Psi_{j, j^{\prime}}^{(2)}\left(1-\Psi_{j, j^{\prime}}^{(2)}\right)-\Psi_{j}^{(3)}\left(1-\Psi_{j}^{(3)}\right)\right] d \Phi(\varsigma) \\
& <\int \Psi_{j}^{(1)} d \Phi(\varsigma)+\sum_{j^{\prime} \neq j} \int\left(\Psi_{j, j^{\prime}}^{(2)}-\Psi_{j}^{(3)}\right) d \Phi(\varsigma)=\iota_{j}, \\
\partial \delta_{j} / \partial \delta_{h} & =-\int \Psi_{j}^{(1)} \Psi_{h}^{(1)} d \Phi(\varsigma)+\int \Psi_{j}^{(3)} \Psi_{h}^{(3)} d \Phi(\varsigma)+\sum_{j^{\prime} \neq j, h} \int\left(-\Psi_{j, j^{\prime}}^{(2)} \Psi_{h, j^{\prime}}^{(2)}+\Psi_{j}^{(3)} \Psi_{h}^{(3)}\right) d \Phi(\varsigma) \\
& <\sum_{j^{\prime} \neq j, h} \int\left(-\Psi_{j, j^{\prime}}^{(2)} \Psi_{h, j^{\prime}}^{(2)}+\Psi_{j}^{(3)} \Psi_{h}^{(3)}\right) d \Phi(\varsigma)<0 \text { when } h \neq j .
\end{aligned}
$$

To show inequality (C.7), note that $\sum_{h=1}^{J} \frac{\partial \mathcal{J}_{j}(\boldsymbol{\delta})}{\partial \delta_{h}}=\left.\frac{\partial \mathcal{J}_{j}(\boldsymbol{\delta}+\Delta)}{\partial \Delta}\right|_{\Delta=0}$, and

$$
\begin{aligned}
& \left.\frac{\partial \mathscr{J}_{j}(\boldsymbol{\delta}+\Delta)}{\partial \Delta}\right|_{\Delta=0} \\
= & \int\left(\Psi_{j}^{(1)}\right)^{2} \frac{1}{e^{\delta_{j}+\vartheta_{i j}}} d \Phi(\varsigma)+\sum_{j^{\prime} \neq j, 0} \int\left[\left(\Psi_{j, j^{\prime}}^{(2)}\right)^{2}-\left(\Psi_{j}^{(3)}\right)^{2}\right] \frac{e^{\kappa}}{e^{\delta_{j}+\vartheta_{i j}}} d \Phi(\varsigma)>0 .
\end{aligned}
$$

Combining inequalities (C.6) and (C.7) yields inequality (C.5).

D Instrumental Variables

The "excluded" instrumental variables that are assumed uncorrelated with the demand error $\xi_{j c t}:$

- BLP-style instrument $\left(I V_{1}\right)$
- the number of competitors
- cost shifters $\left(I V_{2}, I V_{3}, I V_{4}\right)$
- frequency of publication
- households in the home county of newspaper j (It is correlated with $Q_{j t}$ in the average cost of printing and delivery in (10).)
- households in the home counties of other papers that are close-by and are of the same owner as newspaper j (It is correlated with $Q_{j t}$ in (10).)
- demographics in counties of newspaper j 's market (excluding county $c)\left(I V_{5}, I V_{6}\right)$
- weighted average education and median age (weighted by households in a county)
- demographics in the counties of newspaper j 's competitors (excluding counties in j 's market) $\left(I V_{7}, I V_{8}, I V_{9}, I V_{10}\right)$
- weighted average education, median income, median age and urbanization (weighted by households in a county)

The table below reports the results of the first-stage regression. Standard errors are clustered by newspaper. The estimates are largely significant.

First-stage Regression Result

	newshole ${ }^{a}$		opinion		reporter		local news ratio		variety		price	
	coef.	s.e.										
Included IV												
\log (households in the market)	$0.169^{* *}$	0.035	$0.449^{* *}$	0.264	-0.145	1.185	$0.331^{* *}$	0.053	$0.129^{* *}$	0.028	$12.804^{* *}$	2.653
morning edition	$0.052^{* *}$	0.026	$0.654^{* *}$	0.313	0.311	0.996	-0.070	0.070	$-0.092^{* *}$	0.039	2.701	2.525
local dummy	-0.008	0.027	-0.041	0.217	0.236	0.863	0.007	0.038	-0.002	0.020	1.044	2.539
county distance ($1000 \mathrm{~km} \mathrm{)}$	-0.074	0.366	-0.339	3.319	8.000	12.139	$1.373^{* *}$	0.539	$0.341 * *$	0.205	103.969**	43.441
education	$-0.074^{* *}$	0.032	$-1.520^{* *}$	0.371	$-11.998^{* *}$	1.418	$-0.436^{* *}$	0.068	$0.227^{* *}$	0.038	$15.894^{* *}$	2.170
median income (\$10000)	0.215*	0.154	1.343*	1.020	1.953	3.742	0.210	0.334	0.163	0.234	$38.557^{* *}$	14.035
median age	$-0.005^{* *}$	0.002	-0.013	0.013	-0.021	0.049	0.004	0.004	0.003	0.002	0.028	0.160
urbanization	0.076	0.293	2.071	1.713	9.786*	7.018	0.077	0.560	0.161	0.362	$82.087^{* *}$	25.110
time	-0.006	0.005	-0.003	0.041	-0.020	0.180	-0.005	0.010	0.002	0.006	-0.422	0.440
Excluded IV												
$I V_{1}$	$0.034^{* *}$	0.018	0.235^{*}	0.150	$1.084^{* *}$	0.457	$-0.029^{* *}$	0.008	$-0.012^{* *}$	0.004	$-1.871^{* *}$	0.716
$I V_{2}$	$3.383^{* *}$	0.356	-5.718*	3.745	-0.295	14.841	$4.867^{* *}$	0.895	$2.679^{* *}$	0.535	$229.767^{* *}$	35.724
$I V_{3}$	$3.176^{* *}$	0.563	$33.451^{* *}$	3.265	$171.795^{* *}$	17.737	$-1.461 * *$	0.536	$-0.536^{* *}$	0.229	$-55.646^{* *}$	22.626
$I V_{4}$	0.107	0.478	4.334	6.596	16.415	26.662	-0.507	0.482	-0.314	0.334	-16.786	39.376
$I V_{5}$	$0.724^{* *}$	0.328	$7.210^{* *}$	2.914	29.476**	10.128	0.089	0.438	$-0.466^{* *}$	0.156	$71.055^{* *}$	26.044
$I V_{6}$	-0.002	0.001	-0.019*	0.012	$-0.081^{* *}$	0.044	0.002	0.003	$0.004^{* *}$	0.001	-0.082	0.114
$I V_{7}$	$-0.659^{* *}$	0.368	$-7.136^{* *}$	3.306	5.685	11.343	0.737	0.732	-0.349	0.399	-41.265	36.571
$I V_{8}$	0.241	0.356	$5.502^{* *}$	3.251	13.255^{*}	10.183	-0.384	0.701	0.474^{*}	0.340	41.246*	27.609
$I V_{9}$	$-0.007^{* *}$	0.003	-0.031*	0.023	-0.121*	0.083	-0.005	0.005	-0.003*	0.002	$0.416^{* *}$	0.235
$I V_{10}$	-0.091	0.120	-1.079	1.071	$-13.159^{* *}$	3.920	0.284	0.244	0.002	0.096	-16.563^{*}	11.301
F test												
$\mathrm{F}(19,943)$	144.10		44.91		46.14		32.67		11.02		48.06	
F test of excluded IV												
$\mathrm{F}(10,943)$	16.64		26.72		28.82		9.19		6.92		11.43	

** indicates 95% level of significance. * indicates 90% level of significance.
${ }^{a}$ The news hole is $n_{j t}-a\left(r_{j t}, q_{j t}, H_{j t} ; \hat{\eta}, \hat{\boldsymbol{\lambda}}\right)$, where $\hat{\eta}$ and $\hat{\boldsymbol{\lambda}}$ are the estimated advertising demand parameters reported in Table 4

The instrumental variables that are assumed uncorrelated with the advertising demand error $\iota_{j t}$ in (8) include weighted average education, median income as well as median age and urbanization in newspaper j 's market (weighted by households in a county).

The instrumental variables that are assumed uncorrelated with the supply-side error terms $\zeta_{j t}, \omega_{j t}, \nu_{k j t}$ in the estimation equations (16), (17) and (18) include weighted average education, median income, median age and urbanization in newspaper j 's market (weighted by households in a county), frequency of publication, the number of households in newspaper j 's market as well as households in the home counties of other papers that are close-by and are of the same owner as newspaper j.

E Details on GMM

To define the GMM objective function, I solve for all error terms and express them as functions of the data and the model parameters. Specifically,

$$
\begin{align*}
& \xi_{j c t}=\delta_{j c t}\left(\boldsymbol{s}_{c t} ; \boldsymbol{\sigma}, \kappa\right)-p_{j t} \alpha-\boldsymbol{x}_{j t} \boldsymbol{\beta}-\boldsymbol{x}_{j t} \boldsymbol{z}_{c t} \boldsymbol{\theta}-\boldsymbol{y}_{j c t} \boldsymbol{\psi}-\boldsymbol{z}_{c t} \boldsymbol{\varphi}+\left(t-t_{0}\right) \rho \tag{E.8}\\
& \iota_{j t}=\log a_{j t}-\eta-\lambda_{0} \log H_{j t}-\lambda_{1} \log q_{j t}-\lambda_{2} \log r_{j t} \tag{E.9}\\
& \omega_{j t}=a c_{j t}^{(q)}-\left(\gamma_{1}+\gamma_{2} f_{j t}+\gamma_{3}\left(x_{1 j t}+a_{j t}\right)\right) \log \left(Q_{j t}\right)^{\gamma_{4}} \tag{E.10}\\
& \zeta_{j t}=r_{j t}-\bar{\zeta}-\frac{\gamma_{3}}{1+1 / \lambda_{2}} \log \left(Q_{j t}\right)^{\gamma_{4}} q_{j t} \tag{E.11}\\
& \nu_{k j t}=\sum_{h \in \mathcal{J}_{m t}}\left(\frac{\partial \pi_{h t}^{\mathrm{II}}}{\partial x_{k j t}}+\sum_{j^{\prime} \in \mathcal{J}_{g(j t)}} \frac{\partial \pi_{h t}^{\mathrm{II}}}{\partial p_{j^{\prime} t}} \frac{\partial p_{j^{\prime} t}^{*}}{\partial x_{k j t}}\right)-\tau_{k 0}-\tau_{k 1} x_{k j t} . \tag{E.12}
\end{align*}
$$

In (E.10) $a c_{j t}^{(q)}$ is solved from the first-order condition with respect to the subscription price (equation (17)). In (E.12), the partial derivative $\frac{\partial p_{j^{\prime} t}^{*}}{\partial x_{k j t}}$ is computed following the approach described at the end of Section 2.

These error terms are plugged into the moment conditions that they are uncorrelated with the instrumental variables explained in Appendix D . Let Θ be the collection of all model parameters. Denote the empirical moment conditions by $g(\Theta)$. Then, the GMM objective function is $g(\Theta)^{\prime} W g(\Theta)$, where W is a weighting matrix. I first take the efficient weighting matrix assuming all error terms are homoscedastic to compute an estimate. This estimate is used to obtain a consistent estimate of the covariance matrix, the inverse of which is used as the weighting matrix to obtain another estimate. This process is iterated once more as the estimate does not change much any more from the last iteration.

F Estimation Results when 80% of Total Circulation is Used as a Criterion for Defining the Market of a Newspaper

		parameter	estimate	s.e.
Utility	price (\$100)	α	-1.400**	0.276
	$\log \left(1 \dot{+} x_{1}\right)$	β_{1}	$0.825^{* *}$	0.176
	$\log \left(1+x_{2}\right)$	β_{2}	-0.003	0.035
	$\log \left(1+x_{3}\right)$	β_{3}	0.034*	0.023
	weight on newshole in x_{1}	1		
	weight on opinion in x_{1}	ϖ_{2}	0.765	3.259
	weight on reporters in x_{1}	ϖ_{3}	4.855*	2.956
	$\log \left(1+x_{2}\right)$, education	θ_{1}	-0.021*	0.014
	$\log \left(1+x_{2}\right)$, median age	θ_{2}	0.026	0.049
	$\log \left(1+x_{2}\right)$, s.d.	σ	0.056	0.151
	\log (households in the market)	ψ_{1}	$-0.852^{* *}$	0.149
	morning edition	ψ_{2}	0.099*	0.076
	local dummy	ψ_{3}	0.328**	0.083
	county distance (1000 km)	ψ_{4}	-3.140**	1.055
	constant	φ_{0}	$6.071^{* *}$	1.226
	education	φ_{1}	$0.881^{* *}$	0.376
	median income (\$10000)	φ_{2}	-0.064	0.376
	median age	φ_{3}	$0.044^{* *}$	0.008
	urbanization	φ_{4}	0.755**	0.174
	time	ρ	0.141**	0.023
	diminishing utility	κ	$1.896^{* *}$	0.744
Display ad demand	ad market size	λ_{0}	0.045	0.113
	total circulation	λ_{1}	$1.673^{* *}$	0.131
	ad rate	λ_{2}	$-1.194^{* *}$	0.206
	constant	ϕ	-1.626	1.538
Avg cost of circulation	constant	γ_{1}	-49.357	1031.900
	frequency	γ_{2}	$1.751^{* *}$	0.669
	pages in a year	γ_{3}	0.022	0.019
	economies of scale/scope	γ_{4}	-0.442**	0.109
Marginal cost of ad sales		$\bar{\zeta}$	$12.960^{* *}$	2.429
Slope of the fixed cost for x_{1}	constant	τ_{10}	99299**	34481
	x_{1}	τ_{11}	0.00799	138.720
Slope of the fixed cost for x_{2}	constant	τ_{20}	89.252	1675.200
	x_{2}	τ_{21}	11.962	30.011
Slope of the fixed cost for x_{3}	constant	τ_{30}	0.0001	4057.000
	x_{3}	τ_{31}	0.103	157.610
Preprint profit	circulation	μ_{1}	152.460	361.440
	square of circulation	μ_{2}	-0.002*	0.001

[^1]
[^0]: ${ }^{24}$ In a single discrete choice model, $\sum_{h=1}^{J} s_{h}<1$, while in a multiple discrete choice model, the sum of market penetration for all products $\sum_{h=1}^{J} s_{h}$ can be larger than 1 . But the supremum of $\sum_{h=1}^{J} \delta_{h}(\boldsymbol{\delta})$ is 1 when $\delta_{j^{\prime}}=-\infty$ for $\forall j^{\prime} \neq j$.
 ${ }^{25}$ See McKenzie, Lionel (1959), "Matrices with dominant diagonals and economic theory." In Mathematical methods in the social sciences (Kenneth Joseph Arrow, Samuel Karlin, and Patrick Suppes, eds.), 47-62, Stanford University Press.

[^1]: ** indicates 95% level of significance.

 * indicates 90% level of significance.

