
Ownership Transfer in Universe Types

Peter Müller
Microsoft Research, USA
mueller@microsoft.com

Arsenii Rudich
ETH Zurich, Switzerland
arsenii.rudich@inf.ethz.ch

Abstract
Ownership simplifies reasoning about object-oriented pro-
grams by controlling aliasing and modifications of objects.
Several type systems have been proposed to express and
check ownership statically.

For ownership systems to be practical, they must allow
objects to migrate from one owner to another. This owner-
ship transfer is common and occurs, for instance, during the
initialization of data structures and when data structures are
merged. However, existing ownership type systems either do
not support ownership transfer at all or they are too restric-
tive, give rather weak static guarantees, or require a high an-
notation overhead.

In this paper, we present UTT, an extension of Universe
Types that supports ownership transfer. UTT combines own-
ership type checking with a modular static analysis to con-
trol references to transferable objects. UTT is very flexi-
ble because it permits temporary aliases, even across cer-
tain method calls. Nevertheless, it guarantees statically that
a cluster of objects is externally-unique when it is transferred
and, thus, that ownership transfer is type safe. UTT provides
the same encapsulation as Universe Types and requires only
negligible annotation overhead.

Categories and Subject Descriptors D3.3 [Programming
Languages]: Language Constructs

General Terms Languages, Verification

Keywords Universe Types, Ownership Transfer, Aliasing,
Uniqueness

1. Introduction
Ownership allows programmers to structure the object store
and to control aliasing and modifications of objects. The
ownership structure makes programs easier to understand, to
maintain, and to reason about. Ownership has been used to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA ’07 October 21–25, Montreal.
Copyright c© 2007 ACM [to be supplied]. . . $5.00

verify object invariants [29, 31, 33, 34], to show the absence
of data races in multi-threaded programs [7, 26], to facili-
tate memory management for real-time programs [3, 9], to
check object immutability [24], and to prove representation
independence [4].

In the existing ownership systems, each object has at most
one owner object. The ownership relation is a tree order. We
call the set of all objects with the same owner a context. The
root context is the set of objects with no owner. Ownership
type systems allow programmers to express and check own-
ership properties statically. In these type systems, a type con-
veys information about the class of an object as well as the
object’s owner. Besides the ownership topology, ownership
type systems also enforce restrictions on references between
objects in different contexts.

The owner of an object is first determined when the object
is created. In many common designs, the owner is not fixed
throughout an object’s lifetime, but changes dynamically.
The need for this ownership transfer is illustrated by the
following examples:

• Merging data structures: data structures such as lists are
merged efficiently by transferring the internal representa-
tion of one structure to the context of the other [15].

• Object initialization: constructors often take an existing
object as parameter and then capture this object, that is,
transfer ownership to the object being constructed [17]. A
special case of object initialization is the Factory pattern,
where product objects are created in the context of a
global factory and then transferred to the client [36].

• Work flow systems: tasks in work flow systems are trans-
ferred repeatedly from processor to processor.

The first example is illustrated in Fig. 1. A list consists of a
main object of class List and a doubly-linked cyclic struc-
ture of Node objects. The node referenced by the List’s
first field is a dummy node to simplify the handling of
empty lists. In our example, a List object owns its nodes.
Therefore, efficient merging of two lists requires ownership
transfer. We assume here that all nodes of a context are trans-
ferred together. The resulting structure is shown in Fig. 2.

Static type safety of an ownership type system means
essentially that the static type of an expression e correctly
reflects the owner of the object e evaluates to. Consequently,



1: List

2: Node

3: Node

prevnext prev next

first

4: List

6: Node prev

next

first

7: Node

5: Node

next

next

prev
prev

Figure 1. Ownership structure of two lists. Each List ob-
ject owns its Node objects. Objects are depicted by boxes;
references are depicted by arrows, which are labeled with
the name of the field holding the reference. Rounded boxes
delimit ownership contexts. The owner sits atop the context
it owns.

1: List

8: Node

first

next prev

2: Node

3: Node

4: List

6: Node prev

next

first

7: Node

5: Node next

next

prevprev

prev

next

next

prev

Figure 2. Ownership structure after the nodes of List ob-
ject 1 have been transferred to List object 4 and the two
node structures have been merged. To preserve type safety,
the first field of List object 1 is set to a fresh node in its
context (object 8). The dummy Node object 2 is not reach-
able after the merge operation and will be garbage collected.

in the presence of ownership transfer, objects may change
their type dynamically. For instance, Node object 2 in Fig. 1
is owned by List object 1. This is reflected in the type
of List’s field first. In Universe Types [20], this field
has type rep Node, where the rep modifier indicates that
the referenced object is owned by this. However, after the
transfer (Fig. 2) Node object 2 is owned by List object 4.
Therefore, the rep modifier of the first field of List 1
does no longer reflect the owner of the referenced Node
correctly. This is type safe only if the transfer sets the first
field of List object 1 to a different value, for instance, a new
dummy node, before the field is accessed again.

In general, type safety requires that the well-typedness of
each variable (local variable, method parameter, or field) that
is affected by an ownership transfer is re-established before
the next access to the variable. To enforce this condition, an
ownership type system must be able to determine statically
all stack and heap locations that reference a transferred ob-

void retain(List list4) {

rep Node node3 = first.next;

list4.merge(this);
// node3 points to object owned by list4

node3.next = null;
}

Figure 3. Unsafe method of class List. The last statement
destroys the node structure of list4.

ject. In general, this requires knowledge of the whole call
stack—because method executions in progress may have
local variables that point to the transferred objects—and
knowledge of all subclasses—because a subclass may con-
tain fields that point to the transferred objects.

For instance, consider an execution of method retain
(Fig. 3) with List object 1 as receiver and List object 4
as parameter. In the state before calling merge (illustrated
by Fig. 1), local variable node3 holds a reference to Node
object 3. The well-typedness of node3 is violated when
merge transfers the nodes of this to list4. In the state
after the call (Fig. 2), node3 points to an object owned
by list4, even though its rep modifier indicates that the
object is owned by this. Method retain exploits the ill-
typedness of node3 to destroy the link structure of list4’s
nodes by setting the next field of node3 to null. To avoid
this problem, node3’s well-typedness must be re-established
after the call to merge. However, this cannot be done by
method merge because node3 is not in the stack frame of
merge.

To prevent the problem of ill-typed aliases on transferred
objects, existing type systems for ownership transfer use
uniqueness [2, 25, 32] to control the possible references to
objects that may be transferred. A reference is unique if the
referenced object is not aliased. Unique variables may only
hold unique references and the null value. Therefore, trans-
ferring an object using a unique variable does not affect any
other stack or heap locations, and it suffices to assign a new
value to the unique variable. If all objects of a context are
transferred together, it even suffices to guarantee that there
is only one reference from the owner into the whole context,
whereas aliasing within the context is not restricted. This no-
tion of external uniqueness [15, 42] is far more expressive.
For instance, the first references in Fig. 1 are not unique
in the strict sense because the nodes are also referenced by
their neighbor nodes. However, they are externally-unique
because all other references to Node objects come from ob-
jects within the context.

The problem with method retain is caused by the fact
that the first field of List object 1 is not externally-unique
when the lists are merged because the local variable node3
holds a second reference into the context of List 1.

Although (external) uniqueness enables type-safe owner-
ship transfer, the existing techniques building on (external)



uniqueness have severe shortcomings: (1) They impose a
high annotation overhead on programmers. (2) Even external
uniqueness is too restrictive for common implementations.
For instance, when a list stores references to its first and last
node, these references are not externally-unique. (3) Some
of the techniques provide encapsulation that is too weak for
certain applications of ownership such as the verification of
object invariants. We explain these shortcomings in more de-
tail in the next section.

In this paper, we present an extension of Universe Types
[19, 20] that supports ownership transfer. Our system com-
bines ownership type checking with a static analysis to en-
force an alias invariant that is even less restrictive than ex-
ternal uniqueness. This alias invariant permits temporary
aliases on transferable objects. In particular, a context need
not be externally-unique while a method executes on an
object inside this context. This provides flexibility that is
needed in many implementations. On the other hand, our
alias invariant is strong enough to obtain an externally-
unique reference on a cluster of objects and to transfer the
cluster in a type-safe way. The alias invariant is enforced
by a modular, intraprocedural static analysis. This analysis
makes each variable that is potentially affected by a transfer
unusable and enforces that it is assigned a new value before it
is accessed. For instance, our static analysis would make the
variable node3 in method retain (Fig. 3) unusable, thereby
preventing its abuse after the transfer.

Our approach solves the shortcomings of the existing
approaches based on uniqueness. The main contributions
are:

• An alias invariant that is less restrictive than external
uniqueness, but strong enough to enable type-safe own-
ership transfer. In particular, it permits several external
references on transferable objects.

• A modular static analysis to enforce the alias invariant.
This analysis requires only negligible annotation over-
head.

• An extension of Universe Types to support ownership
transfer. The extended type system can handle almost
all common examples for ownership transfer. Like Uni-
verse Types, it enforces the owner-as-modifier discipline,
which enables the verification of object invariants [34].

Outline. In the next section, we discuss existing work on
(external) uniqueness. Sec. 3 provides the background on
Universe Types that is needed in the rest of the paper. Our
approach to ownership transfer in explained in Sec. 4 and
formalized in Sec. 5. Sec. 6 illustrates our technique by
examples. We present an informal soundness theorem in
Sec. 7. We describe our implementation in Sec. 8, discuss
related work in Sec. 9, and offer conclusions in Sec. 10.

2. Background on Uniqueness
A very strong notion of uniqueness is to enforce that unique
variables hold unique references (or null) in all execution
states. This is typically achieved using destructive reads,
which assign null to a unique variable when it is read [25].
Enforcing uniqueness in all execution states is overly restric-
tive. For instance, calling a method on the unique field f
creates a temporary alias on the stack and, therefore, nul-
lifies f . This is cumbersome since the caller has to restore
the value of f after the call. Moreover, destructive reads suf-
fer from several problems [11]: (1) They require a change
of the language semantics, which is unintuitive for pro-
grammers. (2) They make it difficult to query information
about the unique object, especially in side-effect free meth-
ods. (3) They are not compatible with non-null type systems
[12, 23].

A more practical approach is to permit unique objects
to be temporarily aliased from stack locations. Temporary
aliases enable method calls on unique variables without nul-
lifying the receiver. Techniques that allow temporary aliases
on unique objects have to address two problems:

1. Callbacks: If a method with receiver o calls another
method m while o’s unique fields are temporary aliased,
m must be prevented from calling back into o under
the false assumption that o’s unique fields are actually
unique.

2. Capturing: A method that receives a temporary alias of
a unique object must be prevented from storing this ref-
erence in a field, which would create a permanent alias
from a heap location.

In the following, we discuss how existing approaches solve
these problems.

Clarke and Wrigstad [15, 42] enforce external unique-
ness, but permit temporary aliases. They use borrowing to
handle callbacks and capturing. borrow blocks permit tem-
porary aliases on unique objects. When a unique field f is
borrowed, its value is copied into a non-unique local vari-
able l, which can then be used in method calls. The callback
problem is prevented by nullifying f at the beginning of the
borrow block. Therefore, callbacks do not find the external
uniqueness invariant violated. Capturing is prevented by giv-
ing l a fresh owner such that storing the reference in a field
is prevented by the ownership type system. At the end of
a borrow block, the value of f is restored. Borrowing per-
mits temporary aliases on unique objects in a safe way. How-
ever, it introduces annotation overhead and requires owner-
polymorphic methods to support the fresh owner of a bor-
rowed object. Moreover, assigning null to the borrowed
variable leads to similar problems as destructive reads.

AliasJava [2] permits temporary aliases through lent ref-
erences. A lent reference may point to unique objects in
any ownership context. The types of lent references do not
convey ownership information. Therefore, lent references do



not compromise the type safety of ownership transfer. Lent
references are the only temporary aliases to an otherwise
unique object. Assigning a unique variable to a non-lent vari-
able makes the unique variable unusable. To prevent the call-
back problem, a new unique value must be assigned to each
unusable unique field before the next method call. Captur-
ing is prevented by disallowing lent references to be stored
in fields. Lent references permit type-safe ownership trans-
fer. However, they weaken encapsulation drastically because
they may point to arbitrary ownership contexts and may
be used to modify objects. For instance, method retain
(Fig. 3) type checks in AliasJava if node3 is declared lent.
This lent variable is used to break list4’s encapsulation and
to destroy its link structure. It is unclear how to maintain ob-
ject invariants in the presence of lent references [34].

Alias burying [10] relies on a static analysis to track tem-
porary aliases on unique objects. Whenever a unique vari-
able is read, all existing aliases become unusable. There-
fore, a unique variable effectively behaves as if it was actu-
ally unique even though unusable aliases may exist. To pre-
vent capturing, unique variables may be passed to methods
only as borrowed parameters. Like lent variables in Alias-
Java, borrowed parameters cannot be stored in fields. To
handle callbacks, methods are annotated with read effects.
If a method potentially reads a unique field f , all temporary
aliases of f are made unusable before the method is called.
Therefore, every field read by a method is effectively unique,
including fields that are read during callbacks. Alias bury-
ing permits temporary aliasing without destructive reads and
borrowing. However, it has major drawbacks. Its expressive-
ness is limited by the underlying static analysis. Moreover,
borrowed annotations and read effects cause a high annota-
tion overhead.

Capabilities systems [11, 22] model uniqueness through
universal capabilities, which permit arbitrary access to an
object. Callbacks are handled by annotating methods with
the capabilities they expect. Therefore, a method expecting
a field f to be unique cannot be called while f is aliased
because the caller cannot provide the expected capabilities.
Capturing is handled by passing capabilities. If a caller of a
method m passes the capabilities of an argument p to m then
the caller will not consider p to be unique after the call unless
m returns the capabilities back to the caller. If the capabili-
ties are not retained by m, m can capture the argument, but
not use it since it does not have the necessary capabilities.
While capabilities systems are very flexible, they require a
large overhead because methods have to be annotated with
the capabilities they expect and return. Moreover, capabili-
ties have not been integrated with ownership type systems
and external uniqueness.

3. Background on Universe Types
Universe Types [19, 20] is an ownership type system that
permits arbitrary aliasing, but restricts modifications of ob-

class List {

rep Node first = new rep Node (); // dummy

void add(any Object o) {

rep Node n;

n = new rep Node(o, first , first.next);

first.next.prev = n;

first.next = n;

}

// constructors and other methods omitted.

}

Figure 4. Implementation of a list in Universe Types. List
objects own their Node objects, as indicated by the rep
modifier in all occurrences of class Node.

jects. In this section, we explain the main concepts of Uni-
verse Types by an example. A formalization of non-generic
Universe Types in Isabelle is given in [27], and a formaliza-
tion of Generic Universe Types is presented in [18].

Ownership Modifiers. A type consists of an ownership
modifier and a class name. The ownership modifier ex-
presses object ownership relative to the current receiver ob-
ject this1. Programs may contain the ownership modifiers
peer, rep, and any. peer expresses that an object has the
same owner as the this object, rep expresses that an object
is owned by this, and any expresses that an object may
have any owner. any types are supertypes of the rep and
peer types with the same class because they convey less
specific ownership information.

The use of ownership modifiers is illustrated by classes
List (Fig. 4) and Node (Fig. 5), which implement a doubly-
linked list of objects. For simplicity, we omit access mod-
ifiers from all examples. A List object owns its Node ob-
jects since they form the internal representation of the list
and should, therefore, be protected from unwanted modifica-
tions. This ownership relation is expressed by the rep mod-
ifier of List’s field first, which points to the dummy node
of the list. All nodes of a list have the same owner, therefore,
the prev and next fields of Node have a peer modifier. Fi-
nally, the elements stored in the list may have any owner,
which is indicated by the any modifier of Node’s elem field.

Owner-as-Modifier Discipline. Universe Types allow an
object o to be referenced by any other object, but reference
chains that do not pass through o’s owner must not be used
to modify o. This allows owner objects to control modifica-
tions of owned objects, for instance, to maintain invariants.
This owner-as-modifier discipline is enforced by disallow-
ing modifications of objects through any references. That
is, an expression of an any type may be used as receiver of
field reads and calls to side-effect free (pure) methods, but
not of field updates or calls to non-pure methods. To check

1 We ignore static methods in this paper, but an extension is possible [33].



class Node {

peer Node next , prev;

any Object elem;

Node() { next = this; prev = this; }

Node(any Object e, peer Node p, peer Node n)

{ elem = e; prev = p; next = n; }

void flip() {

peer Node tmp = next;

next = prev;

prev = tmp;

}

// other methods omitted.

}

Figure 5. Nodes form the internal representation of lists.
Method flip is used to reverse the list as we discuss later.

this property, Universe Types require side-effect free meth-
ods to be annotated with the keyword pure.

As a consequence of the restriction on any receivers, Uni-
verse Types prevent certain callbacks. When an object o calls
a method m on a rep receiver, m cannot call back into o us-
ing a non-pure method. Since m’s receiver is owned by o, it
can reach o only by a reference chain that contains at least
one any reference. Consequently, this reference chain can-
not be used to call a non-pure method on o. Our technique
for ownership transfer uses this property to address the call-
back problem described in Sec. 2.

Viewpoint Adaptation. Since ownership modifiers express
ownership relative to this, they have to be adapted when
this “viewpoint” changes. Consider the second parameter
of Node’s second constructor. The peer modifier expresses
that the parameter object must have the same owner as the re-
ceiver of the constructor. On the other hand, List’s method
add calls the constructor on a rep receiver, that is, an ob-
ject that is owned by this. Therefore, the second parameter
of the constructor call also has to be owned by this. This
means that from this particular call’s viewpoint, the second
parameter needs a rep modifier, although it is declared with
a peer modifier. In the type system, this viewpoint adap-
tation is done by combining the modifier of the receiver of
a call (here, rep) with the modifier of the formal parameter
(here, peer). This combination yields the argument modifier
from the caller’s point of view (here, rep).

Field accesses and calls on receiver this do not require
any viewpoint adaptation, because the viewpoint does not
change. We model this behavior by an additional ownership
modifier this, which is used internally by the type system
for the this variable. Combining the this modifier with
any modifier u yields u. In particular, for a rep field f , the
field access this.f has a rep type, whereas for any other

receiver p, the field access p.f has an any type. This allows
us to keep the contexts of different objects separate.

Runtime Model. Each object stores a reference to its
owner. The owner of an object is determined by the creation
expression. For instance, the rep modifier in the initializa-
tion of List’s first field (Fig. 4) indicates that the new
object is owned by this. The runtime ownership informa-
tion is used to check downcasts from any to rep or peer
types as well as to evaluate instanceof expressions.

Universe Invariant. Universe Types guarantee the follow-
ing properties [27]:

1. Type safety: The ownership modifier of the type of a well-
typed expression e correctly reflects the owner of the
object e evaluates to.

2. Tree order: In all execution states of a well-typed pro-
gram, the ownership relation among the objects in the
heap is a tree order.

3. Owner-as-modifier: The evaluation of a well-typed ex-
pression modifies only those objects that are (transitively)
owned by the owner of this.

4. Ownership Transfer
Our solution to ownership transfer builds on external unique-
ness [15, 42]. Like in Clarke and Wrigstad’s work, we
transfer whole groups of objects, for instance, all nodes
of a doubly-linked list. We call such a group a cluster.
We provide a release statement to obtain an externally-
unique reference into a cluster. A capture statement uses
an externally-unique reference to transfer the cluster.

In this section, we extend Universe Types to support clus-
ters, present the release and capture statements, and
discuss the alias invariant that enables type-safe ownership
transfer. The type rules and static analysis to maintain this
alias invariant are presented in Sec. 5.

4.1 Clusters
Clusters can be handled by a simple extension of Universe
Types. We call the extended type system Universe Types with
Transfer or UTT for short. We explain the extensions in the
following.

Clusters are declared explicitly by a class member dec-
laration of the form cluster cn, where cn is a globally
unique cluster name. We illustrate the use of clusters by
a revised version of the doubly-linked list (class MList in
Fig. 6). This list implementation declares a cluster R to store
the nodes.

In UTT, an object is owned by a pair consisting of an
owner object and a cluster name. This pair uniquely iden-
tifies a cluster. Objects in the root context are owned by
<null, root>. We use the phrase the cluster cn of an ob-
ject o to refer to the cluster of objects owned by <o, cn>.



class MList {

cluster R;

rep<R> Node first = new rep<R> Node ();

void reverse () {

rep<R> Node p = first;

do {

p.flip ();

p = p.prev;

} while(p != first);

}

free Node getNodes () {

free Node res = release(first );
first = new rep<R> Node ();

return res;

}

void merge(peer MList l) {

free Node un = l.getNodes ();

rep<R> Node rn = capture(un, rep<R>);

first.prev.next = rn.next;

rn.next.prev = first.prev;

rn.prev.next = first;

first.prev = rn.prev;

}

// constructors and other methods omitted.

}

Figure 6. A list implementation using the cluster R to store
the nodes. Class Node is presented in Fig. 5.

Definition 4.1 (External reference). A reference is an exter-
nal reference into the cluster cn of an object o if and only if
the following conditions hold:

1. The origin of the reference is external to the cluster, that
is, the variable holding the reference is either a field of
an object that is not (transitively) owned by <o, cn> or
a stack location of a stack frame whose receiver object is
not (transitively) owned by <o, cn>.

2. The target of the reference is internal to the cluster, that
is, the reference points to an object (transitively) owned
by <o, cn>.

3. The reference is not an any reference.

Since any references do not convey any ownership informa-
tion, they are not affected by ownership transfer and, thus,
are not considered external. Type safety guarantees that the
variable holding the external reference into o’s cn cluster is
a field of o or a variable in a stack frame for a method exe-
cution on receiver o.

We use a static analysis to control external references
into clusters. As explained in Sec. 5.4, this analysis makes
certain variables unusable, that is, enforces that new values
are assigned to these variables before they are accessed. We
say that a reference is unusable if it is held by an unusable
variable.

1: MList

2: Node

3: Node

prevnext prev next

first

R

4: Iter
root

Figure 7. Object structure of an MList. Clusters are de-
picted by dashed boxes. The reference from the Iter object
to Node object 3 is an any reference.

Definition 4.2 (External uniqueness). A reference to an ob-
ject o is externally-unique if it is the only usable external
reference into the cluster containing o.

Fig. 7 shows an instance of class MList with two nodes. The
reference held by the first field is an external reference
into the cluster R of MList object 1. It is externally-unique
provided that no stack variable points to one of the nodes by
a non-any reference.

Type-safe ownership transfer requires restrictions on the
external references into a cluster. Since these restrictions are
not met by all implementations, it is useful to distinguish
between transferable and non-transferable clusters. Exter-
nal references into non-transferable clusters need not be re-
stricted beyond the encapsulation of Universe Types. To sim-
plify the presentation, we do not consider non-transferable
clusters in this paper. However, our implementation [41] and
the formalization in our technical report [35] support them.

Ownership Modifiers. The peer modifier indicates that
two objects belong to the same cluster, that is, have the same
owner object and cluster name. Like in Universe Types, the
any modifier does not provide any ownership information,
neither about owner objects nor about cluster names.

We replace the rep modifier of Universe Types by a para-
metric version rep 〈cn〉 that specifies a cluster name. For
instance, the modifier rep 〈R〉 in the declaration of MList’s
field first indicates that the node is in the R cluster of
this. The modifier rep 〈cn〉 may be used in the class C
that declares cn and its subclasses. However, we impose an
additional restriction on field declarations: Fields with the
modifier rep 〈cn〉 may be declared only in class C, but not
in C’s subclasses. This restriction guarantees that the only
fields that are affected by a transfer of cluster cn are declared
in class C and, thus, can be found by a modular analysis.



The ownership modifier free indicates that a reference
is externally-unique. In our system, external uniqueness is
enforced at the time a cluster is transferred, but typically not
maintained over many execution states because every access
to a free variable destroys its external uniqueness. Conse-
quently, we disallow the free modifier in the declaration of
a field. However, a field of an object o can nevertheless point
to transferable objects in o’s clusters if it is declared with a
rep modifier.

rep 〈cn〉 types and free types are subtypes of the any
types with the same class. For different cluster names cn1

and cn2, rep 〈cn1〉 and rep 〈cn2〉 types are incomparable
because they refer to different clusters.

Viewpoint Adaptation. The viewpoint adaptation operator
¤ of UTT is defined by the following table. The first argu-
ment (rows) is the ownership modifier of the receiver. The
second argument (columns) is the ownership modifier of the
field, method parameter, or method result to be viewpoint-
adapted. For instance, the modifier of the access p.prev in
MList’s method reverse is determined by combining the
modifier of the receiver p (rep 〈R〉) with the modifier of field
prev (peer), which yields rep 〈R〉.

¤ peer rep 〈cn2〉 any free
this peer rep 〈cn2〉 any free
peer peer any any free
rep 〈cn1〉 rep 〈cn1〉 any any free
any any any any free
free any any any free

Accessing a field or calling a method on a free receiver
yields an any reference, unless the modifier of the method
is free. This ensures that the receiver reference stays
externally-unique. Calling a method with a free return type
yields a free reference, independent of the modifier of the
receiver. For instance, the call l.getNodes() in MList’s
method merge has type free Node.

Runtime Model. Besides its owner object, each object
stores the name of the cluster it belongs to. The cluster in-
formation is used to check downcasts from any to rep 〈cn〉
types. Like the owner object, the cluster name is first deter-
mined when the object is created. For instance, the dummy
node created in the initializer of first (Fig. 6) is owned
by <this, R>. A new object of type free T is put into a
new free cluster. A cluster is free if the objects in the cluster
are owned by <null, cf>, where cf is a fresh cluster name
that is not used in the program. In the following, we use cf
as cluster name for free clusters and cn for non-free clusters.

4.2 Release and Capture
Ownership transfer is performed by a combination of
two polymorphic statements, release and capture. The
release statement takes an argument of type rep 〈cn〉 T
and transfers all objects in the cn cluster of this to a new
free cluster. The release operation returns its argument,

2: Node

3: Node

prevnext prev next

1: MList
first

4: Iter

root

R

cf

Figure 8. The object structure from Fig. 7 after releasing
the R cluster of the MList object. The first field is un-
usable because it is ill-typed after the release. The well-
typedness of the any reference from the Iter object is not
affected by the release.

but with static type free T . Our static analysis ensures
that the reference is actually externally-unique by making
all other external references unusable.

The capture statement takes an argument y of type
free T and an ownership modifier u. It transfers the objects
in the free cluster containing y to the owner indicated by
u. The modifier u must be peer or rep 〈cn〉, because any
and free do not indicate an owner. The capture operation
returns y, but with static type u T .

MList’s method getNodes uses the release statement
to obtain an externally-unique reference res to the dummy
node. Fig. 8 shows the object structure after releasing the
R cluster of MList object 1. The field first still refer-
ences the dummy node. However, to enforce that res is
externally-unique, our static analysis makes first unus-
able. Method getNodes returns an externally-unique refer-
ence into the free cluster after setting first to a new dummy
node. Method merge calls getNodes to obtain a free refer-
ence to the first node of list l. It then uses capture to trans-
fer l’s nodes to the R cluster of this. After the capture,
the nodes of both lists are in the same cluster and can be
merged.

Note that the release statement can be used to release
clusters of this, but not of any other object. For instance,
method merge cannot directly release l’s nodes because the
field access l.first has an any type, whereas the release
statement expects a rep 〈cn〉 argument. Therefore, merge
must call method getNodes on l to release the nodes. This
restriction of release improves encapsulation because it
prevents objects from “stealing” another object’s cluster.

release and capture change the owner of the objects
in the released and captured clusters. Therefore, both state-
ments have side-effects and must not be used in pure meth-
ods.



4.3 Alias Invariant
UTT restricts external references into clusters as described
by the following confinement property.

Definition 4.3 (Confinement). An object o is confined if and
only if each external reference into a cluster cn of o is held
by a variable v that satisfies at least one of the following
conditions:

1. v is a field of o.
2. v is a local variable or parameter of the current method

execution, and o is the receiver of this method.
3. v is unusable.

When the this object is confined, a static analysis can deter-
mine modularly all variables that point into a cluster of this
and to make them unusable when the cluster is released. For
Case 1, we know that v is declared in the class C that de-
clares cn because field declarations may only mention clus-
ter names declared in the enclosing class. Therefore, we can
determine all variables affected by releasing cn by inspect-
ing the fields of C and local variables and parameters of the
enclosing method. Note that the confinement property does
not restrict any references since we do not consider any ref-
erences to be external references (see Def. 4.1).

The capturing problem described in Sec. 2 violates con-
finement by storing an external reference into o’s cn cluster
in a field of an object different from o. In our system, this
is prevented by viewpoint adaptation. Consider a method
call x.m(p) where p is a temporary alias into a cluster of
the current receiver o. We may assume that p has modifier
rep 〈cn〉. If the receiver x is this, confinement of o is pre-
served because o and x are the same object. If x has modi-
fier rep 〈cn〉, then x and p point into the same cluster, and
storing p does not create an external reference. For all other
modifiers of x, m receives an any reference to p, which can-
not be used to create an external reference.

Since Universe Types prevent callbacks via non-pure
methods into the (transitive) owners of this (see Sec. 3),
not all objects need to be confined in all execution states.
The following alias invariant defines when objects must be
confined. It holds in all execution states of a well-typed pro-
gram.

Definition 4.4 (Alias invariant). Each object o is confined
unless the method currently executing is pure or o is one of
the (transitive) owner objects of the current receiver object.

This definition allows confinement to be violated in two
situations. First, while a pure method is executed; since pure
methods must not perform release statements, they do
not rely on confinement. Second, for a (transitive) owner
object o of the current receiver. This is possible because
m can neither release a cluster of o (because o is different
from this) nor call a non-pure method of o to perform the
release. Therefore, it does not rely on o being confined.

1: MList

2: Node

3: Node

prevnext prev next

first

R

root

.

.

.

tmp

p

flip

reverse

Figure 9. Object structure of an MList during the execu-
tion of p.flip. The box on the left-hand side depicts the
call stack. MList object 1 is not confined since p holds a
reference into the R cluster, but is not a local variable of
the current method execution. This violation is permitted be-
cause the MList object 1 is the owner object of the current
receiver, Node object 2.

Permitting (transitive) owners of this not to be confined
enables a very natural programming style as we illustrate by
method reverse of class MList (Fig. 6). Let’s assume that
reverse is executed on receiver x. The first assignment to p
creates an additional external reference into the R cluster of
x. During the execution of flip, x is not confined because p
holds an external reference into the R cluster of x, but is not
a variable of the current method execution (see Fig. 9). This
violation is permitted by the alias invariant because x is the
owner of p. Therefore, p need not be made unusable before
the call to flip. When the call terminates, x is confined
again and we know that p still points into the R cluster of
x because this cluster cannot be transferred by flip.

The treatment of temporary aliases and calls on owned
objects is one of the key virtues of our technique. We need
neither borrowing [15, 42] nor read effects [10] to handle the
call to p.flip because callbacks are prevented by the type
system. We also do not have to prevent flip from storing its
receiver in a field because this would not create an external
reference. In contrast to alias burying [10], our static analysis
does not make p unusable when the field first is read in
the condition of the loop. This is because we do not enforce
external uniqueness when a variable is read, but only at the
time of a transfer.

In summary, our alias invariant:

• does not restrict references within a cluster (since we use
external uniqueness),

• does not restrict references from any variables (which
are not considered external references),



• does not require the owner objects of the current receiver
to be confined (since our type system prevents callbacks
to these objects via non-pure methods), and

• does not require confinedness while a pure method is
executed (since pure methods must not transfer objects).

Each of these exceptions to the standard notion of unique-
ness makes our system more flexible without losing static
type safety.

5. Formalization
In this section, we present the UTT rules for a subset
of Java including classes and inheritance, instance fields,
dynamically-bound methods, and the usual operations on
objects (allocation, field read, field update, casts). For sim-
plicity, we omit several features of Java such as interfaces,
exceptions, constructors, static fields and methods, inner
classes, primitive types and the corresponding expressions,
and all statements for control flow. We do not expect that
any of these features is difficult to handle. We only show the
static rules here. A full formalization including the runtime
model, operational semantics, and proofs is presented in our
technical report [35].

Judgments. Our formalization uses the following two
main judgments. A type judgment has the form Γ;U ` s
and expresses that statement s is well-typed in a declaration
environment Γ. U is the set of unusable variables before the
execution of s as defined by the static analysis in Sec. 5.4.

The judgment Γ;U ` s : U ′ expresses that U ′ is the
set of unusable variables after statement s if U is the set of
unusable variables before s.

5.1 Programming Language
Fig. 10 summarizes the syntax of our language. We assume
that all identifiers of a program are globally unique except
for this as well as method and parameter names of overrid-
den methods. This can be achieved easily by preceding each
identifier with the class or method name of its declaration
(but we omit this prefix in our examples). T denotes a se-
quence of T s. In such a sequence, we denote the i-th element
by Ti. We sometimes use sequences of tuples S = X T as
maps and use a function-like notation to access an element
S(Xi) = Ti.

A program P consists of a sequence of classes. We keep
the current program implicit in the notations. Each class Cls
has a class identifier C, a superclass C ′, a list of cluster
declarations cn, a list of field declarations T f , and a list
of method declarations M . FieldId is the set of all field
identifiers. A type T consists of an ownership modifier u
and a class identifier C.

A method M consists of a result type T , a method name
m, exactly one formal parameter T x, a list of local vari-
able declarations T x, and a statement s. The method returns
the value of the predefined local variable res. V arId is the

set of variable names containing this, the explicit formal
method parameter, and all local variables including res. For
simplicity, we do not support pure methods in our formal-
ization, but we include them in the discussion. An extension
to pure methods is straightforward and does not reveal any
interesting aspects.

The set of statements includes assignment, field read,
field update, method call, object creation, cast, sequential
composition, release, and capture. We provide the usual
expressions in the form of assignment statements because
our static analysis depends on the modifier of the variable a
value is assigned to. For instance, reading a free variable
does not create an external reference if the value is assigned
to an any variable. This form is obtained by introducing
auxiliary variables for sub-expressions. These variables have
the static types (including the ownership modifiers) of the
corresponding sub-expressions. For simplicity, we omit all
literals including null.

A declaration environment Γ maps this, the formal
method parameter, and all local variables to their types.

P ::= Cls

Cls ::= class C extends C′ { cn; T f; M }

u ::= this | peer | rep 〈cn〉 | any | free
T ::= u C

M ::= T m(T x){ T x; s }

s ::= x := x;
| x := x.f;
| x.f := x;
| x := x.m(x);
| x := new T;

| x := (T) x;
| s1 s2

| x := release(x);
| x := capture(x,u);

Γ ::= x T
U ⊆ FieldId ∪ V arId

Figure 10. Syntax and declaration environment.

5.2 Well-Formedness
The well-formedness rules for types, methods, and classes
are presented in Fig. 11. If a type u C has a rep 〈cn〉
modifier then u C is well-formed in an environment Γ only if
cn is declared in a (not necessarily proper) superclass of the
enclosing class. The enclosing class is the class of this in Γ
(WF-TYPE). The function clusters(C0) yields the names
of all clusters declared in class C0 and its superclasses.

A method m is well-formed in a class C if the statement
s constituting its body is well-typed in the environment Γ.
The types of the parameter, result, and local variables must
be well-formed in Γ, and m must respect the rule for over-
riding, see below. Γ maps m’s formal parameter and de-
clared local variables to their declared types, this to the
type this C, and the result variable res to m’s result type



WF-TYPE

u = rep 〈cn〉 ⇒ Γ(this) = this C0∧
∧cn ∈ clusters(C0)

Γ `wf u C
WF-OVERRIDE

(∀C′ : C ≤ C′ ⇒
mType(C′, m) is undefined ∨

mType(C, m) = mType(C′, m))

override(C, m)

WF-METHOD

Γ = p Tp, y T , this (this C), res Tr

Γ `wf Tp, T , Tr override(C, m)
Γ;∅ ` s Γ;∅ ` s : U
(FieldId ∪ {res}) ∩ U = ∅
C `wf Tr m(Tp p) {T y; s}

WF-CLASS

C `wf M Ti = ui Ci ui 6= free
(ui = rep 〈cn′〉 ⇒ cn′ ∈ cn)

`wf class C extends C′ {cn; T f; M}

Figure 11. Well-formedness rules.

(WF-METHOD). Moreover, after the method body s, nei-
ther the result variable nor any field is unusable. Method
m respects the rule for overriding if it does not override a
method or if all overridden methods have the identical signa-
ture (WF-OVERRIDE). Function mType yields the signature
of a method m in a class C, and is undefined if C does not
contain a method m.

A class C is well-formed if all of its methods are well-
formed, none of the fields has ownership modifier free, and
all cluster names used in field declarations are declared in C
(WF-CLASS). As discussed in Sec. 4.3, the last constraint
allows us to determine all fields affected by a release
statement by inspecting the fields that are declared in the
same class as the released cluster. In particular, this analysis
does not have to consider fields of subclasses, which is
important for modularity.

Well-formed programs do not contain the ownership
modifier this. We do not make this requirement explicit in
our rules. The this modifier is used implicitly for the this
variable as shown by the definition of Γ in WF-TYPE and
WF-METHOD.

5.3 Type Rules
Two types u1 C1 and u2 C2 are subtypes (denoted by
u1 C1 ≤ u2 C2) if (1) C1 is a subclass of C2 according
to the rules of Java and (2) the ownership modifiers are iden-
tical, u2 is any, or u1 is this and u2 is peer.

The type rules are presented in Fig. 12. The judgment
Γ;U ` s expresses that statement s is well-typed in environ-
ment Γ and unusable-set U . Our type rules implicitly require
types to be well-formed, that is, a type rule is applicable only
if all types involved in the rule are well-formed in the respec-
tive environment. All rules require that no unusable param-
eter, local variable, or field of this is read. Our type rules
implicitly require types to be well-formed in the respective
environment.

The rules for assignment (T-ASSIGN), object creation (T-
NEW), and sequential composition (T-COMP) are straight-
forward. As explained in Sec. 3, the ownership modifier of a
field access is determined by combining the modifier of the

receiver and the modifier of the field (T-READ). The func-
tion fType(C, f) yields the declared type of a field f that is
declared in or inherited by class C.

For a field update, the right-hand side variable must be
a subtype of the viewpoint-adapted field type (T-WRITE).
The rule is analogous to field read, but has two additional
requirements. First, the modifier of the receiver variable
must not be any or free. any is forbidden to enforce the
owner-as-modifier discipline. It would be type safe to permit
updates of any fields on free receivers, but we forbid this
for simplicity. Second, a rep 〈cn〉 field f must be updated
through receiver this. Otherwise, the viewpoint adaptation
u¤uf yields any, but it is obviously unsafe to update f with
an object with an arbitrary owner.

The rule for method calls (T-CALL) is in many ways
similar to field reads (for result passing) and updates (for
argument passing). The last antecedent of T-CALL requires
that the unusable set does not contain any fields. This is
necessary to ensure that the invoked method may assume all
fields to be usable.

T-CAST could be strengthened to prevent more cast er-
rors statically, but we omit this check since it is not strictly
needed. Casts from any types to free types are forbidden
because we cannot ensure efficiently that the right-hand side
reference is actually externally-unique.

T-RELEASE requires the argument y to have a rep 〈cn〉
type. It yields a free reference. T-CAPTURE requires the
captured variable to have a free type. The ownership mod-
ifier u must determine an owner, that is, must be peer or
rep 〈cn〉.

5.4 Static Analysis
In this subsection, we present a modular, intraprocedural
static analysis to determine unusable variables. The static
analysis makes the following variables unusable: First, free
variables if it is not statically guaranteed that the reference
held by the free variable is actually externally-unique. Sec-
ond, variables of rep 〈cn〉 types if the cluster is potentially
transferred.



T-ASSIGN

Γ(y) ≤ Γ(x)
y /∈ U

Γ;U ` x := y
T-NEW

u 6= any u C ≤ Γ(x)

Γ;U ` x := new u C
T-COMP

Γ;U ` s1 Γ;U ′ ` s2

Γ;U ` s1 : U ′
Γ;U ` s1 s2

T-READ

Γ(y) = u C uf Cf = fType(C, f)
(u ¤ uf ) Cf ≤ Γ(x)

y /∈ U y = this⇒ f /∈ U
Γ;U ` x := y.f

T-WRITE

Γ(x) = u C uf Cf = fType(C, f)
Γ(y) ≤ (u ¤ uf ) Cf u 6∈ {any, free}

uf = rep 〈cn〉 ⇒ x = this
x, y /∈ U

Γ;U ` x.f := y

T-CALL

Γ(y) = u C mType(C, m) = up Cp → ur Cr

Γ(z) ≤ (u ¤ up) Cp (u ¤ ur) Cr ≤ Γ(x)
u 6∈ {any, free}

up = rep 〈cn〉 ⇒ y = this
y, z /∈ U FieldId ∩ U = ∅

Γ;U ` x := y.m(z)
T-CAST

Γ(y) = uy Cy u C ≤ Γ(x) u C ≤ uy Cy

u = free⇒ uy = free
y /∈ U

Γ;U ` x := (u C) y

T-RELEASE

Γ(x) = free C Γ(y) = rep 〈cn〉 C
y /∈ U

Γ;U ` x := release(y)
T-CAPTURE

Γ(x) = u C Γ(y) = free C
u ∈ {peer, rep 〈cn〉}

y /∈ U
Γ;U ` x := capture(y,u)

Figure 12. Type rules.

U-ASSIGN

Γ(x) = ux Cx Γ(y) = uy Cy

U ′ = if (ux = any ∨ uy 6= free)
then U else U ∪ {y}

Γ;U ` x := y : U ′ \ {x} U-NEW
Γ;U ` x := new T : U \ {x} U-COMP

Γ;U ` s1 : U1

Γ;U1 ` s2 : U2

Γ;U ` s1; s2 : U2

U-READ
Γ;U ` x := y.f : U \ {x} U-WRITE

U ′ = if (x = this) then U \ {f} else U
Γ;U ` x.f := y : U ′

U-CALL

mType(Cy, m) = up Cp → Tr

Γ(y) = uy Cy Γ(z) = uz Cz

U1 = if (up = any ∨ uz 6= free) then U else U ∪ {z}
U2 = if (uy /∈ {peer, this}) then U1 else
U1 ∪ {v ∈ dom(Γ) | Γ(v) = rep 〈 〉 Cv}

Γ;U ` x := y.m(z) : U2 \ {x} U-CAST

Γ(x) = ux Cx Γ(y) = uy Cy

U ′ = if (ux = any ∨ uy 6= free)
then U else U ∪ {y}

Γ;U ` x := (T) y : U ′ \ {x}

U-RELEASE

Γ(y) = uy Cy Γ(this) = this C0

U ′ = U ∪ {v ∈ dom(Γ) | Γ(v) = uy Cv} ∪
{f ∈ fields(C0) | fType(C0, f) = uy Cf}

Γ;U ` x := release(y) : U ′ \ {x} U-CAPTURE
U ′ = U ∪ {y}

Γ;U ` x := capture(y,u) : U ′ \ {x}

Figure 13. Rules of static analysis.

Our static analysis computes for each program point a set
U of unusable variables. U is a subset of the fields declared in
or inherited by the enclosing class as well as the parameters
and local variables of the enclosing method. The rules of
the static analysis are presented in Fig. 13. The judgment
Γ;U ` s : U ′ expresses that in an environment Γ, U ′ is the
unusable-set after the statement s if U is the unusable-set
before the statement.

Assigning to a variable x removes x from the unusable
set (U-ASSIGN). The right-hand side variable y becomes

unusable if it has a free type and x does not have an
any type. Under this condition, the assignment creates an
external reference into the cluster into which y points such
that y is no longer externally-unique and, thus, must become
unusable.

Creating a new object makes the left-hand side variable
x usable (U-NEW). The rule for sequential composition is
straightforward (U-COMP).

Field read (U-READ) is similar to assignment, but sim-
pler because the field f and, therefore, the right-hand side



cannot have a free type. Updating a field removes it from
the unusable set if the receiver is this. Since the static anal-
ysis only tracks fields of this, there is no effect for other
receivers.

The most interesting rule handles method calls (U-
CALL). Analogously to assignments, the actual argument z
becomes unusable if it has modifier free and is passed to a
non-any parameter. If the receiver has a peer or this mod-
ifier then all parameters and local variables with a rep 〈 〉
modifier become unusable. These variables hold external
references into clusters that are potentially transferred by
the called method if this method is executed on receiver
this or calls back into this. Therefore, we conservatively
make these variables unusable. Note that this is only done
for peer or this receivers. For rep 〈cn〉 receivers, UTT
prevents callbacks into this via non-pure methods. Even in
the presence of pure methods, this rule is sufficient because
pure methods must not release any cluster.

Even though our treatment of calls on receivers with a
peer or this modifier is conservative, it is not a severe
restriction in practice. Local variables with a peer or any
modifier remain usable after the call (as do variables point-
ing into non-transferable clusters [35]). Moreover, the value
of a variable with a rep 〈cn〉 modifier can be carried over
by assigning it to an any variable before the call and cast-
ing it back to a rep 〈cn〉 modifier after the call. The runtime
check associated with the cast fails if the cluster has been
transferred by the call. This allows programmers to by-pass
our conservative type rules in cases they know that a certain
cluster is not transferred by a method call.

Casts are completely analogous to assignments (U-
CAST). A release(y) operation makes all variables un-
usable that point into the released cluster. These are the pa-
rameters and local variables with the same ownership mod-
ifier as y as well as all fields declared in or inherited by
the enclosing class with this modifier. This guarantees that
the reference returned by the release is externally-unique.
capture makes the captured variables unusable because it
is no longer externally-unique.

Note that the static analysis only tracks parameters and
locals of the enclosing method as well as fields of the en-
closing class and its superclasses. Therefore, the analysis is
fully modular and intraprocedural. An interprocedural anal-
ysis would permit a less conservative call rule for receivers
with modifier peer and this. However, in the presence of
dynamic method binding, interprocedural analyses are in-
herently non-modular because they require knowledge of all
method overrides.

6. Examples
In this section, we illustrate UTT by four examples: the
merging of data structures, object initialization, the Factory
pattern, and a work flow system. In the examples, we use a
Java-like syntax with constructors and expressions. A trans-

class Lexer {

cluster S;

rep<S> InputStream stream;

Lexer(free InputStream s) {

stream = capture(s, rep<S>);
}

}

class Client{

cluster T;

void main(any String file) {

rep<T> InputStream s;

s = new rep<T> InputStream(file);

free InputStream fs = release(s);

rep<T> Lexer lexer = new rep<T> Lexer(fs);

// ...

}

}

Figure 14. Example of an object initialization. Lexer’s
constructor captures its parameter.

lation into the language subset supported by UTT is straight-
forward: constructors can be replaced by initialization meth-
ods and expressions can be eliminated using temporary vari-
ables.

6.1 List Merging
In this subsection, we revisit the implementation of class
MList (Fig. 6). It is easy to see that reverse is well-formed
(WF-METHOD, Fig. 11). First, throughout the method body,
the set of unusable variables U is empty. Second, the method
body type checks because all expressions except for the
loop condition have type rep<R> Node and no unusable
variables are accessed.

Method getNodes illustrates the release statement.
Releasing first makes all local variables and fields with
modifier rep<R> unusable. WF-METHOD requires that
upon termination, all fields are usable. This is achieved by
setting first to a new node. Without this field update,
getNodes would not be well-formed.

Method merge performs the actual ownership transfer.
By capturing un, this variable becomes unusable because
it is no longer externally-unique. However, we need not
assign a new value to un because it dies when the method
terminates. Like in alias burying [10], we defer the update of
a variable until it is used, and the update is not necessary for
local variables that are never used again.

The MList example illustrates that our technique requires
very little overhead beyond the Universe annotations. In
particular, methods that do not perform transfers, such as
reverse, can be written like in standard Universe Types.



class Product { /* ... */ }

class Factory{

cluster T;

pure free Product create () {

rep<T> Product t = new rep<T> Product ();

return release(t);
}

}

class Client{

cluster P;

rep<P> Product getProduct(any Factory f) {

free Product p = f.create ();

return capture(p, rep<P>);
}

}

Figure 15. Implementation of the Factory pattern.

6.2 Object Initialization
The example in Fig. 14 is adapted from [17]. It illustrates
how our system supports object initialization. The construc-
tor of class Lexer expects a free InputStream, which is
captured by the lexer. That is, it is transferred to the S cluster
of this and then stored in a field.

Method main of class Client creates a Lexer. It first
creates an InputStream in cluster T and then releases it.
We do not create a free InputStream here, because a
constructor call corresponds to a method call, and our system
does not permit calls on free receivers. The input stream
is then passed to the constructor of the Lexer, where it is
captured. The release(s) operation makes all variables
with modifier rep 〈T〉 unusable. This prevents the following
statements from using s.

6.3 Factory Pattern
Fig. 15 shows an implementation of the Factory pattern. The
create method of Factory creates a new product, releases
it, and returns it. Like in Client’s main method (Fig. 14),
we do not create a free object to be able to call a construc-
tor. Since create does not modify any existing objects, we
declared it pure. This allows getProduct to call it on the
any receiver f. After obtaining a free Product from the
factory, getProduct transfers it to cluster P.

6.4 Work Flow
The examples we considered so far transfer either the whole
internal representation of a data structure (MList) or newly
created objects (Lexer and Factory). The next example re-
peatedly transfers ownership of a single object. This pattern
occurs for instance for packets in a communication system
or tasks in a work flow application. It can be implemented in
UTT using multiple clusters.

Fig. 16 shows the implementation of a simple work flow
system, where a dispatcher (class Dispatcher) sends or-
ders (class Order) through a pipeline of processors (abstract
class Processor). As illustrated by method process of
Processor, each processor captures the order in cluster O,
stores it in the field current, performs its operations, and
releases the order again.

Note that our implementation does not maintain exter-
nal uniqueness of Order objects throughout the work flow.
Orders are temporarily stored in the field current to re-
duce parameter passing for more complex implementations
of doWork. Capturing the order also allows processors to
modify it. Nevertheless, we can release the Order object
again for the transfer to the next processor.

Concrete implementations of a processor (such as class
Pricer) may declare additional clusters to store local data.
For instance, Pricer maintains a collection of special offers
in its P cluster. The local data could also contain any refer-
ences to orders in cluster O, for instance, to maintain a cache
or statistical information. Using a separate cluster for local
data allows method process to release the order without
making the local data unusable.

7. Soundness
In this section, we summarize the properties guaranteed by
UTT. The formalization and proof of these properties is
beyond the scope of this paper, but see our technical report
[35]. The static guarantees provided by UTT are summarized
by the following soundness theorem:

Theorem 7.1 (Soundness). In each execution state of a well-
formed program, the following properties hold:

1. Type safety: The ownership modifier of the type of a us-
able variable v reflects the owner of the object referenced
by v.

2. Tree order: The ownership relation among the objects in
the heap is a tree order.

3. External uniqueness: There is at most one external refer-
ence into each free cluster.

4. Alias invariant: The alias invariant (Def. 4.4) holds.

Moreover, the following property holds for each well-typed
statement s:

5. Owner-as-modifier: The execution of s modifies only
fields and ownership of those objects that, in the state
before executing s, are (transitively) owned by the owner
of this or by an object in a free cluster.

Type safety is restricted to usable variables. It includes, in
particular, that a usable free variable references an object
in a free cluster. In combination with external uniqueness,
this implies that free variables hold externally-unique ref-
erences. The owner-as-modifier property permits modifica-
tions of objects in a free cluster. These modifications occur



class Order {

// order data:

int clientId;

rep List items;

// fields to be filled during work flow:

int total;

// other fields and methods omitted

}

abstract class Processor {

cluster O;

rep<O> Order current;

free Order process(free Order order) {

current = capture(order , rep<O>);
doWork ();

free Order res = release(current );
current = null;
return res;

}

abstract void doWork ();

}

class Pricer extends Processor {

cluster P;

rep<P> HashMap offers;

void doWork () {

int price = /* determine price */

current.total = price;

}

// other methods omitted

}

class Dispatcher {

Processor [] pipeline;

void handleOrder(free Order o) {

for (int i = 0; i < pipeline.length; i++)

o = pipeline[i]. process(o);

}

// other methods omitted

}

Figure 16. Work Flow Example.

if the cluster is captured during the execution of the state-
ment s.

We proved the conjunction of all properties of Theo-
rem 7.1 by rule induction on an operational semantics [35].
The base case covers all primitive statements; the induction
step covers sequential composition and method calls. The
execution of each statement preserves properties 1–4 and
satisfies property 5. We only sketch the proofs of the most
interesting cases here.

External uniqueness for release. Consider the state-
ment x := release(y). By T-RELEASE, y has ownership
modifier rep 〈cn〉. The statement transfers all objects owned
by <this, cn> to a new free cluster. By type safety be-
fore the release, we know that no usable free variable
v references one of the transferred objects. Since these ob-
jects are transferred to a new cluster, v remains externally-
unique. It remains to show that x is externally-unique after
the release.

Since the alias invariant holds for this before the
release, we know that all usable external references to ob-
jects owned by <this, cn> are held by fields of this that
are declared in the same class as cn (WF-CLASS and type
safety) or by local variables or parameters of the current
method execution. According to U-RELEASE, these vari-
ables are unusable after the release. Therefore, x holds
the only usable external reference into the released cluster.

Type safety for capture. Consider the statement
x := capture(y,u). The statement transfers all objects in
the cluster referenced by y to a non-free cluster described
by u.

By T-CAPTURE, y is usable and has ownership modifier
free. By external-uniqueness, y holds the only usable ex-
ternal reference to a transferred object. Consequently, y is
the only variable whose type safety is potentially affected by
the capturing. In particular, the type safety of peer variables
is not affected because all objects in the captured cluster are
transferred together, that is, they remain peers. Since y is un-
usable after the capture (U-CAPTURE), type safety is pre-
served. Variable x is well-typed because it has the ownership
modifier u (T-CAPTURE).

Alias invariant for method calls. Consider the call
x := y.m(z). By T-CALL, we know that y has modifier
this, peer, or rep 〈cn〉. We continue by case distinction.

Case (1): y has ownership modifier this or peer. By
type safety, this and y have the same owner. Therefore, the
same set of objects S must be confined in the caller and the
callee method.

First, we show that passing control to the callee preserves
the alias invariant. For all objects o ∈ S other than the ob-
jects referenced by this and y, confinement is preserved by
passing control because fields are unchanged and unusable
variables remain unusable.



For this, the local variables and parameters with owner-
ship modifier rep 〈 〉 for any cluster name become unusable
(U-CALL). Because of type safety, these are the only vari-
ables that hold external references into a cluster of this.

There are no usable external references into a cluster of
y before control is passed. If y and this hold different
references, this property follows from the alias invariant
before the call. If y and this reference the same object,
this is the case because the local variables with ownership
modifier rep 〈 〉 are unusable. Therefore, after parameter
passing, the only local variables and parameters that hold
external references into a cluster of y belong to the execution
of the callee method.

In summary, the alias invariant holds after control has
been passed to the callee method. By the induction hypothe-
sis, it is preserved by the method body. When control returns
to the caller, the top stack frame is removed, which trivially
preserves the alias invariant by reducing the number of vari-
ables. Assigning the result value to x preserves the alias in-
variant because x is a local variable of the caller.

Case (2): y has ownership modifier rep 〈cn〉. By type
safety, we know that the owner object of y is this. There-
fore, this need not be confined while the callee method ex-
ecutes. By the alias invariant before the call, we know that
the alias invariant holds after passing control to the callee.

By the induction hypothesis, the alias invariant is pre-
served by the method body. By the owner-as-modifier prop-
erty, the callee method does not change fields of this. Be-
cause of type safety, these are the only fields that hold exter-
nal references into a cluster of this. Moreover, if the callee
transfers objects into a cluster of this, then we know that
these objects are not referenced from the stack. This is the
case because the callee can transfer either free clusters (in
this case, we use external uniqueness) or clusters released by
the callee (in this case, the clusters are transitively owned by
y; therefore, their owner object is confined before the call).
Consequently, the method body also preserves confinement
of this.

Removing the stack frame for the callee does not affect
the local variables and parameters of the caller. Finally, as-
signing the result value to x preserves the alias invariant be-
cause x is a local variable of the caller. 2

8. Implementation
We implemented UTT as part of the MultiJava compiler
[41]. In this section, we highlight the most interesting as-
pects of this implementation, namely runtime support, infer-
ence of release and capture statements, and inference of
cluster information for local variables.

Runtime Support. As explained in Sec. 4.1, conceptually
each object stores a reference to its owner object and the
name of the cluster it belongs to. In the implementation,
we represent the owner of an object by a designated pseudo
owner object. The objects in one cluster can have different

pseudo owners, which are organized in a union find struc-
ture.

The indirection through pseudo owners enables an effi-
cient implementation of release and capture. Capturing
a cluster is implemented by connecting the union find struc-
tures of pseudo owners for the involved clusters. Releasing
a cluster is implemented by setting the owner reference in
the union find structure of pseudo owners for that cluster to
null. Both operations require amortized constant time.

Inference of Release and Capture. To reduce the anno-
tation overhead, our implementation infers release and
capture statements through the following simple rules.
Whenever a program attempts to assign a rep 〈cn〉 expres-
sion to a free variable, a release is performed. When-
ever a program attempts to assign a free expression to a
rep 〈cn〉 or peer variable, a capture is performed.

For instance in method getNodes of class MList
(Fig. 6), our implementation permits the assignment
free Node res = first, and infers the release. Sim-
ilarly, the capture in method merge is inferred.

Inference of Cluster Information. To further reduce the
annotation overhead, we also infer the clusters of local rep
variables from the clusters declared for fields, method pa-
rameters, and method results. This inference is done by a
data flow analysis that keeps track of all possible clusters a
variable may point to at each program point.

For most of our examples, the inference seems trivial
because there is only one cluster in each class. However,
our implementation also supports an implicitly declared non-
transferable cluster. Therefore, the inference has to choose at
least among two clusters. For instance in method reverse
(Fig. 6), our implementation allows programmers to omit
the cluster information for the local variable p. The data
flow analysis determines from the declarations of the fields
first and prev that p points to the R cluster throughout the
method body. In method merge, we infer from the various
field updates that local variable rn points to cluster R. This
cluster is then used for the inferred capture statement.

The inference of release and capture statements as
well as of clusters for local variables eliminates almost all
annotation overhead of UTT over Universe Types. Program-
mers merely have to declare clusters and annotate field dec-
larations and method signatures with cluster information.

9. Related Work
We discussed uniqueness and capabilities in Sec. 2. In this
section, we discuss related work on ownership.

The existing ownership type systems enforce different
forms of encapsulation. Ownership type systems following
the owner-as-dominator discipline [6, 8, 13, 14, 16, 15, 38,
42] require that all reference chains from an object in the root
context to an object o in a different context go through o’s
owner. This restriction on aliasing allows owners to control



all accesses to owned objects, for instance, to guarantee
representation independence. UTT enforces the owner-as-
modifier discipline. Since this discipline does not restrict
aliasing, it can handle some patterns that are not supported
by the owner-as-dominator discipline such as collections
with iterators or the Flyweight pattern [20, 36]. The owner-
as-modifier discipline is also used in Universe Types [20],
Generic Universe Types [19], and Lu and Potter’s work [30].

Most existing ownership type systems do not support
transfer [8, 13, 14, 16, 19, 20, 30, 38], but could adopt the
technique presented in this paper. Our technique requires
that a method cannot call non-pure methods on (transitive)
owners of its receiver. This requirement is not enforced by
the existing owner-as-dominator systems, but an adaptation
is straightforward.

Hogg’s islands [25] use (strictly) unique variables with
destructive reads to permit transfer. We have discussed the
problems of this approach in Sec. 2. Our system solves
these problems by building on external uniqueness and by
permitting temporary aliases. Flexible alias protection [37]
offers a free mode for (strictly) unique references, but does
not provide a technique to enforce uniqueness.

Clarke and Wrigstad [15, 42] permit ownership transfer
using external uniqueness, destructive reads, and borrowing.
While our system builds on their idea of external uniqueness,
it requires less annotation overhead. Clarke and Wrigstad’s
type system is owner-parametric. Therefore, they have to en-
force that an object o is transferred only to contexts where
o’s ownership parameters are available. In our system, ob-
jects can be transferred to any context. SafeJava [6] adopted
Clarke and Wrigstad’s approach. A notion similar to exter-
nal uniqueness was also proposed by Banerjee and Naumann
[5], but without details of how to enforce it.

AliasJava [2] supports ownership transfer using destruc-
tive field reads and lent variables. As discussed in Sec. 2,
lent variables compromise encapsulation, whereas our any
references preserve encapsulation because they cannot be
used for modifications. Making lent variables in AliasJava
read-only would be too restrictive since they allow the only
temporary aliases on unique objects in AliasJava. Therefore,
passing a unique reference to a non-pure method would be
as cumbersome as without temporary aliases. Ownership
domains [1] adopt ideas from AliasJava, but use external
uniqueness, although the paper does not describe how it is
enforced. Our clusters are a restricted version of ownership
domains. In particular, we do not provide public clusters and
links between clusters.

Our confinement property was inspired by our verifi-
cation methodology for ownership-based object invariants
[34]. The treatment of callbacks is analogous: Both con-
finement and object invariants need not hold for the (transi-
tive) owners of the current receiver object because callbacks
via non-pure methods are prevented by Universe Types. The
ownership-based invariant of this is checked before peer

calls to avoid problems with callbacks, just like confinement
is enforced before peer calls by making local variables and
parameters unusable.

Spec# [29] uses a dynamic encoding of ownership via a
ghost field owner and object invariants. With dynamic own-
ership, transfer amounts to an update of the owner field.
Like in our system, the invariants of the transitive owners
of an object o may be temporarily violated when o is trans-
ferred. While dynamic ownership is very flexible, it requires
program verification to check ownership properties, whereas
our system permits syntactic checking.

In Sing# [21], processes can own data in a designated ex-
change heap. Ownership is transferred when the data is sent
to another process. A static data-flow analysis enforces that
a process only accesses data it owns. To track local aliases,
Sing# builds on capabilities [22], which we discussed in
Sec. 2. Sing# does not support deep (hierarchic) ownership,
and the use of a designated exchange heap is too restrictive
for general object-oriented programming.

Shape analysis [40] can be used to infer alias structures.
However, most shape analyses are whole-program analyses,
whereas our technique is fully modular. Rinetzky et al. [39]
present a technique to realize modular shape analyses based
on dynamic ownership. Their system supports ownership
transfer using constraints and annotations similar to Clarke
and Wrigstad’s work [15, 42]. We expect that our work can
be combined with the modular shape analysis to overcome
the shortcomings of destructive reads and to reduce the an-
notation overhead.

Role analysis [28] is a general technique to describe alias-
ing relationships between objects via types. It requires pro-
grammers to provide role descriptions, role specifications for
method signatures, as well as read and write effects for meth-
ods. UTT expresses simpler properties, but requires signifi-
cantly less annotation overhead. Role analysis does not pro-
vide encapsulation, which is one of the main motivations of
our work. In both role analysis and UTT, the reconfiguration
of object structures changes the types of objects to reflect
a change of roles or ownership, respectively. Role analysis
permits objects referenced from the stack to violate their
type; dangerous callbacks are detected by an interprocedu-
ral, non-modular analysis. UTT enforces modularly that all
potential receivers of calls to non-pure methods are confined;
therefore, ownership transfer cannot violate type safety.

10. Conclusions
We presented UTT, an extension of Universe Types that sup-
ports clusters and ownership transfer. Even though many ref-
erences may point into a cluster, our modular static analy-
sis enforces that a cluster is externally-unique at the time of
transfer. UTT is very flexible because is permits temporary
aliases, several fields pointing into one cluster, and any ref-
erences. UTT can handle most ownership transfer examples.
An example it cannot handle is the splitting of lists because



we have no operation to split a cluster into two. Such an op-
eration in general requires a whole-program analysis or ref-
erence counting to ensure that the alias invariant is preserved
by the split.

As future work, we plan to use our implementation to as-
sess the expressiveness of UTT in case studies. Two exten-
sions seem particularly useful. First, Universe Types provide
very limited support for static fields; type-safety requires
that all static fields have anymodifiers, which prevents mod-
ification of global data. We will investigate an extension of
UTT where static fields are free such that methods can cap-
ture the global data, modify it, and release it again.

Second, when releasing a cluster, UTT makes all external
references except for one unusable. To retain several usable
references, for instance, to the first and last node of a list,
programmers have to introduce artificial bridge objects. A
bridge object sits in the same cluster as the nodes and holds
peer references to the first and last node. Releasing the clus-
ter yields a free reference to the bridge object, which can
be captured and then accessed to obtain usable references to
the first and last node. We are working on an extension of
UTT that can release a cluster while retaining several usable
external references, without requiring bridge objects.

Finally, we are working on an extension of the type infer-
ence for local variables to infer all ownership modifiers for
locals. This will further reduce the annotation overhead.

Acknowledgments
Thanks to Werner Dietl, James Noble, and Joseph
Ruskiewicz for insightful discussions and suggestions, and
to the anonymous reviewers for their helpful comments. This
work was funded in part by the Information Society Tech-
nologies program of the European Commission, Future and
Emerging Technologies under the IST-2005-015905 MO-
BIUS project. Müller’s work was carried out at ETH Zurich.

References
[1] J. Aldrich and C. Chambers. Ownership domains: Separating

aliasing policy from mechanism. In M. Odersky, editor,
European Conference on Object-Oriented Programming
(ECOOP), volume 3086 of LNCS, pages 1–25. Springer-
Verlag, 2004.

[2] J. Aldrich, V. Kostadinov, and C. Chambers. Alias anno-
tations for program understanding. In Object-oriented pro-
gramming, systems, languages, and applications (OOPSLA),
pages 311–330. ACM Press, 2002.

[3] C. Andrea, Y. Coady, C. Gibbs, J. Noble, J. Vitek, and
T. Zhao. Scoped types and aspects for real-time systems. In
D. Thomas, editor, European Conference on Object-Oriented
Programming (ECOOP), volume 4067 of LNCS. Springer-
Verlag, 2006.

[4] A. Banerjee and D. Naumann. Representation independence,
confinement, and access control. In Principles of Program-
ming Languages (POPL), pages 166–177. ACM, 2002.

[5] A. Banerjee and D. Naumann. Ownership: transfer, sharing,
and encapsulation. In S. Eisenbach, G. T. Leavens, P. Müller,
A. Poetzsch-Heffter, and E. Poll, editors, Formal Techniques
for Java-like Programs, 2003.

[6] C. Boyapati. SafeJava: A Unified Type System for Safe
Programming. PhD thesis, MIT, 2004.

[7] C. Boyapati, R. Lee, and M. Rinard. Ownership types for
safe programming: Preventing data races and deadlocks. In
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), pages 211–230. ACM Press, 2002.

[8] C. Boyapati, B. Liskov, and L. Shrira. Ownership types
for object encapsulation. In Principles of Programming
Languages (POPL), pages 213–223. ACM Press, 2003.

[9] C. Boyapati, A. Salcianu, J. W. Beebee, and M. Rinard.
Ownership types for safe region-based memory management
in real-time Java. In Programming language design and
implementation (PLDI), pages 324–337. ACM Press, 2003.

[10] J. Boyland. Alias burying: unique variables without
destructive reads. Software—Practice and Experience,
31(6):533–553, 2001.

[11] J. T. Boyland and W. Retert. Connecting effects and
uniqueness with adoption. In Principles of programming
languages (POPL), pages 283–295. ACM Press, 2005.

[12] P. Chalin and P. James. Non-null references by default in Java:
Alleviating the nullity annotation burden. In E. Ernst, editor,
European Conference on Object-Oriented Programming
(ECOOP), LNCS. Springer-Verlag, 2007. To appear.

[13] D. Clarke. Object Ownership and Containment. PhD thesis,
University of New South Wales, 2001.

[14] D. Clarke and S. Drossopoulou. Ownership, encapsulation
and the disjointness of type and effect. In Object-Oriented
Programming, Systems, Languages, and Applications (OOP-
SLA), pages 292–310. ACM Press, 2002.

[15] D. Clarke and T. Wrigstad. External uniqueness is unique
enough. In L. Cardelli, editor, European Conference on
Object-Oriented Programming (ECOOP), volume 2743 of
LNCS, pages 176–200. Springer-Verlag, 2003.

[16] D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for
flexible alias protection. In Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA), volume
33(10) of ACM SIGPLAN Notices, 1998.

[17] D. L. Detlefs, K. R. M. Leino, and G. Nelson. Wrestling
with rep exposure. Research Report 156, Digital Systems
Research Center, 1998.

[18] W. Dietl, S. Drossopoulou, and P. Müller. Formalization of
Generic Universe Types. Technical Report 532, ETH Zurich,
2006. sct.inf.ethz.ch/publications.

[19] W. Dietl, S. Drossopoulou, and P. Müller. Generic Universe
Types. In E. Ernst, editor, European Conference on Object-
Oriented Programming (ECOOP), LNCS. Springer-Verlag,
2007. To appear.

[20] W. Dietl and P. Müller. Universes: Lightweight ownership
for JML. Journal of Object Technology (JOT), 4(8), 2005.



[21] M. Fähndrich, M. Aiken, C. Hawblitzel, O. Hodson, G. Hunt,
J. R. Larus, and S. Levi. Language support for fast and
reliable message-based communication in Singularity OS. In
EuroSys ’06, pages 177–190. ACM Press, 2006.

[22] M. Fähndrich and R. DeLine. Adoption and focus: practical
linear types for imperative programming. In Programming
language design and implementation (PLDI), pages 13–24.
ACM Press, 2002.

[23] M. Fähndrich and K. R. M. Leino. Declaring and checking
non-null types in an object-oriented language. In Object-
oriented programing, systems, languages, and applications
(OOPSLA), pages 302–312. ACM Press, 2003.

[24] C. Haack, E. Poll, J. Schäfer, and A. Schubert. Immutable
objects for a Java-like language. In R. D. Nicola, editor,
European Symposium on Programming (ESOP), volume
4421 of LNCS. Springer-Verlag, 2007.

[25] J. Hogg. Islands: Aliasing protection in object-oriented
languages. In Object-oriented programming systems,
languages, and applications (OOPSLA), pages 271–285.
ACM Press, 1991.

[26] B. Jacobs, F. Piessens, K. R. M. Leino, and W. Schulte.
Safe concurrency for aggregate objects with invariants. In
Software Engineering and Formal Methods (SEFM), pages
137–147. IEEE Computer Society, 2005.

[27] M. Klebermaß. An Isabelle formalization of the Universe
Type System. Master’s thesis, Technische Universität
München, 2007. sct.inf.ethz.ch/projects/student_
docs/Martin_Klebermass.

[28] V. Kuncak, P. Lam, and M. Rinard. Role analysis. In
Principles of programming languages (POPL), pages 17–
32. ACM Press, 2002.

[29] K. R. M. Leino and P. Müller. Object invariants in dynamic
contexts. In M. Odersky, editor, European Conference on
Object-Oriented Programming (ECOOP), volume 3086 of
LNCS, pages 491–516. Springer-Verlag, 2004.

[30] Y. Lu and J. Potter. Protecting representation with effect
encapsulation. In Principles of programming languages
(POPL), pages 359–371. ACM Press, 2006.

[31] Y. Lu, J. Potter, and J. Xue. Object Invariants and Effects.
In European Conference on Object-Oriented Programming
(ECOOP), LNCS. Springer-Verlag, 2007. To appear.

[32] N. H. Minsky. Towards alias-free pointers. In P. Cointe, edi-
tor, European Conference on Object-Oriented Programming
(ECOOP), volume 1098 of LNCS, pages 189–209. Springer-
Verlag, 1996.

[33] P. Müller. Modular Specification and Verification of Object-
Oriented programs, volume 2262 of LNCS. Springer-Verlag,
2002.

[34] P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular
invariants for layered object structures. Science of Computer
Programming, 62:253–286, 2006.

[35] P. Müller and A. Rudich. Formalization of ownership transfer
in Universe Types. Technical Report 556, ETH Zurich, 2007.
sct.inf.ethz.ch/publications.

[36] S. Nägeli. Ownership in design patterns. Master’s the-
sis, ETH Zurich, 2006. sct.inf.ethz.ch/projects/

student_docs/Stefan_Naegeli.

[37] J. Noble, J. Vitek, and J. M. Potter. Flexible alias protection.
In E. Jul, editor, European Conference on Object-Oriented
Programming (ECOOP), volume 1445 of LNCS. Springer-
Verlag, 1998.

[38] A. Potanin, J. Noble, D. Clarke, and R. Biddle. Generic
ownership for generic Java. In Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA), ACM
SIGPLAN Notices, pages 311–324. ACM Press, 2006.

[39] N. Rinetzky, A. Poetzsch-Heffter, G. Ramalingam, M. Sagiv,
and E. Yahav. Modular shape analysis for dynamically
encapsulated programs. In R. D. Nicola, editor, European
Symposium on Programming (ESOP), volume 4421 of LNCS.
Springer-Verlag, 2007.

[40] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis
via 3-valued logic. ACM Transactions on Programming
Languages and Systems, 24(3):217–298, 2002.

[41] Y. Takano. Implementing uniqueness and ownership transfer
in the Universe Type System. Master’s thesis, ETH Zurich,
2007. sct.inf.ethz.ch/projects/student_docs/

Yoshimi_Takano.

[42] T. Wrigstad. Ownership-Based Alias Management. PhD
thesis, Royal Institute of Technology Stockholm, 2006.


