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Abstract. Ownership types were devised nearly 15 years ago to provide
a stronger notion of protection to object-oriented programming languages.
Rather than simply protecting the fields of an object from external ac-
cess, ownership types protect also the objects stored in the fields, thereby
enabling an object to claim (exclusive) ownership of and access to other
objects. Furthermore, this notion is statically enforced by now-standard
type-checking techniques.

Originating as the formalisation of the core of Flexible Alias Protec-
tion, ownership types have since been extended and adapted in many
ways, and the notion of protection provided has been refined into topo-
logical and encapsulation dimensions. This article surveys the various
flavours of ownership types that have been developed over the years,
along with the many applications and other developments. The chapter
concludes by suggesting some directions for future work.

Aliasing is endemic in object-oriented programming.

Noble, Vitek, Potter [112].

1 Introduction

Object aliasing is one of the key challenges that must be addressed when con-
structing large software systems using an object-oriented language. Bugs due
to unintentional aliases are notoriously difficult to track down and can lead
to unexpected side-effects, invalidated invariants, reasoning based on faulty as-
sumptions, a wealth of security bugs, and more. On the other hand, shared
mutable state and a stable notion of object identity are considered to be core
ingredients of the object-oriented paradigm, and mutable object structures are
frequently used to model real-world situations involving sharing. Dealing with
aliasing, by either banning it, clearly advertising it or otherwise managing or con-
trolling its effects, therefore has become a key research issue for object oriented-
programming [77,78]. Mainstream object-oriented programming languages such
as Java, C# and Scala provide no special means to simplifying working with
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aliases beyond favouring references instead of pointers, and providing automatic
garbage collection (although one Scala plugin does offer support for Uniqueness
and Borrowing [71], see Section 6).

In 1998, Noble, Vitek and Potter [112] introduced Flexible Alias Protection as
a conceptual model of inter-object relationships. Rather than banning aliasing
altogether, the key idea was to limit the visibility of changes to objects via
aliases. This was done either by limiting where an alias could propagate and
by limiting the changes that could be observed though an alias. The ideas put
forward in this work could be statically checked based on programmer-supplied
type annotations called aliasing modes.

In order to better understand Flexible Alias Protection, Clarke, Potter and
Noble [46] formalised its core mechanisms, resulting in Ownership Types. Al-
though originating as the core of Flexible Alias Protection, the Ownership Types
system made a few contributions beyond providing a clean formalisation. Firstly,
Flexible Alias Protection did not offer enough machinery to provide a type for
this; Ownership Types corrected this problem, thereby introducing the notion
of owner—the owner of this (the current object) is owner (the owner of the cur-
rent object). Secondly, Clarke, Potter and Noble provided a formalisation and
proof of a topological property on object graphs enforced by the type system,
namely the owners-as-dominators invariant. In their work, a program’s heap is
divided into hierarchically nested regions, originally called ownership contexts.1
An ownership context is a set of objects. Every object belongs to a single context,
and each object defines a context for its protected representation objects. An ob-
ject A in the representation context defined by object B is said to be owned by
B, and B is called the owner of A. Upon creation, each object was placed firmly
in a single ownership context, its owning context, for its life-time. The object
also receives a set of permissions to reference objects in other ownership contexts
(a subset of those visible at the place of instantiation). Information about the
owner of an object appears in its type—hence the name Ownership Types—and
this is used to govern which parts of an object are accessible to other objects
and when an object can be passed to other objects.

The original Ownership Types system was designed for a small language; for
instance, it did not state how to deal with inheritance and subtyping, and it did
not provide semantics for the remaining constructs of Flexible Alias Protection.
Over the years these issues have been explored and different variations have been
proposed. These variants impose different policies that are more flexible and less
restrictive than owners-as-dominators; they introduce generalisations or other
extensions and apply Ownership Types in different application scenarios. The
goal of this article is to survey this, now vast, body of work.

Outline. The paper is organised as follows. Section 2 defines some of the basic
concepts used in the Ownership Types literature. Section 3 presents a survey
of the different kinds of topological restrictions and notions of encapsulation

1 Originally the word context was used, but for uniformity of presentation, we will use
ownership context or simply owner.
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based on Ownership Types and related systems. Section 4 considers various ex-
tensions to the basic model, including generics, computational effects, dynamic
ownership, and ownership transfer. Section 5 discusses the important issue of
ownership inference, as ownership types typically impose a significant syntactic
overhead. Section 6 gives an overview of applications of Ownership Types. Sec-
tion 7 briefly discusses some of the foundational work done on Ownership Types
and its variants. Section 8 explores some of the empirical studies done on own-
ership in larger code bases. Finally, Section 9 presents a discussion of future
directions for research on Ownership Types and concludes the survey.

2 Groundwork

This section define some concepts required to understand Ownership Types and
its variants. To be consistent within this survey, we have tried to present uniform
terminology rather than reuse the terms given in the original research papers.

Ownership Types systems work in two ways to restrict object graphs under-
lying the run-time heap of object-oriented programs. The first is by providing
topological restrictions on the reference structure of the object graph. The second
approach is to enforce encapsulation, which occurs by limiting operations that
can be performed via certain references in the object graph so that the places
where mutation of objects can occur are restricted in scope.

The core concept of any Ownership Types system is object ownership, namely
that objects are owned by other objects or perhaps other entities (global own-
ers, stack-based owners, ...). An Ownership Types system is a type system where
types are annotated or otherwise associated with information about object
ownership.

An ownership context is a region of the heap or a collection of objects. More
informally, it is a box into which objects are placed [61]. These boxes are generally
organised hierarchically: all objects have boxes to store (and protect) the objects
they own, and each object is considered to be inside the object whose box it is
placed in. The hierarchy induces a nesting relationship between objects. If the
ownership context corresponds to an object, typically this object is referred to
as the owner. In the literature ownership contexts are also called ownership
domains [4], contexts [46], boxes [33], and regions [25].

The objects residing in the ownership context of some object are called the
representation of the object. From a semantic point of view, the representation
of an object consists of the objects that contribute to the implementation of
the abstraction that the object represents. Being able to directly access the
representation of an object, and thereby violate the invariants of that object, is
called representation exposure. Some Ownership Types systems prevent access to
representation objects (a topological restriction). Other systems allow in addition
objects to be logically contained in an object [4], but impose no topological
restrictions. Yet other systems allow access to representation objects, but only
via references with limited capabilities (thereby enforcing encapsulation).

Objects in the same ownership context are called siblings or peers.
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In the type system, classes may have parameters which will be supplied with dif-
ferent owners when the class is instantiated, thereby allowing owner polymorphism.
These parameters are called owner parameters. The syntactic mechanism underly-
ing ownership parameterisation is analogous to type parameterisation. The owner
of an instance is indicated using one such parameter; this parameter is often im-
plicit in the class header and is generally referred to using keyword owner within
the class body. Parameterisation can occur at the level of methods, resulting in
owner polymorphic methods.

Ownership Types systems generally have an ownership context into which
shared objects are placed. Generally, this ownership context is accessible to all
other objects. In various systems this is known as shared, world and, originally,
norep. Manifest ownership occurs when the owner of all instances of a class is
defined to be a particular, typically globally known, owner. Manifest ownership
occurs when a class cannot be parameterised.

One extreme way of controlling aliasing is to remove aliasing all together—this
is a topological constraint.

A unique reference to an object is the only reference to the object in the sys-
tem. Various weakenings of this notion exist. For instance, an externally unique
reference is the only reference to an object that is not (transitively) inside the ob-
ject’s representation. Sometimes multiple references to an object exist, but only
one of them can be used. At other times, there may be multiple references to an
object, but only one reference can be used to mutate the object. When an object
is created, it is typically considered to be free (sometimes called virgin), meaning
that there are no references to it in fields. Similarly, when a field uniquely refer-
ring to an object releases that object (perhaps via a nullifying destructive read),
then the object can again be considered free. A unique reference or a reference
to some owned object may be temporarily passed to another object, generally
for the duration of a method call, so that when the method is over all temporary
references vanish or become unusable. The references are call borrowed or lent
references and the process is known as borrowing.

An alternative way of controlling aliasing is to control the effects of aliasing—
this imposes encapsulation.

Immutability means that the state cannot change. An immutable object or
value object is one whose fields cannot change. Some objects have immutable
slices, meaning that only some of the fields are immutable. Most work on immut-
ability only considers an object to be immutable if all of its fields reference only
immutable objects or primitive values, i.e., immutability is transitive, though
variants consider references to (external) mutable objects, with restrictions im-
posed on how the immutable objects can depend on the mutable objects. Another
way of putting this is that immutability is only transitive for owned immutable
objects. A pure method is a method that does not update any fields of any ob-
jects. More refined versions of this notion may be allowed to update object fields,
so long as these updates are not observable outside of the method. An impure
method is a method that is not pure. A read-only reference is a reference through
which only pure methods can be called. One property of read-only references is
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that they can observe changes to the object state, resulting in what is called ob-
servational exposure. A stronger variant of read-only reference is possible, namely
one through which only immutable state can be read.

3 Models Restricting Topology and Enforcing
Encapsulation

This section discusses Ownership Types systems and the kinds of protection
enforced by the systems in terms of topological restrictions and encapsulation
discipline. Figure 1 demonstrates some of the core constraints imposed by vari-
ous Ownership Types disciplines. Owners-as-dominators, which imposes a hier-
archical structure on the heap, is the strictest discipline, allowing only a single
entry point to the internal objects. This is historically the first topological invari-
ant enforced by an Ownership Types system, and will be discussed first. This
has been relaxed in various ways, such as by allowing proxy objects to access
internal representation objects, thus weakening the topological restrictions, or
by allowing references with less capabilities to access internal objects. After in-
troducing owners-as-dominators, we move on to discussing relaxations of this
strong property for stack- and heap-based aliases, and then to systems which
take a fundamentally different approach to specifying topological/encapsulation
policies, such as owners-as-modifiers, ownership domains and multiple owner-
ship. Finally, we present an overview of the confined types approach, which is
syntactically much simpler than other systems, at the cost of a less expressive
notion of protection.

3.1 Owners-as-Dominators

Owners-as-dominators is the topological invariant enforced by the original Own-
ership Types system of Clarke et al. [46]. In this ownership system, an object
could be given explicit permission to reference the direct representation of any
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Fig. 1. Various Ownership Disciplines
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enclosing object, in addition to its owner’s direct representation, its own rep-
resentation, and any object at the outermost level of nesting. As a consequence
of these constraints, program heaps are tree-structured—a object is inside its
owner. The owners-as-dominators invariant provides a strong notion of encapsu-
lation that requires that all external accesses to an object’s internals must go
via its interface, its owner.

The canonical ownership types example is a list whose links are its represent-
ation. In an owners-as-dominators system, the links of the list cannot be aliased
outside of the list. This protects any class invariants regarding, for example, the
ordering of elements in the list.

class List[owner|data] {
Link[this,data] first;

Iterator[owner,data] iterator() {
Iterator i = new Iterator();
i.current = first; // untypeable
return i;

}
}

class Link[owner|data] {
Link[owner,data] next;
Object[data] data;

}

class Iterator[owner|data] {
Link[X,data] current; // not possible -- what is X, this or owner ?

}

List[x,y] myList;
Link[?,y] aLink = myList.first; // not possible -- what is ‘?’ ?

The topological restriction of the links is due to the type of first, namely
Link[this, data]—this in the owner (first) position of the type specifies that
objects of that type are the representation of the object currently denoted by
this. The owner this is only visible internally to the object, meaning the appro-
priate type necessary for referencing the List from a variable cannot be formed
in some other scope, unless the permission to reference the List’s direct repres-
entation has been explicitly passed to that scope. The type system prevents such
Link objects being passed out of the List object that owns them.

In most Ownership Types systems, types are parameterised by what can be
seen as permissions to reference external objects. The first permission parameter
doubles as the owner parameter and is always present in a type. Type compatibil-
ity within a given scope requires that the corresponding owner parameters of the
two types are the same. Passing between scopes, such as when accessing a field of
an object or passing an object as a method parameter to another object, requires
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that the types involved are transformed to test compatibility. This is done by
substituting the owner parameters into the type being translated between scopes.
As this has no meaning to an external object, types with this cannot be trans-
lated. In classical Ownership Types, preventing types of representation values
from being valid externally provides a strong notion of protection.

For concreteness, in systems supporting owners-as-dominators, the rule en-
forced for an object a to validly reference object b is that either

1. a is the owner of b,

2. a and b are siblings, or

3. b is outside a.2

The meaning of outside is the converse of the inside relation. The inside relation
is the reflexive, transitive closure of the owned-by relation. That is, a is inside b
if a = b or if a is owned by b, transitively. (The reflexive part of the definitions
of inside and outside is confusing.)

The strength of the owners-as-dominators property is that it provides a simple,
clear and strong guarantee. This can be useful when reasoning about various
properties of the code, as we discuss later in the chapter. Unfortunately, the in-
variant makes programming more difficult, as common idioms involving aliasing
cannot be expressed.

3.2 Ownership and Subclassing

Ownership typing interacts with subclassing in a relatively straightforward fash-
ion. To enforce the owners-as-dominators invariant in the presence of subtyping,
the nesting relation between owners is lifted into the type system, and the nest-
ing assumptions on the owner parameters of a class need to be satisfied for a type
to be well-formed. Otherwise, inherited code might make nesting assumptions
on owners that are not satisfied in a derived class. Finally, the owner needs to be
preserved. That is, the owner of the superclass needs to be the same as that of
the subclass [44], and it can never be eliminated via subtyping, since that would
be equivalent to an object losing information about its owner, and owners are
used to determine who can access an object.

The example below defines a class Circle and another class ColouredCircle
which subclasses the first. Circle has two owner parameters—its mandatory
owner and point, which is the owner of a point object that will act as the circle’s
centre. The subclass ColouredCircle also takes two parameters, owner and col-
our, and instantiates its superclass’ point parameter with owner—expressing
the constraint that in coloured circles, the centre point object must be a sibling
of the coloured circle object itself.

2 As pointed out by one of our reviewers, these rules are very similar to Algol’s scoping
roles for block-structured languages.
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class Circle[owner|point outside owner] {
Point[point] centre;

}

class ColouredCircle[owner|colour outside owner]
extends Circle[owner,owner] {

Colour[colour] c;
}

When calculating a type’s supertype, the extends clause in the class declar-
ation establishes a mapping from parameters in the subclass to parameters
in the superclass. Based on this, the supertype of ColouredCircle[a,b] is
Circle[a,a], which loses information b from the type. In Java-like ownership
systems such as Joline [42], Circle has an implicit extends clause extends Ob-
ject[owner], which is a straightforward adaptation of Java. Consequently, the
only possible supertype of Circle[a,a] is Object[a].

In the example above, the following four owners are accessible when forming
the supertype in ColouredCircle: owner and colour (from the parameter de-
claration), this (denoting the coloured circle’s representation) and world, which
is the outermost owner in which all others are nested. Giving the coloured circle
the super type Circle[world,this] would not be valid for two reasons. Firstly,
the owner parameter must always be the same.3 Secondly, passing this as a
parameter is not valid since it is not nested outside owner—the condition col-
our outside owner would be invalidated.

Constraints similar to the ones described above are applicable to other Own-
ership Types systems.

Regarding the List example above, owners-as-dominators excludes many com-
mon programmings patterns such as external iterators, since that would require
an external object (which is not the list itself) that has a reference to a list’s
links. To support more programming patterns—and for other reasons—, several
systems introduce relaxations of owners-as-dominators: such as temporary, stack-
based relaxations (Section 3.3), owners-as-modifiers (Section 3.4) and owners-as-
ombudsmen (Section 3.6). Beyond these, Ownership Domains (Section 3.5) avoid
imposing a single policy, but instead allow programmers to specify policies for
certain data structures or for a whole program. Multiple ownership systems (Sec-
tion 3.6) do not impose a tree structure on the heap, but it uses an effects system
to allow reasoning about the origin or target of a strong update.

3.3 Stack-Based Relaxations of Owners-as-Dominators

Most ownership systems support some kind of relaxation of the topological prop-
erty for stack-based variables. In Joe1 [44], myList’s representation can be typed
outside of the list using the myList variable as the external name correspond-
ing to the internal name this, provided the variable is not assignable, following
3 The only case where this is not true is when manifest ownership [39,119] is used,

which occurs when all instances of a class will have the same owner. In this case, the
class has no parameters, and the superclass’s owner will be some fixed owner.



Ownership Types: A Survey 23

the so-called ‘dot notation’ [35]—these are a form of path-dependent type. This
mechanism allows both the creation of representation objects external to the
intended owning object, as well as returning temporary references to internal ob-
jects. Although this mechanism temporarily relaxes the topological restriction,
it could be used safely to implement iterators that could access a list’s links,
without allowing the iterator to escape the dynamic scope in which it is defined.
In any case, one can view this as a mechanism vs. policy issue. Such owners
provide a mechanism for temporarily violating the protection, but it can only be
used if the interface of the class exposes methods/fields with this in their type.

Joline [42] and Buckley’s thesis [29] take a different approach, and instead
support a notion of borrowing implemented through owner-polymorphic meth-
ods: a method may be granted permissions to reference any object accessible to
its caller for the duration of its execution. (Owner-polymorphic methods were
also suggested in Clarke’s thesis [39].) This structured principle allows an object
to give out temporary permission to reference its representation when calling a
method on another object, with the guarantee that when this method returns,
all such references will have been invalidated. This does not, however, allow ex-
ternal initialisation of representation, nor returning references to representation,
which is possible in Joe1. Hence, it is not flexible enough to express iterators in
any direct fashion.

Joline also introduced the notion of generational ownership, which enabled
new owners to be introduced for the life-time of a stack frame (called scoped
owners). Objects can be created to be owned by these owners, thereby allowing
an entire heap whose life-time is tied to a particular stack frame, reminiscent of
regions in the region calculus [134]. Objects in such a heap can refer, in principle,
to any object in the main heap or any object in the heap associated with a pre-
existing stack frame, so long as the appropriate permissions have been passed in.
This is depicted in Figure 2.

Boyapati’s SafeJava [20,22] relaxes owners-as-dominators for instances of Java
inner classes. In Java, an inner class is always instantiated relative to some enclos-
ing instance to which it has privileged access, that is, access to its private mem-
bers. To preserve owners-as-dominators, instances of inner classes should belong
to the enclosing instance’s representation, however SafeJava allows instead in-
stances of inner classes to be owned by the owner of the enclosing instances. This
allows patterns such as iterators to be expressed. From a programming stand-
point, this relaxation is always intentional as the inner class must be provided
explicitly and it is internal to the class whose representation is to be exposed.
Systems for multiple ownership (see Section 3.6) formalise this style of ownership,
but address it in a more structured fashion with a clearer semantics.

3.4 Owners-as-Modifiers

The owners-as-modifiers property, first introduced in the Universes type sys-
tem [105,54], relaxes owners-as-dominators for read-only references. In the con-
text of Universes, a read-only reference is a reference which can only be used
to read fields and to call pure methods. Pure methods may not modify any
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Fig. 2. Generational Ownership. References can refer to earlier generations, but not
newer ones.

existing object, including their receiver. The underlying principle is that ali-
asing is unrestricted, but modifications of an object can only be initiated by
its owner. Although the owners-as-modifiers discipline was originally inspired by
Flexible Alias Protection, the main driving force behind the design of Universes
has been requirements coming from the verification of object-oriented programs.
Indeed, Universes have been used extensively to support the verification of object-
oriented programs [107,106], and they have been integrated into JML, the Java
Modelling Language [56]. Universes have been carefully formalised and proven
sound using Isabelle/HOL [85] based on a Featherweight Java-like system exten-
ded with field updates.

In systems supporting owners-as-modifiers, the rule enforced for an object a
to validly reference object b through a reference r, is that either

1. a is the owner of b,

2. a and b are siblings,

3. b is outside a—permitted in Generic Universe Types [54], but not
Universes—, or

4. r is a read-only reference and only pure methods can be called on it.

The following code revisits the List example from owners-as-dominators. Here,
the keyword rep has the same meaning as this above when interpreted as an
owner, and peer is the same as owner. The keyword any is new and denotes a
read-only reference to an object with unknown owner. The lack of permission
parameters requires that the Links of a List store read-only references to their
data elements—though this can be fixed using generics. The line marked (***)
shows that leaking references to representation objects is possible, but only via
read-only references.
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class List {
rep Link first;

peer Iterator iterator() {
peer Iterator i = new Iterator();
i.current = first;
return i;

}
}

class Link {
peer Link next;
any Object data;

}

class Iterator {
any Link current;

}

rep List myList;
any Link aLink = myList.first; // ok, aLink is read-only (***)

The owners-as-modifiers discipline increases the flexibility of the reference
structures that can be expressed and relieves the programmer of the burden
of propagating permissions through the code, at the cost of losing modification
rights. Mode any expresses that the programmer does not care about owner-
ship information. While this loses topological information associated with owner
names, this is a design choice, as any references are used not to restrict the to-
pology of a program, but to enforce encapsulation—modifications cannot occur
through an any reference. Generic Universe Types [54] also include a mode lost
which refers to indicate that information about ownership has been lost in the
type system (‘don’t know’). References with this mode cannot be updated; the
presence of lost is like an existential type, with a restriction on the operations
permitted on such references.

Later work on Universes adds generic types to the underlying language and
further separates the mechanisms to specify encapsulation and to restrict the
topology of the object graph [54,60]. This separation of concerns allows for a
cleaner formalisation and the better reuse of the two mechanisms. A detailed
analysis of this system has been performed, resulting in the following character-
isation: no modification to an object can occur unless the object’s owner appears
as the target of a method call on the stack. Similar characterisation theorems
have not been presented for other Ownership Types systems.

3.5 Ownership Domains

In an effort to decouple the underlying topological invariant from the language
definition, Aldrich and Chambers proposed the notion of Ownership Domains [4]
with the purpose of separating the encapsulation policy from the mechanism
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expressing policies, thereby allowing different aliasing policies for different
circumstances.

Ownership Domains is a flexible system in which programmers specify one or
more ownership domains (which act as the owners) for each object and then ex-
plicitly link these together to control the permitted reference structure of a (part
of a) program. Objects in a public domain are accessible to everyone which can
access the object enclosing the domain—they are considered part of the object’s
interface. In contrast, objects in a private domain are encapsulated inside the
enclosing object. Public domains express containment, private domains express
topological restriction. In addition, the links between two domains specifies that
objects in one domain can access objects in the other domain. In Ownership
Domains, all domains are explicitly named, as this arguably conveys design in-
tent better than an implicit context can. The resulting system is therefore very
flexible, and can express both different kinds of invariants than other ownership
systems. In particular, Ownership Domains can express more than one private
domain and how different parts of an object interact in terms of aliasing.

The following code example defines a linked list in Ownership Domains with
support for an iterator inspired by an example in the original Ownership Domains
paper [4]4 A list defines a private domain cells for the Cells and a public domain
iterators. Data elements in the List are shared, the equivalent of world above
(this is a simplification in this example), and therefore accessible by all. The Cells,
however, are completely encapsulated in the List object, except for references from
objects in the public iterator domain. This domain will only contain Iterator
objects, which are only accessible to objects that can refer to the list itself.

class List {
private domain cells;
public domain iterator;
link cells -> shared;
link iterator -> shared;
link iterator -> cells;

links Cell first;

iterator IteratorI iterator() {
iterator Iterator<cells> i = new Iterator<cells>();
i.current = first;
return (iterator IteratorI) i;

}
}

class Cell {
shared Object element;
owner Cell next;

}

4 Class Link is renamed Cell to avoid confusion with Ownership Domain’s keyword
link.
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interface IteratorI { ... }

class Iterator<what> extends IteratorI {
what Cell current;

}

The inherent flexibility of the system shifts the problem of fitting a program
to a given aliasing policy to correctly expressing, or proving, that a program
conforms to a certain policy. For example, giving objects in a public domain
access to objects in a private domain exposes them via proxy objects in a way
similar to the inner classes in SafeJava, discussed above, though independently
of the class hierarchy. The constraints assumed/imposed by link declaration in
Ownership Domains need to be satisfied when building types; furthermore, they
are propagated when subclassing. A consequence of this they will be preserved
in the presence of subtyping.

One of the potential problems of Ownership Domains comes from its flex-
ibility, which may make it difficult to understand the consequences of a given
collection of annotations. One way around this problem is to use tools to help
visualise and hence understand the structure imposed by annotations. In this
direction, Abi-Antoun et al. [3] propose Scholia, a tool for extracting conser-
vative approximations of runtime object graphs from static ownership domains
annotations. Such graphs may also help identifying deviations from the desired
encapsulation policy.

To further increase the flexibility of Ownership Domains, Schäfer and Poetzsch-
Heffter developed Simple Loose Ownership Domains [124]. This model keeps the
public and private domains of the Ownership Domains model, though it hard
codes a single private and single public domain per object, whereas Ownership
Domains allows multiple public and multiple private domains per object. In ad-
dition, Simple Loose Ownership Domains omit link and domain declarations to
reduce the syntactic overhead at the cost of a loss of the ability to express fine
structure. Each object has a boundary domain which stores objects that are
both publicly accessible and can access private objects. In addition, their model
supports loose domains which allow one to abstract from the precise domain to
which an object belongs, though for soundness reasons field update and method
call are prohibited on loose domains. Their system enforces a property referred to
as boundary-as-dominator, which means that the only access paths to an objects
representation are via objects that it advertises as boundary objects, namely,
those in boundary domains.

Although not the same as Ownership Domains, Lu and Potter [96] adopt the
‘separate mechanism from policy’ philosophy and explore a type system that
separates the ownership assignment from the restrictions imposed on owners
in, for example, the original Ownership Types system. Their model also allows
ownership to vary, which can be seen as a form of ownership transfer. The type
system specifies not only who owns an object but also who can reference it.
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Their system is similar in spirit to ownership domains, but the underlying mech-
anism is more lightweight in Lu and Potter’s system. This is also one of the few
type systems that permit owner variance, using lightweight, programmer-specified
variance annotations, which increases the expressiveness of the language.

3.6 Multiple Ownership and Owners-as-Ombudsmen

Several researchers have identified problems with the strong topological require-
ment imposed by ownership types, namely that having single owners for objects
requires that the ownership relation embedded in the heap is organised into a
tree-shape. But many programs and idioms do not fit into a tree structure, such
as the iterator example discussed above.

To express design patterns where multiple objects interact and share owner-
ship of objects, Cameron et al. [33], proposed a system of multiple ownership,
called MOJO, wherein the ownership relation instead forms a DAG. MOJO
does not impose any particular topology on a program’s heap, rather, it relies
on an elaborate effect system to statically capture interference using ownership
information, thereby imposing an encapsulation discipline in spite of the looser
topology. Following up on MOJO, Li, Cameron and Noble proposed the Mojo-
jojo system [91]. Mojojojo simplifies and generalises MOJO; for example, it can
express that an object lives in the intersection or the union of two objects’ repres-
entations, which is useful for expressing sharing constraints while still preserving
some locality.

Östlund and Wrigstad’s owners-as-ombudsmen proposal [113] relaxes the
owners-as-dominators property by allowing multiple objects to define a shared ag-
gregate owner. An aggregate owner can have one or more bridge objects between
the representation and the external objects. This allows components to express
the topology underlying a restricted common state with multiple entry points to
it. With owners-as-ombudsmen, the dominator for an object inside an aggregate
is the dominator of the bridge objects defining the aggregate.

In systems supporting owners-as-ombudsmen, the rule enforced for an object
a to validly reference object b is that either

1. a is the owner of b,

2. a and b are siblings,

3. b is outside a, or

4. a is owned by the aggregate owner b.

The owners-as-ombudsmen topological invariant can be understood as a simpli-
fication of Mojojojo, without requiring the effects system.

Using owners-as-ombudsmen, iterators can be expressed in a way that makes
the List’s Links part of an aggregate defined by the List and its Iterator
objects.
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class List[owner|data] {
Link[aggregate,data] first;

Iterator[bridge,data] iterator() {
Iterator[bridge,data] i = new Iterator[bridge,data]();
i.current = first;
return i;

}
}

class Link[owner|data] {
Link[owner,data] next;
Object[data] data;

}

class Iterator[owner|data] {
Link[this,data] current;

}

List[x,y] myList;
Iterator[x,y] iter = myList.iterator(); // note bridge -> owner

The type Iterator[bridge,owner] captures the fact that the i variable
points to another bridge object of the shared aggregate. When an external
object calls the iterator method, it will see a type that has the same owner as
the list itself, since bridge, like this, is an owner which is not visible externally.
As a consequence, the links are writeable by sibling objects.

Another approach that produces the effect of multiple object owners is Tri-
bal Ownership [34]. This was proposed by Cameron, Noble and Wrigstad and
relies on earlier work by Clarke et al. on the virtual class calculus Tribe [41]. In
Tribal Ownership, ownership nesting is reflected in the nesting of virtual classes
and each object has an out reference to its enclosing object, equal to being able
to name one’s owner. Tribal Ownership allows different prescriptive ownership
policies to be plugged into the system which gives rise to different levels of pro-
tection. Tribal Ownership furthermore allows a novel owners-as-local-dominators
policy, which allows owners-as-dominators to be enforced in local subheaps of
a program, as opposed to having one single system which imposes owners-as-
dominators on the entire heap.

3.7 Confined Types

Confined Types [136,137] are a lightweight approach to enforcing the confine-
ment of objects. Very few annotations are required to express the desired confine-
ment discipline, at the cost of some expressiveness compared to other ownership
systems. Confined Types, in their original form, enforce the following informal
soundness condition:

An object of confined type is encapsulated within its defining scope [148].
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This is enforced using a small set of annotations and a statically checkable set of
rules. Firstly, classes may be annotated as confined to indicate that their instances
are confined types and cannot be accessed outside their defining package. Secondly,
methods that can safely be inherited by confined types must be marked as anonym-
ous—anonymous methods cannot export the this reference. Finally, there are a
collection of statically checkable rules such as the following (quoting [148]):

C1. A confined type must not appear in the type of a public (or protected) field
or the return type of a public (or protected) method.

C2. A confined type must not be public.

C3. Methods invoked on an expression of confined type must either be defined
in a confined class or be anonymous methods.

C4. Subtypes of a confined type must be confined.

C5. Confined types can be widened only to other confined types.

C6. Overriding must preserve anonymity of methods.

A1. The this reference is used only to select fields and as the receiver in the
invocation of other anonymous methods.

The first six rules ensure that instances of some confined type do not escape
the scope by ensuring that it does not appear in the interface of a public class
(C1), that the class itself is not public (C2), that confined value do not leak via
untrusted methods (C3) or by forgetting that the type is confined (C5). The
rules (C4) and (C6) ensure that the property of being confined and being an
anonymous method is preserved via subclassing. The last rule (A1) ensures that
anonymous methods do not leak the this reference. If these rules are observed,
the Java compiler does the remainder of the checks, even when compiled against
code is not aware of the Confined Types discipline.

In the following code sample, all instances of class Link are confined to the
package listpackage:

package listpackage;

class List {
Link first;

Iterator iterator() {
Iterator i = new Iterator();
i.current = first;
return i;

}
}

confined class Link {
Link next;
Object data;

}
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class Iterator {
Link current;

}

Confined Types are related to ownership types, but they differ in two signi-
ficant ways. Firstly, confined types attempts to reduce the syntactic overhead
imposed by the type system by relying on package- or class-level annotations or
defaults, thus avoiding the annotation of types. The second difference is the de-
gree of confinement provided. In earlier systems of Confined Types[136,137], the
degree of confinement was at the package level, meaning that confined objects
could only be referenced by other objects within the same package. Later systems
achieved object level confinement [9,145,133], though without the same degree
of flexibility as Ownership Types—types parameterised by the owner of their
members cannot be expressed. The original Confined Types system [136,137]
was presented as a collection of informal rules. These were latter formalised and
proven to be sound [147,148]. An inference tool was also developed for Confined
Types to make it easier to apply them with existing code bases [69].

The original motivation of Confined Types was to address some security prop-
erties that could not be expressed in Java’s type system. This security prop-
erty was extended further and applied in the context of Enterprise Java Beans
to ensure that beans do not escape their defining context without being ap-
propriately wrapped [47]. Applications of Confined Types to memory manage-
ment [9,145,133] are surveyed in more detail in Section 6.3. Both Reflexes [129]
and SteamFlex [130] apply notions of implicit Confined Types in the context
of high performance stream processing applications. In all of these systems, the
underlying sets of rules differ—each is tailored to the specific application domain.

4 Extensions

Ownership Types systems have been extended in a number of dimensions beyond
the kind of policy they enforce. Ownership has been combined with generics and
computational effects systems. More dynamic notions of ownership have been
explored, including systems supporting a notion of ownership transfer. Owner-
ship has also been explored beyond the mainstream object-oriented paradigm.
The remainder of this section explores these topics.

4.1 Ownership and Generics

Modern programming languages support generic classes and bounded parametric-
polymorphic type systems. A natural question is how ownership interacts with
these mechanisms, especially considering that both mechanisms introduce a kind
of parameterisation into classes.

The original Flexible Alias Protection proposal [112] was phrased in terms of
a language with generics. Generic parameters served as a vehicle for delivering
aliasing modes into a class in the sense that the alias modes annotated generic
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parameters, and only generic parameters, to avoid too much syntactic overhead.
Such an approach does not allow ownership parameterisation isolated from type
parameterisation.

In Clarke’s PhD thesis [39] Ownership Types are encoded in terms of Abadi
and Cardelli’s object calculus [1]. Clarke also adapted Abadi and Cardelli’s
encoding of classes to include ownership in the obvious manner: as genericity
is achieved using type parameters, ownership polymorphism is achieved using
owner parameters. Both can also be constrained by the appropriate kinds of
bounds.

SafeJava [20] offered both type parameters and ownership parameters in inde-
pendent syntactic categories, but this can lead to significant annotation overhead.
The language underlying Ownership Domains also included both type and own-
ership parameters in a single parameter space [4]. Constraints on the owners
of type parameters could optionally be specified to help define the relationship
between various ownership domains. Generic Universes [53] also separate type
and ownership parameters. Only ownership parameters were, however, included
in their formalisation. It is arguable that there are cases when it is useful to
have ownership parameters independently of type parameters, and that it would
be unnatural to introduce a type parameter just to pass around an ownership
parameter.

The idea of piggybacking ownership (and other) information onto generic para-
meters, instead of treating them as orthogonal, has been explored extensively by
Potanin and his coauthors [119,120,150]. With a suitable choice of defaulting
mechanisms, the approach reduces the annotation overhead and the conceptual
burden, as classes take only one kind of parameter. For example, using piggy-
backing, the class declaration

class List[owner|data outside owner,Data extends Object[data]] { ... }

can be replaced by

class List[owner|Data extends Object[data]] { ... }

Here the owner data is not explicitly declared, but it presence and the constraints
on it can be inferred from the context. Similarly, when forming an element of this
type, the implicit data parameter need not be specified. The improvement this
approach offers is much greater when the class has more parameters. Potanin et
al. applied this technique to confinement [119], ownership [120], and ownership
and immutability combined [150].

Jo∃ [32,30] adds existential types on top of a generic Ownership Type system.
Ownership information is passed as additional type parameters and existential
quantification allows owners to vary. The main advantage of existential quanti-
fication is to allow more precise reasoning about unknown owners—rather than
marking them with a ‘?’, existential types can be used, thereby naming the own-
ers and being more explicit about the relationship between them: compare types
C[?|?] with ∃o.C[o|o]: the latter expresses a relationship between the two
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owner parameters, even though they are unknown. A variant Jo∃deep enforces
the owners-as-dominators policy.

Dietl, Drosspoloulou and Müller [53,60] extended Universes to include generics.
This was the first type system to combine the owners-as-modifiers discipline with
type genericity. Their approach also aims for a seamless integration of genericity
with the ownership mechanisms and enables the separation of the specification
of the topology from the encapsulation constraints, which opens the door for
more flexible systems to be expressed [54].

4.2 Ownership and Effects

Computational effects systems, such as those expressing abstractly the possible
field reads and writes a method can perform, become more when combined with
Ownership Types. Clarke and Drossopoulou [44] demonstrated that combining
an Ownership Types system enforcing the owners-as-dominators policy with an
effects system offers strong guarantees, not only about the object on which the
method is called but on whole chunks of the heap. This system also included a
notion of sub-effecting that exploited the hierarchical structure of the ownership
tree. Taking a different view on ownership and effects, Yu, Potter and Xue [98]
present an alternative to Ownership Types based on effect encapsulation instead
of restrictions to the reference topology. References may leak out of their defining
scope, but what can be done with those references is limited using an effects
system. This system can also be considered as an owners-as-modifiers system,
due to the constraints imposed on leaked references.

The combination of ownership and effects is particularly important for reason-
ing about concurrent systems [82,83,84], and for guaranteeing race and deadlock
freedom [21,20,24,51]. See Section 6.1 and Bocchino’s chapter [19] for more de-
tails. Boyapati et al.’s application of Ownership Types to object upgrades also
relies on effects to achieve modularity [23]. Yu and Potter use Ownership Types
and effects to reason about object invariants based on the notion of validity ef-
fects that capture the objects that may be invalidated by some code block [97].
The multiple ownership type system uses effects to reason about when different
owners are guaranteed to be disjoint, even though the ownership relation can be
DAG shaped [33]. Finally, Clifton et al.’s MAO combines ownership and effects
to reason about aspect-oriented programs [48].

The related notions of readonly references and immutability limit computa-
tional effects without requiring the tracking of effects by building permissions
(such as whether a field write is permitted) into types. As already mentioned, Uni-
verses [105,54] have a notion of readonly reference built in. Östlund et al. [114]
present a system combining ownership, uniqueness and immutability to obtain
more powerful invariants than would be possible without them. For instance, the
system allows the staged initialisation of immutable objects, meaning that an
object can be initialised, hence mutated, in multiple places before eventually be-
coming immutable. Ownership Immutability Generic Java (OIGJ) [150] extends
Featherweight Generic Ownership [120] to capture both ownership and immut-
ability within a single type system, leveraging off Generic Java’s type system,
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without introducing new syntactic categories to, capture notions of ownership
and immutability. Immutability is considered in more detail in Potanin et al.’s
chapter [121].

4.3 Dynamic Ownership

In early Ownership Types systems, checking is performed purely statically. While
this provides strong guarantees, it has expressiveness limitations that make ex-
ploratory programming difficult. Various degrees of support for dynamic owner-
ship have been explored, including run-time ownership information to support
downcasts and Gradual Ownership typing, all the way to fully dynamic owner-
ship where all checking occurs at run-time. The information required at run-time
can be simply the owner of each object, but it generally includes the values of
all owner parameters and the run-time nesting relationship between objects.

Systems supporting dynamic type casts include SafeJava [20], Generic Uni-
verse Types [53], and Gradual Ownership Types [127]. In terms of the amount
of checking performed, approaches supporting downcast perform checks only
when an explicit downcast is made, whereas Sergey and Clarke’s Gradual Own-
ership typing approach also performs boundary checks when objects are passed
between different objects. As an alternative approach to downcasts, Wrigstad
and Clarke [142] present a lightweight approach to run-time downcasts which
relies on existential types. Downcasting from a well-formed type C[a] to an-
other well-formed type D[a,b] can be compiled as a regular downcast from C
to D, ignoring ownership. If the cast succeeds at run-time, the additional owner
parameter introduced by the downcast must exist, and its relation to owner a
can be inferred from the declaration of the class D. This allows the introduc-
tion of the owner b as an existential owner parameter visible on the stack in a
branch where the downcast was successful, without any need for run-time owner
representation.

Dynamic ownership delays the checking of the properties expected by own-
ership types systems until run-time. A preliminary experiment of this idea was
performed in the context of a prototype-based programming language [111]. This
work was adapted to a class-based setting by Gordon and Noble, who introduced
the scripting language ConstrainedJava [67]. The ownership structure is repres-
ented using an owner pointer in every object. Operations are provided to make
use of and change these owner pointers. The semantics of the language relies
on a message-passing protocol with a specific kind of monitoring. Messages are
classified into several categories based on their relative positions of the message
sender and receiver in the ownership tree. “Bad” messages are detected using
run-time monitoring.

Leino and Müller [90] make use of dynamic ownership in the context of Spec#
to control which parts of the heap class invariants may depend on. In contrast
to most other ownership systems, the ownership relations of their system are
conditions that need not always hold. Invariants may, for example, be tempor-
arily broken during ownership transfer, as this is not an atomic operation, and
involves passing the reference and changing the owner field of the moved object.
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4.4 Ownership Transfer

One restriction common to early ownership systems is that the owner of an
object must be set upon creation and then fixed for the lifetime of the object.
Several attempts at removing this restriction have been presented over the years,
thereby allowing the transfer of ownership.

Older systems, AliasJava [5], SafeJava [20] and Flexible Alias Protection [112]
provide limited notions of uniqueness, corresponding to a reference that has
not been assigned to a field or is stored in just one field (that is, no aliases).
While this appears to be a perfectly reasonable notion of uniqueness, it fails to
exploit the structure of the heap given by the ownership hierarchy. It also suffers
from an abstraction problem, identified by Clarke and Wrigstad [42], namely
that changes to the internal implementation of a class modifies the behaviour
of code using unique references, for instance, an internal change to a method
implementation could steal the unique reference upon which the method is called.
Such changes need to be reported in the interface of the class, and this change
tends to propagate through to client code.

Clarke and Wrigstad’s language Joline offers a novel approach uniqueness called
External Uniqueness [42,141], exploiting the nesting information provided by Own-
ership Types, in such a way that the above mentioned abstraction problem does
not arise. Ownership Types can identify aggregate boundaries and safely allow ali-
asing between objects within those boundaries. The approach to uniqueness taken
in External Uniqueness is that an externally unique reference is the only reference
to an object from outside that object; the internal aliases to an object are permit-
ted and can be ignored in the definition of uniqueness. Thus unique references
refer to aggregates not just individual objects. The property enforced by External
Uniqueness is called owners-as-dominating-edges, which means that all paths to
an object accessible through a unique reference must include that reference. This
is illustrated in Figure 3. Uniqueness is preserved using a destructive read oper-
ation. To preserve owners-as-dominators, however, transfer may only go inwards
in the ownership hierarchy. As owners-as-dominators requires that all owner para-
meters are outside the owner of an object, allowing transfer of objects outwards
in the hierarchy would result in a violation of this invariant.

In his Alias Burying proposal, Boyland [26] showed that destructive reads
are not necessary for the preservation of uniqueness. Instead, it is sufficient
to ensure that any aliases to a unique value are destroyed, for example, when
a method exits, and thus preserve uniqueness. Checking that this is the case
requires sophisticated static analysis.

Banerjee and Naumann elaborate on sufficient conditions for confinement and
object transfer between owners [14,13]. Their objective was to provide a confine-
ment policy similar to other ownership proposals, but without requiring owner-
ship annotations. In order to support transfer, the system builds on a notion
of separation similar to External Uniqueness, but which also requires that an
aggregate does not have outwards pointing references into the source’s repres-
entation when transferred to a new owner. This notion was later also adopted
Haller and Odersky [71], described below.
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Fig. 3. Owners-as-dominators and External Uniqueness

UTT [108] is Universe Types extended with transfer for externally unique
aggregates. In Universes the situation is slightly less involved than in Joline,
however, because the types carry less ownership information. The any owner
modifier can point inwards, but since it does not convey any ownership inform-
ation, such references are not an issue for preserving the underlying invariants.
Further, Universes does not have owner parameters on classes, and so the restric-
tion on inwards-only transfer is not required. An externally unique aggregate
belongs to a specific region, or cluster, as they are called in UTT. In place of a
destructive read operation, UTT instead employs release and capture state-
ments to perform the move. The release statement will make unusable any
external references to the aggregate (similar to Boyland’s Alias Burying), strip-
ping the type of information of which cluster it belongs to. The released object
is simply free. The capture statement performs the actual move by assigning a
new type specifying the cluster to which the aggregate now belongs.

Haller and Odersky’s Capabilities for Uniqueness and Borrowing [71] use a
notion similar to that of Banerjee and Naumann, called separate uniqueness.
Separate uniqueness restricts external uniqueness so that there can be no out-
going pointers from inside a unique aggregate to the outside. This additional
restriction helps guarantee race freedom in a concurrent message-passing set-
ting, such as the Scala Actors Framework it is designed to work with. Separate
uniqueness employs a capability system instead of ownership as the foundation
for keeping track of uniqueness. Interestingly, a swap operator is used to pre-
serve separate uniqueness, much in the spirit of Harms and Weider’s ‘copy and
swap’ proposal [72]. Separate uniqueness is maintained by well-formed construc-
tion, wherein a separately unique aggregate may be built out of other separately
unique objects.

Object Teams also provide a notion of ownership transfer [73]. The mechanism
updates all the dynamic information capturing the ownership structure, namely,
the roles each object plays, but the mechanism offers no static security.

Anderson et al. [8] apply notions of ownership and ownership transfer in
the context of C to describe data structure sharing strategies in multi-threaded
programs.
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Ownership transfer combines notions of linear (or uniqueness typing) and non-
linear typing in the one system. In a non-object-oriented setting, Fahndrich and
DeLine’s Adoption and Focus approach [63] combines the benefits of linear types
with the flexibility of non-linear types in order to enforce software protocols. The
model is close to the notions imposed by ownership, as the reference structure
considered is hierarchical—linearly typed objects containing within linearly type
objects cannot be accessed directly from ‘outside’. References start out having
linear type, so that the interaction via them can be precisely tracked. However,
it is impractical programming with only linear types. To get around this, the
adoption operation allows a linear type to be converted to a non-linear type
within the scope of another expression. In order to go the other way, the focus
construct provides a temporary linear view on an non-linear type, by ensuring
that no change made via other aliases. This is achieved by revoking the capability
corresponding to the non-linear type. Adoption and Focus was latter generalised
as nesting/carving in Boyland’s Fractional Permissions [27,28].

4.5 Other Extensions and Variations

A number of alternative extensions and variations of Ownership Types that do
not so easily fit into the categorisation above have been developed.

Lu and Potter [95] present a programmer-specified type system for describing
reachability constraints in an object graph. The core restriction made by the
system is that any cyclic references structures are constrained so that all objects
share a common owner.

Ownership Types have been applied to aspect-oriented programming to sim-
plify the task of reasoning about advice [48]. In this setting, Clifton et al. in-
troduce concern domains which store objects related to particular concerns (in
the sense of separation of concerns). These are used to reason about which parts
of data structures are modified by which advice. The underlying type system is
based on a shallow ownership-and-effects system.

The interaction-based object-oriented language Classages [94] uses a variant
of Ownership Types is used to ensure that certain objects remain encapsu-
lated within components (called classages), whereas other objects can be passed
around between components.

Pedigree Types [144] use a relative addressing scheme to traverse the own-
ership tree, rather than the parameterised approach of Ownership Types. The
general form of owner is given by the grammar parentk.childz, where k ≥ 0
and z ∈ 0, 1. This can capture all owners accessible in the owners-as-dominators
model—parent traverses up the tree, and child moves, in effect, to a sibling,
except for when child appears alone, which corresponds to selecting the current
object’s representation.

Ownership Types have been considered in the context of an object-oriented
programming language with relationships [92]. The work covers the problems
encountered when trying to combine the two systems, but does not present any
solutions to these problems.
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Although not strictly following the tradition of Ownership Typing, X10 [37]
includes a notion of place types which is similar to Ownership Types in that types
partition the space of objects. Places are used to express locality and thereby
facilitate better distribution of data across the memory hierarchy of a multicore
processor.

5 Ownership Inference

Ownership Types systems generally require a significant amount of annotations
to express the types, but this can be burdensome for the programmer. What
makes matters worse is that library code also needs to be annotated to work ef-
fectively with Ownership Types. Addressing this problem leads naturally to the
question of Ownership Type inference. Unfortunately, matters are not so simple.
Unlike traditional type systems, ownership annotations are mostly design-driven:
it is up to the programmer to decide whether some object should be owned by
this or by world. Many Ownership Type systems admit a trivial type assign-
ment, for example, by setting all objects to be owned by world. Consequently,
even elaborate approaches to type qualifier inference [38,68] are ineffective, as
they infer any solution that satisfies the constraints, but cannot give a best
solution.

In this section, we provide a survey of approaches for ownership inference.
Two approaches are considered: dynamic inference and static inference.

5.1 Dynamic Inference

Dynamic ownership inference uses snapshots of the run-time object graph to
determine an approximation of the ownership structure of the system—these
snapshots may involve continual monitoring, in effect taking a snapshot every
time the heap changes. The idea is that this information can then be used to
help determine a valid ownership typing.

The first work on the dynamic inference of Ownership Types is Wren’s mas-
ter’s thesis [140]. The essence of his approach is to run programs with a profiler
that keeps track of all heap snapshots, collecting full information about the to-
pology of the heap at any moment. All heap snapshots are then merged and
the resulting graph is analysed in order to infer dominance relations between ob-
jects. The work provides a graph-theoretical foundation for run-time inference,
including a description of the most precise program heap topology with respect
to the owners-as-dominators invariant. On the negative side, the dynamically-
determined ownership information cannot be mapped directly to types. To rem-
edy this, the author formulates the system of equations to assign annotations to
particular object allocation sites.

Dietl and Müller present results on runtime Universe Type inference [57]. As
Universe Types require a comparatively lower annotation overhead than Own-
ership Types, mapping dynamic inference results to static annotations is easier
than for the system Wren considered. The inference algorithm is, however, quite
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in the spirit of Wren’s: first a combined representation of the object store is built;
then its dominator tree is constructed; finally, conflicts between the information
obtained by analyzing the inferred dominator tree and the actual constraints of
the type system are resolved by flattening the dominance trees via a procedure
referred to as harmonization. The resulting annotations deliver a correct typing
of the program with respect to the target type system.

5.2 Static Inference

One of the first attempts to provide Ownership Type inference was by Aldrich et
al. [5]. In their system, the programmer needed only to provide a small amount of
annotations to indicate the intent that some parts of the program be protected,
and the rest of alias annotations were inferred. The approach was not entirely
satisfactory, because a large number of parameters were inferred in many cases.

Moelius and Souter [104] employ a variation of an escape analysis [18] to
infer ownership annotations. Their algorithm allows borrowed references to be
returned from methods and assigned to object fields. No assumptions on owner-
ship parameterisation are made, consequently the algorithm can also result in a
large number of parameters, the same problem that Aldrich et al.’s [5] inference
algorithm suffered from.

For the same inference problem, Milanova and Liu [101] employ an Andersen-
style points-to analysis [7] as part of a static algorithm to infer ownership and
universe annotations according to two different ownership protocols: owners-
as-dominators and owners-as-modifiers. Both analyses are based on a context-
insensitive points-to analysis, therefore they do not distinguish between different
allocation and call sites. However, thanks to some Java-related heuristics, their
technique handles some idiomatic cases, and good precision is thereby obtained.

Later, Milanova and Vitek presented a static inference algorithm for owner-
ship annotations for the owners-as-dominators invariant based on a static dom-
inance inference algorithm [102]. The algorithm computes approximations of the
object graphs using an enhanced global context-insensitive points-to analysis.
The candidate ownership annotations are computed based on an approximated
dominance tree, built using a variation of must-point-to information [52,81]. The
approach does not provide any guarantee that the inferred annotations comply
with the original Ownership Types system. Naturally, as with any global ana-
lysis approach, the issue of scalability is a concern. In subsequent work employing
the dominance inference algorithm, Huang and Milanova use the original type
checker to verify the correctness of the inferred ownership annotations [80].

Based on the boundary-as-dominator model, where access is permitted either
via the owner or other boundary objects, Poetzsch-Heffter et al. [117] present an
inference technique that requires that the programmer only annotate the inter-
face types of components and the remaining ownership information is automat-
ically inferred using a constraint-based algorithm. Due to the lack of parameters
in the underlying model, this approach delivers reasonable results and represents
a good compromise to the inference problem.
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Some static analysis-based approaches fail to deliver type annotations directly,
but instead extract topological properties similar to those ensured by Ownership
Type systems. This is problematic because it make it difficult to view the topo-
logical properties in terms of code, and thereby are difficult to reason about.
For instance, Geilmann and Poetzsch-Heffter [66] developed a modular abstract
interpretation-based analysis to check simple (i.e., non-hierarchical) confinement
properties in Java-like programs. This work employs a box model [117] instead of
dominator trees. The approach is targeted to substitute modular type-checking
by modular static analysis, requiring a significantly smaller amount of annota-
tions: only class declarations and object allocation sites need to be annotated.
The analysis then takes the implementation of a class, considered as an encapsu-
lated box, and executes it together with its most-general client. The most-general
client is an abstraction of all possible clients that is used to create all possible
traces through the box. If execution succeeds, the box never exposes any con-
fined object, irrespective of the program that uses the box. The approach is
based on formulating ownership as a semantic property of the program and the
subsequent construction of an abstraction of the abstract semantics in the style
of Cousot and Cousot [49,50].

A general variation of a points-to analysis-based algorithm to infer own-
ership and uniqueness is presented by Ma and Foster [100]. The algorithm
combines constraint-based intraprocedural and interprocedural analyses. The
collected information about encapsulation properties is not however mapped to
a type system.

Another approach is to generate and solve typing constraints and allow the
user to tune the solution. Dietl et al. [55] presented such a static analysis to infer
Universe Types according to the user-specified intentions declared with annota-
tions. The first part of the technique is responsible for the generation of equa-
tions, based on the program semantics and the rules of the original type system.
Constraints of the Universe Type system are encoded as a boolean satisfiability
problem. After the constraints have been generated and solved, the second part
of the approach is to tune the result of the inference: programmers can indicate
a preference for certain typings by adjusting the heuristics or by supplying par-
tial annotations for the program. Dietl et al. empirically demonstrate that the
NP-completeness of constraint solving does not result in a significant overhead
on real-world programs, compared with other static approaches [80,102,104].

The two lines of research towards Ownership Type inference via points-to ana-
lysis and via constraint solving were unified in the work of Huang et al. [79]. The
resulted framework implements checking and inference for two systems: Universe
Types and Ownership Types. As in the prior work [55], the programmer can influ-
ence the inference by adding partial annotations to the program. The algorithms
work with a programmer-supplied metric specifying the best typing, which the
type inference algorithm attempts to maximise. The underlying analysis is imple-
mented as a Kleene iteration of a monotonic transfer function, based on the pro-
gram’s small-step collecting semantics. The user-provided annotations are taken
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into account, whereas missing ones are initialised with the bottom element of the
appropriate lattice.

An incremental type analysis has also been developed for Confined Types
and integrated into the Eclipse platform [62]. The fact that it is incremental
means that it provides immediate feedback to programmers as they add their
annotations.

6 Applications of Ownership

Ownership Types and related systems have seen many applications. This section
surveys their application in concurrency control, verification, memory manage-
ment, security, object upgrading, and software visualisation and understanding.

6.1 Ownership for Concurrency Control

One application domain where ownership has seen a variety of applications is
concurrency. We expect that these approaches merely scratch the surface of what
is becoming an increasingly important problem area.

Parameterised Race Free Java (PRFJ) [24] is an ownership-based type sys-
tem for guaranteeing race-freedom in concurrent Java programs. The discipline
PRFJ enforces is called owners-as-locks, and is in many ways similar to Flanagan
and Abadi’s Types for Safe Locking [64], with ownership and parameterisation
included for greater flexibility. Each object is associated with a lock, and the
encapsulation provided by ownership allows protection of an entire aggregate
by acquiring a single lock, namely that of the owner of the aggregate. Further,
method annotations reveal what locks must be acquired by the callee prior to
method invocation. PRFJ also has thread local variables, annotated with the
special owner thisThread. This owner may not occur in the type of a field,
but only on local variables. Essentially this means that values owned by this-
Thread cannot be shared between threads, and are thus thread local. PRFJ was
subsequently extended to ensure deadlock-freedom [21]. Based on programmer-
supplied annotations, a partial order on locks could be established. The type
system then rejects any programs that do not adhere to the partial order when
acquiring locks, again in a similar fashion to Flanagan and Abadi [64]. Per-
mandla et al. [116] continue work in this direction, by designing a similar type
system for Java bytecode. The type system enforces race- and deadlock freedom
of precompiled files at load time.

Cunningham, Drossopoulou and Eisenbach [51] use the Universes ownership
model as the basis for a race-free type system. The system shares many similar-
ities with PRFJ, but it uses a simpler type system that aims to be much more
user friendly. To cope with some of the reduced expressiveness, the system uses
effects to deal with references to domains not identifiable by immutable paths. A
number of extensions were presented that can distinguish between read/writes,
prevent deadlocks, verify atomicity, and allow locks to be taken at the granular-
ity of single objects. The authors conjecture that adding genericity to the type
system will increase expressiveness.
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For the purpose of supporting large numbers of concurrent object-oriented act-
ors, Srinivasan’s and Mycroft’s [131] implement cooperatively-scheduled green
threads on the JVM in their Kilim language. To achieve isolation of actors
without incurring a huge copying overhead, they require that messages between
actors be tree shaped by using only unique references. These can then trivially be
passed between actors at a close-to zero, constant-time cost. In contrast, Clarke
et al.’s Joelle language [43] employs ownership types to allow zero-overhead con-
finement of active objects, each with a single thread. By employing ownership,
messages can have complicated graph-like or circular structure and not be lim-
ited to simple trees. In Joelle, external uniqueness [42] suffices for efficient object
transfer, and where external uniqueness cannot be established, ownership inform-
ation can be used to perform “sheep cloning” [111], which calculates the minimal
safe clone statically. Joelle furthermore supports the safe sharing of immutable
subgraphs of otherwise mutable data, similar to the arg mode of Flexible Alias
Protection [112].

The CoBox (concurrent box) [125] concurrency model unifies the active object
model with structured heaps in a similar manner to Minimal Ownership [43]. A
key difference is that in the CoBox model multiple objects play the role of the
active object. This is realised by associating a single lock with each cobox to
ensure that at most one of the objects within each cobox has a thread of control
at a time. A Java-based implementation of the CoBox model exists [126], and
CoBoxes were incorporated into the ABS programming language [40], where they
are called cogs (concurrent object groups).

Loci [143] is a type system for thread local data based on the notion of owners-
as-threads. Using a simple ownership system based on a conceptual division
of the heap into a shared area and a private area per thread, objects can be
determined to belong to either the shared heap or be thread local, thus belonging
to one of the threads. The type system ensures that shared and thread local data
are never confused, thus preventing accidental sharing. Thread local objects
can be accessed without synchronisation. A similar model is found in the older
system Guava [10], except that Guava’s rules are presented informally, whereas
Loci is completely formalised and proven correct. Guava is a Java dialect that
guarantees that shared data is accessed only through synchronised methods. In
Guava there are no synchronised methods (in the Java sense). Instead, classes
are split into two kinds: monitor classes, where all access are fully synchronised,
and ordinary classes, whose instances can only be shared within a single thread,
and are thus thread local.

As mentioned in Section 4.4, Haller and Odersky [71] present an Ownership
Types system for expressing uniqueness and borrowing to be used with Scala’s
actor model. The type system ensures that objects can be safely passed between
actors without leading to race conditions, thereby avoiding the cost of object
cloning.

In a series of papers, Bocchino and his coauthors investigate the use of type and
effect systems similar to Ownership Types with effects to enforce a notion of De-
terministic Parallelism [82,83,84]. As these efforts are surveyed in another chapter



Ownership Types: A Survey 43

in this volume [19], we keep our discussion brief. After introducing the initial sys-
tem [83], subsequent work [82] presented a type system for writing user code that
will operate properly when used with parallel object-oriented frameworks such as
Map-Reduce. The approach is similar to Clarke and Drossopoulou’s ownership
plus effects system [44], albeit tailored to the demands of a particular application
domain. A subsequent paper [84] extends the system to permit safe nondetermin-
ism using special blocks declared by programmers, thereby providing mechanisms
encapsulating and controlling the nondeterminism.

Task Types [88] are another approach for preserving atomicity in multith-
readed programs. The underlying structures are similar to those enforced by
Ownership Types, except that the type system helps express explicit sharing in
a more explicit fashion.

6.2 Ownership for Verification

Ownership has played a very solid role in verification, helping deal with issues
of framing, knowing which properties are affected by a given code block, invari-
ants, knowing which properties can be relied on, and locking, knowing when a
lock needs to be obtained to avoid data races. Ownership has been used both
via typing or by encoding the desired invariants into specifications. Notions of
ownership have been incorporated into specification languages JML [106], and
Spec# [90].

Banerjee and Naumann use ownership to show representation independence
properties of classes [11,16,15], which enables one implementation of a class to
be replaced by another. Ownership is used to indicate which classes are hidden
behind the abstraction boundary. Their work has addressed this problem for
increasingly sophisticated program models and relaxed restrictions.

Much more could be said here. Instead duplicating other excellent work on
the topic, we invite the reader to consult other the chapters of this volume that
discuss the role of ownership in verification [17,58].

6.3 Ownership for Memory Management

The fact that Ownership Types could be applied to memory management was
identified early on [122]. It took some time before anyone explored the idea, and
all work to date has been done in terms of RTSJ or related systems.

Before continuing, we first present a little background. The Real-time Spe-
cification for Java (RTSJ) memory model includes various regions of memory:
immortal memory, heap memory, and numerous programmer specified scoped
memories. Immortal memory is for objects that remain for the entire application.
Heap memory is garbage collected. Scoped memories are allocated and dealloc-
ated in a stack-like fashion based on the order in which threads ‘enter them’
to allocate objects within them. Without going into too much detail, objects in
one scoped memory can refer to objects in another, if the lifetime of the former
exceeds that of the latter, to avoid memory leaks. RTSJ checks dynamically that
the scoped memories are used correctly.
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Boyapati et al. [25] were first to explore the application of Ownership Types
to memory management in any detail. Their work combines Region Types and
Ownership Types in a unified framework to statically enforce object encapsu-
lation and region-based memory management. The memory model underlying
the type system is compatible with RTSJ’s memory model. Additions beyond
the basic ownership machinery include subregions within shared regions to allow
long-lived threads to share objects without using the heap and without memory
leaks, typed portal fields for enabling inter-thread communication, and thread
local regions.

ScopeJ [146] is a variant of confined types tailored for the memory manage-
ment discipline of RTSJ. ScopeJ imposes a naming discipline based on a few
annotations and some simple-to-check rules that statically ensure the correct us-
age of scoped memory, thereby eliminating the need for dynamic checking. Zhao
et al. [145] define Implicit Ownership Types for memory management based on
ScopeJ’s memory model. The key contribution of this approach is that the pro-
grammer does not need to specify any type annotations—ownership is implicit,
and therefore not a burden to programmers. A complete formal semantics of
the approach is also presented. The work of Andreae et al. [9] uses aspects to
facilitate a more modular specification of the code dealing with scoped memories.
The ScopeJ approach has also been adapted and applied to SCJ (Safety Critical
Java Specification) [133].

6.4 Ownership for Security

One of the original motivations for Confined Types was to address security prob-
lems found in the Java library, namely, to prevent certain references from escap-
ing their defining scope. More specifically, each instance of Java Class has a list
of signers that the security architecture uses to determine the access rights of
the class at run-time. A leaking reference to this internal data structure caused
a security flaw in JDK1.1 that allowed untrusted applets to gain all access rights.
The problem boiled down to the fact that an alias to the array containing the
signers was leaked, rather than a copy of the array. (For more details, see [137].)

As mentioned in Section 3.7, Confined Types [136] are a syntactically simple
approach to achieving a topological restriction similar to what Ownership Types
do, but with a package-level granularity instead of object-level granularity. Con-
fined Types were originally designed to prevent security bugs, such as the Java
class signer bug, resulting from leaking references to sensitive objects. One fur-
ther example application is ensuring that references to cryptographic keys do
not leak beyond the crypto module [137].

In a variant of confined types adapted to the setting of Enterprise Java Beans,
Clarke, Richmond and Noble [47] address the problem of leaking EJB objects
without the appropriate wrappers. Without these wrappers, beans could be ac-
cessed directly, thereby circumventing the persistency, distribution, and secur-
ity functionality that would otherwise be in place. The scheme was based on a
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specification of which classes corresponded to confined and to boundary elements.
Checking was performed at deployment time by inspecting the bytecode. Only
classes mentioned in the specification file needed to be checked, as in the original
Confined Types, and thus classes were protected against unchecked attackers
who did not necessarily conform to the discipline.

Naumann and Banerjee [12] use a simplified form of ownership to achieve
pointer confinement (a topological constraint) in a class-based language, and
use the resulting language to prove certain noninterference results. Similarly,
Skalka and Smith [128] present an system using ownership-related notions for
secure capability-based programming. Their core protection model is similar to
that of Confined Types [86] and Clarke’s finitary version of Ownership Types in
the object calculus [45].

In one of the few systems that allows owners to vary (without using ownership
transfer), Yu, Potter and Xue [99] introduce the owners-as-downgraders policy
which increases the flexibility of ownership types systems by allowing an object to
downgrade or declassify an object’s owner, thereby allowing previously protected
objects to be accessible beyond what usually would be allowed. In this setting,
downgrading can be considered as a special case of intransitive noninterference.

Using a variant of Universe Types, Dietl, Müller and Poetzsch-Heffter [59]
present a type system for applet isolation on JavaCard smart card. Their system
statically detects firewall violations, which would otherwise be detected only
using dynamic checks.

In a quite different setting, Patrignani, Clarke and Sangiorgi [115] apply Own-
ership Types to the Join calculus [65] in order to enforce certain security prop-
erties. They prove that secrets owned by some process cannot be leaked, even
against untyped attackers, that is, processes that are not typed using the Own-
ership Types system (or any other type system).

6.5 Ownership for Object Upgrades

Boyapati et al. [23] describe a quite unexpected application of Ownership Types
in the context of persistent object stores. Their approach uses Ownership Types
to ensure, in a modular way, that a persistent object store can be efficiently
updated without stopping the application. Modularity allows the programmer
to locally reason about the correctness of their upgrades. Ownership Types with
effects annotations help to provide the desired modularity condition. The system
was implemented in the context of the Thor language [93].

6.6 Software Visualisation and Understanding

Ownership has been used in techniques to provide better understanding of sys-
tem structure and behaviour. Many of these techniques have a visual component,
based either on the static or dynamic structure of a system.

The notion of ownership has also been used to introduce structure into the
visualisation of systems, both of the evolving object graph [75,74,76] and of a
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static abstraction of it (Object Ownership Graphs (OOGs)) [3,135].5 These ap-
proaches exploit the hierarchical nature of ownership to enable the structuring
of objects in a visualisation along with the collapsing of parts of the object graph
that are not the current focus of whoever is performing the visualisation. Ammar
and Abi-Antoun [6] perform further work on the use of OOGs in program com-
prehension. Using a group of programmers unfamiliar with notions of ownership,
they were able to show in a statistically significant fashion that the use of OOGs
improve programmers’ comprehension compared to programmers who just used
class diagrams.

Mitchell uses techniques based on ownership and dominators to summarise
memory footprints in order to better understand the memory usage of a pro-
gram [103]. In his approach, each dominator tree captures unique ownership.
Trees are connected by specific edges that describe responsibility, i.e., transfer of
ownership. A profiling technique aggregates these structures and uses thresholds
to identify important aggregates. The notion of ownership graph summarises
responsibility, and the notion of backbone equivalence is used to aggregates pat-
terns within trees, generating concise summaries of heap usage. The ultimate
goal of this work is to understand where excessive memory usage occurs in large
programs, not to produce a type assignment.

Rayside et al. [123] take an alternative approach to finding and fixing memory
leaks which is also based on object ownership. Their techniques involves determ-
ining the ownership hierarchy of objects, the size of each object, the time interval
that each object is allocated, and the time interval that it is active. This inform-
ation is reported visually to the programmer. In conjunction with five memory
management anti-patterns that are identified based on the authors’ experience
with object ownership profiling, their tool can help the programmer to identify
memory leaks. The authors apply their techniques to fix memory leaks in the
Alloy IDE (V3).

7 Foundational Calculi

Although most work on Ownership Types is formalised, only a relatively small
amount of work has been done on their foundations.

Very early on, Clarke’s thesis [39] formalised Ownership Types in terms of
Abadi and Cardelli’s object calculus [1]. In this setting ownership contexts are
separate from objects. Every object has two ownership contexts, namely, a rep-
resentation context, or storing its representation, and an owner context, which
was its owner. Whether an object had permission to access another object was
determined using the representation context of the referrer and the owner con-
text of the referee. Clarke gave constraints on the relationships between owner-
ship contexts that guaranteed that the owners-as-dominators property held. The

5 Interestingly, it was while studying software visualisation that James Noble realised
the pressing need for proper alias control, which eventually lead to Flexible Alias
Protection.
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formalism also supported type parameterisation and existential quantification of
owners.

The foundational calculus Fown [87] was built on top of system F to provide
a foundation for Ownership Domains. To capture the specifics of the system, a
special permissions system based on ownership domains and links was added into
the calculus. Being based on system F , the calculus also supported parametric
polymorphism.

Cameron and Drossopoulou [32,30] study Ownership Types systems that in-
clude notions of owner variance and unknown ownership context—we have seen
various systems like this above. Their system Jo∃ casts these systems into a uni-
form setting and removes many of the limitations of the more ad hoc approaches
found in the literature. Their calculus supports parameterisation of types and
ownership contexts, and allows variant subtyping of ownership contexts using
existential types. The explicit use of existential types makes the type-theoretic
foundations of owner variance and unknown ownership context more transparent.
Building on this work, Cameron, Drossopoulou and Noble’s chapter [31] explains
Ownership Types in terms of dependent types, elucidating the idea that Owner-
ship Types are actually a kind of phantom type [89], namely, a type that does
not contribute to the run-time representation of values.

Using the Fractional Permissions framework [27,28], Zhao and Boyland [149]
encode the owners-as-dominators and owners-as-locks models. Fractional Permis-
sions provide a uniform, albeit low-level, view on these two models, and permit
the encoding of other models, such as variants of Multiple Ownership, in the
same setting.

A similar approach based on encoding into logic is taken by Wang et al. [138]
who add a notion of confinement to separation logic. One of the goals of their
work is to reason about confinement independently of any particular confinement
discipline. In different work, Wang and Qui [139] present a generic model of con-
finement aimed at breaking the shackles imposed by purely syntactic definitions
by providing semantic definitions for encoding various confinement schemes. In
some sense their work provides a more complete formal model of ideas proposed
by Noble et al. [110].

8 Empirical Studies

A number of empirical studies of Ownership Types and related systems have
been performed. These include programming experiments, such as seeing how
Ownership Types interact with design patterns or applying Ownership Types
to a given code base and determine what changes need to be made; automatic
analysis of the run-time object structures of a corpus of programs; and automatic
static analysis of a corpus of programs.

The most natural approaches to evaluating Ownership Types are to apply it
to an existing code base or to study the interaction between Ownership Types
and design patterns.

AliasJava [5], a precursor to Ownership Domains, was evaluated on various
library classes and the Aphyds circuit layout application, which consisted of



48 D. Clarke et al.

12.5kLOC. A core 3kLOC was annotated by the Aphyds developer. Most method
parameters were annotated with lent and many return values could be annot-
ated with unique, indicating that either sharing was absent or temporary. In-
stances of classes related to circuit elements were, in contrast, shared among
many other objects.

In his masters thesis, Hächler applies Universes to an industrial application
[70]. The application was the software of a ticket reader for print-at-home tickets,
consisting of more than 50kLOC. The process of annotating this system revealed
a number of shortcomings of ownership, which required restructuring of the
application, and replacing pass-by-reference by pass-by-copy. One interesting
proposed extension was the idea of local universes (akin to Clarke and Wrigstad’s
scoped owners [42]), which allow read and write access within the scope of a pure
method in such a way that the mutable effects are encapsulated within the pure
method.

An evaluation of ownership domains was done on four real world programs,
JHotDraw and HillClimber, each of 15kLOC, Aphyds (8kLOC), and CryptoDB
(3kLOC) supported by a reimplementation of the type system and an Eclipse
plug-in [3,2]. The case studies identified a few patterns of ownership (e.g., “owner-
ship domains expose tight coupling”) and some weaknesses of the existing Owner-
ship Domains type system (e.g., public domains are hard to use, annotations are
verbose). More details can be found in Abi-Antoun’s PhD Thesis [2]. A further
case study considers the amount of effort required to refactor a 16kLOC applic-
ation (HillClimber) to enforce appropriate architectural constraints expressed
with the help of Ownership Domains [3,2]. Again a number of lessons are re-
ported, along with perceived limitations of Ownership Domains. The reader is
invited to consult these papers for more details.

In an early exploration of using Ownership Types in practice, Cele and Sture-
borg [36] found that embedding ownership information in programs made them
less flexible, especially for reuse and refactoring. In their qualitative study, balan-
cing flexibility and encapsulation emerged as a key aspect of programming with
ownership. A frequent pattern in their programming illustrates this; it relies on
subsumption to remove owners from types,6 such as for call-backs and listeners.

In his master’s thesis, Nägeli [109] uses design patterns to evaluate three dif-
ferent Ownership Types systems (Universes, Clarke and Drossopoulou’s Joe1,
and Ownership Domains). His work identifies numerous difficulties in the vari-
ous disciplines (and the tool support for them). Based on this study, he lists the
following requirements for Ownership Type systems: alias control for represent-
ation objects, support for read-only references, multiple ownership, ownership
transfer, friend contexts (analogous with friends in C++ [132]). These concepts
(apart from friend contexts) have appeared in some form in other systems cited
in this survey, but no system includes them all.

The evaluation of OIGJ [150] included a demonstration that their system
could express the factory and visitor patterns, and be used to type check the
standard java.util collections (except for clone methods) without refactoring

6 It was latter dubbed the “Hide Owner Pattern” [141].



Ownership Types: A Survey 49

and with only a small number of annotations. Sergey and Clarke’s Gradual
Ownership Types [127] were empirically evaluated by integrating ownership an-
notations into a non-generic version of Java’s collections framework, resulting
in the analysis of about 8,200 lines of code. Only on significant refactoring was
required to satisfy the type checker.

The second approach to evaluate Ownership Types is to semi-automatically
analyse a large code base—state-of-the-art ownership inference is not good
enough to do this fully automatically.

The unified ownership inference framework [79], implemented on top of the
Checker Framework,7 was evaluated experimentally on 110 kLOC, including ejc,
Eclipse IDE compiler, and javad, the Java class file disassembler. The results
indicated that that a large amount of non-trivial ownership annotations could
be applied in these production-quality applications.

For the Confined Types discipline, Grothoff et al. [69] analysed a large body
of code, consisting of over 46,000 classes. Their tool Kacheck/J uncovered 24%
confined classes and interfaces. In a language with generics (such as modern
versions of Java), this number would increase to 30%. After inferring tighter
access control modifiers, this number went up even further to 45%, meaning
that 45% of all package scoped classes were confined.

Vanciu and Abi-Antoun’s chapter [135] present a significant experimental eval-
uation of the use of Ownership Domains in practice based on Ownership Object
Graphs (OOGs), which incorporate ownership information into an object graph
to provide abstractions based on ownership and types. Their approach is based on
annotating several systems using Ownership Domains and using static analysis
to extract OOGs. They added annotations to 100 KLOC of real object-oriented
code. The chapter presents a vast range of statistics, which we won’t repeat
here. Their conclusion is that ownership can make a significant contribution to
expressing designs more abstractly.

The third approach to evaluating the potential of Ownership Types is to study
the object-graph structures of running programs. To this end, Potanin, Noble
and Biddle [118] employed a tool to take snapshots of the heaps of running pro-
grams and applied it to a large corpus of Java programs. The tool computed
various metrics on the collected heaps related to notions of uniqueness, owner-
ship and confinement, to determine how often such concepts appear in actual
running programs. Their results indicate that such concepts are often used in
practice—12% of objects were not uniquely referenced, ownership hierarchies
were on average five layers deep, and around one third of objects were referred
to only by classes in the same package.

9 Discussion and Conclusion

This chapter has presented a comprehensive survey of many variations, exten-
sions and applications of Ownership Types. It is time now to take a step back

7 http://types.cs.washington.edu/checker-framework/
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and consider what remains to be done in the future. What follows is based on cri-
ticism of Ownership Types, both published and otherwise, discussions at various
forums, and our own experience.

Designing good context-dependent constraints. Ownership Types sys-
tems need to be better tailored to specific problems domains. When doing this,
a statement of invariants or desired properties must come first, and the type sys-
tem needs to be designed around those within some framework that is capable
of linking types to guarantees. Systems such as Ownership Domains cater for
this to some degree, and various Confined Types variants have been specifically
tailored for given problem domains.

A lot of work already been done add to address the inflexibility of systems,
as witnessed by mechanisms such Ownership Domains’ separation of mechanism
from policy, External Uniqueness, owner-polymorphic methods, among others.
These should be considered as possible ingredients in future Ownership Types
systems, but it needs to be clear precisely what properties each new ingredient
enforces or violates, in relation to the properties that need to be enforced.

Better integration with dynamic mechanisms. Ownership Type sys-
tems should rely on and integrate better with mechanisms that dynamically
provide guarantees about run-time behaviour, such as synchronised methods or
locks. Just as ownership can be used to reduce the amount of synchronisation,
synchronisation strengthens temporary guarantees about exclusive ownership.

Larger scale analysis of ownership usage in existing code bases. More
thorough empirical analysis of ownership in real systems needs to be performed,
to capture both common usage patterns of ownership and how the use of own-
ership evolves across time, but also to determine and characterise common alias
patterns and problems.

Deployment in practice. Numerous case studies with various systems have
been carried out (Section 8), a lot of experience both positive in terms of us-
age patterns and negative in terms of weaknesses has been gathered, and this
experience has fed back into the design of better systems. Nevertheless, experi-
ence with Ownership Types would benefit significantly if it were used to build
real systems, ideally in a commercial setting. A proper scientific analysis of the
benefits should accompany this activity.

Reduced syntactic overhead. Ownership Types often impose a heavy syn-
tactic burden on programmers. Many developments in tool support, appropriate
default annotations (though we’ve said little about this), type inference and
other program analysis techniques, have helped reduce this load, but more soph-
isticated and more integrated approaches are needed. Such approaches may rely
heavily on static analysis techniques such as alias- and shape-analysis.

Address the library code problem. A problem common to any special-
ised type system (not just Ownership Types systems) is that library code is not
checked using the type system. This problem can be tackled from two directions.
One is to provide tool support and automatic analysis. The other is by using no-
tions such as gradual typing [127], which allow some of the code to be annotated
and checked statically, leaving other checks to run-time.
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Exploitation of the ideas to better support concurrent programming.
Due to the petering out of Moore’s law, multicore computers have become main-
stream, and increasing amounts of concurrent processing resources are available
on the desktop. Programs need to be concurrent to exploit these resources, but
reasoning about such programs, for humans and compilers alike, is hard, and an-
notations describing aliasing and ownership offer relief. More needs to be done to
make the ownership annotations fully exploitable by compilers, and sufficiently
powerful for programmers when they need them, and unobtrusive when they
don’t.
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