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Abstract
This paper presents a new static type system for multi-
threaded programs; well-typed programs in our system are
guaranteed to be free of data races and deadlocks. Our type
system allows programmers to partition the locks into a fixed
number of equivalence classes and specify a partial order
among the equivalence classes. The type checker then stat-
ically verifies that whenever a thread holds more than one
lock, the thread acquires the locks in the descending order.

Our system also allows programmers to use recursive tree-
based data structures to describe the partial order. For ex-
ample, programmers can specify that nodes in a tree must
be locked in the tree order. Our system allows mutations to
the data structure that change the partial order at runtime.
The type checker statically verifies that the mutations do not
introduce cycles in the partial order, and that the changing
of the partial order does not lead to deadlocks. We do not
know of any other sound static system for preventing dead-
locks that allows changes to the partial order at runtime.

Our system uses a variant of ownership types to prevent data
races and deadlocks. Ownership types provide a statically
enforceable way of specifying object encapsulation. Owner-
ship types are useful for preventing data races and deadlocks
because the lock that protects an object can also protect its
encapsulated objects. This paper describes how to use our
type system to statically enforce object encapsulation as well
as prevent data races and deadlocks. The paper also contains
a detailed discussion of different ownership type systems and
the encapsulation guarantees they provide.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs;
D.2.4 [Software Engineering]: Program Verification

General Terms
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1 Introduction
Multithreaded programming is becoming a mainstream pro-
gramming practice. But multithreaded programming is dif-
ficult and error prone. Multithreaded programs synchronize
operations on shared mutable data to ensure that the op-
erations execute atomically. Failure to correctly synchro-
nize such operations can lead to data races or deadlocks. A
data race occurs when two threads concurrently access the
same data without synchronization, and at least one of the
accesses is a write. A deadlock occurs when there is a cy-
cle of the form: ∀i ∈ {0..n− 1}, Threadi holds Locki and
Threadi is waiting for Lock(i+1) mod n. Synchronization er-
rors in multithreaded programs are among the most difficult
programming errors to detect, reproduce, and eliminate.

This paper presents a new static type system for multi-
threaded programs; well-typed programs in our system are
guaranteed to be free of data races and deadlocks. We re-
cently presented a static type system to prevent data races [7].
This paper extends the race-free type system to prevent both
data races and deadlocks. The basic idea is as follows. When
programmers write multithreaded programs, they already
have a locking discipline in mind. Our system allows pro-
grammers to specify this locking discipline in their programs
in the form of type declarations. Our system statically ver-
ifies that a program is consistent with its type declarations.

1.1 Deadlock Freedom
To prevent deadlocks, programmers partition all the locks
into a fixed number of lock levels and specify a partial order
among the lock levels. The type checker statically verifies
that whenever a thread holds more than one lock, the thread
acquires the locks in the descending order. Our type system
allows programmers to write code that is polymorphic in
lock levels. Programmers can specify a partial order among
formal lock level parameters using where clauses [17, 41].

Our system also allows programmers to use recursive tree-
based data structures to further order the locks within a
given lock level. For example, programmers can specify that
nodes in a tree must be locked in the tree order. Our sys-
tem allows mutations to the data structure that change the
partial order at runtime. The type checker uses an intra-
procedural intra-loop flow-sensitive analysis to statically ver-
ify that the mutations do not introduce cycles in the partial
order, and that the changing of the partial order does not
lead to deadlocks. We do not know of any other sound static
system for preventing deadlocks that allows changes to the
partial order at runtime.
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1.2 Data Race Freedom
To prevent data races, programmers associate every object
with a protection mechanism that ensures that accesses to
the object never create data races. The protection mecha-
nism of an object can specify either the mutual exclusion lock
that protects the object from unsynchronized concurrent ac-
cesses, or that threads can safely access the object without
synchronization because either 1) the object is immutable,
2) the object is accessible to a single thread, or 3) there is
a unique pointer to the object. Unique pointers are use-
ful to support object migration between threads. The type
checker statically verifies that a program uses objects only
in accordance with their declared protection mechanisms.

Our type system is significantly more expressive than previ-
ously proposed type systems for preventing data races [22,
4]. In particular, our type system lets programmers write
generic code to implement a class, then create different ob-
jects of the class that have different protection mechanisms.
We do this by introducing a way of parameterizing classes
that lets programmers defer the protection mechanism deci-
sion from the time when a class is defined to the times when
objects of that class are created.

1.3 Ownership Types
We use a variant of ownership types [14, 13] to prevent data
races and deadlocks. Ownership types provide a statically
enforceable way of specifying object encapsulation. Owner-
ship types are useful for preventing data races and deadlocks
because the lock that protects an object can also protect its
encapsulated objects. In recent previous work we presented
PRFJ [7], a type system that uses a variant of ownership
types to statically prevent data races. PRFJ is the first
type system to combine ownership types with unique point-
ers [38]. This enables PRFJ to express constructs that nei-
ther ownership types nor unique pointers alone can express.
PRFJ is also the first type system to combine ownership
types with effects clauses [37]. This paper extends PRFJ to
prevent both data races and deadlocks.

We have recently developed an ownership type system [6]
that statically enforces object encapsulation, while support-
ing subtyping and constructs like iterators. Other owner-
ship type systems either do not enforce object encapsulation
(they enforce weaker restrictions instead) [12, 7, 2], or they
are not expressive (they do not support subtyping and con-
structs like iterators) [14, 13]. We present a detailed dis-
cussion of ownership types in Section 7. We also describe
how the type system in this paper can be combined with the
type system in [6] to statically enforce object encapsulation
as well as prevent data races and deadlocks.

1.4 Contributions
This paper makes the following contributions:

• Static Type System to Prevent Deadlocks: This
paper presents a new static type system to prevent
deadlocks in Java programs. Our system allows pro-
grammers to partition all the locks into a fixed number
of lock levels and specify a partial order among the
lock levels. The type checker then statically verifies

that whenever a thread holds more than one lock, the
thread acquires the locks in the descending order.

• Formal Rules for Type Checking: To simplify the
presentation of key ideas behind our approach, this
paper formally presents our type system in the context
of a core subset of Java called Concurrent Java [7, 22,
23]. Our implementation, however, works for the whole
of the Java language.

• Type Inference Algorithm: Although our type sys-
tem is explicitly typed in principle, it would be onerous
to fully annotate every method with the extra type in-
formation that our system requires. Instead, we use
a combination of intra-procedural type inference and
well-chosen defaults to significantly reduce the num-
ber of annotations needed in practice. Our approach
permits separate compilation.

• Lock Level Polymorphism: Our type system al-
lows programmers write code that is polymorphic in
lock levels. Our system also allows programmers to
specify a partial order among formal lock level param-
eters using where clauses [17, 41]. This feature enables
programmers to write code in which the exact levels of
some locks are not known statically, but only some or-
dering constraints among the unknown lock levels are
known statically.

• Support for Condition Variables: In addition to
mutual exclusion locks, our type system prevents dead-
locks in the presence of condition variables. Our sys-
tem statically enforces the constraint that a thread can
invoke e.wait only if the thread holds no locks other
than the lock on e. Since a thread releases the lock
on e on executing e.wait, the above constraint implies
that any thread that is waiting on a condition variable
holds no locks. This in turn implies that there cannot
be a deadlock that involves a condition variable. Our
system thus prevents the nested monitor problem [36].

• Partial-Orders Based on Mutable Trees: Our
system allows programmers to use recursive tree-based
data structures to further order the locks within a given
lock level. Our system allows mutations that change
the partial order at runtime. The type checker uses
an intra-procedural intra-loop flow-sensitive analysis
to statically verify that the mutations do not intro-
duce cycles in the partial order, and that the changing
of the partial order does not lead to deadlocks.

• Partial-Orders Based on Monotonic DAGs: Our
system also allows programmers to use recursive DAG-
based data structures to order the locks within a given
lock level. DAG edges cannot be modified once ini-
tialized. Only newly created nodes may be added to a
DAG by initializing the newly created nodes to contain
DAG edges to existing DAG nodes.

• Runtime Ordering of Locks: Our system supports
imposing an arbitrary linear order at runtime on locks
within a given lock level. Our system also provides a
primitive to acquire such locks in the linear order.
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1 class Account {
2 int balance = 0;
3
4 int balance() accesses (this) { return balance; }
5 void deposit(int x) accesses (this) { balance += x; }
6 void withdraw(int x) accesses (this) { balance -= x; }
7 }
8
9 class CombinedAccount<readonly> {

10 LockLevel savingsLevel = new;
11 LockLevel checkingLevel < savingsLevel;
12 final Account<self:savingsLevel> savingsAccount
13 = new Account;
14 final Account<self:checkingLevel> checkingAccount
15 = new Account;
16
17 void transfer(int x) locks(savingsLevel) {
18 synchronized (savingsAccount) {
19 synchronized (checkingAccount) {
20 savingsAccount.withdraw(x);
21 checkingAccount.deposit(x);
22 }}}
23 int creditCheck() locks(savingsLevel) {
24 synchronized (savingsAccount) {
25 synchronized (checkingAccount) {
26 return savingsAccount.balance() +
27 checkingAccount.balance();
28 }}}
29 ...
30 }

Figure 1: Combined Account Example

• Experience: We have a prototype implementation of
our system in the context of Java. Our implementation
handles all the features of Java including threads, con-
structors, arrays, exceptions, static fields, interfaces,
runtime downcasts, and dynamic class loading. To
gain preliminary experience, we modified several Java
libraries and multithreaded server programs and imple-
mented them in our system. These programs exhibit
a variety of sharing patterns. We found that our sys-
tem is sufficiently expressive to support these sharing
patterns and requires little programming overhead.

1.5 Outline
The rest of this paper is organized as follows. Section 2
introduces our type system using two examples. Section 3
presents our basic type system for preventing data races and
deadlocks. Section 4 describes inference techniques that sig-
nificantly reduce programming overhead. Section 5 presents
extensions to our basic type system to support lock level
polymorphism, condition variables, tree-based partial orders,
DAG-based partial orders, and runtime ordering of locks.
Section 6 describes our experience in using our type system.
Section 7 contains a discussion of ownership types. Section 8
presents other related work and Section 9 concludes.

2 Examples
This section introduces our type system with two examples.
The later sections explain our type system in greater detail.

2.1 Combined Account Example
Figure 1 presents an example program implemented in our
type system. The program has an Account class and a Com-
binedAccount class.

1 class BalancedTree {
2 LockLevel l = new;
3 Node<self:l> root = new Node;
4 }
5
6 class Node<self:k> {
7 tree Node<self:k> left;
8 tree Node<self:k> right;
9
10 // this this
11 // / \ / \
12 // ... x ... v
13 // / \ --> / \
14 // v y u x
15 // / \ / \
16 // u w w y
17
18 synchronized void rotateRight() locks(this) {
19 final Node x = this.right; if (x == null) return;
20 synchronized (x) {
21 final Node v = x.left; if (v == null) return;
22 synchronized (v) {
23 final Node w = v.right;
24 v.right = null;
25 x.left = w;
26 this.right = v;
27 v.right = x;
28 }}}
29 ...
30 }

Figure 2: Tree Example

To prevent data races, programmers associate every object
in our system with a protection mechanism. In the example,
the CombinedAccount class is declared to be immutable. A
CombinedAccount may not be modified after initialization.
The Account class is generic—different Account objects may
have different protection mechanisms. The CombinedAc-
count class contains two Account fields—savingsAccount and
checkingAccount. The key word self indicates that these two
Account objects are protected by their own locks. The type
checker statically ensures that a thread holds the locks on
these Account objects before accessing the Account objects.

To prevent deadlocks, programmers associate every lock in
our system with a lock level. In the example, the Com-
binedAccount class declares two lock levels—savingsLevel and
checkingLevel. Lock levels are purely compile-time entities—
they are not preserved at runtime. In the example, check-
ingLevel is declared to rank lower than savingsLevel in the
partial order of lock levels. The checkingAccount belongs
to checkingLevel, while the savingsAccount belongs to sav-
ingsLevel. The type checker statically ensures that threads
acquire these locks in the descending order of lock levels.

Methods in our system may contain accesses clauses to spec-
ify assumptions that hold at method boundaries. The meth-
ods of the Account class each have an accesses clause that
specifies that the methods access the this Account object
without synchronization. To prevent data races, the callers
of an Account method must hold the lock that protects the
corresponding Account object before the callers can invoke
the Account method. Without the accesses clauses, the Ac-
count methods would not have been well-typed.

Methods in our system may also contain locks clauses. The
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P ::= defn* e
defn ::= class cn extends c body

c ::= cn | Object
body ::= {field* meth*}
meth ::= t mn(arg* ) {e}
field ::= [final]opt t fd = e
arg ::= [final]opt t x

t ::= c | int | boolean

e ::= new c | x | x = e | e.fd | e.fd = e | e.mn(e* ) |
e;e | let (arg = e) in {e} | if (e) then {e} |
synchronized (e) in {e} | fork (x* ) {e}

cn ∈ class names
fd ∈ field names

mn ∈ method names
x ∈ variable names

Figure 3: Grammar for Concurrent Java

methods of the CombinedAccount class contain a locks clause
to indicate to callers that they may acquire locks that belong
to lock levels savingsLevel or lower. To prevent deadlocks, the
type checker statically ensures that callers of CombinedAc-
count methods only hold locks that are of greater lock levels
than savingsLevel. Like the accesses clauses, the locks clauses
are useful to enable separate compilation.

2.2 Tree Example
Figure 2 presents part of a BalancedTree implemented in our
type system. A BalancedTree is a tree of Nodes. Every Node
object is declared to be protected by its own lock. To prevent
data races, the type checker statically ensures that a thread
holds the lock on a Node object before accessing the Node
object. The Node class is parameterized by the formal lock
level k. The Node class has two Node fields left and right.
The Nodes left and right also belong to the same lock level k.
Our system allows programmers to use recursive tree-based
data structures to further order the locks that belong to the
same lock level. In the example, the key word tree indicates
that the Nodes left and right are ordered lower than the this
Node object in the partial order. To prevent deadlocks, the
type checker statically verifies that the rotateRight method
acquires the locks on Nodes this, x, and v in the tree order.
The rotateRight method in the example performs a standard
rotation operation on the tree to restore the tree balance.
The type checker uses an intra-procedural intra-loop flow-
sensitive analysis to statically verify that the mutations do
not introduce cycles in the partial order, and that the chang-
ing of the partial order does not lead to deadlocks.

Our type system statically verifies the absence of both data
races and deadlocks in the above examples.

3 Basic Type System
This section describes our basic type system. To simplify the
presentation of key ideas behind our approach, we describe
our type system formally in the context of a core subset of
Java [24] known as Concurrent Java [7, 22]. Our implemen-
tation, however, works for the whole of the Java language.
Concurrent Java is an extension to a sequential subset of
Java known as Classic Java [23], and has much of the same
type structure and semantics as Classic Java. Figure 3 shows
the grammar for Concurrent Java.

thisThread

o1 o2

o3

Thread1 Objects Potentially Shared ObjectsThread2 Objects

thisThread

o4
o6

o7

o8

o5 o9

o10

Figure 4: An Ownership Relation

O1. The owner of an object does not change over time.

O2. The ownership relation forms a forest of rooted
trees, where the roots can have self loops.

O3. The necessary and sufficient condition for a thread
to access to an object is that the thread must hold
the lock on the root of the ownership tree that the
object belongs to.

O4. Every thread implicitly holds the lock on the cor-
responding thisThread owner. A thread can there-
fore access any object owned by its corresponding
thisThread owner without any synchronization.

Figure 5: Ownership Properties

Each object in Concurrent Java has an associated lock that
has two states—locked and unlocked—and is initially un-
locked. The expression fork(x* ) {e} spawns a new thread
with arguments (x* ) to evaluate e. The evaluation is per-
formed only for its effect; the result of e is never used. Note
that the Java mechanism of starting threads using code of
the form {Thread t=...; t.start();} can be expressed equiva-
lently in Concurrent Java as {fork(t) {t.start();}}. The ex-
pression synchronized (e1) in {e2} works as in Java. e1 should
evaluate to an object. The evaluating thread holds the lock
on object e1 while evaluating e2. The value of the synchro-
nized expression is the result of e2. While one thread holds
a lock, any other thread that attempts to acquire the same
lock blocks until the lock is released. A newly forked thread
does not inherit locks held by its parent thread.

A Concurrent Java program is a sequence of class definitions
followed by an initial expression. A predefined class Object
is the root of the class hierarchy. Each variable and field
declaration in Concurrent Java includes an initialization ex-
pression and an optional final modifier. If the modifier is
present, then the variable or field cannot be updated after
initialization. Other Concurrent Java constructs are similar
to the corresponding constructs in Java.

3.1 Type System to Prevent Data Races
This section presents our type system for preventing data
races in the context of Concurrent Java. Programmers asso-
ciate every object with a protection mechanism that ensures
that accesses to the object never create data races. Pro-
grammers specify the protection mechanism for each object
as part of the type of the variables that point to that ob-
ject. The type can specify either the mutual exclusion lock
that protects the object from unsynchronized concurrent ac-
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defn ::= class cn〈owner formal* 〉 extends c body
c ::= cn〈owner+〉 | Object〈owner〉

owner ::= formal | self | thisThread | efinal
meth ::= t mn(arg* ) accesses (efinal* ) {e}
efinal ::= e

formal ::= f

f ∈ owner names

Figure 6: Grammar Extensions for Race-Free Java

cesses, or that threads can safely access the object without
synchronization because either 1) the object is immutable,
2) the object is accessible to a single thread, or 3) the vari-
able contains the unique pointer to the object. Unique point-
ers are useful to support object migration between threads.
The type checker then uses these type specifications to stat-
ically verify that a program uses objects only in accordance
with their declared protection mechanisms.

This section only describes our basic type system that han-
dles objects protected by mutual exclusion locks and thread-
local objects that can be accessed without synchronization.
Our race-free type system also supports unsynchronized ac-
cesses to immutable objects and objects with unique pointers
that can migrate between threads. Our race-free type sys-
tem is described in greater detail in [7]. The key to our basic
race-free type system is the concept of object ownership. Ev-
ery object in our system has an owner. An object can be
owned by another object, by itself, or by a special per-thread
owner called thisThread. Objects owned by thisThread, ei-
ther directly or transitively, are local to the corresponding
thread and cannot be accessed by any other thread. Fig-
ure 4 presents an example ownership relation. We draw an
arrow from object x to object y in the figure if object x owns
object y. Our type system statically verifies that a program
respects the ownership properties shown in Figure 5.1

Figure 6 shows how to obtain the grammar for Race-Free
Java by extending the grammar for Concurrent Java. Fig-
ure 7 shows a TStack program in Race-Free Java. For sim-
plicity, all the examples in this paper use an extended lan-
guage that is syntactically closer to Java. A TStack is a stack
of T objects. A TStack is implemented using a linked list. A
class definition in Race-Free Java is parameterized by a list
of owners. This parameterization helps programmers write
generic code to implement a class, then create different ob-
jects of the class that have different protection mechanisms.
In Figure 7, the TStack class is parameterized by thisOwner
and TOwner. thisOwner owns the this TStack object and
TOwner owns the T objects contained in the TStack. In gen-
eral, the first formal parameter of a class always owns the this
object. In case of s1, the owner thisThread is used for both
the parameters to instantiate the TStack class. This means
that the main thread owns TStack s1 as well as all the T ob-
jects contained in the TStack. In case of s2, the main thread
owns the TStack but the T objects contained in the TStack
own themselves. The ownership relation for the TStack ob-
jects s1 and s2 is depicted in Figure 8 (assuming the stacks
contains three elements each). This example illustrates how

1In our complete race-free type system [7], the owner of an
object can change if there is a unique pointer to the object.

1 // thisOwner owns the TStack object
2 // TOwner owns the T objects in the stack.
3
4 class TStack<thisOwner, TOwner> {
5 TNode<this, TOwner> head = null;
6
7 T<TOwner> pop() accesses (this) {
8 if (head == null) return null;
9 T<TOwner> value = head.value();
10 head = head.next();
11 return value;
12 }
13 ...
14 }
15 class TNode<thisOwner, TOwner> {
16 T<TOwner> value;
17 TNode<thisOwner, TOwner> next;
18
19 T<TOwner> value() accesses (this) {
20 return value;
21 }
22 TNode<thisOwner, TOwner> next() accesses (this) {
23 return next;
24 }
25 ...
26 }
27 class T<thisOwner> { int x=0; }
28
29 TStack<thisThread, thisThread> s1 =
30 new TStack<thisThread, thisThread>;
31 TStack<thisThread, self> s2 =
32 new TStack<thisThread, self>;

Figure 7: Stack of T Objects in Race-Free Java

s1.head
(TNode) (TNode)

s1.head.next s2.head.next.next
(TNode)

s1.head.next.next
(TNode)

s2.head.next.value
s2.head.value s2.head.next.next.value

(T)
(T)

(T)

s2.head.nexts2.head
(TNode) (TNode)

s2 (TStack)

thisThread

s1 (TStack)

s1.head.value
(T) s1.head.next.value

s1.head.next.next.value

(T)
(T)

Figure 8: Ownership Relation for TStacks s1 and s2

different TStacks with different protection mechanisms can
be created from the same TStack implementation.

In Race-Free Java, methods can contain accesses clauses to
specify the assumptions that hold at method boundaries.
Methods specify the objects they access that they assume are
protected by externally acquired locks. Callers are required
to hold the locks on the root owners of the objects specified
in the accesses clause before they invoke a method. In the
example, the value and next methods in the TNode class
assume that the callers hold the lock on the root owner of
the this TNode object. Without the accesses clause, the value
and next methods would not have been well-typed.

3.2 Type System to Prevent Deadlocks
This section presents our type system for preventing both
data races and deadlocks in the context of Concurrent Java.
To prevent deadlocks, programmers specify a partial order
among all the locks. The type checker statically verifies that
whenever a thread holds more than one lock, the thread
acquires the locks in the descending order. This section only
describes our basic type system that allows programmers
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body ::= {level* field* meth*}
level ::= LockLevel l = new | LockLevel l < cn.l* > cn.l*

owner ::= formal | self:cn.l | thisThread | efinal
meth ::= t mn(arg* ) accesses (efinal* ) locksclause {e}

locksclause ::= locks (cn.l* [lock ]opt)
lock ::= efinal

l ∈ lock level names

Figure 9: Grammar Extensions for Deadlock-Free Java

L1. The lock levels form a partial order.

L2. Objects that own themselves are locks. Every lock
belongs to some lock level. The lock level of a lock
does not change over time.

L3. The necessary and sufficient condition for a thread
to acquire a new lock l is that the levels of all the
locks that the thread currently holds are greater
than the level of l.

L4. A thread may also acquire a lock that it already
holds. The lock acquire operation is redundant in
that case.

Figure 10: Lock Level Properties

to partition the locks into a fixed number of equivalence
classes and specify a partial order among the equivalence
classes. Our system also allows programmers to use recursive
tree-based data structures to describe the partial order—we
describe extensions to our basic type system in Section 5.

Figure 9 describes how to obtain the grammar for Deadlock-
Free Java by extending the grammar for Race-Free Java.
We call the resulting language Safe Concurrent Java. Safe
Concurrent Java allows programmers to define lock levels in
class definitions. A lock level is like a static field in Java—
a lock level is a per-class entity rather than a per-object
entity. But unlike static fields in Java, lock levels are used
only for compile-time type checking and are not preserved
at runtime. Programmers can specify a partial order among
the lock levels using the < and > syntax in the lock level
declarations. Since a program has a fixed number of lock
levels, our type checker can statically verify that the lock
levels do indeed form a partial order. Every lock in Safe
Concurrent Java belongs to some lock level. Note that the
set of locks in Race-Free Java is exactly the set of objects
that are the roots of ownership trees. A lock is, therefore,
an object that has self as its first owner. In Safe Concurrent
Java, every self owner is augmented with the lock level that
the corresponding lock belongs to. The properties of our
lock levels are summarized in Figure 10.

In the example shown in Figure 1, the CombinedAccount
class defines two lock levels—savingsLevel and checkingLevel.
checkingLevel is declared to be less than savingsLevel. A Com-
binedAccount contains a savingsAccount and a checkingAc-
count. These objects have self as their first owners—these
objects are therefore locks. The savingsAccount is declared
to belong to savingsLevel while the checkingAccount is de-
clared to belong to checkingLevel. In the example, both the
methods of CombinedAccount acquire locks in the descending

1 class Vector<self:Vector.l, elementOwner> {
2 LockLevel l = new;
3
4 int elementCount = 0;
5 ...
6 int size() locks (this) {
7 synchronized (this) {
8 return elementCount;
9 }}
10
11 boolean isEmpty() locks (this) {
12 synchronized (this) {
13 return (size() == 0);
14 }}
15 }

Figure 11: Self-Synchronized Vector

order by acquiring the lock on savingsAccount before acquir-
ing the lock on checkingAccount.

Methods in Safe Concurrent Java can have locks clauses
in addition to accesses clauses to specify assumptions at
method boundaries. A locks clause can contain a set of lock
levels. These lock levels are the levels of locks that the cor-
responding method may acquire. To ensure that a program
is free of deadlocks, a thread that calls the method can only
hold locks that are of a higher level than the levels specified
in the locks clause. In the example in Figure 1, both the
methods of CombinedAccount contain a locks(savingsLevel)
clause. A thread that invokes either of these methods can
only hold locks whose level is greater than savingsLevel.

A locks clause can also contain a lock in addition to lock lev-
els. If a locks clause contains an object l, then a thread that
invokes the corresponding method may already hold the lock
on object l. Re-acquiring the lock within the method would
be redundant in that case. This is useful to support the
case where a synchronized method of a class calls another
synchronized method of the same class. Figure 11 shows
part of a self-synchronized Vector implemented in Safe Con-
current Java.2 A self-synchronized class is a class that has
self as its first owner instead of a formal owner parameter.
Methods of a self-synchronized class can assume that the this
object owns itself—the methods can therefore synchronize
on this and access the this object without requiring external
locks using the accesses clause. In the example, the isEmpty
method acquires the lock on this and invokes the size method
which also acquires the lock on this. This does not violate
our condition that locks must be acquired in the descending
order because the second lock acquire is redundant.

3.3 Rules for Type Checking
The previous sections presented the grammar for Safe Con-
current Java in Figures 3, 6, and 9. This section describes
some of the important rules for type checking. The full set
of rules and the complete grammar can be found in the ap-
pendix. The core of our type system is a set of rules for
reasoning about the typing judgment: P ; E; ls; lmin ` e : t.
P , the program being checked, is included here to provide
information about class definitions. E is an environment
providing types for the free variables of e. ls describes the
set of locks held before e is evaluated. lmin is the minimum

2As we mentioned before, all the examples in this paper use
an extended language that is syntactically closer to Java.
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level among the levels of all the locks held before e is evalu-
ated. t is the type of e. The judgment P ; E ` e : t states
that e is of type t, while the judgment P ; E; ls; lmin ` e : t
states that e is of type t provided ls contains the necessary
locks to safely evaluate e and lmin is greater that the levels
of all the locks that are newly acquired when evaluating e.

A typing environment E is defined as follows, where f is
a formal owner parameter of a class and locksclause is the
locks clause of a method.

E ::= ∅ | E, [final]opt t x | E, owner f | E, locksclause

A lock set ls is defined as follows, where RO(x) is the root
owner of x.

ls ::= thisThread | ls, lock | ls, RO(efinal)

A minimum lock level lmin is defined as follows, where
LUB(cn1.l1 ... cnk.lk) > cni.li ∀i=1..k. Note that LUB(...)
is not computed—it is just an expression used as such for
type checking. The lock level ∞ denotes that no locks are
currently held.

lmin ::= ∞ | cn.l | LUB(cn1.l1 ... cnk.lk)

The rule for acquiring a new lock using synchronized e1 in e2

checks that e1 is a lock of some level cn.l that is less than
lmin. If the enclosing method has a locks clause that contains
a lock l, then the rule checks that either e1 is the same object
as l, or the level of e1 is less than the level of l. The rule
then type checks e2 in an extended lock set that includes e1

and with lmin set to cn.l. A lock is a final expression that
owns itself. A final expression is either a final variable, or a
field e.fd where e is a final expression and fd is a final field.

[EXP SYNC]

P ; E `final e1 : cn′〈self:cn.l ...〉 P ` cn.l < lmin

(E = E1, locks(... l), E2) =⇒ (P ; E ` cn.l < level(l)) ∨ (l = e1)

P ; E; ls, e1; cn.l ` e2 : t2

P ; E; ls; lmin ` synchronized e1 in e2 : t2

Before we proceed further with the rules, we give a formal
definition for RootOwner(e). The root owner of an expres-
sion e that points to an object is the root of the ownership
tree to which the object belongs. It could be thisThread, or
an object that owns itself.

[ROOTOWNER THISTHREAD]

P ; E ` e : cn〈thisThread o∗〉
P ; E ` RootOwner(e) = thisThread

[ROOTOWNER SELF]

P ; E ` e : cn〈self:cn′.l′ o∗〉
P ; E ` RootOwner(e) = e

[ROOTOWNER FINAL TRANSITIVE]

P ; E ` e : cn〈o1..n〉
P ; E `final o1 : c1 P ; E ` RootOwner(o1) = r

P ; E ` RootOwner(e) = r

If the owner of an expression is a formal owner parameter,
then we cannot determine the root owner of the expression
from within the static scope of the enclosing class. In that
case, we define the root owner of e to be RO(e).

[ROOTOWNER FORMAL]

P ; E ` e : cn〈o1..n〉
E = E1, owner o1, E2

P ; E ` RootOwner(e) = RO(e)

The rule for accessing field e.fd checks that e is a well-typed
expression of some type cn〈o1..n〉, where o1..n are actual
owner parameters. It verifies that the class cn with for-
mal parameters f1..n declares or inherits a field fd of type
t. If the field is not final, the thread must hold the lock on
the root owner of e. Since t is declared inside the class, it
might contain occurrences of this and the formal class pa-
rameters. When t is used outside the class, the rule renames
this with the expression e, and the formal parameters with
their corresponding actual parameters.

[EXP REF]

P ; E; ls; lmin ` e : cn〈o1..n〉 P ; E ` RootOwner(e) = r

(P ` (t fd) ∈ cn〈f1..n〉) ∧ (r ∈ ls)

∨ (P ` (final t fd) ∈ cn〈f1..n〉)
P ; E; ls; lmin ` e.fd : t[e/this][o1/f1]..[on/fn]

The rule for invoking a method checks that the arguments
are of the right type and that the thread holds the locks on
the root owners of all final expressions in the accesses clause
of the method. The rule ensures that lmin is greater than all
the levels specified in the locks clause of the method. If the
locks clause contains a lock l, the rule ensures that either the
level of l is less than lmin, or the level of l is equal to lmin

and l is in the lock set (in which case re-acquiring l within
the method is redundant). The rule appropriately renames
expressions and types used outside their declared context.

[EXP INVOKE]

Renamed(α)
def
= α[e/this][o1/f1]..[on/fn][e1/y1]..[ek/yk]

P ; E; ls; lmin ` e : cn〈o1..n〉
P ` (t mn(tj yj

j∈1..k) accesses(e′∗) locks(cn.l∗ [l ]opt) ...)

∈ cn〈f1..n〉
P ; E; ls; lmin ` ej : Renamed(tj)

P ; E ` RootOwner(Renamed(e′i)) = r′i r′i ∈ ls

P ` cni.li < lmin lR = Renamed(l)

P ; E ` (level(lR) < lmin) ∨ (level(lR) = lmin) ∧ (lR ∈ ls)

P ; E; ls; lmin ` e.mn(e1..k) : Renamed(t)

217



The rule for type checking a method assumes that the thread
holds the locks on the root owners of all the final expressions
specified in the accesses clause. The rules also assumes that
for each lock held by the thread, the level of the lock is
greater than all the levels specified in the locks clause. If
the locks clause of the method contains a lock l, the rule
assumes that for each lock held by the thread, either the
level of the lock is greater than the level of l, or the lock is
the same object as l. The rule then type checks the method
body under these assumptions.

[METHOD]
E′ = E, arg1..n, locks(cnj .lj

j∈1..k [l ]opt)

P ; E′ `final ei : ti P ; E′ ` RootOwner(ei) = ri

ls = thisThread, r1..r

lmin = LUB(cnj .lj
j∈1..k)

P ; E′; ls; lmin ` e : t

P ; E ` t mn(arg1..n) accesses(e1..r)

locks(cnj .lj
j∈1..k [l ]opt) {e}

3.4 Soundness of the Type System
Our type checking rules ensure that for a program to be
well-typed, the program respects the properties described in
Figures 5 and 10. In particular, our type checking rules en-
sure that a thread can read or write an object only if the
thread holds the lock on the root owner of that object, and
that whenever a thread holds more than one lock, the thread
acquires the locks in the descending order. The properties
in Figure 5 imply that program is free of data races, while
the properties in Figure 10 imply that a program is free of
deadlocks. Well-typed programs in our system are there-
fore guaranteed to be free of both data races and deadlocks.
A complete syntactic proof [48] of type soundness can be
constructed by defining an operational semantics for Safe
Concurrent Java (by extending the operational semantics of
Classic Java [23]) and then proving that well-typed programs
do not reach an error state and that the generalized subject
reduction theorem holds for well-typed programs. The sub-
ject reduction theorem states that the semantic interpreta-
tion of a term’s type is invariant under reduction. The proof
is straight-forward but tedious, so it is omitted here.

3.5 Runtime Overhead
The system described so far is a purely static type system.
The ownership relations and the lock levels are used only
for compile-time type checking and need not be preserved at
runtime. Consequently, Safe Concurrent Java programs have
no runtime overhead when compared to regular Concurrent
Java programs. In fact, one way to compile and run a Safe
Concurrent Java program is to convert it into a Concurrent
Java program after type checking, by removing the type pa-
rameters, the lock level declarations, the accesses clauses,
and the locks clauses from the program. However, the extra
type information available in our system can be used to en-
able program optimizations. For example, objects that are
known to be thread-local can be allocated in a thread-local
heap instead of the global heap. A thread-local heap can be
separately garbage collected, and when the thread dies, the
space in a thread-local heap can be reclaimed at once.

1 class A<oa1, oa2> {...};
2 class B<ob1, ob2, ob3> extends A<ob1, ob3> {...};
3
4 class C<oc1> {
5 void m(B<this, oc1, thisThread> b) {
6 A a1;
7 B b1;
8 b1 = b;
9 a1 = b1;
10 }
11 }

Figure 12: An Incompletely Typed Method

4 Type Inference
Although our type system is explicitly typed in principle, it
would be onerous to fully annotate every method with the
extra type information that our system requires. Instead,
we use a combination of inference and well-chosen defaults
to significantly reduce the number of annotations needed in
practice. We emphasize that our approach to inference is
purely intra-procedural and we do not infer method signa-
tures or types of instance variables. Rather, we use a default
completion of partial type specifications in those cases. This
approach permits separate compilation.

4.1 Intra-Procedural Type Inference
In our system, it is usually unnecessary to explicitly aug-
ment the types of method-local variables with their owner
parameters. A simple inference algorithm can automatically
deduce the owner parameters for otherwise well-typed pro-
grams. We illustrate our algorithm with an example. Fig-
ure 12 shows a class hierarchy and an incompletely-typed
method m. The types of local variables a1 and b1 inside m do
not contain their owner parameters explicitly. The inference
algorithm works by first augmenting such incomplete types
with the appropriate number of distinct, unknown owner
parameters. For example, since a1 is of type A, the algo-
rithm augments the type of a1 with two owner parameters.
Figure 13 shows augmented types for the example in Fig-
ure 12. The goal of the inference algorithm is to find known
owner parameters that can be used in place of the unknown
parameters such that the program becomes well-typed.

The inference algorithm treats the body of the method as a
bag of statements. The algorithm works by collecting con-
straints on the owner parameters for each assignment or
function invocation in the method body. Figure 14 shows
the constraints imposed by Statements 8 and 9 in the ex-
ample in Figure 12. Note that all the constraints are of
the form of equality between two owner parameters. Con-
sequently, the constraints can be solved using the standard
Union-Find algorithm in almost linear time [15]. If the so-
lution is inconsistent, that is, if any two known owner pa-
rameters are constrained to be equal to one another by the
solution, then the inference algorithm returns an error and
the program does not type check. Otherwise, if the solution
is incomplete, that is, if there is no known parameter that is
equal to an unknown parameter, then the algorithm replaces
all such unknown parameters with thisThread.

4.2 Anonymous Owners
Consider the code in Figure 7. The TStack class is parame-
terized by thisOwner and TOwner. However, the owner pa-
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6 A<x1, x2> a1;
7 B<x3, x4, x5> b1;

Figure 13: Types Augmented With Unknown Owners

Statement 8 ==> x3 = this, x4 = oc1, x5 = thisThread
Statement 9 ==> x1 = x3, x2 = x5

Figure 14: Constraints on Unknown Owners

rameter thisOwner is not used in the static scope where it is
visible. Similarly, the owner parameter thisOwner for class T
is not used in the body of class T. If a class body or a method
body does not use an owner parameter, it is unnecessary to
name the parameter. Our system allows programmers to use
〈-〉 for such anonymous owner parameters. For example, the
TStack class can be declared as class TStack〈-,TOwner〉 {...}.
The T class can be declared as class T〈-〉 {...}.

4.3 Default Types
In addition to supporting intra-procedural type inference
and anonymous owners, our system provides well-chosen de-
faults to reduce the number of annotations needed in many
common cases. We are also considering allowing user-defined
defaults to cover specific sharing patterns that might occur
in user code. The following are some default types currently
provided by our system.

If a class is declared to be default-single-threaded, our sys-
tem adds the following default type annotations wherever
they are not explicitly specified by the programmer. If the
type of any instance variable in the class or any method ar-
gument or return value is not explicitly parameterized, the
system augments the type with an appropriate number of
thisThread owner parameters. If a method in the class does
not contain an accesses or locks clause, the system adds an
empty accesses or locks clause to the method. With these de-
fault types, single-threaded programs require no extra type
annotations.

If a class is declared to be default-self-synchronized, our sys-
tem adds the following default type annotations wherever
they are not explicitly specified by the programmer. If the
type of any instance variable is not explicitly parameterized,
the system augments the type with an appropriate number of
this owner parameters. If the type of any method argument
or return value is not explicitly parameterized, the system
augments the type with fresh formal owner parameters. If a
method in the class does not contain an accesses clause, the
system adds an accesses clause that contains all the method
arguments. If a method in the class does not contain a locks
clause, the system adds a locks(this) clause. With these de-
fault types, many self-synchronized classes require almost no
extra type annotations.

5 Extensions to the Basic Type System
This section presents extensions our basic type system.

5.1 Lock Level Polymorphism
This section describes how our type system supports poly-
morphism in lock levels. In the type system described in

defn ::= class cn〈owner formal* 〉 whereclause
extends c body

formal ::= f | self:v
locklevel ::= cn.l | v

whereclause ::= where (locklevel > locklevel)*
locksclause ::= locks (locklevel* [lock ]opt)

v ∈ formal lock level names

Figure 15: Grammar Extensions for Level Polymorphism

1 class Stack<self:v, elementOwner> where (v > Vector.l) {
2 Vector<self:Vector.l, elementOwner> vec = new Vector;
3 ...
4 int size() locks(this) {
5 synchronized (this) {
6 return vec.size();
7 }}
8 }

Figure 16: Self-Synchronized Stack Using Vector

Section 3, the level of each lock is known at compile-time.
But programmers may sometimes want to write code where
the exact levels of some locks are not known statically—only
some ordering constraints among the unknown lock levels are
known statically. Lock level polymorphism enables this kind
of programming. To simplify the presentation, this section
describes how our type system supports lock level polymor-
phism in the context of Safe Concurrent Java. Figure 15
shows the grammar extensions to Safe Concurrent Java to
support lock level polymorphism.

Programmers can parameterize classes with formal lock level
parameters in addition to formal owner parameters. Pro-
grammers can specify ordering constraints among the lock
level parameters using where clauses [17, 41]. Figure 16
shows part of a self-synchronized Stack implemented using
the self-synchronized Vector in Figure 11. The lock level of
the this Stack object is a formal parameter v. The where
clause constrains v to be greater than Vector.l. It is there-
fore legal for the synchronized Stack.size method to call the
synchronized Vector.size method. The type checker verifies
that the program acquires the locks in the descending order.

5.2 Condition Variables
This section describes how our system prevents deadlocks in
the presence of condition variables. Java provides condition
variables in the form of wait and notify methods on Object.
Since a thread can wait on a condition variable as well as
on a lock, it is possible to have a deadlock that involves
condition variables as well as locks. There is no simple rule
like the ordering rule for locks that can avoid this kind of
deadlock. The lock ordering rule depends on the fact that a
thread must be holding a lock to keep another thread waiting
for that lock. In the case of conditions, the thread that will
notify cannot be distinguished in such a simple way.

To simplify the presentation, this section describes how our
type system handles condition variables in the context of
Safe Concurrent Java. Figure 17 shows the grammar exten-
sions to Safe Concurrent Java to support condition variables.
The expression e.wait and e.notify are similar to the wait and
notifyAll methods in Java. e must be a final expression that
evaluates to an object, and the current thread must hold
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locksclause ::= locks ([∞]opt locklevel* [lock ]opt)

e ::= ... | e.wait | e.notify

Figure 17: Grammar Extensions for Condition Variables

field ::= [final]opt [tree]opt t fd = e

Figure 18: Grammar Extensions for Tree Ordering

the lock on e. On executing wait, the current thread releases
the lock on e and suspends itself. The thread resumes exe-
cution when some other thread invokes notify on the same
object. The thread re-acquires the lock on e before resuming
execution after wait.

To prevent deadlocks in the presence of condition variables,
our system enforces the following constraint. A thread can
invoke e.wait only if the thread holds no locks other than the
lock on e. Since a thread releases the lock on e on executing
e.wait, the above constraint implies that any thread that
is waiting on a condition variable holds no locks. This in
turn implies that there cannot be a deadlock that involves
a condition variable. To statically verify that a program
respects the above constraint, our type system requires that
any method m that contains a call to e.wait must have a
locks (∞) clause or a locks (∞ e) clause. The former locks
clause indicates that a thread holds no locks when it invokes
m, while the later locks clause indicates that a thread can
only hold the lock on e when it invokes m. Within the
method, our type checker ensures when type checking e.wait
that the lock set only contains the lock on e. The rules for
type checking are shown below.

[EXP WAIT]

E = E1, locks(∞ [e]opt), E2

P ; E `final e ls = {e}
P ; E; ls; lmin ` e.wait : int

[EXP NOTIFY]
P ; E `final e e ∈ ls

P ; E; ls; lmin ` e.notify : int

5.3 Tree-Based Partial Orders
This section describes how our type system supports tree-
based partial orders. Figure 18 shows the grammar exten-
sions to Safe Concurrent Java to support tree-based partial
orders. Programmers can declare fields in objects to be tree
fields. If object x has a tree field fd that contains a pointer
to object y, we say that there is a tree edge fd from x to y.
x is the parent of y and y is a child of x. Our type system
ensures that the graph induced by the set of all tree edges in
the heap is indeed a forest of trees. Any data structure that
has a tree backbone can be used to describe the partial order
in our system. This includes doubly linked lists, trees with
parent pointers, threaded trees, and balanced search trees.

Locks that belong to the same lock level are further ordered

Stmt Information in Environment After
# Checking Statement in Figure 2

23 x=this.right
v=x.left
w=v.right

24 x=this.right w is Root this not in Tree(w)
v=x.left x not in Tree(w)

v not in Tree(w)
25 x=this.right v is Root this not in Tree(v)

w=x.left x not in Tree(v)
w not in Tree(v)

26 v=this.right x is Root this not in Tree(x)
w=x.left v not in Tree(x)

27 v=this.right
w=x.left
x=v.right

Figure 19: Illustration of Flow-Sensitive Analysis

according to the tree order. Suppose x and y are two locks
(that is, they are objects that own themselves) that belong
to the same lock level. Suppose a thread t holds the lock on
x and reads a tree field fd of x to get a pointer to y. So y
is a child of x. Our type system then allows thread t to also
acquire the lock on y while holding the lock on x. Note that
as long as t holds the lock on x, no other thread can modify
x, so no other thread can make y not a child of x. The type
checking rule is shown below, assuming that for every pair of
final variables x and y, environment E contains information
about whether the objects x and y are related by tree edges.

[EXP SYNC CHILD]

∀y∈ls P ; E ` (level(y) > lmin) ∨ (y is an ancestor of x)

x′ ∈ ls P ; E ` x is a child of x′

P ; E ` level(x) = level(x′) = lmin

P ; E; ls, x; lmin ` e : t

P ; E; ls; lmin ` synchronized x in e : t

Figure 2 presents an example with a tree-based partial order.
The Node class is self-synchronized, that is, the this Node
object owns itself. The lock level of the this Node object
is the formal parameter k. A Node has two tree fields left
and right. The Nodes left and right own themselves and also
belong to lock level k. Nodes left and right are therefore
ordered less than the this Node object in the partial order.
In the example, the rotateRight method acquires the locks
on Nodes this, x, and v in the tree order.

Our type system allows a limited set of mutations on trees
at runtime. The type checker uses a simple intra-procedural
intra-loop flow-sensitive analysis to check that the mutations
do not introduce cycles in the trees. We illustrate our flow-
sensitive analysis using the example in Figure 2. The type
checker keeps the following additional information in the en-
vironment E for every pair of final variables x and y: 1)
If the objects x and y are related by a tree edge, 2) If x
is the root of a tree, and 3) If x is a root and y is not in
the tree rooted at x. Figure 19 contains the information
stored in the environment after the type checking of vari-
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field ::= [final]opt [tree]opt t fd = e | final dag t fd = e

Figure 20: Grammar Extensions for DAG Ordering

defn ::= class cn〈owner formal* 〉 whereclause
extends c [dynamic]opt body

dynamic ::= implements Dynamic

e ::= ... | synchronized (e+) in {e}

Figure 21: Grammar Extensions for Runtime Ordering

ous statements in the rotateRight method in Figure 2. Since
the analysis is flow-sensitive, the environment changes after
checking each statement.

The rules for mutating a tree are as follows. Deleting a tree
edge (for example, setting a tree field to null or over-writing
a tree field) requires no extra checking. A tree edge from x
to x′ may be added only if x′ is the root of a tree and x is
not in the tree rooted at x′. The rule is shown below. Note
that if x′ is a unique pointer to an object (for example, x′

is newly created), then x′ is trivially a root. Similarly, if a
local variable x contains a unique pointer, then x cannot be
in the tree rooted at x′.

[EXP TREE ASSIGN]

P ; E; ls; lmin ` x : cn〈o1..n〉
P ` (tree t fd) ∈ cn〈f1..n〉

P ; E ` RootOwner(x) = r r ∈ ls

P ; E; ls; lmin ` x′ : t[x/this][o1/f1]..[on/fn]

P ; E ` x′ is Root

P ; E ` x not in Tree(x′)
P ; E; ls; lmin ` x.fd = x′ : t[x/this][o1/f1]..[on/fn]

5.4 DAG-Based Partial Orders
Our type system also allows programmers to use directed
acyclic graphs (DAGs) to describe the partial order. Fig-
ure 20 shows the grammar extensions to Safe Concurrent
Java to support DAG-based partial orders. Programmers
can declare fields in objects to be dag fields. Our type sys-
tem ensures that no object can be both part of a tree and
part of a DAG. Locks that belong to the same lock level are
further ordered according to the DAG-order. DAGs used for
partial orders are monotonic. DAG fields cannot be modified
once initialized. Only newly created nodes may be added to
a DAG by initializing the newly created nodes to contain
DAG edges to existing DAG nodes.

5.5 Runtime Ordering of Locks
In the type system we described so far, the partial order be-
tween locks is known statically. However, programmers may
sometimes want to write code where the order cannot be de-
termined statically. For example, consider a transfer method
that receives two self-synchronized Account objects a1 and
a2. The transfer method acquires the locks on a1 and a2 and
transfers money from a1 to a2. But the ordering between
a1 and a2 may not be known statically within the transfer

1 class Account implements Dynamic {
2 int balance = 0;
3
4 int balance() accesses (this) { return balance; }
5 void deposit(int x) accesses (this) { balance += x; }
6 void withdraw(int x) accesses (this) { balance -= x; }
7 }
8
9 void transfer(Account<self:v> a1, Account<self:v> a2, int x)
10 locks(v) {
11 synchronized (a1, a2) { a1.withdraw(x); a2.deposit(x); }
12 }

Figure 22: Runtime Ordered Accounts

method. To avoid deadlocks in such programs, our system
supports imposing an arbitrary linear order at runtime on a
group of unordered locks. Our system also provides a prim-
itive to acquire such locks in the linear order.

Figure 21 shows the grammar extensions to Safe Concurrent
Java to support runtime ordering of locks. Programmers
can declare a class to be a subtype of Dynamic. Objects
of such classes cannot contain tree or dag edges to other
objects. The runtime imposes an arbitrary linear order on
Dynamic objects by assigning a unique id to each of them.
For example, a runtime can choose the time of creation of
an object to be its unique id. The runtime stores the unique
id in every Dynamic object.

Locks of type Dynamic that belong to the same lock level
are further ordered based on the linear order. Our system
provides a primitive to acquire multiple Dynamic locks of the
same lock level: synchronized(l1, ..., ln). To prevent dead-
locks, the runtime sorts the locks l1...ln based on the linear
order and acquires the locks in the sorted order.3 For exam-
ple, in Figure 22, the locks a1 and a2 are of type Dynamic
and belong to the same lock level. The synchronized state-
ment acquires the locks in the linear order and thus avoids
causing deadlocks.

6 Experience
We have a prototype implementation of our type system.
Our implementation is JVM-compatible [35]. We trans-
late well-typed programs in our system into bytecodes that
can run on regular JVMs. Our implementation handles all
the features of the Java language including threads, con-
structors, arrays, exceptions, static fields, interfaces, run-
time downcasts, and dynamic class loading. The type sys-
tem we implemented is also more expressive than the type
system we described formally in earlier sections of this pa-
per. Our implementation supports unsynchronized accesses
to immutable objects and objects with unique pointers [7].

Our implementation also supports parameterized methods in
addition to parameterized classes. This is useful in many
cases. For example, the PrintStream class has a print(Object)
method. Let us say, the Object argument is owned by Ob-

3Our implementation of this feature runs on regular JVMs.
We translate a synchronized statement with multiple locks
into code that acquires the locks individually in the linear
order. We also translate the code in constructors of Dynamic
objects to store the unique ids in the objects.
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jectOwner. If we did not have parameterized methods, then
the PrintStream class would have to have an ObjectOwner pa-
rameter. Not only would this be unnecessarily tedious, but
it would also mean that all objects that can be printed by
a PrintStream must have the same protection mechanism.
Having parameterized methods allows us to implement a
generic print(Object) method.

We also support safe runtime downcasts in our implementa-
tion. This is important because Java is not a fully statically-
typed language. It allows downcasts that are checked at
runtime. Suppose an object with declared type Object〈o〉 is
downcast to Vector〈o,e〉. We cannot verify at compile-time
that e is the right owner parameter even if we assume that
the object is indeed a Vector. We use type passing [45] to
support safe runtime downcasts, but we only keep runtime
ownership and lock level information for objects that are
potentially involved in downcasts to types with multiple pa-
rameters. A companion technical report [5] describes how
to do this efficiently without much space or time overhead.
Note that our implementation of the type passing approach
is JVM-compatible.

To gain preliminary experience, we implemented a number
of Java programs in our system including several classes from
the Java libraries. We also implemented some multithreaded
server programs including elevator, a real time discrete event
simulator [46, 11], an http server, a chat server, a stock quote
server, a game server, and phone, a database-backed infor-
mation sever. These programs exhibit a variety of sharing
patterns. Our type system is expressive enough to support
these programs. In each case, once we determined the shar-
ing pattern of the program, adding the extra type annota-
tions was a fairly straight forward process. On average, we
had to change about one in thirty lines of code.

In our experience, we found that threads rarely need to hold
multiple locks at the same time. In cases where threads
do hold multiple locks simultaneously, the threads usually
acquire the multiple locks as they cross abstraction bound-
aries. For example, in elevator, threads acquire the lock on a
Floor object and then invoke synchronized methods on a Vec-
tor object. Even though such programs use an unbounded
number of locks, these locks can be classified into a small
number of lock levels. These programs are therefore easily
expressed in our type system.

We also note that in cases where threads do hold multiple
locks simultaneously, it is usually because of conservative
programming. In the elevator example mentioned above,
the Vector object is contained within the Floor object. Ac-
quiring the lock on the Vector object is thus unnecessary. In
fact, programmers can use an ArrayList instead of a Vector.
The reason many Java programs are conservative is because
there is no mechanism in Java to prevent data races or dead-
locks. For example, Java programs that use ArrayLists risk
data races because ArrayLists may be accessed without ap-
propriate synchronization in shared contexts. But since our
type system guarantees data race freedom and deadlock free-
dom, programmers can employ aggressive locking disciplines
without sacrificing safety.

7 Ownership Types and Encapsulation
We use a variant of ownership types [14, 13] to prevent data
races and deadlocks. Ownership types provide a statically
enforceable way of specifying object encapsulation. The idea
is that an object may own other subobjects that are part of
its representation. Ownership types are useful for preventing
data races and deadlocks because the lock that protects an
object can also protect its subobjects.

We have recently developed an ownership type system [6]
that statically enforces object encapsulation, while support-
ing subtyping and constructs like iterators. Other owner-
ship type systems either do not enforce object encapsula-
tion (they enforce weaker restrictions instead) [12, 7, 2], or
they are not expressive (they do not support subtyping and
constructs like iterators) [14, 13]. This section presents a
detailed discussion of ownership types. This section also de-
scribes how the type system in this paper can be combined
with the type system in [6] to statically enforce object en-
capsulation as well as prevent data races and deadlocks.

7.1 Object Encapsulation
Object encapsulation gives programmers the ability to rea-
son locally about program correctness. Reasoning about a
class in an object-oriented program involves reasoning about
the behavior of objects belonging to the class. Typically ob-
jects point to other subobjects, which are used to represent
the containing object. Local reasoning about class correct-
ness is possible if the subobjects are fully encapsulated, that
is, if all subobjects are accessible only within the containing
object. This condition supports local reasoning because it
ensures that outside objects cannot interact with the subob-
jects without calling methods of the containing object. The
containing object is thus in control of its subobjects.

However, full encapsulation is often more than is needed.
Encapsulation is only required for subobjects that the con-
taining object depends on [33]. An object a depends on sub-
object b if a calls methods of b and furthermore these calls
expose mutable behavior of b in a way that affects the invari-
ants of a. Thus, if a stack of items is implemented using a
linked list, the stack only depends on the list but not on the
items contained in the list. This is because if code outside
could manipulate the list, it could invalidate the correctness
of the stack implementation. But code outside can safely ac-
cess the items contained in the stack because the stack does
not call their methods; it only depends on the identities of
the items and the identities never change. Similarly, a set of
immutable elements does not depend on the elements even
if it invokes a.equals(b) to ensure that no two elements a and
b in the set are equal, because the elements are immutable.

Ownership types provide a statically enforceable way of spec-
ifying object encapsulation. If an object a depends on an ob-
ject b, programmers can declare that a owns b. An ownership
type system enforces object encapsulation if it enforces the
following property:

E1. Owners as encapsulating objects: If object z owns
object y, but z does not own object x directly or tran-
sitively, then x cannot access y.
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Property E1 says that if y is inside the encapsulation bound-
ary of z and x is outside the encapsulation boundary, then
x cannot access y. An object x accesses an object y if meth-
ods of x obtain a pointer to y and can invoke methods of
y. The pointer to y may be stored in a field of x, or in a
local variable of a method of x. Consider Figure 4 for an
illustration. o9 owns o10. But o9 does not own o6 directly
or transitively. So o6 cannot access o10. The only objects
that o6 can access are: o6 and its children, the ancestors of
o6 and their children, and objects globally accessible within
the thread, namely objects owned by self and thisThread.4

7.2 Ownership Type Systems
Ownership type systems use naming to enforce encapsula-
tion. The type of an object includes the name of its owner.
To access an object, a program fragment must name the
type of that object, and hence must name the owner of that
object. This section presents a discussion of the various own-
ership type systems and the encapsulation guarantees they
provide. It also shows how to extend our type system to stat-
ically enforce object encapsulation as well as prevent data
races and deadlocks.

Ownership Types [14, 13]: [14] is one of the first systems
to introduce ownership types. [13] presents a formalization
of the type system. These systems enforce object encapsu-
lation, but do so by significantly limiting expressiveness. In
these systems, a subtype must have the same owners as a
super type. So TStack〈thisOwner,TOwner〉 cannot be a sub-
type of Object〈thisOwner〉. Moreover, one cannot express
constructs like iterators in these systems.

Ownership Types With Subtyping [12]: JOE [12] builds
on previous work in [14, 13]. JOE supports a natural form
of subtyping that is similar to subtyping in parametric type
systems [41, 8, 1, 45]. A subtype can have different owners
than a super type. However, the first owners must match
because the first owners own the corresponding object. To
support subtyping, JOE enforces the constraint that in ev-
ery type T 〈o1, ..., on〉 with multiple owners, (o1 ¹ oi) for all
i ∈ {1..n}. Recall from Figure 5 that the ownership relation
forms a forest of trees. The notation (x ¹ y) means that ei-
ther x is the same as y, or x is a descendant of y in the owner-
ship tree, or y is the special owner self. The type TStack〈self,
this〉 is thus illegal because (self 6¹ this). Without this con-
straint and with subtyping, JOE would not have provided
any meaningful encapsulation guarantees. Figure 24 illus-
trates this with an example.

To support constructs like iterators, JOE allows programs
to temporarily violate object encapsulation (Property E1).
Figure 23 presents example code in JOE that violates ob-
ject encapsulation. (We adopted the example from the JOE
paper [12]. But we present this and other examples in our
syntax, that is slightly different from the syntax in the orig-
inal papers.) The example shows an iterator for the TStack

4Note the analogy with nested procedures: proc P1 {var
x2; proc P2 {var x3; proc P3 {...}}}. Say xn+1 and Pn+1

are children of Pn. Then Pn can only access: Pn and its
children, the ancestors of Pn and their children, and global
variables and procedures.

1 class TStack<stackOwner, TOwner> {
2 TNode<this, TOwner> head = null;
3 ...
4 TStackEnum<this, TOwner> elements() {
5 return new TStackEnum<this, TOwner>(head);
6 }
7 }
8 class TStackEnum<enumOwner, TOwner> {
9 TNode<enumOwner, TOwner> curr;
10 TStackEnum(TNode<enumOwner, TOwner> head) {curr = head;}
11 T<TOwner> getNext() {...} boolean hasMoreElements() {...}
12 }
13 class TStackClient<clientOwner> {
14 void test() {
15 TStack<this, this> s = new TStack<this, this>;
16 TStackEnum<s, this> e = s.elements(); /* Violates E1 */
17 }
18 } /* owner of e is instantiated with a local variable! */

Figure 23: Violation of Object Encapsulation in [12]

in Figure 7. In the example, the TStack object owns the it-
erator object. But a TStackClient object that is outside the
encapsulation boundary of the TStack object accesses the
iterator object, thus violating object encapsulation (Prop-
erty E1). However, note that type of the iterator contains
the TStack object. So the TStackClient object can access the
iterator only when the TStack object is in scope. This en-
sures that the violation of object encapsulation is temporally
bounded. JOE enforces the following weak property:

E2. Owners as dominators: All paths in the heap from
the root object to object x must pass through x’s owner.

Property E2 implies that an application thread must first
access the owner o of an object x before it can access x.
Furthermore, in JOE, if the thread creates a path from a
local variable v to x, then either the path must go through
o, or the thread must have a local variable pointing to o and
the type of v must contain o.

Ownership Types for Safe Concurrent Programming:
In recent previous work we described PRFJ [7], a type sys-
tem that uses a variant of ownership types to statically pre-
vent data races in multithreaded programs. In this paper,
we extend the type system to also prevent deadlocks. These
type systems support subtyping and constructs like iterators.
Unlike JOE, they do not have the constraint that the first
owner ¹ all other owners. The absence of this constraint
allows a program to create a path to a subobject that does
not go through its owner. However, these systems have ef-
fects clauses [37] that ensure that, even though such a path
may exist, the program cannot exploit the path to access the
subobject unless its owner is in scope. The effects clauses
require every thread to hold the lock on the root owner of
an object before the thread accesses the object. The effects
clauses ultimately enable these type systems to enforce the
following weak encapsulation property:

E3. Owners as capabilities: The owner of object x must
be in scope when an application accesses x.

Property E3 states that when an application accesses x, the
owner of x must be accessible either through a local variable
l, or through a field access e.fd. The application must be
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1 class Foo<o> { int x = 0; void accessMe() { x++; } }
2
3 class SuperType<o> { void some_method() {} }
4
5 class SubType<o,c> extends SuperType<o> {
6 Foo<c> owner_parameter_c_owns_me;
7 SubType(Foo<c> x) {owner_parameter_c_owns_me = x;}
8 void some_method() {owner_parameter_c_owns_me.accessMe();}
9 }

10
11 class SomeClass<o> {
12 Foo<this> f = new Foo<this>;
13 SuperType<self> s = new SubType<self,this>(f);
14 SuperType<self> get() {return s;}
15 }
16
17 class Main<o> {
18 void m() {
19 SuperType<self> s = null;
20 {SomeClass<this> c = new SomeClass<this>; s = c.get();}
21 s.some_method(); // Violates E1, E2, E3
22 }
23 }

// SubType s is not encapsulated within SomeClass
// but some_method of SubType accesses Foo object
// owned by SomeClass: Therefore Violates E1

// There is path to owner_parameter_c_owns_me
// through s that does not go through c: Therefore Violates E2

// some_method accesses owner_parameter_c_owns_me
// whose owner c is now garbage: Therefore Violates E3

Figure 24: Violation of Encapsulation in [2]

able to call methods on the owner of x, or acquire the lock
on the owner of x. (Property E3 thus helps us prevent data
races.) The owner must be accessible either in the current
stack frame or in a preceding stack frame. In the later case,
an application may use a formal owner parameter to name
the owner of x in the current stack frame. Note that JOE [12]
also enforces Property E3. Property E3 couples the right to
access a subobject with the ability to name its owner.

AliasJava [2]: AliasJava [2] uses ownership types to aid
program understanding. Like other ownership type systems,
AliasJava allows programmers to use ownership information
to reason about aliasing. For example, if variables v1 and
v2 are of types T〈this〉 and T〈x〉 respectively, where x is a
formal owner parameter of the enclosing class, then one can
locally infer that v1 and v2 are definitely not aliased because
they refer to objects with different owners. Moreover, by
transitively tracing the flow of the owner annotation of a
variable v across method calls, one can identify all the vari-
ables that can refer to objects with the same owner as v, and
thus identify all the variables that are potential aliases of v.

However, unlike other ownership type systems, AliasJava
does not enforce properties like E1, E2, or E3 which ei-
ther disallow violations of object encapsulation entirely or
temporally limit such violations. This is because AliasJava
has subtyping, but it neither has the constraint that the
first owner ¹ all other owners as in JOE [12], nor does it
have effects clauses as in PRFJ [7] and this paper. Fig-
ure 24 presents AliasJava code that violates E1, E2, and E3.
(Again, the syntax in the original paper is slightly different.)
In the example, SomeClass passes its encapsulated object f
to a publicly accessible object s, leading to a violation of ob-

1 class TStack<stackOwner, TOwner> {
2 TNode<this, TOwner> head = null;
3 ...
4 TEnumeration<enumOwner, TOwner> elements<enumOwner>()
5 where (enumOwner <= stackOwner) {
6 return new TStackEnum<enumOwner>;
7 }
8 class TStackEnum<enumOwner>
9 implements TEnumeration<enumOwner, TOwner> {
10
11 TNode<TStack.this, TOwner> current;
12
13 TStackEnum() {
14 current = TStack.this.head;
15 }
16 T<TOwner> getNext() {
17 if (current == null) return null;
18 T<TOwner> t = current.value();
19 current = current.next();
20 return t;
21 }
22 boolean hasMoreElements() {
23 return (current != null);
24 }
25 }
26 }
27
28 class TStackClient<clientOwner> {
29 void test() {
30 TStack<this, this> s = new TStack<this, this>;
31 TEnumeration<this, this> e = s.elements();
32 }
33 }

Figure 25: TStack With Iterator in [6]

ject encapsulation (Property E1). The interaction between
subtyping and ownership enables the creation of a path to f
through s that does not go through f’s owner. Other parts
of the program can then access f using this path even if
they have no relationship with f’s owner. The decoupling of
f from its owner is further illustrated by the fact that the
program can access f even after f’s owner becomes garbage.

Because AliasJava does not enforce Properties E1, E2, or
E3, it is more flexible than other ownership type systems.
For example, in AliasJava, an iterator object that accesses
encapsulated subobjects of a collection can outlive the col-
lection object. AliasJava thus trades off encapsulation guar-
antees such as E1, E2, or E3 in favor of added flexibility,
while still allowing programmers to reason about aliasing.

Ownership Types With Subtyping and Iterators [6]:
The ownership type systems described above either do not
enforce object encapsulation (they enforce weaker restric-
tions instead), or they are not expressive (they do not sup-
port subtyping and constructs like iterators). Enforcing
object encapsulation, while supporting subtyping and con-
structs like iterators, was an open problem. In a recent
work [6], we provide a satisfactory solution to this problem.
Consider an implementation of a stack and an iterator over
the stack. The stack and the iterator cannot be in an owner-
ship relation. If the stack owns the iterator, one cannot use
the iterator object outside its stack object. If the iterator
owns the stack, one cannot have more than one iterator ob-
ject for a given stack object. In [6], we solve this problem by
implementing the iterator as an inner class of the stack and
allowing objects of inner classes to have privileged access to
the representations of the corresponding objects of the outer
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classes. This approach allows programmers to express con-
structs like iterators and yet allows them to reason locally
about the correctness of their classes. Our system allows lo-
cal reasoning because programmers can reason about a class
and its inner classes together as a module. Figure 25 shows
an iterator implementation for the TStack in Figure 7. [6]
enforces the following encapsulation property:

E1′. Owners as encapsulating objects: If object z owns
object y, but z does not own object x directly or tran-
sitively, then x cannot access y, unless x is an inner
class object of y.

Ownership Types for Concurrency and Encapsula-
tion: The type system in this paper can be combined with
the type system in [6] to statically enforce object encap-
sulation (Property E1′) as well as prevent data races and
deadlocks. The type system in this paper must be modified
as follows to enforce object encapsulation. A formal owner
parameter can only be instantiated with: 1) another formal
owner parameter, 2) thisThread, 3) this, 4) C.this, where C
is an outer class, or 5) a lock. The relation (x ¹ y) must be
extended to handle thread-local variables and unique point-
ers as follows: either 1) x is the same as y, or 2) x is a
descendant of y in the ownership tree, or 3) y is the special
owner self, or thisThread, or unique.

7.3 Related Type Systems
Euclid [31] is one of the first languages that considered the
problem of aliasing. [27] stressed the need for better treat-
ment of aliasing in object-oriented programs. Early work on
Islands [26] and Balloons [3] focused on fully encapsulated
objects where all subobjects an object can access are not ac-
cessible outside the object. Universes [40] also enforces full
encapsulation, except for read-only references. However, full
encapsulation significantly limits expressiveness, and is often
more than is needed. The work on ESC/Java pointed out
that encapsulation is required only for subobjects that the
containing object depends on [33], but ESC/Java was unable
to always enforce encapsulation.

Unique Pointers: Linear types [47] and unique point-
ers [38] can also be used to control object aliasing. Linear
types have been used in low level languages to support safe
explicit memory deallocation [16] and to track resource us-
age [18]. Linear types and unique pointers are orthogonal to
ownership types, but the two can be used in conjunction to
provide more expressive type systems. PRFJ [7] is the first
system to combine ownership types with unique pointers.
The type system in this paper extends PRFJ. AliasJava [2]
also combines ownership types with unique pointers. A type
system with ownership types and unique pointers can ex-
press constructs that neither ownership types nor unique
pointers alone can express, while enforcing object encapsu-
lation. Figure 26 provides an illustration. The example is
adopted from a stock quote server we had implemented in
PRFJ [7]. Type systems without unique pointers such as
JOE [12] can also express the example in Figure 26, but not
without violating object encapsulation (Property E1 or E1′).

Region Types: Our ownership type system is related to
the type systems for doing region-based memory manage-

1 class StockQuoteHandler ... {
2 Socket<this> s;
3 StockQuoteHandler(Socket<unique> s) ... {
4 this.s = s--; // this.s = s; s = null;
5 } ...
6 }
7 class Main {
8 void serveQuotes(...) {
9 Socket<unique> s = ...;
10 StockQuoteHandler h = new StockQuoteHandler(s--);
11 ...
12 }
13 }

Figure 26: Quote Server That Preserves Object Encap-

sulation Using Ownership Types and Unique Pointers

ment [16, 25]. In our system, objects are protected by locks.
In region types, objects belong to regions. However, our sys-
tem contains more information about the structure of the
object graph. In our system, objects own (contain) other
objects forming ownership trees. Programmers specify locks
only for the roots of ownership trees. The lock that protects
a root also protects all the objects in the tree. In region
types, programmers directly specify the regions for all ob-
jects. Thus, the information in region types corresponds to
a flattening of the ownership trees. Region types can be
combined with ownership types to keep information about
regions as well as object containment.

Effects: Effects clauses [37] are useful for specifying as-
sumptions that must hold at method boundaries. Effects
enable modular checking of programs. PRFJ [7] is the first
system to combine effects with ownership types to statically
prevent data races. This paper uses effects with ownership
types to prevent data races and deadlocks. [12] and [6] also
combine effects with ownership types for program under-
standing and supporting safe software upgrades respectively.

Data Groups: Data groups [32, 34] can be used to name
groups of objects in an effects clause to write modular spec-
ifications in the presence of subtyping. Ownership types
provide an alternate way of writing modular specifications.
Ownership types can also be used to name groups of objects
in an effects clause—the name of an owner can be used to
name all the objects transitively owned by the owner. How-
ever, because data groups are implemented using a theorem
prover, data groups can be used reason more precisely about
effects. Pivot uniqueness in [34] is similar to unique point-
ers [38]. Ownership types combined with unique pointers are
more flexible than a system with pivot uniqueness because
they allow arbitrarily many pointers to an encapsulated ob-
ject from objects within the encapsulation boundary.

Shape Analysis: Systems such as TVLA [42], PALE [39],
and Roles [30] specify the shape of a local object graph in
more detail than ownership types. TVLA can verify prop-
erties such as when the input to the program is a tree, the
output is also a tree. PALE can verify all the data struc-
tures that can be expressed as graph types. Roles can verify
global properties such as the participation of objects in mul-
tiple data structures. In contrast to these systems that take
exponential time for verification, ownership types provide a
lightweight and practical way to constrain aliasing.
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Parametric Types: Our ownership type system is similar
to parametric type systems for Java [41, 8, 1, 45], except that
our parameters are values and not types. Our type system
fits naturally in a language with parameterized types.

8 Other Related Work
There has been much research on approaches to detect or
prevent data races and deadlocks in multithreaded programs.

Static Tools: Tools like Warlock [44] and Sema [29] use
annotations supplied by programmers to statically detect
potential data races and deadlocks in a program. The Ex-
tended Static Checker for Java (ESC/Java) [19] is another
annotation based system that uses a theorem prover to stat-
ically detect many kinds of errors including data races and
deadlocks. [21] assumes bugs to be deviant behavior to stat-
ically extract and check correctness conditions that a sys-
tem must obey without requiring programmer annotations.
While these tools are useful in practice, they are not sound,
in that they do not certify that a program is race-free or
deadlock-free. For example, ESC/Java does not always ver-
ify that a partial order of locks declared in a program is
indeed a partial order.

Dynamic Tools: There are many systems that detect data
races and deadlocks dynamically. These include systems
developed in the scientific parallel programming commu-
nity [20], tools like Eraser [43], and tools for detecting data
races in Java programs [46, 11]. Eraser dynamically moni-
tors all lock acquisitions to test whether a linear order exists
among the locks that is respected by every thread. Dynamic
tools have the advantage that they can check unannotated
programs. However, these tools are not comprehensive—
they may fail to detect certain errors due to insufficient test
coverage. Besides, annotated programs are easier to under-
stand and maintain because they explicitly contain the de-
sign decisions made by programmers.

Language Mechanisms: To our knowledge, Concurrent
Pascal is the first race-free programming language [9]. Pro-
grams in Concurrent Pascal use synchronized monitors to
prevent data races. But monitors in Concurrent Pascal are
restricted in that threads can share data with monitors only
by copying the data. A thread cannot pass a pointer to an
object to a monitor. More recently, researchers have pro-
posed type systems to prevent data races in object-oriented
programs. Race Free Java [22] extends the static annotations
in ESC/Java into a formal race-free type system. Guava [4]
is another dialect of Java for preventing data races. Our
race-free type system published earlier [7] lets programmers
write generic code to implement a class, and create differ-
ent objects of the same class that have different protection
mechanisms. But the above systems do not prevent dead-
locks. The type system in this paper extends our race-free
type system [7] to prevent both data races and deadlocks.

Message Passing Systems: There are several systems
that statically check for data races and deadlocks in mes-
sage passing systems [28, 10]. These systems, however, use
a different programming model. For example, programs in
these systems do not access shared objects in a heap.

9 Conclusions
This paper presents a new static type system for multi-
threaded programs; well-typed programs in our system are
guaranteed to be free of both data races and deadlocks. Our
type system allows programmers to partition the locks into a
fixed number of lock levels and specify a partial order among
the lock levels. Our system also allows programmers to use
recursive tree-based data structures to further order locks
within a given lock level. The type checker statically verifies
that whenever a thread holds more than one lock, the thread
acquires the locks in the descending order. The type checker
uses an intra-procedural intra-loop flow-sensitive analysis to
check that mutations to trees used for describing the par-
tial order do not introduce cycles in the partial order, and
that the changing of the partial order does not lead to dead-
locks. We do not know of any other sound static system
for preventing deadlocks that allows changes to the partial
order at runtime. This paper also describes how to extend
our type system to statically enforce object encapsulation as
well as prevent data races and deadlocks. We have imple-
mented our type system for Java. Our experience indicates
that our type system is sufficiently expressive and requires
little programming overhead.
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Appendix
A Type System for Safe Concurrent Java
This appendix presents the type system described in Section 3. The grammar for the type system is shown below.

P ::= defn* e
defn ::= class cn〈owner formal* 〉 extends c {level* field* meth*}

c ::= cn〈owner+〉 | Object〈owner〉
owner ::= formal | self:cn.l | thisThread | efinal
level ::= LockLevel l = new | LockLevel l < cn.l* > cn.l*
meth ::= t mn(arg* ) accesses (efinal* ) locks (cn.l* [lock ]opt) {e}
field ::= [final]opt t fd = e
arg ::= [final]opt t x

t ::= c | int | boolean
formal ::= f

e ::= new c | x | x = e | e.fd | e.fd = e | e.mn(e* ) | e;e | let (arg=e) in {e} | if (e) then {e} | synchronized (e) in {e} | fork (x* ) {e}
efinal ::= e
lock ::= efinal

cn ∈ class names
fd ∈ field names

mn ∈ method names
x ∈ variable names
f ∈ owner names
l ∈ lock level names

We first define a number of predicates used in the type system informally. These predicates (except the last one) are based
on similar predicates from [23] and [22]. We refer the reader to those papers for their precise formulation.

Predicate Meaning

ClassOnce(P) No class is declared twice in P
WFClasses(P) There are no cycles in the class hierarchy
FieldsOnce(P) No class contains two fields with the same name, either declared or inherited
MethodsOnce(P) No class contains two methods with the same name
OverridesOK(P) Overriding methods have the same return type and parameter types as the methods being overridden

The accesses clause of an overriding method must be the same or a subset of the overridden methods
The locks clause of an overriding method must be the same or a subset of the overridden methods

LockLevelsOK(P) There are no cycles in the lock levels

A typing environment is defined as E ::= ∅ | E, [final]opt t x | E, owner f | E, locksclause

A lock set is defined as ls ::= thisThread | ls, lock | ls, RO(efinal); where RO(e) is the root owner of e

A minimum lock level is defined as lmin ::= ∞ | cn.l | LUB(cn1.l1 ... cnk.lk); where LUB(cn1.l1 ... cnk.lk) > cni.li ∀i=1..k

Note that RO(e) and LUB(...) are not computed—they are just expressions used as such for type checking.

We define the type system using the following judgments. We present the typing rules for these judgments after that.

Judgment Meaning

` P : t program P yields type t
P ` defn defn is a well-formed class definition
P ; E ` wf E is a well-formed typing environment
P ; E ` t t is a well-formed type
P ; E ` t1 <: t2 t1 is a subtype of t2
P ; E `owner o o is an owner
P `level cn.l cn.l is a well-formed lock level
P ` cn1.l1 < cn2.l2 cn1.l1 is less than cn2.l2 in the partial order formed by lock levels
P ` cn.l < lmin cn.l is less than lmin in the partial order formed by lock levels
P ; E ` level(e) = cn.l e is a final expression that owns itself and the lock level of e is cn.l
P ; E ` level(e) < lmin e is a final expression that owns itself and the lock level of e is less than lmin

P ; E `final e : t e is a final expression with type t
P ; E ` field init field init is a well-formed field initializer
P ` field ∈ cn〈f1..n〉 class cn with formal parameters f1..n declares/inherits field
P ` meth ∈ cn〈f1..n〉 class cn with formal parameters f1..n declares/inherits meth
P ; E ` meth meth is a well-formed method
P ; E ` RootOwner(e) = r r is the root owner of the final expression e
P ; E ` e : t expression e has type t
P ; E; ls; lmin ` e : t expression e has type t and evaluating e will not create data races or deadlocks
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` P : t

[PROG]

ClassOnce(P) WFClasses(P) FieldsOnce(P)

MethodsOnce(P) OverridesOK(P) LockLevelsOK(P)

P = defn1..n e P ` defni P ; ∅; thisThread; ∞ ` e : t

` P : t

P ` defn

[CLASS]

if (f1 6= self:cn′.l′ | thisThread) then g1 = owner f1

∀i=2..n gi = owner fi E = g1..n, final cn〈f1..n〉 this

P ; E ` c P ; E ` fieldi P ; E ` methi

P ` class cn〈f1..n〉 extends c {field1..j meth1..k}

P ; E ` wf

[ENV ∅]

P ; ∅ ` wf

[ENV OWNER]

P ; E ` wf f /∈ Dom(E)

P ; E, owner f ` wf

[ENV X]

P ; E ` wf , t x /∈ Dom(E)

P ; E, [final]opt t x ` wf

P ; E ` t

[TYPE INT]

P ; E ` int

[TYPE BOOLEAN]

P ; E ` boolean

[TYPE OBJECT]

P ; E `owner o

P ; E ` Object〈o〉

[TYPE SHARED CLASS]

P ` class cn〈self:cn′.l′ f2..n〉 ...

o1 = self:cn′.l′ P ; E `owner o1..n

P ; E ` cn〈o1..n〉

[TYPE THREAD-LOCAL CLASS]

P ` class cn〈thisThread f2..n〉 ...

o1 = thisThread P ; E `owner o1..n

P ; E ` cn〈o1..n〉

[TYPE C]

P ` class cn〈f1..n〉 ...

f1 6= self:cn′.l′ | thisThread P ; E `owner o1..n

P ; E ` cn〈o1..n〉

P ; E ` t1 <: t2

[SUBTYPE REFL]

P ; E ` t

P ; E ` t <: t

[SUBTYPE TRANS]

P ; E ` t1 <: t2 P ; E ` t2 <: t3

P ; E ` t1 <: t3

[SUBTYPE CLASS]

P ; E ` cn1〈o1..n〉
P ` class cn1〈f1..n〉 extends cn2〈f1 o∗〉 ...

P ; E ` cn1〈o1..n〉 <: cn2〈f1 o∗〉 [o1/f1]..[on/fn]

P ; E `owner o

[OWNER THISTHREAD]

P ; E `owner thisThread

[OWNER OTHERTHREAD]

P ; E `owner otherThread

[OWNER SELF]

P `level cn.l

P ; E `owner self:cn.l

[OWNER EXP]

P ; E `final e : t

P ; E `owner e

[OWNER FORMAL]

P ; E ` wf

E = E1, owner f , E2

P ; E `owner f

P `level cn.l

[LEVEL]

P ` class cn... {... Locklevel l ...}
P `level cn.l

P ` cn1.l1 < cn2.l2

[LEVEL <]

P ` class cn1... {... LockLevel l1 < ... cn2.l2 ...}
P ` cn1.l1 < cn2.l2

[LEVEL >]

P ` class cn2... {... LockLevel l2 > ... cn1.l1 ...}
P ` cn1.l1 < cn2.l2

P ` cn.l < lmin

[LEVEL < INFTY]

lmin = ∞
P `level cn.l

P ` cn.l < lmin

[LEVEL < LUB]

lmin = LUB(... cn.l ...)

P `level cn.l

P ` cn.l < lmin

[LEVEL < CN.L]

lmin = cn′.l′

P ` cn.l < cn′.l′

P ` cn.l < lmin

[LEVEL TRANS]

P ` cn′.l′ < lmin

P ` cn.l < cn′.l′

P ` cn.l < lmin

P ; E ` level(e) = cn.l

[LEVEL(EXP)]

P ; E `final e : cn′〈self:cn.l ...〉
P ; E ` level(e) = cn.l

P ; E ` level(e) < lmin

[LEVEL < LEVEL MIN]

P ; E ` level(e) = cn.l

P ` cn.l < lmin

P ; E ` level(e) < lmin

P ; E `final e

[FINAL VAR]

P ; E ` wf

E = E1, final t x, E2

P ; E `final x : t

[FINAL REF]

P ` (final t fd) ∈ cn〈f1..n〉
P ; E `final e : cn〈o1..n〉

P ; E `final e.fd : t[o1/f1]..[on/fn]

P ; E ` field init

[FIELD INIT]

P ; E; thisThread; ∞ ` e : t

P ; E ` [final]opt t fd = e

P ` field ∈ c

[FIELD DECLARED]

P ` class cn〈f1..n〉... {... field ...}
P ` field ∈ cn〈f1..n〉

[FIELD INHERITED]

P ` field ∈ cn〈f1..n〉
P ` class cn′〈g1..m〉 extends cn〈o1..n〉...
P ` field[o1/f1]..[on/fn] ∈ cn′〈g1..m〉

P ` meth ∈ c

[METHOD DECLARED]

P ` class cn〈f1..n〉... {... meth ...}
P ` meth ∈ cn〈f1..n〉
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[METHOD INHERITED]

P ` meth ∈ cn〈f1..n〉
P ` class cn′〈g1..m〉 extends cn〈o1..n〉...
P ` meth[o1/f1]..[on/fn] ∈ cn′〈g1..m〉

P ; E ` method

[METHOD]

E′ = E, arg1..n, locks(cnj .lj
j∈1..k [lock ]opt)

P ; E′ `final ei : ti P ; E′ ` RootOwner(ei) = ri ls = thisThread, r1..r

lmin = LUB(cnj .lj
j∈1..k) P ; E′; ls; lmin ` e : t

P ; E ` t mn(arg1..n) accesses(e1..r) locks(cnj .lj
j∈1..k [lock ]opt) {e}

P ; E ` RootOwner(e) = r

[ROOTOWNER THISTHREAD]

P ; E ` e : cn〈thisThread o∗〉
P ; E ` RootOwner(e) = thisThread

[ROOTOWNER OTHERTHREAD]

P ; E ` e : cn〈otherThread o∗〉
P ; E ` RootOwner(e) = otherThread

[ROOTOWNER SELF]

P ; E ` e : cn〈self:cn′.l′ o∗〉
P ; E ` RootOwner(e) = e

[ROOTOWNER FINAL TRANSITIVE]

P ; E ` e : cn〈o1..n〉
P ; E `final o1 : c1 P ; E ` RootOwner(o1) = r

P ; E ` RootOwner(e) = r

[ROOTOWNER FORMAL]

P ; E ` e : cn〈o1..n〉
P ; E `owner o1

P ; E ` RootOwner(e) = RO(e)

P ; E ` e : t

[EXP TYPE]

∃ls P ; E; ls; ∞ ` e : t

P ; E ` e : t

P ; E; ls ` e : t

[EXP SUB]

P ; E; ls; lmin ` e : t′

P ; E; ls; lmin ` t′ <: t

P ; E; ls; lmin ` e : t

[EXP NEW]

P ; E ` c

P ; E; ls; lmin ` new c : c

[EXP VAR]

P ; E ` wf

E = E1, [final]opt t x, E2

P ; E; ls; lmin ` x : t

[EXP VAR ASSIGN]

P ; E ` wf

E = E1, t x, E2 P ; E; ls; lmin ` e : t

P ; E; ls; lmin ` x = e : t

[EXP SEQ]

P ; E; ls; lmin ` e1 : t1
P ; E; ls; lmin ` e2 : t2

P ; E; ls; lmin ` e1; e2 : t2

[EXP LET]

arg = [final]opt t x P ; E; ls; lmin ` e : t

P ; E, arg; ls; lmin ` e′ : t′

P ; E; ls; lmin ` let (arg = e) in {e′} : t′

[EXP IF]

P ; E; ls; lmin ` e1 : boolean

P ; E; ls; lmin ` e2 : t2

P ; E; ls; lmin ` if (e1) then {e2} : t2

[EXP REF]

P ; E; ls; lmin ` e : cn〈o1..n〉 P ; E ` RootOwner(e) = r

(P ` (t fd) ∈ cn〈f1..n〉) ∧ (r ∈ ls) ∨ (P ` (final t fd) ∈ cn〈f1..n〉)

P ; E; ls; lmin ` e.fd : t[e/this][o1/f1]..[on/fn]

[EXP ASSIGN]

P ; E; ls; lmin ` e : cn〈o1..n〉 P ; E ` RootOwner(e) = r

(P ` (t fd) ∈ cn〈f1..n〉) ∧ (r ∈ ls)

P ; E; ls; lmin ` e′ : t[e/this][o1/f1]..[on/fn]

P ; E; ls; lmin ` e.fd = e′ : t[e/this][o1/f1]..[on/fn]

[EXP SYNC]

P ; E ` level(e1) = cn.l < lmin

(E = E1, locks(... l), E2) =⇒ (P ; E ` cn.l < level(l)) ∨ (l = e1)

P ; E; ls, e1; cn.l ` e2 : t2

P ; E; ls; lmin ` synchronized e1 in e2 : t2

[EXP SYNC REDUNDANT]

e1 ∈ ls

P ; E; ls; lmin ` e2 : t2

P ; E; ls; lmin ` synchronized e1 in e2 : t2

[EXP INVOKE]

Renamed(α)
def
= α[e/this][o1/f1]..[on/fn][e1/y1]..[ek/yk]

P ; E; ls; lmin ` e : cn〈o1..n〉
P ` (t mn(tj yj

j∈1..k) accesses(e′∗) locks(cn.l∗ [lock ]opt) ...) ∈ cn〈f1..n〉
P ; E; ls; lmin ` ej : Renamed(tj)

P ; E ` RootOwner(Renamed(e′i)) = r′i r′i ∈ ls

P ` cni.li < lmin

lockR = Renamed(lock)

P ; E ` (level(lockR) < lmin) ∨ (level(lockR) = lmin) ∧ (lockR ∈ ls)

P ; E; ls; lmin ` e.mn(e1..k) : Renamed(t)

[EXP FORK]

P ; E; ls; lmin ` xi : ti

gi = final ti[otherThread/thisThread] xi

P ; g1..n; thisThread; ∞ ` e : t

P ; E; ls; lmin ` fork (x1..n) {e} : int
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