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Abstract

Background: Increasing evidence shows the importance of the commensal microbe Oxalobacter formigenes in
regulating host oxalate homeostasis, with effects against calcium oxalate kidney stone formation, and other oxalate-
associated pathological conditions. However, limited understanding of O. formigenes in humans poses difficulties for
designing targeted experiments to assess its definitive effects and sustainable interventions in clinical settings. We
exploited the large-scale dataset from the American Gut Project (AGP) to study O. formigenes colonization in the
human gastrointestinal (GI) tract and to explore O. formigenes-associated ecology and the underlying host–microbe
relationships.

Results: In >8000 AGP samples, we detected two dominant, co-colonizing O. formigenes operational taxonomic
units (OTUs) in fecal specimens. Multivariate analysis suggested that O. formigenes abundance was associated with
particular host demographic and clinical features, including age, sex, race, geographical location, BMI, and antibiotic
history. Furthermore, we found that O. formigenes presence was an indicator of altered host gut microbiota
structure, including higher community diversity, global network connectivity, and stronger resilience to simulated
disturbances.

Conclusions: Through this study, we identified O. formigenes colonizing patterns in the human GI tract, potential
underlying host–microbe relationships, and associated microbial community structures. These insights suggest
hypotheses to be tested in future experiments. Additionally, we proposed a systematic framework to study any
bacterial taxa of interest to computational biologists, using large-scale public data to yield novel biological insights.

Keywords: Ecology, Gut microbiota, Microbial network, Host–microbe interaction, Kidney stones, Systems biology,
Public data mining

Background

Oxalate is both a dietary constituent [1] and a product

of endogenous human metabolism [2, 3]. Excessive oxal-

ate accumulation can promote pathological conditions,

including kidney stones [4–6], joint effusions, arthralgias

[7, 8], and breast cancer [9]. However, unable to catabo-

lize oxalate, humans rely on oxalate degradation

performed by commensal bacteria and intestinal and

urinary excretion to decrease the circulating oxalate

levels [1].

Oxalobacter formigenes degrades oxalate as its sole en-

ergy and carbon source [10] within the gastrointestinal

(GI) tract of its hosts, in contrast to other known

oxalate-degrading bacteria, nearly all of which only

metabolize oxalate using detoxification pathways under

specific conditions [11, 12]. A second physiologic role of

O. formigenes in host homeostasis is in stimulating
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oxalate transport through the gut epithelium, promoting

its release into the GI tract lumen [13].

Although the potential of O. formigenes to remove ex-

cessive oxalate from the host has been long recognized

[14–19], re-introduction of the organism to humans

have not yielded definitive results [15, 17, 20, 21]; this

may reflect the insufficiency of in vivo models, small

study sizes, failure to select proper O. formigenes strains,

and/or the lack of sustained colonization.

In the present study, we aimed to examine O. formigenes

colonization patterns in humans and to explore the under-

lying ecological relationships using the American Gut Pro-

ject (AGP). The AGP has surveyed the intestinal

microbiome in more than 8000 people using standard

pipelines, and with detailed host metadata, which permits

studies of O. formigenes-centered ecology. Our study illus-

trates a systematic framework to examine key bacteria

present in large public datasets to ascertain their biological

relationships with their hosts.

Results

Detection of O. formigenes OTUs in AGP samples

In total, 9746 and 9550 AGP samples were processed

using QIIME’s closed- and open-reference operational

taxonomic unit (OTU)-picking methods [10, 22, 23]

(Additional file 1: Figure S1) yielding a total of 3 and 260

OTUs, respectively, that were classified as O. formigenes

by the closed- and open-reference OTU-picking methods

(Additional file 1: Figure S1). Samples with ≥1000 seqs/

sample were used for the initial examination of O. formi-

genes prevalence and abundance (Table 1). The three

OTUs that were detected by both methods were Green-

genes [24] OTUs 7366, 360508, and 7369 (Table 1); the

other 257 OTUs were detected only by the open-reference

OTU-picking method at low abundance, each accounting

for <1% of the total O. formigenes-associated reads (Table

1). As such, results of the closed-reference OTU-picking

method were used for downstream analyses.

The most dominant OTU 7366 was detected in 27.6%

of all samples, accounting for 96.4% of the O. formi-

genes-associated sequencing reads (Table 1). OTU

360508 was detected in 7% of the samples (Table 1), ac-

counting for 3.5% of the total O. formigenes reads. OTU

7369 was detected in <1% of the subjects (Table 1).

O. formigenes was chiefly found in fecal samples

(Table 2), consistent with prior findings on a smaller scale

[10, 15]; as such, we focused only on fecal samples in subse-

quent analyses. In fecal samples in which OTU 7366 was

detected, its geometric mean relative abundance was

2.9 × 10−4 and ranged from 10−6 to 10−3. For OTUs 360508

and 7369, the mean relative abundances were ~10-fold

lower in the samples in which they were detected (Fig. 1a).

Classification of O. formigenes OTUs

O. formigenes strains studied to date have been divided

into two subgroups based on biological heterogeneity,

Table 1 Abundance and prevalence of O. formigenes-related OTUs in the American Gut Project

OTU ID Closed-reference OTU picking Open-reference OTU pickinga

Counts%/
cumulative
counts%

% of colonization Counts%/
cumulative
counts%

% of colonization

8610 samples 7293 subjects 8441 samples 7115 subjects

7366 96.43/96.43 27.55 30.25 90.90/90.90 27.26 30.01

360508 3.48/99.91 7.03 7.84 2.04/92.93 5.01 5.68

New.CleanUp.ReferenceOTU314026 – – – 0.77/93.70 2.11 2.42

2641606 – – – 0.76/94.45 1.39 1.57

New.ReferenceOTU11344 – – – 0.68/95.13 1.91 2.26

3488180 – – – 0.55/95.68 1.77 2.05

New.CleanUp.ReferenceOTU2018399 – – – 0.50/96.18 1.45 1.64

New.CleanUp.ReferenceOTU6125098 – – – 0.23/96.41 0.65 0.77

4474081 – – – 0.21/96.62 0.57 0.62

New.CleanUp.ReferenceOTU9098367 – – – 0.20/96.81 0.60 0.69

New.CleanUp.ReferenceOTU781422 – – – 0.19/97.00 0.58 0.69

191145 – – – 0.15/97.15 0.53 0.62

New.CleanUp.ReferenceOTU5660629 – – – 0.10/97.25 0.31 0.37

7369 0.09/100.00 0.34 0.38 0.10/97.35 0.39 0.45

Control: B. fragilis OTU 4479397 – 30.00 35.00 – 45.00 49.00

OTUs were ordered from the highest to lowest sequencing read number
aA total of 260 O. formigenes-related OTUs were detected with open-reference OTU picking, and only the 14 most abundant OTUs, representing 97.35% of all

counts, are shown in this table
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including cellular fatty acid content [15, 25] and

length variation of key genes (frc and oxc) [26]. Based

on the full 16S rRNA sequences, the 13 group I and

group II O. formigenes strains also cluster into dis-

tinct clades by a deep branching of the phylogenetic

tree (Additional file 2: Figure S2A). The AGP O. for-

migenes OTUs differ in their 16S V4 sequence simi-

larity to the 13 reference O. formigenes strains (Fig.

1b). The V4 region of OTU 7366 is 100% identical to

that of O. formigenes strain BLISS (Additional file 2:

Figure S2B), initially isolated from human feces in

1996 [27, 28]. Strain BLISS is located on a separate

branch of the phylogenetic tree but shares a common

root with all group I O. formigenes strains (Additional

file 2: Figure S2A). OTUs 360508 and 7366 are most

similar to group II O. formigenes strains HOxBLS and

Table 2 Prevalence of three O. formigenes OTUs in 8610 samples (only samples with >1000 reads are included) by body site

OTU Prevalence (%) of O. formigenes-colonized samples

Feces (n = 7420) Skin (n = 322) Tongue (n = 448) Other or unknown sites (n = 310)

7366 31.6 3.1 0.9 10.0

360508 8.1 0.3 0.2 1.6

7369 0.4 0.2 0 0

a b

c d e

Fig. 1 Co-occurrence and abundances of three O. formigenes-associated OTUs in fecal samples from 4945 subjects. a Abundance of three O.
formigenes-associated OTUs (7366, 360508, 7369) in samples with colonization detected, by closed-reference OTU picking. b O. formigenes phylogenetic
tree. The tree was built from 16S V4 region sequences of three O. formigenes-associated OTUs (bold): 13 O. formigenes strains with group I (purple),
group II (green), and strain BLISS with group unknown (black); O. vicrioformis selected from the Oxalobacter family used as an outgroup. The tree was
built based on maximum likelihood with log-likelihood of −1317.6. Branch support values designated in red. Statistical details of the tree are included
in the Additional files 9 and 10. c Euler diagram of co-occurrences in the 4945 subjects. The 184 subjects with multiple samples were considered posi-
tive if any sample was positive for at least one O. formigenes OTU. d, e Abundance of the studied OTUs in the samples in which either one or both
OTUs were present. Panels focus on OTU 7366 (d) or 360508 (e). One-sided Mann–Whitney tests were used to determine whether or not the indicated
OTU is more abundant when both are present, *p < 0.001, by Mann–Whitney test
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OXCR, at 98.8 and 100% identity, respectively (Fig.

1b, Additional file 2: Figure S2B).

Selection of samples for downstream analysis

More O. formigenes OTUs were detected as sequence

depth became higher (Additional file 3: Figure S3A). To

alleviate potential undersampling, we raised inclusion

criteria from ≥1000 seqs/sample (Additional file 3:

Figure S3A) to ≥10,000 (Additional file 3: Figure S3B),

which included 5336 fecal specimens from 4945 sub-

jects. Among those, we focused on the 4945 AGP fecal

specimens, with the subjects who provided multiple

specimens (n = 184; Additional file 4: Figure S4) repre-

sented only by the first specimen provided.

Co-detection of O. formigenes

Since our preliminary analyses suggested that the ob-

served O. formigenes OTUs may differ from known O.

formigenes strains (Fig. 1b), we reasoned that interac-

tions between those OTUs should provide broad insight

into the intraspecies O. formigenes dynamics. Frequent

co-colonization of the two dominant OTUs was ob-

served (Fig. 1c) (p < 10−27, significance of overlap test

performed via [29]). In 96.8% of the samples in which

OTU 360508 was detected, OTU 7366 was co-detected.

Similarly, OTU 7369 completely overlapped with the

samples in which OTUs 7366 and 360508 were detected

(Fig. 1c). The relative abundances of both OTUs 7366

(Fig. 1d, p < 0.001) and 360508 (Fig. 1e, p < 0.001) were

significantly elevated when co-detected.

Longitudinal colonization of O. formigenes

To investigate O. formigenes colonization over time, the

184 subjects who provided multiple fecal samples (Add-

itional file 4: Figure S4) were divided into three groups

depending on whether O. formigenes was detected in the

following: (i) none of the samples (n = 100 subjects), (ii)

at least one sample (n = 44 subjects), or (iii) all the sam-

ples (n = 40 subjects) provided (Fig. 2a). OTU 7366 was

significantly more abundant in samples with detection

from group III than from group II (Fig. 2b, left). A paral-

lel trend was noted for OTU 360508 (Fig. 2b, middle)

and for the sum of both OTUs (Fig. 2b, right). These ob-

servations were likely not due to sequencing depth bias,

since total sequences/sample did not differ between

samples with detection from groups II and III (p

value = 0.96, Mann–Whitney test).

Host features associated with detection of O. formigenes

colonization

Previous studies [14, 30–32] examining the association

of O. formigenes colonization with age, sex, and anti-

biotic exposure history were conducted in small popula-

tions. The AGP, with large sample size and detailed

metadata available, is a robust data source to explore the

underlying O. formigenes–host relationships. Based on

the prior literature, data availability, and biological rele-

vance, we focused on 14 candidate covariates (Table 3)

describing host demographic and clinical features to pre-

dict O. formigenes abundance.

Univariate analyses between covariates and O. formi-

genes abundance were performed for each covariate in-

dependently using the 4945 samples (Table 3). To avoid

the confounding effects from highly correlated covariates

and to minimize false discovery, we further performed

multivariate analysis using a multiple zero-inflated nega-

tive binomial (ZINB) model [33]. The rationales for

model selection and strategies were described in detail

in the “Methods” section. The fitted ZINB model con-

sists of two different components, the logistic regression

for modeling excessive zero abundances and the negative

binomial regression for modeling the remaining count

values. Here, we refer to the population for excessive

zero abundances as the population from which O. formi-

genes is not detected and the other population for the

remaining abundances as the population in which it is

detected [34]. Based on the fitted ZINB model, we found

that age, sex, race, BMI, alcohol drinking frequency,

antibiotic use history, country of residence, and level of

education are significantly associated with the probabil-

ity of O. formigenes detection by the logistic regression

component (Table 4) and BMI and thyroid status are

significantly associated with O. formigenes detection by

the negative regression component (Table 4) [34].

To estimate the overall effect direction and magnitude,

we calculated the overall fitted mean proportions (%)

(see the “Methods” section) as measurements of O. for-

migenes relative abundance for the nine covariates that

were significant in either the logistic or negative bino-

mial regression component (Fig. 3, Table 4) [35]. To

summarize the outcomes, adjusted for the other covari-

ates, we estimate that relative abundance of O. formi-

genes is associated with increased age (Fig. 3a), female

sex (Fig. 3b), Caucasian ethnicity (compared to Asians,

Pacific Islanders, Hispanics, African Americans, or for

persons of other ethnicities) (Fig. 3c), non-USA resi-

dence (Fig. 3d), normal BMI (compared with under-

weight, overweight, or obese) (Fig. 3e), absence of

antibiotic exposure within a year (Fig. 3f ), alcohol con-

sumption (Fig. 3g), higher educational attainment (Fig.

3h), and normal thyroid function (Fig. 3i). In another

analysis, we showed relationships of O. formigenes pres-

ence and the locality of the subject’s birth and present

residence (Additional file 5: Table S1).

In the AGP, participants could complete the Vioscreen

questionnaire [36], a validated dietary instrument calcu-

lating dietary intake in the preceding 90 days. We were

specifically interested in assessing the relationships
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between O. formigenes with dietary oxalate and calcium

because of the role of oxalate in O. formigenes growth and

its unavailability when complexed with calcium [1, 5].

Among the 197 participants who provided the question-

naire, O. formigenes relative abundance was not signifi-

cantly associated with dietary oxalate (Additional file 6:

Figure S5, left), but was inversely and significantly associ-

ated with dietary calcium (Additional file 6: Figure S5,

middle; p = 0.028 by Spearman rank correlation test), and

also inversely associated with the ratio of dietary oxalate

to calcium (Additional file 6: Figure S5, right; p = 0.002).

Microbial community characteristics in relation to

detection of O. formigenes

Among the 4945 subjects, as the number of O. formi-

genes OTUs detected increased, phylogenetic diversity

[37] also increased (Fig. 4a). This relationship was noted

when subjects of the USA (Fig. 4b) and UK–Ireland (Fig.

4c) were analyzed independently. The association be-

tween increasing α-diversity and detection of O. formi-

genes remained consistent when the α-diversity was

assessed using Chao1 [38], Shannon index [39], or ob-

served number of OTUs, with rarefaction (Additional

file 7: Figure S6) to adjust for sequencing depth bias.

To examine microbial community structure (β-diver-

sity), we built a sample of 824 specimens that met rigor-

ous inclusion criteria (Additional file 5: Table S2). Based

on both unweighted UniFrac distances [40] (Fig. 5a) and

Bray–Curtis dissimilarities [41] (Additional file 8: Figure

S7A) visualized by principal coordinate analysis (PCoA),

there was substantial overlap in the samples in which ei-

ther one or two O. formigenes OTUs were detected.

a

b

Fig. 2 Analyses of the 184 subjects who provided multiple samples. a Longitudinal presence of two dominant O. formigenes OTUs. Samples from
same subjects are arranged in one row ordered by extraction time and color-coded by the presence or absence of OTUs 7366 and 360508.
Subjects are divided into groups by whether all samples were (i) all O. formigenes-negative, (ii) a mixture of O. formigenes-positive and
negative, or (iii) all O. formigenes-positive. b Relative abundance of O. formigenes OTUs in 204 O. formigenes-positive samples from groups
II and III. Panels focus on relative abundance of only OTU 7366 (left), only OTU 360508 (middle), or sum of both OTUs (right). One-sided
Mann–Whitney statistical tests were used to determine whether or not abundance in group II samples is less than that in group III.
*p < 0.05, **p < 0.001
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Table 3 Descriptive statistics and univariate analyses for 14 candidate covariates for 4945 fecal samples

Covariates All samples (n = 4945) Univariate analysis
p valuea

Continuous variable Mean ± SD Frequency (%)
of missing

Mean age of O.
formigenes-positive/O.
formigenes-negative

Logistic Negative binomial

Age 46.08 ± 17.28 246 (4.97) 48.39:44.78 <.001 <.001

Categorical covariate Frequency (%) Frequency (%)
of missing

Frequency (%) of O.
formigenes-positive

Logistic Negative binomial

Sex 4722 (95.49) 223 (4.51)

Female 2576 (52.09) 897 (34.84) Reference

Male 2146 (43.40) 775 (36.11) 0.791 0.224

Race 4867 (98.42) 78 (1.58)

Caucasian 4369 (88.35) 1602 (36.67) Reference

Asian/Pacific Islander 232 (4.69) 40 (17.24) <.001 <.001

Hispanic 86 (1.74) 28 (32.56) 0.315 0.082

African American 50 (1.01) 9 (18.00) 0.012 0.075

Other 130 (2.63) 41 (31.54) 0.178 0.674

BMI 4620 (93.43) 325 (6.57)

Underweight 453 (9.16) 113 (24.94) <.001 <.001

Normal 2720 (55.01) 1093 (40.18) Reference

Overweight 985 (19.92) 347 (35.23) 0.003 <.001

Obese 462 (9.34) 114 (24.68) <.001 <.001

Frequency of
alcohol consumption

4855 (98.18) 90 (1.82)

Never 1146 (23.17) 317 (27.66) Reference

Rarely (a few
times a month)

1228 (24.83) 447 (36.40) <.001 0.038

Occasionally
(1–2 times/week)

1076 (21.76) 400 (37.17) <.001 0.055

Regularly (3–5 times/week) 888 (17.96) 343 (38.63) <.001 0.098

Daily 517 (10.46) 213 (41.20) <.001 0.192

Last exposure to antibiotics 4822 (97.51) 123 (2.49)

>365 days 3281 (66.35) 1286 (39.20) Reference

<365 days 717 (14.50) 223 (31.10) <.001 0.018

<180 days 584 (11.81) 136 (23.19) <.001 <.001

<30 days 149 (3.01) 44 (29.53) 0.070 0.317

<7 days 91 (1.84) 23 (25.27) 0.002 0.369

Presence of appendix 4784 (96.74) 161 (3.26)

No 4297 (86.90) 1537 (35.77) Reference

Yes 487 (9.85) 160 (32.85) 0.170 0.347

Country 4945 (100.00) 0 (0)

USA 3779 (76.42) 1176 (31.12) Reference

UK–Ireland 819 (16.56) 411 (50.18) <.001 <.001

Europe Continental 111 (2.24) 52 (46.85) 0.001 0.088

Australia and NZL 137 (2.77) 71 (51.82) <.001 0.030

Canada 73 (1.48) 31 (42.47) 0.099 0.442

Others 26 (0.53) 13 (50.00) 0.099 0.656
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However, both significantly differed from the samples in

which O. formigenes was absent. The mean pairwise in-

tergroup distances between the O. formigenes+ and O.

formigenes− groups were significantly greater than the

corresponding intragroup distances within the O. formi-

genes+ groups (Fig. 5e, Additional file 8: Figure S7E).

The same pattern was observed in samples from subjects

from the USA (Fig. 5b, f, Additional file 8: Figure S7B,

F), or UK–Ireland (Fig. 5c, g, Additional file 8: Figure

S7C, G), when analyzed independently. We also com-

pared the true intragroup distances with average

intragroup distances from bootstrapping samples but did

not see any scalable differences.

Microbial networks in relation to O. formigenes

colonization

We next examined the microbial networks using SPIEC-

EASI [42], where the pairwise microbial interactions

were estimated via absence of conditional independence,

using the stability approach to regularization selection

(StARS) method (as implemented in the pulsar package

in R) for model selection. For StARS, we used the

default β = 0.05 as the threshold parameter, which mea-

sures the fraction of the network that is 1 − β stable over

random subsamples. To predict interactions between O.

formigenes and other microbial species, we constructed

three networks using all 4945 samples, or subsets of the

3935 US or 830 UK samples. Five bacterial species and

an Archaeaon (Table 5) were predicted to interact with

O. formigenes in at least one of the networks. A negative

interaction between Ruminococcus gnavus and O. formi-

genes was observed in all three networks (Table 5).

To understand the observed differences in microbial

community structure between O. formigenes+ and O.

formigenes− samples (Fig. 5), we then inferred two

separate networks. We first compared the two net-

works in terms of centrality of nodes, in which higher

values indicate that the node is involved in more eco-

logical interactions. Nodes in the O. formigenes+ net-

work had significantly higher degree [43] and

betweenness [44] centrality (p = 0.03 and 0.02, one-

sided Mann–Whitney tests) than in the O. formigenes

− network (Fig. 6a), suggesting greater dispersion

within the O. formigenes− network.

Table 3 Descriptive statistics and univariate analyses for 14 candidate covariates for 4945 fecal samples (Continued)

Drinking water source 4821 (97.49) 124 (2.51)

City 2283 (46.17) 855 (37.45) Reference

Filtered 1709 (34.56) 587 (34.35) 0.169 0.389

Bottled 426 (8.61) 126 (29.58) 0.002 0.524

Well 403 (8.15) 136 (33.75) 0.366 0.928

Level of education 2791 (56.44) 2154 (43.56)

≤High school 245 (4.95) 72 (29.39) 0.007 0.146

College/bachelor’s 1024 (20.71) 405 (39.55) Reference

Graduate school 1522 (30.78) 613 (40.28) 0.418 0.514

Dog 4834 (97.76) 111 (2.24)

Absent 3362 (67.99) 1219 (36.26) Reference

Present 1472 (29.77) 489 (33.22) 0.058 0.118

Born by C-section 4626 (93.55) 319 (6.45)

False 4147 (83.86) 1485 (35.81) Reference

True 479 (9.69) 152 (31.73) 0.047 0.584

Vegetable consumption frequency 2876 (58.16) 2069 (41.84)

<1 time/week 127 (2.57) 33 (25.98) 0.017 0.034

1–2 times/week 288 (5.82) 84 (29.17) 0.024 0.046

3–5 times/week 1025 (20.73) 381 (37.17) Reference

Daily 1436 (29.04) 616 (42.90) 0.001 0.007

Thyroid disease 2853 (57.69) 2092 (42.31)

No condition 2490 (50.35) 986(39.60) Reference

Diagnosed 363 (7.34) 120(33.06) 0.001 0.070

aUnivariate analyses: The p values reported in the table were estimated based on logistic regression models or negative binomial regression models for the effect

of each candidate covariate on abundance of O. formigenes. Both logistic or negative binomial regression models include the log of total read count per sample

as the offset variable. For the purpose of univariate analysis, we consider p<0.1 as statistically significant as stated in the 'Methods', which is shown in italics
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Table 4 The outcomes of the logistic and negative binomial components of the fitted ZINB regression model

Logistic regression component Negative binomial regression component

Estimate ± Std. error z value Pr(>|z|)a Estimate ± Std. error z value Pr(>|z|)a

Intercept 10.133 ± 0.449 −22.545 <.001 −8.262 ± 0.240 −34.376 <.001

Age −0.025 ± 0.007 −3.593 <.001 0.004 ± 0.003 1.108 0.268

Sex

Female Reference category

Male −0.422 ± 0.176 −2.403 0.016 −0.122 ± 0.090 −1.348 0.178

Race

Caucasian Reference category

Asian/Pacific Islander 1.335 ± 0.371 3.602 <.001 −0.391 ± 0.310 −1.260 0.208

Hispanic −0.162 ± 0.529 −0.307 0.759 −0.273 ± 0.328 −0.834 0.404

African American 0.542 ± 1.132 0.479 0.632 −0.223 ± 0.642 −0.347 0.728

Other 0.408 ± 0.517 0.789 0.430 −0.058 ± 0.271 −0.214 0.831

BMI

Underweight 0.081 ± 0.325 0.248 0.804 −0.278 ± 0.179 −1.551 0.121

Normal Reference category

Overweight 0.071 ± 0.257 0.278 0.781 −0.384 ± 0.107 −3.571 <.001

Obese 0.864 ± 0.317 2.723 0.006 −0.694 ± 0.168 −4.119 <.001

Freq. of alcohol consumption

Never Reference category

Rarely −0.802 ± 0.288 −2.786 0.005 −0.041 ± 0.134 −0.306 0.759

Occasionally −0.661 ± 0.269 −2.456 0.014 −0.104 ± 0.138 −0.754 0.451

Regularly −0.524 ± 0.287 −1.825 0.068 −0.212 ± 0.144 −1.470 0.142

Daily −0.608 ± 0.343 −1.774 0.076 −0.208 ± 0.169 −1.233 0.218

Last exposure to antibiotics (days)

>365 Reference category

<365 0.648 ± 0.246 2.632 0.008 −0.136 ± 0.125 −1.084 0.278

<180 1.687 ± 0.273 6.188 <.001 0.115 ± 0.161 0.710 0.477

<30 0.568 ± 0.469 1.212 0.226 −0.105 ± 0.263 −0.401 0.689

<7 1.633 ± 0.519 3.149 0.002 0.334 ± 0.374 0.892 0.372

Country of residence

USA Reference category

UK–Ireland −2.802 ± 1.037 −2.703 0.007 0.180 ± 0.113 1.590 0.112

Europe Continental −1.598 ± 1.380 −1.158 0.247 0.258 ± 0.289 0.892 0.372

Australia and NZL −1.494 ± 0.982 −1.522 0.128 0.148 ± 0.227 0.654 0.513

Canada −1.470 ± 0.931 −1.578 0.115 −0.150 ± 0.304 −0.494 0.621

Others −2.299 ± 1.083 −2.123 0.034 0.384 ± 0.580 0.661 0.509

Drinking water source

City Reference category

Filtered 0.094 ± 0.190 0.493 0.622 −0.053 ± 0.094 −0.558 0.577

Bottled −0.207 ± 0.393 −0.527 0.598 −0.020 ± 0.164 −0.121 0.904

Well 0.407 ± 0.295 1.381 0.167 0.137 ± 0.167 0.822 0.411

Level of education

≤High school 0.957 ± 0.441 2.170 0.030 0.226 ± 0.239 0.945 0.344

College/bachelor’s Reference category

Graduate school 0.176 ± 0.292 0.601 0.548 0.067 ± 0.111 0.602 0.547
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We then compared the resilience of the networks

to disturbance, using sequential node removal to

simulate “attacks” to the networks, an approach previ-

ously described [45]. Natural connectivity—the num-

ber of closed walks [46]—was used to assess

robustness of remaining networks (Fig. 6b). Node re-

movals were performed either by first removing the

hub species—nodes with the highest degree (Fig. 6b,

left) or betweenness centrality (Fig. 6b, middle)—or at

random (Fig. 6b, right). In the degree-based node re-

moval, natural connectivity dropped faster in the O.

formigenes− network compared to O. formigenes+, in-

dicating that the O. formigenes− networks might col-

lapse faster under “ecological attack” when important

species were affected.

O. formigenes+ networks also were associated with

significantly higher natural connectivity before any

nodes were removed (Fig. 6b). To alternatively exam-

ine this observation, we performed network inference

repeatedly, obtaining a distribution of natural con-

nectivity associated with the O. formigenes+ or O.

formigenes− networks. The O. formigenes+ networks

had significantly higher natural connectivity (Fig. 6c,

first panel). Seven other microbial species, whose

prevalence and abundance were at the same order of

magnitude as O. formigenes, were selected as control

taxa. Among them, two unclassified species from

family Dehalobacterium or rc4-4 showed the con-

trasting pattern that their presence were associated

with networks with lower connectivity; the presence

of Rothia mucilaginosa, Rothia dentocariosa, Cam-

pylobacter unclassified, cc_115 unclassified, and Neis-

seria subflava showed the same differential pattern

as O. formigenes (Fig. 6c).

Discussion

This study has four major findings:

(i).We confirm extensive variation in O. formigenes

relative abundance [35], now with much larger

numbers of subjects, indicating a range of

approximately 3 log10.

(ii).By sequence analysis of the OTUs, we confirmed

that humans may be co-colonized by group I and II

O. formigenes strains [47], which we mapped to cur-

rently described strains [10, 28, 48].

(iii).We confirmed and extended relationships between

O. formigenes prevalence and host features, at

considerably larger scale, and now with analyses in

relation to both O. formigenes prevalence and

abundance.

(iv).We showed that the host gut microbiota displayed

greater community diversity, global network

connectivity, and greater resilience to simulated

disturbance, in the samples in which O. formigenes

was detected.

Our data suggest that O. formigenes strains resem-

bling strain BLISS, a putative phylogenetic group I

strain, might be the most prevalent and abundant

strains in the human gastrointestinal tract, while

group II O. formigenes strains (as exemplified by

HOxBLS and OXK) are less common, consistent with

a prior study [47]. Knowing which strains are natur-

ally dominant human gut colonizers is important for

designing long-term clinical interventions. For ex-

ample, strain HC1 was administered to primary

hyperoxaluria patients, achieving promising short-

term urinary oxalate reduction but failed to maintain

Table 4 The outcomes of the logistic and negative binomial components of the fitted ZINB regression model (Continued)

Dog

Absent Reference category

True 0.270 ± 0.178 1.516 0.130 −0.044 ± 0.094 −0.469 0.639

C-section

False Reference category

True 0.209 ± 0.266 0.786 0.432 0.173 ± 0.151 1.143 0.253

Vegetable frequency

<1 time/week 0.102 ± 0.630 0.162 0.871 −0.191 ± 0.330 −0.580 0.562

1–2 times/week 0.395 ± 0.399 0.991 0.322 −0.099 ± 0.205 −0.485 0.628

3–5 times/week Reference category

Daily −0.216 ± 0.288 −0.750 0.453 0.184 ± 0.114 1.618 0.106

Thyroid condition

No condition Reference category

Diagnosed −0.093 ± 0.431 −0.216 0.829 −0.394 ± 0.166 −2.37 0.018

aStatistical significance in italics
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Fig. 3 Predicted relationships between O. formigenes abundance and host features by the ZINB model. a–i The overall fitted mean proportions
(%) of O. formigenes were plotted as functions of nine significant covariates in the ZINB model fitted with 4945 AGP fecal samples. For each
covariate, categories are color-coded by reference (white), not significant (black), or significant in either logistic or negative binomial regression
component (red). Panels focus on covariate age (a); sex (b); race (c); geographical location (d); BMI (Underweight, Normal, Overweight and Obese
groups are classified based on BMI ≤18.5, 18.5–25, 25.1–30, and >30, respectively) (e); last exposure to antibiotics (f); alcohol consumption frequency
(groups of rarely, occasionally, regularly consuming are defined as a few times/month, 1–2 times/week, and 3–5 times/week) (g); education level (h);
and whether has thyroid disease (i)

Fig. 4 α-Diversity measurements in 4945 fecal samples, by number of O. formigenes OTUs detected. By Student’s t test, *p value <0.001
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long-term colonization and significant oxalate reduc-

tion [17, 20, 21]. All three O. formigenes-associated

OTUs we detected showed low 16S sequence similarity to

HC1 (Additional file 2: Figure S2B), suggesting that it may

not be a common human colonizing strain.

Our findings that O. formigenes OTUs tend to be

co-detected are consistent with our prior work, which

used metagenomic data from the Human Microbiome

Project [47]. Thus, the shotgun metagenomic and 16S

analyses provide congruent results, despite the meth-

odological and source population differences. We also

now show that those OTUs are detected at elevated

abundance when co-present; these observations sug-

gest inter-strain cooperation among O. formigenes

Fig. 5 β-Diversity of 824 samples based on unweighted UniFrac distances, by number of O. formigenes OTUs detected. a–d Visualization of β-
diversity ordination through PCoA of all 824 samples meeting the inclusion criteria (Additional file 5: Table S2) (a), 604 US samples (b), 144 UK or
Ireland samples (c), and the rest of the 70 samples (d). Samples with 0, 1, or 2 O. formigenes OTUs are represented in blue, green, and red dots.
Ellipses were drawn with ggplot2 stat_ellipse function using multivariate t-distribution. By Qiime PERMANOVA test based on 1000 permutations, *p
value <0.05. e–h Bar plots (mean ± S.E.M) of intra- and intergroup pairwise sample UniFrac distance for all samples (e), 604 US samples (f), 144 UK
or Ireland (g) samples, or the remaining 70 samples (h). By Bonferroni-corrected t tests, *p < 0.05

Table 5 Microbial species predicted to interact with O. formigenes based on three sets of samples

Taxon All
(n = 4945)

USA
(n = 3779)

UK
(n = 812)

Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; [Ruminococcus]; gnavus − − −

Bacteria; Firmicutes; Clostridia; Clostridiales; Dehalobacteriaceae; Dehalobacterium; unclassified + +

Bacteria; Proteobacteria; Deltaproteobacteria; Desulfovibrionales; Desulfovibrionaceae; Desulfovibrio;
unclassified

+ +

Bacteria; Firmicutes; Clostridia; Clostridiales; Christensenellaceae; unclassified; unclassified +

Bacteria; Tenericutes; Mollicutes; RF39; unclassified; unclassified; unclassified + +

Archaea; Euryarchaeota; Methanobacteria; Methanobacteriales; Methanobacteriaceae; Methanobrevibacter;
unclassified

+

Positive or negative interactions are designated with plus (+) or minus (−) sign
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strains, which needs experimental support. If proven,

these findings would suggest that at a clinical level,

O. formigenes re-introduction for kidney stone preven-

tion might be facilitated if multiple strains could be

administered simultaneously. Alternatively, those ob-

servations may reflect cross-feeding, co-aggregation,

niche overlap, or use of the same host resource, but

without competition. We also cannot rule out tech-

nical artifacts, in which 16S amplicon sequencing and

metagenomic sequencing (with two reference ge-

nomes) were both unable to distinguish O. formigenes

at the strain level and the single taxonomy units that

we and others [47] used were mixtures of multiple O.

formigenes strains.

a

b

c

Fig. 6 Microbial structure in relation to O. formigenes colonization. a Centrality of nodes in O. formigenes+ (left) and O. formigenes– (right)
networks. The x and y axes represent the normalized node degree and betweenness centrality, respectively. b Natural connectivity is shown as a
function of the remaining size of the network. Node removals were ordered by degree (left), or betweenness centrality (middle), or at random
(right). c Natural connectivity associated with presence of O. formigenes or with seven other bacterial species as controls. For each category,
distribution of natural connectivity was obtained by 100 iterations of network inference with 1000 samples randomly selected per iteration. All
comparisons are significant based on Mann–Whitney statistical tests
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The longitudinal analyses showed a considerable pro-

portion of subjects switching O. formigenes status. It is

unlikely that O. formigenes colonization is lost and

regained at such high frequency; more likely, limited se-

quencing depth in the assays underestimates O. formi-

genes presence in samples in which they are present at

low abundance. This explanation is supported by our

finding that in subjects in whom O. formigenes was de-

tected at lower relative levels, detection was more vari-

able (Fig. 2a, middle) than those who are colonized at

relatively high levels (Fig. 2a, right). This difference justi-

fies restricting our analysis to samples with >10,000

assigned sequences. Better understanding and investiga-

tion of O. formigenes biology and its therapeutic applica-

tions may require deeper sequencing and more curated

reference genomes. These limitations will be relevant to

approaches for other low abundant taxa of potential

medical interest.

Prior smaller studies have linked O. formigenes preva-

lence with host age, sex, location, education, race/ethni-

city, and oxalate consumption [31, 32, 48]. Our

multivariate analysis further interrogated the underlying

relationships, dealing with the technical issue of microbial

data sparsity using a robust statistical model [49, 50]. Our

observations that males carry O. formigenes at significantly

lower abundance than females (Fig. 3b) correlate with the

unexplained twofold higher kidney stone incidence in

males compared to females [4, 51].

Prior studies have identified oxalate deposition within

the thyroid gland in humans and other mammals [52–62].

A study of healthy thyroid tissues obtained at autopsy

from 182 individuals found a negative correlation between

spatial distributions of calcium oxalate crystals and tri-

iodothyronine (T3)-producing colloids [59], suggesting

that oxalate precipitation may be inversely related to nor-

mal thyroid function. Our observations that subjects diag-

nosed with thyroid diseases were colonized by O.

formigenes at lower prevalence (Table 3) and abundance

(Fig. 3i) are consistent with the hypothesis that O. formi-

genes may be beneficial to host thyroid function by lower-

ing circulating oxalate. However, the sample size of AGP

subjects with (n = 363) or without (n = 2490) thyroid dis-

ease is unbalanced, and the AGP includes no information

of specific type of thyroid abnormalities. Thus, future tar-

geted studies are needed to further examine this

hypothesis.

That O. formigenes detection is correlated with higher

phylogenetic diversity in the host microbiota (Fig. 4) is

consistent with comparisons of US subjects and Amerin-

dian hunter gatherers [63]. The Amerindians had signifi-

cantly higher diversity and nearly universal O. formigenes

colonization at high abundance; O. formigenes was one

of the most differentiating taxa between those two popu-

lations [63]. These results may indicate that a more

diverse gut microbial community has greater likelihood

of harboring O. formigenes or alternatively could reflect

technical issues such as differences in sequencing depth.

If the prevalence and abundance of O. formigenes is in-

deed an indicator of the ecological state of the micro-

biota, then the disappearing microbiota theory [64]

might predict association with particular disease states

that have risen while we have been losing diversity. Of

interest to us are the recent studies describing rising

prevalence of kidney stones in the USA [51] and other

countries [65–67]. Furthermore, the linkage observed of

O. formigenes absence to both obesity (Fig. 3e) and thy-

roid disease (Fig. 3i) is consistent with that hypothesis.

Our analysis of inferred ecological networks also sug-

gests that O. formigenes presence may be one indicator

of host microbiota integrity and ultimately may be a

marker for host physiology.

Conclusions
In conclusion, evidence is growing that O. formigenes has

medical significance in humans [4, 5, 13, 15, 30, 32]. We

show that the AGP is a valuable resource and present a

systematic framework to explore the biology of O. formi-

genes in humans. The relationships that we observed illus-

trate the power of a crowd-sourced enterprise, if done on

sufficient scale, to answer biological and medical ques-

tions. Nevertheless, the observations we report should

be considered as hypothesis-generating; carefully de-

signed experiments are needed to establish the under-

lying causal relationships and to help design targeted

clinical interventions. Nevertheless, the systematic

framework we built can be extended to study other

bacterial taxa of interest.

Methods
Data acquisition and processing

In the AGP, samples were self-obtained by study par-

ticipants using sample kits containing detailed in-

structions [68] and then shipped by mail to the AGP

home lab, accompanied by completion of metadata

questionnaires. Sample DNA extraction, library prep-

aration, and sequencing were performed as described

[69]. The AGP consortium processed data with

closed-reference OTU-picking pipeline [70]. We also

performed open-reference OTU picking using Uclust

[22] to search for novel O. formigenes-associated

OTUs. In our study, the raw sequences [71] and the

closed-reference OTU-picking results [72] were dir-

ectly downloaded from the ftp website and the meta-

data were shared by the AGP. All those data could

also be alternatively acquired via the Qiita [73] web-

site under study number 10317.
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Phylogenetic analysis of O. formigenes strains and detected

OTUs

Complete 16S rRNA gene sequences of 13 O. formigenes

strains, three O. formigenes-associated OTUs, and Oxalo-

bacter vibrioformis were downloaded from the Green-

genes website [24]. The V4 region was a subset based on

the primers used for the AGP (FWD:GTGY

CAGCMGCCGCGGTAA, REV:GGACTACNVGGGTW

TCTAAT; 515FB-806RB) [69]. Phylogenetic trees were

constructed with the sequences of the complete 16S (Add-

itional file 2: Figure S2A) or V4 region only (Fig. 1b) via

phylogeny.fr [74]. Four steps were performed: (i) initial

alignment by MUSCLE 3.8.1, (ii) alignment refinement by

Gblock, (iii) maximum likelihood phylogeny analysis by

PhyML, and (iv) tree rendering by TreeDyn [75–80]. For

detailed methods and parameters, refer to phylogene.fr

website documentation section 2.1 [81]. The sequence

identity matrix (Additional file 2: Figure S2B) was calcu-

lated with (1 − dist)% by the dist.alignment function [82]

from the seqinr package in R, based on the alignment re-

sults that were obtained during the 16S V4 region se-

quence alignment for Fig. 1b.

Sample diversity analyses

Intra-sample α-diversity was calculated using QIIME, using

four metrics, phylogenetic diversity [37], Shannon index

[39], Chao1 index [38], and observed number of OTUs, at

rarefaction depths from 1000 to 10,000 sequences/sample.

Pairwise inter-sample β-diversity was calculated using the

unweighted UniFrac distance metric [23] and Bray-Curtis

dissimilarities [41].

Multivariate analysis

(i) Description of the multivariate model: A multiple

zero-inflated negative binomial regression (ZINB) [33]

model was used for the differential abundance analysis

on O. formigenes, to handle its excessive zero abun-

dances in its read count (64%) and the overdispersion

(the mean 5.7 is much smaller than the variance 284.4).

The ZINB model consists of two different components,

a logistic regression for modeling the excessive zeros

and a negative binomial regression for modeling the

remaining count values. To adjust for the varying num-

ber of total read counts, both components of the ZINB

model included the log(total read counts) as the offset

variable such that the ZINB model assesses the propor-

tions of O. formigenes rather than the count [35]. The

canonical link functions were used with logit for the lo-

gistic regression and log for the negative binomial re-

gression. Missing data in each categorical variable was

included into a separated hidden category [83]. (ii) Vari-

able selection: The variables were selected based on prior

literature, data availability and quality, biological rele-

vance, and investigators’ interest yielding 14 variables to

be included in the analysis (Table 1). Among those, age,

sex, and race were included as the baseline covariates to

both the logistic and the negative binomial regression

components. The other covariates were subsequently

added to the regressions if they had univariate p value

<0.1 either in logistic or negative binomial regression

model (Table 1). The criterion p value <0.1 was used,

which is less stringent than the canonical criterion

p < 0.05, in considering that some covariates that are

weak predictors in univariate analyses might be influen-

tial when in combination with other covariates. (iii)

Model selection: We compared the performance of the

ZINB model with zero-inflated Poisson (ZIP) [49], in

terms of fitness to the data based on the same link func-

tions, offset variable, and covariates. The ZINB model

outperformed the ZIP model with smaller (a) Akaike in-

formation criterion (AIC) [84] [ZINB 18,177 vs ZIP

41,456], (b) Bayesian information criterion (BIC) [85]

[ZINB 18,765 vs ZIP 42,035], and (c) log likelihood

[ZINB −8997.6 (DF 91) vs ZIP −20,637.4 (DF 90);

p < 0.001] by the likelihood ratio test, suggesting that

the goodness-of-fit was significantly improved in ZINB

over ZIP. (iv) Overall fitted mean proportions (%): Over-

all fitted mean proportions were calculated by the aver-

age predicted value (APV) method [35], which is

predicted O. formigenes count values divided by the

mean total read counts under each exposure status, as

measurements to estimate the effect direction and mag-

nitude on O. formigenes relative abundance.

Construction of microbial association networks

Network was constructed at species level by summing

up all associated OTUs for each species. Species that

were present in at least 20% of the samples were selected

for network inference by SPIEC-EASI [42]. The default

setting of SPIEC-EASI accepts absolute abundance of

taxa as input and applies centered log-ration transform-

ation to eliminate the unit-sum constraint of data [86].

Networks were constructed with the SPIEC-EASI [42]

package in R in neighborhood selection mode with param-

eters set as method = “mb,” sel.criterion = “bstars,” lamb-

da.min.ratio = 2e−1, nlambda = 100, pulsar.params =

list(rep.num = 20, ncores = 2). The species–species inter-

acting directions were predicted based on the average coef-

ficients calculated via the beta matrix. Edge centrality and

betweenness centrality were calculated using degree and

centralization.betweenness functions with the igraph in R,

normalized against the theoretical maximum. Natural con-

nectivity, a variant of the Estrada index [46], was calculated

as described [46], through the following equation:

log
X

ex
� �

Þ= N− log Nð Þð Þ

where N is the number of nodes in the network and x is
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the average of eigenvalues of the graph adjacency matrix,

which was calculated using get.adjacency and eigen R

functions.

The distributions of natural connectivity [46] associ-

ated with O. formigenes+ and O. formigenes– networks

were acquired from 100 iterations of network inference,

randomly selecting 1000 O. formigenes+ and O. formi-

genes– samples in each iteration. Seven control species

were selected based on their similarity to O. formigenes

population parameters: detection rates of 30–40% and

relative abundances of 10−2–10−3. The distributions of

natural connectivity associated with presence or absence

of the control species were calculated the same way as

with O. formigenes.
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