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Abstract

1. Oxford-IIIT combined: a spatial pyramid intersection

kernel SVM image classifier, a sliding-window random-

forest object detector, a sliding-window intersection ker-

nel SVM object detector, and a discriminative constel-

lation model facial feature extractor. For each of the

twenty features, methods were ranked based on their

performance on a validation set and associated to suc-

cessive runs by decreasing performance. For training,

TRECVID annotations were manually corrected and

augmented with object bounding boxes, and additional

training data was used for under-represented features

such as Airplane flying.

2. The different methods yielded a significantly different

performance depending on the feature, as expected by

their design.

3. The image classifier worked better for scene-level fea-

tures such as Cityscape, Classroom, Doorway, while the

object detectors worked better for Boat or ship, Bus,

Person riding a bicycle, and the face feature extractor

worked well for Female face closeup.

4. Three conclusions can be drawn: (i) different features

are addressed better by specialised methods, (ii) re-

moval of noise from TRECVID annotations (iii) addi-

tional data for under-represented features significantly

improve performance.

1 Introduction

Our team participated in all 20 categories of high level fea-

ture extraction task. We extracted our own keyframes for

every shot of both the TRECVID 2009 DEVEL and TEST

data sets. The DEVEL set was subdivided in two halves de-

noted TRAIN and VAL and used for training and validation,

respectively. Ground truth labels for the DEVEL keyframes

were obtained by transferring TRECVID collaborative anno-

tations. Additional region-of-interest annotations and images

were used for training some of the object detectors.

New developments this year include: removing the noise

in the annotation data (section 2); using a fast intersection

kernel SVM combining two features (section 4.1); extending

the region of interest (ROI) in training for object detectors in

order to include more context (section 4.2.1); and classifying

face tracks into male/female (section 4.4).

2 Cleaning the annotations

We found the collaborative annotations for the TRECVID

high level features to be quite noisy: some shots are wrongly

annotated, and others are labelled as ’skip’ when they are, in

fact, unambiguously positive or negative for the feature. To

remove this noise in the annotation, we used a weak classi-

fier trained on the noisy data for each high level feature as

follows

1. Train a classifier using all the +ves and a subset of -ves

in TRAIN and VAL sets according to the Collaborative

Annotation.

2. Rerank all the images in the TRAIN+VAL set based on

the classifier output.

3. Refine the annotations of the top 5000 ranked images.

In this manner, we could find many of the wrong annotations

with minimal manual effort. This refinement was found to

be very effective. For example, for the Doorway category the

AP performance increased from 0.16 to 0.41 due to annota-

tion cleaning (training on TRAIN and testing on VAL, both

of which were corrected).

3 Visual representation

For the key frame classification we used Pyramid Histogram

of Visual Words (PHOW) [3]. It is described below. Special



features are used for the Female-human-face-closeup cate-

gory as described in section 4.4.

3.1 Pyramid Histogram of Visual Words

These descriptors consist of visual words which are com-

puted on a dense grid. Here visual words are vector quan-

tized SIFT descriptors [11] which capture the local spatial

distribution of gradients.

Local appearance is captured by the visual words distri-

bution. SIFT descriptors are computed at points on a regular

grid with spacing M pixels. We have used gray level repre-

sentations for each image. At each grid point, the descrip-

tors are computed over circular support patches with radii

r. Thus, each point is represented by four SIFT descrip-

tors. These dense features are vector quantized into visual

words using K-means clustering. Here, we have used a vo-

cabulary of 300 words. Each images is now represented by a

histogram of these visual word occurrences.

We have used M = 5, K = 300 and radii r =
10, 15, 20, 25. To deal with with empty patches, we zero all

SIFT descriptors with L2 norm below a threshold (200).

In order to capture the spatial layout representation, which

is inspired by the pyramid representation of Lazebnik et.al.

[9] , an image is tiled into regions at multiple resolutions. A

histogram of visual words is then computed for each image

sub-region at each resolution level.

To summarize, the representation of an appearance de-

scriptor is a concatenation of the histograms of different lev-

els into a single vector which are referred to as Pyramid His-

togram of Visual Words (PHOW). Here, we have used three

levels for the pyramid representation. The distance between

the two PHOW descriptors reflects the extent to which the

images contain similar appearance and the extent to which

the appearances correspond in their spatial layout.

4 Classification schemes

We have three different methods: (i) for “scene” like cate-

gories where we classify the entire image and its spatial lay-

out we use an intersection kernel SVM; (ii) for object like

categories, where we search for the localization (position,

scale) of the object within the image, we use a sliding win-

dow Random Forest classifier or a sliding window intersec-

tion kernel SVM classifier; and (iii) for faces we use a Viola-

Jones face detector and track the detections throughout the

video to associate detections of the same person. Each of

these methods is described in the following subsections.

4.1 SVM with Fast Intersection Kernel

An intersection kernel SVM is more powerful than a linear

kernel SVM, and using the method of [12] its testing com-

Category AP infAP

Training Set TRAIN TRAIN+VAL

Testing Set VAL TEST

Cityscape 0.54 0.28

Demonstration or protest 0.45 0.03

Doorway 0.41 0.21

Nighttime 0.40 0.24

Hand 0.39 0.20

Boat or ship 0.23 0.17

Female face closeup 0.20 0.19

Traffic intersection 0.17 0.16

Person playing soccer 0.11 0.31

Figure 1: Performance of the SVM image classifier.

The figure reports the average precision of the method of

Sect. 4.1 when trained on TRAIN and evaluated on VAL

and TRECVID inferred AP when trained on TRAIN+VAL.

To compute average precision on TRAIN+VAL the complete

and cleaned annotations where used. In several cases the dif-

ference in AP and infAP is remarkable.

plexity can be reduced from O(dmn) to O(dn log m), where

d is the feature dimensionality, n is the number of keyframes

to be classified, and m the number of support vectors. For

example, to classify 200K frames requires only 5 minutes

(including the time taken for loading the features into mem-

ory) on a Intel Xeon CPU @2.00GHz. Both the PHOW and

color features are used. Also, when trained on TRAIN set

and tested on VAL set, it is found that nearly 20% of the to-

tal negative samples available are enough to get an AP which

is nearly equal to AP obtained by training all the negative

samples.

This method worked well for most of the scene like cat-

egories, (e.g. Cityscape, Demonstration or protest, Hand).

Results obtained on the TEST set for different categories are

given in Fig. 3 for the Hand category, and Fig. 4 for the

Cityscape category, and quantitative results are reported in

Fig. 1.

4.2 Classification by Detection using Random

Forests

A random forest multi-way classifier [1, 4, 10, 3, 5, 6, 13, 14,

17, 21, 22, 16] consists of a number of trees, with each tree

grown using some form of randomization. The leaf nodes of

each tree are labeled by estimates of the posterior distribution

over the image classes. Each internal node contains a test that

splits the space of data to be classified. An image is classified

by sending it down every tree and aggregating the reached

leaf distributions.

Here we use Random forest as an object detector, and take

the approach of classification by detection for object cate-



gories in high-level feature extraction task.

Learning the Object Classifier: Each Random Forest

classifier is trained to discriminate between candidate regions

that do and do not contain an instance of the object of interest.

A one-versus-rest classifier is trained for 4 object categories

namely Boat Ship, Person-riding-a-bicycle, Bus and Hand.

Training Random Forests: The trees we train here are bi-

nary and are constructed in a top-down manner. Pyramid His-

togram of Visual Words (PHOW) is used with 3 levels for the

pyramid representation to represent the appearance. For node

test we have a node function (difference of two components

of the feature vector) and a threshold. During training of the

tree each node has available only a randomly chosen subset

of the entire pool of possible node functions (100 such func-

tions were chosen). Training is achieved by finding for each

non-terminal node a node function and a threshold which

yields maximum information gain within such restricted, ran-

domized search space [3, 21]. We train 100 trees with maxi-

mum allowed depth 10 and choose an optimal threshold from

10 randomly selected thresholds for each chosen node func-

tion. To further introduce randomness each tree is trained

using 67% of samples from training data selected at random.

Empirical posterior distribution for the class is stored in the

leaf nodes as done in [3].

Classification: The test image is passed down each random

tree until it reaches a leaf node. All the posterior probabilities

are then averaged and the arg max is taken as the classifica-

tion of the input image.

Testing and Retraining: For training number of positive

and negative data samples are required. The ground truth ob-

ject instances (Region of Interest or ROIs) for a class, plus a

number of jittered instances (both from original and flipped

training images), are used as positive samples. Regions that

do not overlap the target object instances by more than 20%

are used as negative samples. The aspect ratio of the the de-

tector window is found from the aspect ratios of the ROIs in

the training set. While testing we use a sliding window ap-

proach, where a detector window is applied at all positions

and scales of an image. The aspect ratio of the the detector

window is found from the aspect ratios of the ROIs in the

training set. Because of this the number of possible nega-

tive samples is exorbitantly large and it is important to find a

proper representative sub-set. This is done by bootstrapping

or retraining each classifier as follows:

• Train a classifier using positive and negative samples

from DEVEL data.

• Run the classifier over the training images.

• Compare the detections with the ground truth ROIs, and

label them as false positives if the overlap is less than

20%.

• The top 30K to 35K false positives are used as hard

negative samples and are added to the negative set for

retraining.

The retrained classifier is then run on the TEST data. The

maximum detection score in a frame is taken as the confi-

dence of that frame.

4.2.1 Extended ROIs

There are a lot of variations in shape and appearance of ob-

jects, such as caused by extreme viewpoint changes, that are

not well captured by a single template (or aspect ratio). It is

common to use multiple templates to encode view or pose

variations, for example separate templates for frontal and

side views of faces and cars [15]. To interpret the variations

in TRECVID data it would require many templates. Apply-

ing them over such a large dataset for testing/bootstrapping

is computationally very expensive. To deal with this we use

what we call as Extended ROIs.

Extended ROIs are obtained by extending the original

ROIs such that its aspect ratio becomes the selected one and

it lies at the center of the extended ROI. This allows us to

use only one aspect ratio and still cover for large range of as-

pect ratios while testing. Fig. 2 shows the original ROIs from

DEVEL set and their Extended versions. While training Ex-

tended ROIs were used as the positive samples. Then all the

training ROIs as well as the detector window (while testing)

had the same aspect ratio. The detected windows were also

extended ones with the object at its center.

The Extended ROI can give a significant performance

boost. For example, for Boat Ship the AP increased from

0.198 to 0.411 when Extended ROIs were used compared

to not using them (training on the TRAIN set, testing on the

VAL set).

Fig. 5 shows ranked shots for the Boat-Ship category us-

ing the Random Forest classifier.

4.3 Sliding-window intersection kernel SVM

In addition to the random forest object detector, we tested

a classifier based on an intersection kernel sliding-window

SVM. The method is a simplified version of [18], using only

one feature (PHOW), and one stage of the cascade (additive

kernel) on top of coarsely sampled region-of-interest. This is

sufficient as no accurate localisation is required. The detector

is used to reject false positives retrieved by a whole-image

classifier, using the same features. It performed better than

the random-forest detector for the Bus and Person riding a

bicycle classes.



Figure 2: Top row shows the examples of original ROIs for class Person-riding-a-bicycle, and their extended ROIs are shown

in the bottom row. Note that all the extended ROIs have same aspect ratio.

4.4 Face Detection and Classification

This section describes our face detection approach (for de-

tails see [2] which presents a real-time version of the method

described below). The aim here is to find video footage of

people where their face is visible with a low false positive

rate. The same processing pipeline is applied to all frames

of the training data and test data. In the training data, a very

high precision was achieved at low recalls.

4.4.1 Face detection and tracking

The first stage of processing is frontal face detection which

is done using the Viola- Jones cascaded face detector [19].

When a new individual has been detected, a kernel-based re-

gressor is trained to track that individual such that the track-

ing performance is both fast and more robust to non-frontal

faces in comparison to cascaded face detection [20]. Face

detection is used to collect several exemplars of an individ-

uals face which may vary in pose and expression. A train-

ing set consisting of image patches that are offset from the

face center and at a slightly different scale, and the respec-

tive transformations back to the original face location and

scale, are artificially generated from the face detections. This

dataset is used to train a kernel-based regressor to estimate

the position (x, y) and scale (w) of a face.

4.4.2 Feature localization

The output of the face tracker gives an approximate location

and scale of the face, but does not provide a confidence in

this measure. To achieve a low false positive rate, features

at the corners of the eyes, nose and mouth are located to

verify the existence of a face. Where multiple successive

frames achieve a poor localization confidence, the track is

terminated. To locate the features, a model combining a gen-

erative model of the feature positions with a discriminative

model of the feature appearance is applied. The probability

distribution over the joint position of the features is modelled

using a mixture of Gaussian trees, a Gaussian mixture model

in which the covariance of each component is restricted to

form a tree structure with each variable dependent on a sin-

gle parent variable. This model is an extension of the single

tree proposed in [8], and further details can be found in [7].

4.4.3 Feature Descriptor

Output of Feature Localization is used to locate 9 facial fea-

tures at the corners of the eyes, nose and mouth. Four addi-

tional features are added at the centre of both eyes, mouth and

nose. The face region defined by the facial features is nor-

malized with respect to a canonical face to reduce the effects

of scale and out-of-plane rotations of the head. An affine

transformation is computed between the canonical feature

set and the facial features. Using the affine transformation,

regions that were circular in the canonical reference frame

are extracted from the corresponding elliptical regions in the

tracked face. These 13 image patches are then normalized to

have zero mean and unit variance, and are concatenated to

form a single vector that represents the persons face.



4.4.4 Female Face Classification

For the Female-human-face-closeup category of the high

level feature extraction task, tracks obtained from the tracker

were first filtered to remove any having an average face size

less than 50% of the frame area. Then in the DEVEL data

the remaining tracks were manually labeled as male and fe-

male faces. Middle frame of each of the tracks was used for

classification purpose. Using this we received classification

scores at track level. These results were then transfer to shot

level results using shot boundaries. During this process, In

case of more than one track assigning its score to a shot, best

score was retained. Finally shots were ranked based on the

classification scores they received.
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Figure 3: Top 15 shots from the TEST set (shown by keyframe) using a SVM with intersection kernel for the Hand category

Figure 4: Top 15 shots from the TEST set (shown by keyframe) using a SVM with intersection kernel for the Cityscape

category



Figure 5: Top 15 shots from the TEST set (shown by keyframe) using a Random Forest Classifier for the Boat Ship category

Figure 6: Top 15 shots from the TEST set (shown by keyframe) using a SVM Classifier on PHOW features for the Female-

human-face-closeup category


