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Abstract

The Oxford team participated in the high-level feature ex-

traction and interactive search tasks. A vision only approach

was used for both tasks, with no use of the text or audio in-

formation.

For the high-level feature extraction task, we used two dif-

ferent approaches, one using sparse and one using dense vi-

sual features to learn classifiers for all 39 required concepts,

using the training data supplied by MediaMill [29] for the

2005 data. In addition, we also used a face specific classi-

fier, with features computed for specific facial parts, to facil-

itate answering people-dependent queries such as “govern-

ment leader”. We submitted 3 different runs for this task.

OXVGG_A was the result of using the dense visual features

only. OXVGG_OJ was the result of using the sparse visual

features for all the concepts, except for “government leader”,

“face” and “person”, where we prepended the results from

the face classifier. OXVGG_AOJ was a run where we applied

rank fusion to merge the outputs from the sparse and dense

methods with weightings tuned to the training data, and also

prepended the face results for “face”, “person” and “govern-

ment leader”. In general, the sparse features tended to per-

form best on the more object based concepts, such as “US

flag”, while the dense features performed slightly better on

more scene based concepts, such as “military”. Overall, the

fused run did the best with a Mean Average (inferred) Pre-

cision (MAP) of 0.093, the sparse run came second with a

MAP of 0.080, followed by the dense run with a MAP of

0.053.

For the interactive search task, we coupled the results gen-

erated during the high-level task with methods to facilitate

efficient and productive interactive search. Our system al-

lowed for several “expansion” methods based on the sparse

and dense features, as well as a novel on the fly face classi-

fication system, which coupled a Google Images search with

rapid Support Vector Machine (SVM) training and testing

to return results containing a particular person within a few

minutes. We submitted just one run, OXVGG_TVI, which

performed well, winning two categories and coming above

the median in 18 out of 24 queries.

1 High-level Feature Extraction

Our approach here is to train an SVM for the concept in ques-

tion, then score all key frames in the test set by the magni-

tude of their discriminant (the distance from the discriminat-

ing hyper-plane), and subsequently rank the test shots by the

score of their keyframes. We have developed three methods

for this task, each differing in their features and/or kernel.

Two of the methods are applicable to general visual cate-

gories (such as airplane, mountain and road) and the third is

specific to faces. The first two methods differ in that one uses

sparse (based on region detectors) monochrome features, and

the other uses dense (on a regular pixel grid) colour features.

We now describe the three methods in some detail.

1.1 Bag of visual word representation

The first approach uses a bag of (visual) words [27] repre-

sentation for the frames, where positional relationships be-

tween features are ignored. This representation has proved

successful for classifying images according to whether they

contain visual categories (such as cars, horses, etc) by train-

ing an SVM [7]. Here we use the kernel formulation pro-

posed by [31].

Features and bag of words representation: We used two

types of affine region detectors, Hessian Laplace (HL) [21],

and Maximally Stable Extremal Regions (MSER) [20]. Each

region is then represented by a SIFT [19] descriptor us-

ing intensity only. This combination of detection and de-

scription generates features which are approximately invari-

ant to an affine transformation of the image, see figure 1.

These features are computed in all (representative and non-

representative) keyframes. The ‘visual vocabulary’ is then

constructed by vector quantizing the SIFT descriptors of a

random subset of features from the training data using K-

means. The K-means cluster centres define the visual words.

Each feature type (HL and MSER) has its own vocabulary.

We used two vocabulary sizes of 3,000 and 10,000 words for

HL, and one vocabulary size of 3,000 words for MSER, ref-
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Figure 1: An example of Hessian-Affine regions used in the

bag of words method (section 1.1). Left: original image;

right: sparse detected regions overlaid as ellipses.

ered to as HL 3K, HL 10K and MSER 3K, respectively. The

SIFT features in each keyframe are then assigned to the near-

est cluster centre, to give the visual word representation, and

the number of occurrences of each visual word is recorded

in a histogram. This histogram of visual words is the bag of

visual words model for that frame.

SVM classification: To predict whether a keyframe from

the test set belongs to a concept, an SVM classifier is trained

for each concept. Specifically, a kernel SVM with χ2 kernel

K(p, q) = e−αχ2(p,q)

where

χ2(p, q) =

N∑

i=1

(pi − qi)
2

pi + qi

is used. The parameter α in the kernel function is set to be an

estimate of the average χ2 distance between training images.

We used the SVM-light [15] package.

The positive and negative training examples are obtained

from the MediaMill 2005 data. All shots provided as a

ground truth were used as positive training examples. A set

of 5, 000 negative examples were randomly sampled from

the whole collection of keyframes. Identical frame detection

based on the χ2 distance was used to exclude frames identi-

cal to any of the positive examples from the set of negative

examples. In the “Chart” concept, positive examples from

“Maps” concept were included as negative examples.

The choice of which vocabulary to use for a particular

concept, and the values of the SVM parameters (slack vari-

ables and error weight for misclassified positive/negative ex-

amples) was determined using a validation data set from the

training data. For most concepts, using HL 10K alone proved

sufficient. The exceptions were: “bus”, “court”, “maps”, “of-

fice”, “snow” and “sports” where HL 3K was superior; and

“building”, “car” and “crowd” where HL 3K together with

MSER 3K was used.

Every keyframe from the test data is scored using the

SVM and the shots are ranked by their highest scoring

keyframes. Some results of the method are shown in Fig-

ure 2.

1.2 Spatial visual word representation

This classification method differs in three ways from the pure

bag of visual word method of the previous section. First,

the spatial position of the feature in the image is used in

the matching – pairs of frames are scored more highly if

the “visual words” occur at similar positions. The aim is to

match the scene layout in the frame, i.e. not isolated objects

which can change position. Second, dense (on a regular pixel

grid) descriptors are used, rather than only sparse features

which are only computed where affine region detections oc-

cur. Third, the SIFT descriptor is computed on colour chan-

nels so that colour edges contribute, rather than only using

intensity gradients. We now give more details.

Dense features: SIFT descriptors [19] are computed at

points on a regular grid with spacing M pixels, here M = 10.

At each grid point SIFT descriptors are computed over circu-

lar support patches with radii r = 4, 8, 12 and 16 pixels. Con-

sequently each point is represented by four SIFT descriptors.

Multiple descriptors are computed to allow for scale varia-

tion between images. The patches with radii 4 do not overlap

and the patches with radii 8, 12 and 16 overlap. The SIFT de-

scriptors are computed for each HSV component. This gives

a 128 × 3 dimension SIFT descriptor for each point. This

captures the colour gradients (or edges) of the image. Note

that the descriptors are rotation invariant. More details of the

features and their performance in scene classification is given

in [5]. The dense features are vector quantized into “visual

words” using K-means clustering. Each keyframe contains

1,380 features. The K-means clustering was performed over

4,000,000 feature vectors selected at random. A vocabulary

of 1,500 words is used here.

Spatial pyramid kernels: We use the method proposed by

Lazebnik et al. [16] which is based on a spatial pyramid

matching kernel [12]. Pyramid matching works by placing a

sequence of increasingly coarser grids over the feature space

and taking a weighted sum of the number of matches that oc-

cur at each level of resolution (L). At any fixed resolution,

two points are said to match if they fall into the same bin of

the grid; matches found at each resolution are weighted by

αl. In this case the pyramid matching is applied to the two-

dimensional image space, and matches occur if descriptors

assigned to the same visual word occur in the same histogram

bin. The spatial layout is illustrated in figure 3.

The resulting spatial pyramid is an extension of the bag-

of-words image representation, but it reduces to a standard

bag-of-words when L = 0. We used this method with L = 1
which means that the inputs for the discriminative classifiers

have a dimension of 1500×5 for a vocabulary of 1500 words.

The kernel is defined as follow:
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Figure 2: Example of bag of visual words classification (section 1.1): top ten results for basketball, maps, crowd, airplane,

and military concepts.

KL(X, Y ) =

V∑

v=1

kL(Xv, Yv)

where V is the vocabulary size and kL(X, Y ) =
∑L

l=0 αlI
l,

and I is the histogram intersection between the two feature

vectors X and Y at each pyramid level. Normally, matches

found at finer resolutions are weighted more highly than

matches found at coarser resolutions. However due to the im-

ages used in TRECVID (where the spatial distribution is very

variable between images from the same concept) we used

here α0 = 0.75 and α1 = 0.25.

For each class, we used all the positive training shots and

10,000 randomly selected shots as negative examples from

the 2005 training data supplied by MediaMill. Classification

is carried out using a one-versus-all SVM (LIBSVM pack-

age [6]). Every representative keyframe from the test data

is scored by the probability estimates provided by LIBSVM,

and this in turn determines the shot ranking.

Figure 4 shows 9 matched shots for the government leader

category, retrieved from the entire TRECVID 2006 test col-

lection. These scenes have a similar layout. For example: a

person centred in the middle of the image, or a two person

meeting with a background wall containing some pictures.

In all these cases if the image is divided into four bins (as

shown in Figure 3), the similarity of the information in each

of them is evident. This shows, somewhat surprisingly, that

spatial information is an important feature for such concepts.

1.3 Face representation

For the concepts “Face”, “Person” and “Government leader”

we have developed a representation based on detected frontal

faces. For the concepts “Face” and “Person” we use the

output (detection strength) of a face detector [22] applied

Figure 3: Spatial information used for the scene representa-

tion (section 1.2). Each dimension of the image is divided by

two obtaining 4 bins.

to all representative and non-representative test collection

keyframes to rank the shots. Each shot is scored by its best

scoring keyframe, and each keyframe is scored by the face

detection with the strongest response.

For the “Government leader” concept we trained a

(face based) person X detector for four prominent govern-

ment leaders: “George Bush”, “Condoleezza Rice”, “Ariel

Sharon” and “Hu Jintao”. Each test shot is scored by the best

scoring person X detector. The person X detectors are SVM

classifiers on facial feature descriptors learnt from images

downloaded from Google Image search. Details are given in

section 2.1. Using this approach, for the “government leader”

category over the TRECVID 2006 test data, 82 out of the top

100 ranked shots are correctly labelled as depicting one of

the specified government leaders.

1.4 Merging lists

To fuse the ranked lists, generated using the different meth-

ods, we used a weighted Borda count method [2], which as-

signs votes to each candidate depending on its rank in the

list. These votes are then accumulated over each list to fuse

and the final rank is generated by sorting the candidates in
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Figure 4: Examples of scene matching (section 1.2) for the

concept “government leaders”. Spatial layout is important

for such cases as people are often framed in a common man-

ner/pose for single individuals, pairs, small groups etc.

non-increasing order over a weighted sum of the votes, where

the weights quantify some measure of relative confidence be-

tween the multiple sources. The weightings are determined

from a validation set, taken from the training data, for each

concept.

2 Interactive Search

For interactive search we can access the ranked concept lists

(as described in the previous section), together with any im-

ages provided with the query, as a starting point for a search.

We have developed a set of expansion-search algorithms for:

particular objects, texture layout, and colour layout; that can

be applied to any keyframe or query image. These can be

used to efficiently harvest new shots, and in turn these new

shots can be used to harvest others. In the following sections

we describe the expansion methods and the user interface that

enables these to be accessed efficiently. We start by describ-

ing our run-time person X search, which provides a further

method for generating an initial ranked list.

2.1 Search for faces of specific people

This section describes our approach to search for specific

people in the video (person X detection) using their im-

aged face appearance [14, 26, 30]. This is implemented

by training an SVM classifier on descriptors extracted from

(close to) frontal face detections. The positive training data

is obtained using Internet image search. For example, we

search for “Condoleezza Rice” using Google Image search

and obtain hundreds of images containing her face. Exam-

Figure 5: Example images with frontal face detections over-

laid returned by Google image search queried for “Con-

doleezza Rice”. Note that downloaded images may contain

faces of other people. In our interactive search application

the user is presented with all detected faces and manually la-

bels 20-200 positive face exemplars containing the person of

interest. For this example query, we downloaded 783 images

containing 299 frontal face detections of which 190 were im-

ages of Condoleezza Rice.

ples of returned images are shown in figure 5. The result-

ing SVM classifier is applied to all frontal faces detected

in all keyframes (representative and non-representative) of

the TRECVID 2006 test data. Utilizing parallel processing

power of several machines, the entire search process from

placing the query to the returned ranked lists of TRECVID

2006 test shots takes only few minutes. This allows us to

search for any person (searchable on Google Images) in the

TRECVID 2006 test video footage on the fly, thereby greatly

expanding the limited set of pre-defined concepts.

In the following, we describe the face processing pipeline,

give details of the classifier training procedure, and show

some example retrieval results.

2.1.1 Face processing pipeline

Below we overview our face processing pipeline (for details

see [8, 26]). The aim here is to find people in the images

and extract descriptors of their facial appearance. The face

processing pipeline is applied to both the training data (im-
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Figure 6: Localized facial features in the top-left and bottom-

right image of figure 5.

ages returned from Google Image search) and the test data

(keyframes from the TRECVID 2006 collection).

At the first stage of processing we run a frontal face detec-

tor [22] on each image. To achieve a low false positive rate, a

conservative threshold on detection confidence is used. The

use of a frontal face detector restricts the video content we

can search to near-frontal faces, but typically gives a much

greater reliability of detection than is currently obtainable us-

ing multi-view face detection [17].

Facial feature localization: The output of the face detec-

tor gives an approximate location and scale of the face. In the

next stage, the facial features are located in the detected face

region. Nine facial features are located: the left and right cor-

ners of each eye, the two nostrils and the tip of the nose, and

the left and right corners of the mouth. Additional features

corresponding to the centres of the eyes, a point between the

eyes, and the centre of the mouth, are defined relative to the

located features.

To locate the facial features, a model combining a gen-

erative model of the feature positions with a discriminative

model of the feature appearance is applied. The probability

distribution over the joint position of the features is modelled

using a mixture of Gaussian trees, a Gaussian mixture model

in which the covariance of each component is restricted to

form a tree structure with each variable dependent on a sin-

gle “parent” variable. This model is an extension of the sin-

gle tree proposed in [10]. Fuller details of the facial feature

detection are given in [8, 9].

Figure 6 shows examples of the face detection and feature

localization. The facial features can be located with high reli-

ability in the faces detected by the face detector despite vari-

ation in pose, lighting, and facial expression.

Representing face appearance: A representation of the

face appearance is extracted by computing descriptors of the

local appearance of the face around each of the located fa-

cial features. Extracting descriptors based on the feature

locations [26] gives robustness to pose variation, lighting,

and partial occlusion compared to a global face descrip-

tor [13, 25]. Errors may be introduced by incorrect local-

ization of the features, which become more difficult to local-

ize in extremely non-frontal poses, but using a frontal face

detector restricts this possibility.

Before extracting descriptors, the face region proposed by

the face detector is further geometrically normalized to re-

duce the scale uncertainty in the detector output and the ef-

fect of pose variation, e.g. in-plane rotation. An affine trans-

formation is estimated which transforms the located facial

feature points to a canonical set of feature positions, and

the face is mapped by this transformation into a canonical

frame [1, 4]. A facial feature descriptor is then formed by

taking the vector of pixels in a circular region about each fa-

cial feature point and normalizing to obtain local photometric

invariance. A circle around a facial feature in the canonical

frame corresponds to an ellipse in the original image. The

descriptor for the face is formed by concatenating the de-

scriptors for each facial feature.

2.1.2 The Support Vector Machine classifier

The retrieval of a particular person is facilitated by first train-

ing a two-class SVM classifier on the person’s facial appear-

ance. The built classifier is then applied to facial descriptors

extracted from the TRECVID test data. Details of both the

training and testing stage are given now.

Training data: The positive training data is obtained by

querying an Internet image search engine by the name of the

target person, e.g. “Condoleezza Rice” or “Dick Cheney”.

Currently we use Google Image search but multiple image

search engines such as MSN or Yahoo could be used. Frontal

faces and their descriptors are extracted from all downloaded

images as described above. Typically we download 600-800

images, which results in 150-300 extracted frontal faces. Ex-

amples are shown in figure 5. Downloaded images may con-

tain faces of other people, which appear together with the tar-

get person and here we rely on the user to label the relevant

face detections using a simple labelling interface. Labelling

50-100 faces takes about 1-2 minutes. In the future, the la-

belling process can be further simplified by a pre-clustering

procedure [4].

The negative training data consists of (i) 2,463 faces

of about 20 people (mainly politicians) downloaded from

Google Images and (ii) 2,008 faces of anchors extracted

from keyframes of the “Anchor person” concept from the

TRECVID 2005 training collection. In total, the negative

training data contains 4,471 faces and remains fixed through-

out the entire run of the interactive search.

Training the classifier: Given the positive and negative

training data, an SVM classifier with a Radial Basis Func-
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tion kernel is trained using a publicly available implementa-

tion of the SVM learning algorithm [15]. Parameters of the

classifier such as the width of the kernel and the trade-off

between the training error and margin were optimized using

cross-validation off-line and kept fixed throughout the whole

interactive search run.

Classification: The test data consists of 23,508 frontal face

detections extracted (off-line) from all the keyframes (both

representative and non-representative) in the TRECVID

2006 test collection. The face detections are ranked by the

magnitude of the discriminant and each shot is ranked by its

top ranked face detection. Figure 7 shows examples of re-

trieval results.

On the fly search: To achieve on the fly search, several

stages of the search pipeline have been parallelized to run

on multiple (up to 20) machines. The multi-threaded crawler

can download about 400 images from Google Image search

in about 30 seconds on a single machine. The face process-

ing takes 0.1-5 seconds on a single image depending on the

image resolution and the number of extracted faces. A set of

600 downloaded images can be processed in about a minute

on up to 20 machines. The negative training data and the

test data are processed off-line. The SVM training is per-

formed on a single machine and takes between 20-60 sec-

onds. Finally, the classification of the test data (23,508 face

detections) is again performed in parallel and takes less than

a minute. The entire end-to-end process typically takes less

than 5 minutes, including the user labelling of positive face

detections.

Note that the on the fly face search provides a good way to

start the interactive visual search for particular people and is

complementary to the text-based search of automatic speech

recognition transcripts. For example, in the case of the inter-

active query “Find shots of Condolleezza Rice”, we first ob-

tained about 13 correct shots using the face search (see fig-

ure 7a), which we then expanded using neighbouring shots

and various expansions techniques described in section 2.2

and section 2.3 to a total of 58 shots containing “Condoleezza

Rice”.

2.2 Search for specific objects – Video Google

Some of the queries in a TRECVID interactive session can

be partially answered by using real-time search for specific

objects over the corpus. The object used for search can be di-

rectly or indirectly related to the actual query. For example,

to find George Bush, one could try and search for the pres-

idential seal, often seen on the lectern at presidential press

conferences (see figure 8). Another example might be to

search for the NBA logo to find basketball matches. Here

(a) (b) (c)

Figure 7: The top 9 ranked shots retrieved from the en-

tire TRECVID 2006 test collection for query on (a) “Con-

doleezza Rice”, (b) “Hu Jintao”, (c) “Saddam Hussein”.

Each shot is shown by the best ranked face detection within

the shot. The TRECVID 2006 test collection is represented

by about 23,000 close to frontal faces, detected in both the

representative and non-representative keyframes. The top

100 ranked shots contain 13, 25 and 90 correctly retrieved

shots for (a), (b) and (c) respectively. Building a face based

person X detector on the fly provides a starting point for the

interactive search. See text (section 2.1).
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we describe an implementation of the “Video Google” ap-

proach [27] for the TRECVID corpus. The aim is to retrieve

shots containing a specific object despite changes in scale,

viewpoint and illumination. The visual query is specified at

runtime by outlining the object in an example image.

The approach works by representing a query object by ap-

pearance regions, partially invariant to viewpoint and illumi-

nation changes, and using these to match similar objects from

the rest of the corpus [18]. The SIFT descriptors for these

appearance regions are vector quantized into visual words,

and a bag of visual words representation used for each key

frame. With this representation, standard efficient text re-

trieval methods [3] can be employed to enable object retrieval

in a Google-like manner.

Features: Here the Hessian-Affine feature detector [23] is

used since it gave the best performance on validation data.

The bag of words representation for each key frame is

then obtained in a similar manner to that of section 1.1.

For the TRECVID test data, 52, 343, 280 descriptors were

generated, with 362 per keyframe on average. To compute

the clusters, we use a distributed K-means algorithm which

runs over every descriptor in the dataset. Empirically, setting

K = 150, 000 gives good results for the TRECVID data.

We then apply standard text retrieval methods to search

over the dataset. A sparse term-document matrix, T , is gen-

erated whose element Ti,j is equal to the frequency of visual

word i in keyframe j. We apply a simple TF-IDF weighting

scheme [24] to this matrix to boost the effect of rarely occur-

ring (and thus discriminative) words from commonly occur-

ring ones. Each column of this matrix is also normalized to

speed-up the calculation of the L2 distance during retrieval.

Object search: At retrieval time, the user specifies a rect-

angular region of an image to search on. All the visual words

falling inside the rectangle are accumulated and a sparse fre-

quency vector is generated. This is reweighted by the IDF

weights calculated from the entire dataset and normalized to

have unit L2 norm. All the documents from the corpus are

then ranked in non-increasing order by the normalized scalar

product to the query vector, which is equivalent to ranking in

non-decreasing order using the L2 distance.

The results of some example queries are shown in figure 8.

2.3 Expansion-search using the spatial layout

of texture or colour

In order to enable a quick search for similar images, for each

keyframe, we precomputed the 20 most similar keyframes.

The similarity was measured using the χ2 distance and was

computed over two different spatial layout descriptors: tex-

ture and colour.

For the textural spatial layout, we used the same descrip-

tors as in section 1.2 with a spatial pyramid with L = 1.

The colour spatial layout is based on the opponent colour

model [11]

I = (R + G + B)/3

O1 = (R + G − 2B)/4 + 128

O2 = (R − 2G + B)/4 + 128

On level L0, the I channel is quantized into 64 histogram

bins and each of the O1 and O2 channels are quantized into

32 histogram bins. On each subsequent (finer) level, the

number of histogram bins is divided by 4. On level L1, there

are 16, 8, and 8 histogram bins used for the channels respec-

tively, and on level L2 only 4, 2, and 2 bins. Since the num-

ber of spatial bins is multiplied by 4 on each finer level, this

approach keeps the amount of data constant for each level.

Level L2 was weighted 2 times more than levels L0 and L1.

Example query expansion results are shown in figures 9

and 10 for the texture and colour expansion respectively.

2.4 The interface

In designing a successful user-interface for TRECVID it is

important to specify which goals such an interface should

meet. The system must make it easy for a user to combine

the many different streams of data in an efficient and intuitive

manner. In our case, the main data sources were:

1. Pre-generated results from the 39 pre-defined concepts

using the sparse visual features (section 1.1).

2. Pre-generated results from the 39 pre-defined concepts

using the dense visual features (section 1.2).

3. On the fly results from the facial classifier (section 2.1).

4. Interactive Video Google object recognition (sec-

tion 2.2).

5. Interactive “colour expansion” (section 2.3).

6. Interactive “texture expansion” (section 2.3).

Inspired by the CrossBrowser approach [28], the main in-

terface view contains two axes (see figure 11). The x-axis

represents the temporal ordering of the shots in the corpus

and enables the user to move backwards and forwards in

time. The y-axis displays the rank ordering for the currently

loaded list. There is often a high level of temporal coherency

between subsequent shots and exploiting this is crucial to

good interactive performance. Frequently, in searching for-

wards and backwards from one relevant shot, the user would

find more shots relevant to the query.

The interface allows for rapid access to the data sources

mentioned in the following ways. Any of the pre-generated
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Figure 8: Examples of querying using “Video Google”. The query image is shown on the left, with the query object outlined

in yellow, and the returned ranked keyframes follow. Top row: search on the presidential seal. The 1st, 3rd, 4th, 7th, 8th and

9th results are shown; second row: search on the words “RICE IN IRAQ”. The top 6 results are shown; Bottom row: search

on part of the us flag. The 1st, 2nd, 3rd, 4th, 6th and 7th results are shown.

Figure 9: Example of queries using the “texture expansion”. The query image is shown on the left-hand side, with the results

following. From the top row, the queries are military, mountain and water.

Figure 10: Examples of queries using the “colour expansion”. The query image is shown on the left-hand side, with the

results following. From the top row, the queries are chimney, demonstration and football.
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results can be loaded into one of ten “live” lists in the system.

Lists can then be appended, trimmed or fused at will to give

the user a list which can be labelled (as correct or not for

the topic). In addition, a facial classifier can be trained at

runtime to give the user an extra source from which he or

she can start to label. Once a “good” list has been generated,

the user can quickly find positive and negative examples by

navigating. Once some good examples have been found, the

user can then use one of the expansion methods to “grow”

the positive examples. Using either the colour or the texture

expansions worked well for scene-like queries.

A run using the interface for an example query “Find Con-

doleezza Rice” will now be described. As this is a “Per-

son X” style query, we start by using the on the fly face

classifier. The user enters “Condoleezza Rice” in the real-

time labeller, which automatically downloads the top 600–

800 images from Google Images – the user can label them as

positive or negative as they are downloaded and processed,

and when enough training images have been collected (up

to 200), the user sends the examples to the SVM trainer for

classification. Once the results have been returned to the user

(see figure 7), he or she can start labelling them and navi-

gating using the arrow keys to find other examples. Relevant

keyframes, containing overlayed text of her name (see fig-

ure 8), can be searched on using Video Google, the top 20

(currently unlabelled) results being added below the user’s

current position. The expansion methods (colour, texture,

and near-duplicate using χ2 on the bag of words represen-

tation) can be used on any interviews or press conferences

to find the same event shown on different channels (again,

the top 20 unlabelled results are added below the users cur-

rent position for all expansion methods). Once the user is

finished, the list is sorted and the results saved.
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