This is the peer reviewed version of the following article: Lohfeld, S. and Schütze, M., *Oxidation behaviour of particle reinforced MoSi*₂ composites at temperatures up to 1700 °C *Part I: Literature review*, Materials and Corrosion 56 (2), pp. 93-97, which has been published in final form at <u>http://dx.doi.org/10.1002/maco.200403831</u>. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

Oxidation behaviour of particle reinforced MoSi2 composites at temperatures up to 1700 °C Part I: Literature review

S. Lohfeld and M. Schütze Karl-Winnacker-Institut der DECHEMA e.V., Theodor-Heuss-Allee 25, D-60486 Frankfurt am Main (Germany)

Abstract

In the first part of this paper the results of a literature review are presented. An overview of the oxidation behaviour in air and in combustion environments of both pure MoSi₂ and MoSi₂ composites in the temperature range from 400 to 1650 °C is given. The second part of this paper reports about our results from oxidation tests with selected MoSi₂ composites (containing 15 vol.-% Al₂O₃, Y₂O₃, ZrO₂, HfO₂, SiC, TiB₂, ZrB₂, or HfB₂, respectively) from different development stages at temperatures in the pest region as well as up to 1700 °C. The third part describes the oxidation behaviour of the optimised MoSi₂ composites developed on the basis of the results from part II.

1 Introduction

Today's materials used in high temperature processes are often burdened up to their limit. New materials are essential when a rise in efficiency of high temperature processes is to be targeted with higher temperatures. Silicides of refractory metals show high potential to be used in turbine technology, because of their melting temperatures above 2000 °C and the formation of thin self-curing SiO₂ films up to 1700 °C in oxidising atmospheres. On the other hand, silicides suffer from insufficient mechanical properties, i.e. brittleness at ambient temperatures and low creep strength at high temperatures. These problems may be faced with reinforcements with other phases, but this naturally affects the oxidation behaviour as well. Especially reactions and formation of eutectics between the matrix material and the reinforcements or their oxidation products may necessitate a decrease of the service temperature, counteracting the original goal. Therefore, the reinforcement material has to be chosen carefully.

MoSi₂ is a silicide which has been well investigated concerning the oxidation behaviour of pure material at temperatures at least up to 1500 °C. In the present work the oxidation behaviour of several MoSi₂ composites with 15 vol.-% particle reinforcements was investigated. From a choice of ZrO₂, HfO₂, Al₂O₃, Y₂O₃, SiC, TiB₂, ZrB₂, and HfB₂ as reinforcement particles those combinations with MoSi₂ which offered the best oxidation properties after an initial test at 1600 °C were considered for further

tests between 400 and 1700 °C. In the present first part of the paper basic information and data on the oxidation behaviour of MoSi₂ and its composites gained from a literature review is given.

2 Properties of MoSi₂ and MoSi₂ composites

2.1 MoSi_2

According to *Massalski's* phase diagram of Mo-Si the intermetallic phase MoSi₂ is a Si rich line compound with a high melting point of 2020 °C and two temperature determined modifications. Tetragonal α -MoSi₂ has a C11_b structure and is stable up to 1900 °C, whereas hexagonal β -MoSi₂ with its C40 structure is stable between 1900 and 2020 °C [1]. *Boettinger* et al. stated that the C11_b structure of pure MoSi₂ is stable up to the melting point and the C40 structure occurs only through stabilisation by impurities [2]. The phase diagrams of *Schlichting* [3] and *Brewer* et al. [4] differ from *Massalski's* by giving a small region of homogeneity of MoSi₂, denying that it is a line compound.

The melting point of Mo rich Mo_5Si_3 ($T_M = 2180$ °C) is higher than that of the disilicide and it offers a better creep resistance at 1200 °C [5], however, its oxidation resistance is lower [6, 7]. Since oxygen is present in most service environments, the oxidation resistance is considered to be the most important criterion, giving $MoSi_2$ the preference for high temperature processes.

High oxidation rates between 400 and 600 $^{\circ}$ C restrict the usage of MoSi₂ as well as the brittleness at room temperature and low creep resistance above 1200 $^{\circ}$ C.

2.2 Oxidation of MoSi₂

The excellent oxidation resistance of $MoSi_2$ is due to the formation of a dense SiO_2 scale in oxidising atmospheres at temperatures above 1000 °C. However, between 400 and 600 °C no protective layer can form and oxidation rates are high. This may result in disintegration of the material. Moreover, the oxygen partial pressure of the ambient medium is important, since too low partial pressures at high temperatures lead to formation of volatile SiO instead of a protective SiO₂ scale.

Melsheimer [8] and *Liu* et al. [9] gave detailed overviews on the oxidation behaviour of MoSi₂. As a general rule it is divided into three temperature regions.

2.2.1 Low temperature range (400-600 °C)

Up to 750 °C MoSi₂ is oxidised by O₂ following the reaction

$$2 \text{ MoSi}_{2(s)} + 7 \text{ O}_{2(g)} \rightarrow \text{MoO}_{3(s)} + 4 \text{ SiO}_{2(s)}$$
(1)

This simultaneous oxidation of Mo and Si leads to disintegration of the material. Solid MoO₃ impedes the formation of a dense protective SiO₂ scale. The molar volume increases by 250% [10]. MoO₃ crystals grow chiefly at inhomogeneities like pores and microcracks. High stresses induced by growth of the MoO₃ crystals cause crack propagation and provoke together with the consumption of the material the disintegration.

Specimens with a theoretical density of at least 95% [8, 10, 11] do not show this phenomenon, which was originally described and named "pest" by *Fitzer* in 1955 [12].

2.2.2 Medium temperature range (600-1000 °C)

In this temperature region no disintegration occurs [13]. With the temperature, the vapour pressure of MoO_3 rises and it starts to evaporate at 500 °C. At 770 °C formation and evaporation of MoO_3 are balanced [14], preventing growth of volume and stresses and therefore the disintegration. *Fitzer* observed a high mass loss at 750 °C due to evaporation of MoO_3 [12].

Samsonow et al. [14] discovered a thin film consisting of a black phase with good adhesion, which was thought to be molybdenum suboxide, and yellowish MoO_3 with poor adhesion after oxidation of $MoSi_2$ at 600 °C. At 900 °C only a black film remained without any MoO_3 .

Glushko et al. [15] observed increasing occurrence of pores in the scale when raising the oxidation temperature and time resulting from evaporation of MoO_3 .

In this temperature range the formation of a completely dense protective SiO₂ scale is still suppressed.

2.2.3 High temperature range (above 1000 °C)

A dense protective SiO_2 scale forms at temperatures above 1000 °C. The low oxygen partial pressure at the interface between oxide scale and $MoSi_2$ practically prevents further MoO_3 formation. In this temperature region the largest amount of the total mass gain develops during the first 10 minutes of oxidation [16]. The predominant reaction is

$$5 \text{ MoSi}_{2(s)} + 7 \text{ O}_{2(g)} \rightarrow \text{Mo}_5 \text{Si}_{3(s)} + 7 \text{ SiO}_{2(s)}$$
(2)

According to equation (2) an area of Mo_5Si_3 should occur below the oxide scale. The diffusion rate of silicon in Mo_5Si_3 exceeds that of oxygen in SiO_2 by several decades at temperatures of 1200 °C and higher, therefore further dissociation of Mo_5Si_3 is not necessary to maintain the silica scale [6].

Contrary to these observations *Melsheimer* et al. discovered diffusion of molybdenum from the Mo rich phase through the SiO₂ scale at high temperatures [17]. At temperatures of 1200 °C and higher the subsurface depleted in Mo₅Si₃. Coincidentally the SiO₂ modification switched from tridymite to cristobalite. It was concluded that MoO₃ diffuses at higher rates in cristobalite than in tridymite. Moreover, the depletion of Mo₅Si₃ showed that formation and evaporation of MoO₃ is faster than the formation of SiO₂. For this reason no Mo₅Si₃ could be found in the subsurface zone after oxidation at temperatures above 1400 °C [17].

2.2.4 MoSi₂ in combustion environments

A literature review revealed that predominantly the behaviour of SiO₂ scale forming SiC was investigated in combustion environments. As failure of this material is mainly due to degradation of the silica scale, the results can be transferred to MoSi₂ to some extent.

Mutated corrosion mechanisms of $MoSi_2$ are possible in environments with $CO_{2(g)}$ and $H_2O_{(g)}$. At low oxygen partial pressure the formation of a protective SiO_2 scale may be prevented by evaporation of $SiO_{(g)}$. Additionally, when oxygen supply is not sufficient for combustion a reducing atmosphere containing CO and H_2 will develop. Hydrogen reduces SiO_2 to normally gaseous suboxides [18].

The degradation mechanism of SiO₂ scale forming SiC in combustion environments was investigates by *Opila* et al. [19]. The primary oxidant in these atmospheres is water vapour, which reacts with the SiO₂ to form silicon hydroxides. In a fuel lean environment formation of Si(OH)_{4(g)} was the main degradation mechanismen, whereas the reducing gases CO and H₂ in combination with water vapour were liable for the degradation in a fuel rich environment.

A detailed report on corrosion of silicon based materials in combustion environments is given in [20].

2.3 Oxidation of MoSi₂ based composites

Overcoming the mechanical inadequateness is essential to enable taking advantage of the good oxidation behaviour of MoSi₂ for structural parts. Particle reinforcement is a method to alter mechanical, thermal and electrical properties of a material to meet certain requirements. Though numerous publications report about the mechanical properties of MoSi₂ composites with several second phases, especially with SiC [21, 22], the oxidation behaviour at high temperatures of the same composites is barely investigated. However, the resistance of non-oxide materials in oxidising environments is the most important requirement, since in most high temperature processes air is present in the atmosphere. Undoubtedly pure MoSi₂ has a high oxidation resistance in air, however, the influence of the reinforcement particles may not be limited to mechanical, thermal and electrical properties, but also on the oxidation behaviour. Reactions of MoSi₂ with the particles or formation of eutectics of matrix and particles or their oxidation products, respectively, with melting temperatures

far below those of the composites are surely detrimental. Therefore, knowledge of possible interactions of matrix and particles lowering the maximum service temperature is essential.

Furthermore, desired and undesired second phases, i.e. impurities for the latter, can influence the oxidation resistance by acceleration of diffusion rates of oxygen within the SiO_2 scale or by conducting oxygen themselves quickly, e.g. zirconia. This would increase the oxidation rate even without a reaction of SiO_2 and the reinforcement particles.

Fig. 1 shows pseudo binary phase diagrams of SiO₂ (as this is the oxidation product of MoSi₂) in combination with possible particle phases. With the exception of the system SiO₂-SiC, in each diagram eutectics exist with liquidus temperatures below the melting points of the pure substances. For the system TiO₂-SiO₂ the eutectic temperature lies at 1550 °C. The highest eutectic temperatures are found for the systems ZrO_2 -SiO₂ (1687 °C) and HfO₂-SiO₂ (1680 ± 15 °C). The maximum service temperature of the system MoSi₂/SiC is not influenced by any eutectics since SiO₂ is the oxidation product of both phases.

In the temperature range of 400 to 600 °C, where $MoSi_2$ is liable to "pest", $MoSi_2$ composites are more prone to disintegration especially when the difference between thermal expansion coefficients of matrix and particles is very high and microcracks occur or when adhesion of particles is not strong enough. These sites are additional starting locations for pesting.

MoSi₂ has a good chemical stability in contact with second phases. *Meschter* identified by calculations and experiments the MoSi₂ systems with SiC, TiB₂, and TiC being stable at 1600 °C whereas the system MoSi₂-Al₂O₃ is not [24]. At temperatures between 400 and 500 °C the oxidation resistance of the composites MoSi₂/TiB₂ and MoSi₂/Al₂O₃ was superior to that of pure MoSi₂. However, at high temperatures, when a SiO₂ scale can form, the composites had higher oxidation rates due to faster diffusion of oxygen in the oxide scales of the composites. The maximum temperature up to which the oxidation resistance is not harmed by the second phases was quoted to be 1200 °C [25].

Wiedemeier and *Singh* reported that second phase particles of SiC, Si₃N₄, TiC, ZrC, HfC, TiB, TiB₂, ZrB₂, HfB₂, ZrO₂, and HfO₂ are stable in a MoSi₂ matrix between 1300 and 1900 K [26]. The MoSi₂/Al₂O₃ composite is stable up to 1800 K, however, high vapour pressures of Al₂O and SiO cause significant mass losses above 1800 K.

The thermal properties of $MoSi_2$ are said to be comparable to those of SiC and Si_3N_4 , i.e. no additional efforts in cooling are essential which is beneficial when using this material in turbines [27]. In addition to the phases mentioned above, Y_2O_3 is stable in a $MoSi_2$ matrix. Cyclic oxidation at 1200 °C of $MoSi_2/TiB_2$ revealed higher oxidation rates than those of other intermetallics and superalloys, however, mass gains of $MoSi_2$ and $MoSi_2/SiC$ under the same conditions were much lower [27].

Though oxidation decelerates after formation of a glassy scale on $MoSi_2$ with 20 mass-% TiB₂, the amount of B_2O_3 in this scale results in faster growth compared to the SiO₂ scale on pure $MoSi_2$, and the scale on the composite can be eight times as thick after 4 hours at 1650 °C [28].

Only minor alterations in the oxidation kinetics were observed for reinforced $MoSi_2$ with 20 vol.-% Al_2O_3 , HfO_2 or SiC, respectively, at 1500 °C by Kurokawa et al. [29], although dissolution of Al_2O_3 in SiO₂ lead to a liquid oxide at 1500 °C. A major degradation of the oxidation resistence was observed when the composite contained 20 vol.-% ZrO₂ due to formation of ZrSiO₄.

The pest phenomenon can be prevented when using composites with high density. $MoSi_2/SiC$ composites containing up to 33.9% SiC with a density of 98% and higher show high oxidation resistance at 500 °C [30, 31]. No MoO_3 crystals, but a thin SiO₂ scale was found on 100% dense in-situ synthesised $MoSi_2/SiC$ composites after oxidation at 500 °C [30].

Like desired second phases also impurities in the composites can impede grain growth during exposure. However, Newman et al. observed that the higher the amount of impurities, the faster was oxidation at 500 °C. Further the oxidation rate was increased when larger amounts of SiO_2 or Mo_5Si_3 were present in the $MoSi_2$ matrix [32].

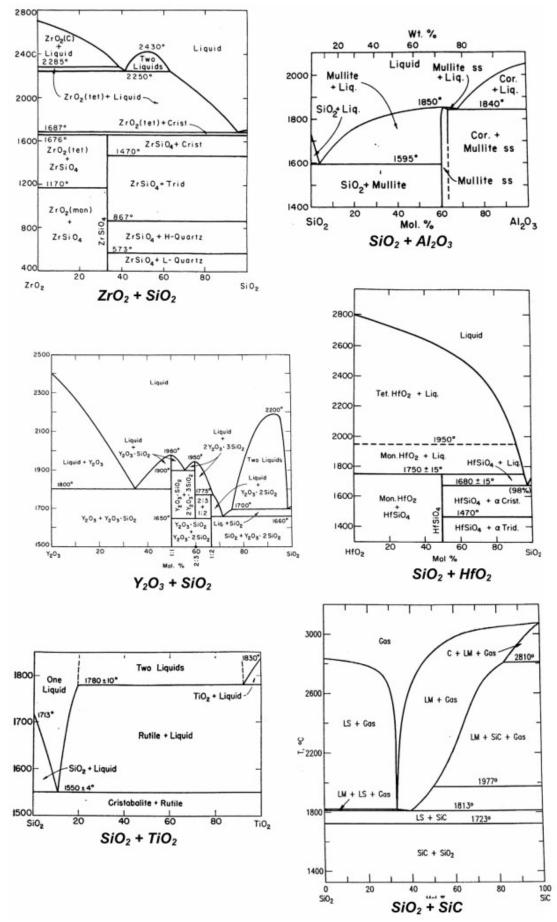


Fig. 1. Pseudo binary phase diagrams of silica and ZrO2, Al2O3, Y2O3, HfO2, TiO2, and SiC, respectively [23]

3 Conclusions of the literature survey

The literature review showed that data about the oxidation behaviour of MoSi₂ composites especially in the high temperature region are limited. Most data are available for the system MoSi₂/SiC. Though boride particles enhance the oxidation resistance in the pest region due to formation of a borosilicate scale, at high temperatures this scale does not offer good protection. A detrimental effect of second phase particles at pest temperatures can be prevented when the material is dense. Above 1200 °C second phases lead to accelerated oxidation. Furthermore, eutectics of SiO₂ and the particle phases often decrease the maximum service temperature. Concluding from oxidation data in the literature the systems with SiC and HfO₂ appear to be most suitable for exposure at temperatures above 1500 °C. Concluding from the phase diagrams also MoSi₂-ZrO₂ could be an interesting system.

In the investigations reported here, along with these three composites those with 15 vol.-% Al_2O_3 , Y_2O_3 , TiB_2 , ZrB_2 , and HfO_2 were oxidised in air up to 1700 °C. The results are presented in the second part of this paper.

4 Acknowledgement

The financial support of these investigations by the Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF) (contract number 03 N 2015 C1) is gratefully acknowledged by the authors.

References

- [1] T. B. Massalski (Ed.), Binary Alloy Phase Diagrams, Second Edition, Am. Soc. Metals, Metals Park/Ohio, 1990.
- [2] W. J. Boettinger, J. H. Perepezko, P. S. Frankwicz, Mat. Sci. Eng., 1992, A155 33.
- [3] J. Schlichting, High Temp. High Press. 1978, 10, 241.
- [4] L. Brewer, R. Lamoreaux. R. Ferro, R. Mararzza, K. Girgis, Molydenum. Physico-Chemical properties of its Compounds and Alloys. IAEA, Wien, 1980.
- [5] M. K. Meyer, A. J. Thom, M. Akinc, Intermetallics 1999, 7, 153.
- [6] R. W. Bartlett, P. R. Gage, Transactions of the Met. Soc. of AIME 1965, 233, 968.
- [7] M. Meyer, M. Kramer, M. Akinc, Adv. Mat. 1996, 8, 85.
- [8] S. Melsheimer, Doctoral Dissertation, Technical University of Aachen, 1996.
- [9] Y. Q. Liu, G. Shao, P. Tsakiropoulos, Intermetallics 2001, 9, 125.
- [10] T. C. Chou, T. G. Nieh, J. Mater. Res. 1993, 8, 214.
- [11] K. Bundschuh, Doctoral Dissertation, Technical University of Aachen, 1998.
- [12] E. Fitzer, 2. Plansee-Seminar, Reutte/Tirol 1956, 56.
- [13] D. A. Berztiss, R. R. Cerchiara, E. A. Gulbransen, F. S. Petit, G. H. Meier, Mat. Sci. Eng. 1992, A155, 165.
- [14] G. W. Samsonow, W. A. Lawrenko, L. A. Glebow, Rev. int. Htes. Temp. et Re'fract 1974, 11, 205.
- [15] P. I. Glushko, G. I. Postovard, N. S. Pugachev, S. F. Dudnik, V. P. Podtykan, Prot. Met. 1977, 13, 187.
- [16] R. W. Bartlett, J. W. McCamont, P. R. Gage, J. Am. Ceram. Soc. 1965, 48, 551.
- [17] S. Melsheimer, M. Fietzek, V. Kolarik, A. Rahmel, M. Schütze, Oxidation of Metals 1997, 47, 139.
- [18] W. Lin, J. Hsu, R. F. Speyer, J. Am. Ceram. Soc. 1994, 77,1162.
- [19] E. J. Opila, J. L. Smialek, R. C. Robinson, D. S. Fox, N. S. Jacobson, J. Am. Ceram. Soc. 1999, 82, 1826.
- [20] N. S. Jacobson, J. Am. Ceram. Soc. 1993, 76, 3.
- [21] Y. Suzuki, P. E. D. Morgan, K. Niihara, 6th International Symposium on Ceramic Materials and Components for Engines 1997, 365.
- [22] R. Suryanarayanan, S. M. L. Sastry, K. L. Jerina, Acta Metall. Mater. 1994, 42, 3741.

- [23] E. M. Levin, C. R. Robbins, H. F.McMurdie, Phase Diagrams for Ceramists, the American Ceramic Society, Columbus, Ohio, USA, 1964.
- [24] P. J. Meschter, Thermodynamic Stability of Transition-Metal Silicide/ Refractory Ceramic Mixtures. Interfaces in Metal-Ceramics Composites (Proceedings), The Minerals, Metals & Materials Society, 1989, Pennsylvania, USA.
- [25] P. J. Meschter, Scripta Metallurgica et Materialia 1991, 25, 1065.
- [26] H. Wiedemeier, M. Singh, J. Mat. Sci. 1992, 27, 2974.
- [27] A. K. Vasude'van, J. J. Petrovic, Mat. Sci. Eng. 1992, A155, 1.
- [28] K. Vedula, F. Lisy, PM '90. PM Into the 1990's (International Conference on Powder Metallurgy), The Institute of Metals, London, UK, 1990, 548.
- [29] K. Kurokawa, H. Uchiyama, M. Ube, H. Takahashi, W. L. Worrell, Proceedings of the 13th Int. Corrosion Congress, Melbourne, Australia, Nov. 1996, 271.
- [30] K. Kurokawa, M. Ube, J. Kuchino, H. Takahashi, Proceedings of the 14th International Corrosion Congress (ICC), Cape Town, South Africa, Sep./Okt. 1999.
- [31] R. Mitra, V. V. Rama Rao, Y. R. Mahajan, Materials Science and Technology, 1997, 13, 415.
- [32] A. Newman, S. Sampath, H. Herman, Proceedings of the Conference on Processing and Design Issues in High Temperature Materials, Davos, Switzerland, 19 – 24 May 1996, 403.