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Hexagonal boron nitride (h-BN) coatings on Ti-6Al-4V substrates undergo complete 

decomposition in air at 900°C. This fate is similar to that of this ceramic material on chromia-

former alloys, and unlike that of a mass of powder treated in isolation. As the ceramic and 

alloy oxidise concurrently, outwardly diffusing aluminium (III) ions but not the predominant 

titanium (IV) ions react with the boron trioxide that forms around the h-BN basal plane 

peripheries. Resultant aluminium borate is incorporated into the growing scale and the boron 

trioxide diffusion barrier is depleted. By this mechanism, the oxidation of h-BN is maintained 

at an enhanced rate, until both this material and its oxide completely decompose. Liberated 

nitrogen from the oxidation of h-BN can enter the underlying scale as a randomly distributed 

solute in rutile solid solution. The post-coating oxide-atmosphere interface comprises 

elongated aluminium borate crystallites protruding through at the boundaries between 3-5 
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at.% nitrogen-doped rutile grains. It differs significantly from that of oxidised, uncoated Ti-

6Al-4V, which is occupied by a thin α-alumina layer atop rutile. This interface does not 

change with an additional 72 hours of heat-treatment.  

 

Keywords: High Temperature Oxidation; Decomposition Reaction; Titanium alloy; Ceramic 

Platelets; Metal Forming 

 

1 Introduction 

As a consequence of a unique array of properties, hexagonal boron nitride (h-BN) has a 

proliferation of applications that span from cosmetics to nanotubes. 1, 2 Due to excellent 

lubricity, stability at elevated temperatures and high thermal conductivity, prominent amongst 

these uses are high temperature lubricant and release agent coatings within the metal forming 

sector. 3, 4 It is therefore vital to know and understand the chemical reactions that h-BN 

coated metals undergo under industrially relevant conditions.  

The hot forming and superplastic forming (SPF) of titanium alloys at around 900°C are 

widely employed techniques for manufacturing complex titanium sheet structures; 

predominantly in the aerospace industry but also in fields as diverse as sports equipment and 

cookware. 5, 6 With these alloys and h-BN both prone to appreciable oxidation at these 

temperatures, these processes tend to be performed under inert atmospheres. However, the 

specifics of a particular process may mean that this is not possible. In these cases, the metal 

forming operation is performed against ambient atmosphere and oxidation becomes a factor.   

h-BN coatings are often applied to the pre-formed component and the tool. Tool materials are 

typically chromia-former alloys, and the 900°C ambient atmosphere fate of h-BN coatings on 
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examples of these substrates was reported previously by the same author. 7 In this 

complementary body of work, the chemical reactions undergone by an h-BN coating on the 

archetypal SPF titanium alloy, Ti-6Al-4V, under these process conditions are elucidated.  

Several investigations into the high temperature oxidation of a mass of h-BN powder have 

been reported in the literature. 8-15 Oxidation has been found to commence at 800°C, 8-11 and 

proceeds predominantly around the basal plane peripheries of the roundish plate-like 

particles. The primary reaction is accepted to be Equation 1: 

𝐵𝑁(𝑠) +  34 𝑂2(𝑔) → 12 𝐵2𝑂3(𝑙) + 12 𝑁2(𝑔)                                                                 

(1) 

The reaction rate tends to a plateau with extended exposure and it was described by Coles et 

al. 8 and Hou et al. 13, 15 that this is a consequence of the molten boron trioxide layers around 

individual particles fusing as they expand and come into contact. This causes the initially 

discrete entities to agglomerate into a compact bulk that impedes further oxygen from 

reaching reaction sites. This effect was evident in the thermogravimetric analysis of h-BN 

powder that was described in the companion piece to this present study. 7 In the first 24 hours 

at 900°C in dry air, 43.77% of the starting material reacted; in the next 48 hours only a 

further 7.95% reacted. When h-BN coated chromia-former alloys were exposed to this same 

temperature and ambient atmosphere, microscale observations revealed particles 

progressively merging until discrete entities were no longer discernible. It was concluded that 

in this state, the overlayer was a dispersion of remnant h-BN throughout a boron trioxide 

matrix, and therefore akin to what is effectively the final stage of reaction for a mass of h-BN 

powder.  
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In contrast to an isolated mass of powder, however, when h-BN was in the form of a coating 

on a chromia-former alloy, this was not the effective final stage of reaction and the oxidation 

rate did not tend to a plateau. It was found that chromium (III) ions from the concurrently 

oxidising substrate reacted with boron trioxide in the overlayer to form chromium borate. It 

was propounded that this served to diminish the diffusion barrier and, ultimately, both the h-

BN and its oxide underwent complete decomposition. For a 29 µm thick coating on austenitic 

stainless steel type 304 (SS304), this occurred after 60 hours. 

Despite a number of studies having been published on the high temperature air oxidation 

mechanisms and kinetics of Ti-6Al-4V, 16-21 documented research concerning the 

morphology and composition of Ti-6Al-4V scale formed at temperatures higher than 850°C 

is scant. 22 This is perhaps surprising given that SPF of this alloy has been a key aerospace 

manufacturing process since the early 1980s. For this reason, the Results section commences 

with a characterisation of the oxidation of Ti-6Al-4V at 900°C. The aim of this approach is to 

furnish the reader with an understanding of the surface reactions undergone by the uncoated 

substrate under the experimental conditions, in order to facilitate comprehension of the 

results from the coated substrate. Correspondingly, in addition to elucidating the 900°C 

ambient atmosphere fate of h-BN coatings on Ti-6Al-4V substrates, this research also 

enabled further insight into the oxidation of the most commonly used titanium alloy. 23  

2 Materials and Methods 

2.1 Materials  

The same h-BN coating (HeBoCoat 20W, Henze Boron Nitride Products, AG Lauben, 

Germany) was used as for the experiments on chromia-former substrates. The h-BN powder 

in this evaporative water-based suspension has a nominal particle size distribution of 
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D10=0.50 µm, D50=4.90 µm, D90=13.39 µm and D100=27.00 µm, as stated by the 

manufacturer. This formulation incorporates a combustible organic binder system. From non-

isothermal thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) 

(Netzsch STA 449 F1 Jupiter) under an 80% nitrogen: 20% oxygen atmosphere (flow rate= 

50 ml min-1) and at a heating rate of 5 K min-1, binder combustion was found to commence at 

200°C and to be complete by 600°C. Hence, at the temperature of interest, the coating 

consisted purely of h-BN grains held together by weak cohesive forces. This enabled the 

interactions between h-BN, the substrate and oxygen only to be characterised.  

Ti-6Al-4V coupons (50 x 50 x 5 mm) were donated by Rolls-Royce and the nominal 

composition of this titanium alloy is detailed in Table 1.  

2.2 Coating Application and Heat-treatments 

Coatings of reproducible thickness were applied to coupons using an automated spray system 

(Fanuc M-710iC industrial robot fitted with a Graco AirPro spray gun and linked to a Graco 

Pro Control 1KS Fluid Management System). Three thin coats were applied to each coupon 

and each coat was air dried for one hour before application of the next. The dry coating 

thicknesses were measured using an Elcometer 456.  

Coated coupons and uncoated coupons were heat-treated at 900°C in a Pyrotherm 

(Leicestershire, UK) laboratory furnace, with the thermocouples calibrated to ASTM E220-

13 using a Martel PTC8001 precision temperature calibrator. Exposure was followed by an 

air quench. A minimum of three samples were heat-treated for each exposure time that was 

investigated. 

Oxidation rates of Ti-6Al-4V, SS304 and h-BN coated Ti-6Al-4V at 900°C were each 

assessed over a 72-hour isothermal period via TGA, using a 10 x 10 x 5 mm sample held in 
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an alumina beaker. The entire temperature ramp to 900°C for the uncoated samples was 

performed in a high purity nitrogen atmosphere. The temperature ramp for the coated sample 

was conducted up to 620°C in an 80% nitrogen: 20% oxygen mixture and thereafter 

continued to 900°C in nitrogen. This was to ensure that the binders had completely volatilised 

without h-BN oxidation having commenced when the reaction conditions were reached. For 

all runs, upon reaching 900°C, the atmosphere was switched to 80% nitrogen: 20% oxygen 

for the isothermal stage. In the case of the h-BN coated Ti-6Al-4V sample, it was not possible 

to apply the coating using the automated spray system so the coating was applied manually 

using a DeVilbiss Advance HD gravity feed spray gun. The same procedure was followed, 

and the occurrence of TGA events after similar exposure times as, what were reasoned to be, 

corresponding phenomena in the furnace-based coupon tests, suggests that the coatings 

applied by the two different means were of similar thickness. 

2.3 Surface Analysis 

Crystalline phase identification was achieved by x-ray diffraction (XRD) using a Bruker D8 

Advance system with Cu Kα radiation, in conjunction with the International Centre for 

Diffraction Data (ICDD) PDF-2 2009 database. OriginPro 2015 was used to fit diffractogram 

peaks with a Gaussian-Lorentzian cross product function for the purposes of deconvolution 

and intensity calculations. 

An FEI Quanta 250 field-emission gun scanning electron microscope (SEM) equipped with 

Oxford Instruments energy and wavelength dispersive spectroscopic electron probe 

microanalysis (EPMA) capabilities was used to observe surface morphologies and to 

determine the chemical compositions of absorbed entities and the underlying scale. Due to h-

BN and its oxide being electrically non-conductive, samples were gold coated prior to 

analysis where necessary.  
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3 Results 

3.1 Oxidation of the Ti-6Al-4V Substrate at 900°C 

From the TGA plot shown in Figure 1, it can be seen that Ti-6Al-4V oxidises at a 

considerably faster rate at 900°C than the SS304 substrate that was studied previously. 7 This 

susceptibility to oxidation is due to (i) the activity of aluminium being too low for a 

continuous, protective layer of alumina to form at the substrate-oxide interface, 17 and (ii) 

rutile being porous and having a tendency towards strong lattice disorder. 24, 25 It should be 

noted that the oxygen uptake does not all contribute to scale formation, for this alloy, as with 

titanium, is prone to internal oxidation. 20, 26, 27  

The oxide-atmosphere interface of Ti-6Al-4V coupons that were furnace heat-treated for 

various durations between 10 minutes and 48 hours was consistently a uniform medium 

brown colour (Figure 2(a)). 

Consistent with the overwhelming majority of Ti-6Al-4V oxidation studies, XRD of scale 

that formed at 900°C generated rutile and α-alumina peaks only (Figure 3). 17-19 That no 

oxides of vanadium were detected was in spite of up to 2 at.% vanadium being measured 

throughout the scale cross sections via EPMA.  Du et al. 17 attributed this absence to the low 

concentration that any such phase would be present in, whilst Frangini et al. 19 reasoned that 

it was a consequence of vanadium dioxide being dissolved in the rutile phase. In contrast, 

Dong et al. 22 reported XRD evidence for titanium vanadate (TiVO4) in scale formed at 

850°C to 1100°C. As up to 2 at.% aluminium was also measured throughout the titanium rich 

regions, it is suggested here that it may be more accurate to describe the rutile as being a 

rutile-based solid solution in which are dissolved some vanadium ions and aluminium ions. 

Such a solution is analogous to that which forms when titanium- and aluminium-based MAX 
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phase materials undergo high temperature oxidation. 28 This notwithstanding, to avoid 

potential confusion, this phase is hereafter referred to simply as rutile. 

By 10 minutes, both rutile and α-alumina had formed. Due to the analysis depth having been 

greater than the scale thickness, substrate peaks are also present in the corresponding Figure 3 

diffractogram. These had shifted by varying extents to lower 2 Theta values compared to the 

non-heat-treated sample; a consequence of internal oxidation having increased interplanar 

distances.  The substrate was not detectable through the oxide layer in the 3-hour plot and this 

diffractogram is essentially superimposable with those from the longer exposure times. This 

indicates that no further phase changes occurred within the analysis region. The scale had a 

mean thickness of 39 µm after 3 hours and 152 µm after 24 hours. 

The relative intensities of the rutile peaks were significantly different from those of the ICDD 

powder diffraction file. The diffractograms from this system were dominated by the (101) 

peak; however, the strongest reference file peak is (110), with (101) being 56% of this 

intensity. A further notable difference is that the reference file intensity of the (002) peak is 

14% that of (110), but in this system it was the stronger of the two. This indicates that rutile 

formed with preferred orientation, and is supported by the relative peak intensities in 

diffractograms obtained from powdered scale being equivalent to those in the ICDD file.  

At the oxide-atmosphere interface, α-alumina nucleated and grew laterally to cover a rutile 

base (Figure 4(a)). 17 In previous studies, the α-alumina crystallites have been described as 

nodular, 17 flower-like, 18 or polyhedral; 22 however, in this study they displayed a tetragonal-

like morphology and grew to a maximum length of 1-2 µm. The rutile crystallites were larger 

and more equiaxed. By 3 hours, an apparently single crystallite thick α-alumina outer-layer 

was complete, such that no underlying rutile grains could be discerned (Figure 4(b) and (c)). 

No changes were evident at the outer-interface after longer duration heat-treatments. 
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In a similar manner to lower temperature oxidation studies, an initial duplex scale structure 

progressed to a striated structure of alternating thick rutile layers and thin α-alumina layers.17 

The banded structure was pronounced by 3 hours, and the number of layers increased with 

longer exposure (Figure 4(d) and (e)). The layer at the substrate-oxide interface was always 

rutile and that at the oxide-atmosphere interface was always α-alumina. This was rationalised 

by Du et al. who postulated a theory based on simultaneous growth by inward anion and 

outward cation diffusion, and the preferential reaction of oxygen with titanium at the alloy-

oxide interface. 17  

The oxide layer was well adhered to the substrate for up to 40 minutes of 900°C heat-

treatment and thereafter it spalled readily. This enabled the inner interface to be analysed. For 

all durations, it comprised monodisperse domains of <0.5 µm crystallites (Figure 4(f)). 

Elemental compositions were invariant across the surface: 30±2 at.% titanium, < 1 at.% 

vanadium, <1 at.% aluminium, balance= oxygen. As such, it is thought that the different 

crystallite sizes represented grains at different stages of growth.   

3.2 Oxidation of h-BN coated Ti-6Al-4V at 900°C 

3.2.1 Ambient atmosphere furnace tests 

Characterisation of pre-heat-treatment coatings  

As can be expected, given that both the h-BN formulation and the application procedure were 

the same as used for the previous work on chromia-former substrates, the coatings were 

equivalent.  

The mean thickness of the dry coatings was 29.0 ± 2.8 µm and atmosphere interface x-ray 

diffractograms showed peaks from h-BN and the alloy substrate only (Figure 5(a)). The h-BN 

particles exhibited the typical planar structure, with smooth surfaces and curved edges. 2 
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Subsequent to binder volatilisation, the coating comprised regions of haphazardly stacked, 

flatly oriented crystallites and agglomerations of variously oriented, smaller crystallites 

(Figure 5(b)). The latter were possibly due to insufficient homogenisation prior to 

application. Whilst pores of the order of 1 µm were widespread, instances in which they 

penetrated the full thickness of the coating were negligible.  

Visual Developments  

The white, solid-state h-BN coating became translucent and molten with extended exposure. 

With longer heat-treatment durations, the overlayer thinned until it could no longer be 

discerned. At this point, the oxide-atmosphere interface could be seen to exhibit a mottled 

grey and dark brown colouration (Figure 2(b) and (c)). Thereafter, the substrate appearance 

was invariant following all longer durations of exposure. 

XRD Analysis 

To commence this section, it should be made clear that the relationship between the 

concentration of a species and its XRD peak intensities is not linear due to the dependency on 

the mass absorption coefficient of the sample, which varies with the identity and 

concentration of all other phases present i.e. matrix effects. Intensities will also be affected by 

particle reorientations, should these occur. This notwithstanding, it is believed that it is 

reasonable to make qualitative inferences from the intensity developments that are described. 

The trends that were observed for h-BN and boron trioxide on the chromia-former alloys 

were also seen on Ti-6Al-4V. There was a progressive reduction in intensity of the h-BN 

peaks and at no point did the rate tend to a plateau (Figure 6). The breadth of the dominant h-

BN (002) peak (2θ=26.74°) was essentially constant for the first few exposure times and then 

it underwent a pronounced narrowing after 7.5 hours. As before, this was possibly due to a 
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reduction of stacking faults or a relieving of microstrains over the course of the heat-

treatments, and this effect dominated the peak broadening that can be expected from 

decreasing particle size. Boron trioxide features were generated after the shortest exposure 

time (30 minutes) and there was a trend of increasing intensity up to 24 hours, after which the 

trend was one of attenuation. For a 29 μm thick coating, neither the h-BN peaks nor the boron 

trioxide features were present after 48 hours of exposure. After 48 hours, XRD at the 

atmosphere interface generated rutile and aluminium borate (Al4B2O9) peaks only (Figure 7). 

While the coating peaks reduced in intensity, rutile and aluminium borate peaks emerged and 

grew. Both species had formed after 30 minutes of exposure. The rutile peaks progressively 

grew in intensity up to 12 hours of heat-treatment, and thereafter remained reasonably 

consistent. This coincided with the substrate peaks no longer being detectable within the 

analysis depth. As with oxidised uncoated Ti-6Al-4V, the diffractograms were dominated by 

rutile peaks; however, the ratio of rutile peak intensities was significantly different (Figure 3 

and Figure 7(a)). In these systems, the intensity ratios closely resembled those in the ICDD 

powder diffraction file, thereby indicating no texturing.  

The aluminium borate peaks progressively grew throughout the heat-treatments until such 

time that no coating remained (Figure 8). The relative intensities of the aluminium borate 

peaks were markedly different from those of the ICDD powder diffraction file. The strongest 

peak in the reference file is (603); however, in this system (603) was very small and the two 

most intense peaks were (023) and (520). In the reference file, these two peaks have 

intensities of 66% and 43%, respectively, of that of (603). These disparities indicate that the 

aluminium borate formed with a distinct preferred orientation. 

Whereas α-alumina was detected in uncoated samples that were heat-treated for as little as 10 

minutes, this species did not form at the atmosphere interface of any coated samples (Figure 
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8). This was the case with exposure times of up to 120 hours having been investigated; that 

is, up to 72 hours subsequent to complete loss of the coating. 

SEM and EPMA Analysis 

The reader is reminded that boron trioxide is molten at 900°C and that these SEM-based 

observations followed an air quench to room temperature. It is the hope that rapid surface 

cooling created sufficiently faithful snapshots of the system under reaction conditions to 

enable inferences to be made about the phenomena that occurred. 

With increasing exposure time, the morphological changes at the atmosphere interface 

initially proceeded similarly to those of heat-treated h-BN on chromia-former alloys (Figure 

9(a)-(d)). The round plate-like h-BN grains developed into larger planar triangular and 

hexagonal entities, which subsequently merged into a continuous layer. In the cooled state, 

this film was peppered with small fissures. The systems thereafter differed. On Ti-6Al-4V, 

elongated entities with quasi-circular cross sections, as opposed to plate-like species, were 

observed to have been impressing upon the thinning coating from below (Figure 9(e)). In 

some cases, these crystallites appeared to have penetrated through the coating. As can also be 

seen in the Figure 9(e) micrograph, at this point in the heat-treatment large cracks were 

widespread across the quenched overlayer. These were almost certainly a consequence of 

differential magnitudes of thermal contraction of boron trioxide and the underlying alloy 

oxide layer.  

In agreement with the XRD results, no remnants of a coating could be seen after 48 hours. It 

was clear from the microscale morphology and composition of this sample that the coating 

decomposition reactions had significantly disrupted the alloy oxidation mechanisms. This is 
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consistent with the macroscale observations regarding the differently coloured atmosphere 

interface of the uncoated and post-coating oxide layers. 

The post-coating atmosphere interface comprised seemingly equiaxed titanium-rich grains 

with elongated aluminium-rich crystallites protruding through at the grain boundaries (Figure 

10). These variously exhibited hollow columnar or solid columnar forms.  

The titanium-rich entities comprised 30.0±2.3 at.% titanium, <1 at.% vanadium, <1 at.% 

aluminium, 4.1±0.9 at.% nitrogen, balance= oxygen. From the XRD results we know that 

these were rutile-based. EPMA in the vicinity of the aluminium-rich entities detected 

21.2±2.4 at.% aluminium, 8.8±1.1 at.% boron, <1 at.% vanadium, <1 at.% titanium, balance= 

oxygen, which agrees with the assignment of XRD peaks to Al4B2O9. The identification of 

this material as aluminium borate is further supported by the observed morphologies, for one 

of the reasons behind contemporary interest in synthesising aluminium borate is the 

microtube 29, 30 and nanorod 31, 32 structures it exhibits. No aluminium-rich entities were 

observed atop of rutile grains. There were no discernible differences in the morphology or 

composition of the atmosphere interface of samples that were heat-treated for up to an 

additional 72 hours.  

For samples treated for 18 hours and longer, the scale readily delaminated, which enabled the 

inner-interfaces and cross sections to also be analysed. The morphology of the inner-interface 

was unaffected by the presence of a coating. At all heat-treatment durations for which it could 

be examined, it was equivalent to that of uncoated Ti-6Al-4V scale in that it comprised 

monodisperse domains of <0.5 µm crystallites. Also akin to the uncoated samples, elemental 

compositions were invariant across the surface: 30.4±2.0 at.% titanium, <1 at.% vanadium, 

<1 at.% aluminium, 3.4±0.3 at.% nitrogen, balance=oxygen. 
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The cross sections up until 48 hours of exposure time possessed a duplex structure (Figure 

11(a)-(c)). The upper region was composed of rutile interspersed by the aluminium borate 

crystallites, oriented almost perpendicular to the surface plane. This is in the agreement with 

the distinct texturing indicated by the aluminum borate XRD data. Underlying this, the rutile 

solid solution contained <2 at.% aluminum, <2 at.% vanadium and 3-5 at.% nitrogen as 

solutes. Grain sizes decreased towards the alloy interface, indicative of those in the lower 

regions being at an earlier stage of growth. In support of other data presented here, the 

coating can clearly be seen atop of the 18-hours cross section but is not present in the 48-

hours micrograph.  

The presence of both titanium- and aluminium-based species at the atmosphere interface and 

only solute containing rutile at the substrate interface is consistent with previous work 

concerning the oxidation of uncoated Ti-6Al-4V. 17 As such, this indicates that the oxide 

layer that grew in the coated system also grew via both simultaneous outward diffusion of 

titanium (IV) ions and aluminium (III) ions, and inward diffusion of oxygen anions that 

reacted with titanium at the alloy surface. As aluminium borate was detected in the shortest 

exposure time diffractograms, the base of the columnar crystallites can be used as a 

demarcation line to separate the inward and outward growth regions. This can then be used to 

determine which was dominant. At 18 h, the aluminum borate crystallites had a mean length 

of 11 μm and the oxide layer had a total thickness of approximately 36 μm; at 48 h, these 

were measured to be 17 μm and 68 μm. From this, it is evident that oxide layer growth 

occurred predominantly at the inner interface. 

After 60 hours, the thickness of the oxide layer was in the region of 105 μm (Figure 11d). 

This approximately 50% increase between 48 hours and 60 hours indicates that there was a 

post-coating acceleration in the rate of scale growth. The length of the aluminium borate 
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crystallites after 60 hours were equivalent to those at 48 hours. From this exposure time 

onwards, horizontal, thin aluminium-rich bands were commonplace in the lower region of the 

oxide layer. This striated structure was equivalent to that of the scale which formed on 

uncoated Ti-6Al-4V that was heat-treated at 900°C for 3 hours or longer.  

3.2.2 Thermogravimetric Analysis 

A Ti-6Al-4V cuboid that had h-BN applied to all faces was exposed to a 900°C isothermal 

TGA programme for 72 hours under 80% nitrogen: 20% oxygen. The resultant trace is shown 

in Figure 12, along with that from the early stages of exposure of equivalently heat-treated 

uncoated Ti-6Al-4V (the reader is referred to Figure 1 for the full version of this trace). The 

inset to Figure 12 shows the initial mass gain undergone by the coated Ti-6Al-4V system 

alongside the full plot from isolated coating exposed to the same conditions, which was 

described previously. 7  

All three systems underwent mass increases only, and at rates that progressively decreased 

from comparatively fast initial values. The early stage rate for h-BN coated Ti-6Al-4V was 

lower than that for uncoated Ti-6Al-4V and considerably greater than that for the isolated 

coating. This can be understood by considering that at this point in the heat-treatment, the 

coating comprised discrete entities and so oxygen could impinge directly upon the substrate 

via intergranular gaps. Consequently, there will have been a significant contribution from 

oxidation of both the coating and the substrate. It should be noted that there will also have 

been a contribution from direct substrate oxidation at the sample edges and vertices. This was 

due to it not being possible to apply coating at these points without compromising a uniform 

coverage on the faces.  

As with isolated h-BN, the gradually decreasing rate of mass gain for h-BN coated Ti-6Al-4V 

proceeded to drop-off with a pronounced curvature. This feature is therefore similarly 
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attributed to the molten boron trioxide around individual h-BN grains merging into a 

continuum. However, the curvature was more gentle and at no point thereafter did the rate 

tend to a plateau. Both of these effects are thought to be consequences of the oxygen 

permeability of the overlayer, and the continued oxidation of the substrate and decomposition 

of the coating that resulted from this. This notwithstanding, at all times the rate of mass 

increase was less than that of uncoated Ti-6Al-4V, which reflects the oxygen barrier/getter 

functionality of the overlayer.  

A development unique to the h-BN coated Ti-6Al-4V system can be seen to have commenced 

after approximately 51 hours of exposure. The rate of mass gain increased abruptly here, and 

it is reasoned that this marked the point of complete coating decomposition. Thereafter, the 

plot exhibited an almost linear form until the end of the heat-treatment. This sustained period 

of enhanced mass gain supports the conclusion from the coupon cross section SEM and 

EPMA analysis that the substrate oxide layer experienced accelerated growth upon complete 

coating decomposition. It may be inferred from this having occurred after a slightly longer 

exposure time than with the furnace-based experiments, that the coating that was applied for 

the TGA experiment was slightly thicker. 

It is worth briefly considering the effects that altering the coating thickness can be expected 

to have on Δm. A thicker coating than that applied here would provide greater protection to 

the substrate. As such, it is expected that the rate of mass gain at each stage prior to complete 

decomposition would be lower. Furthermore, with a greater amount of coating to undergo 

reaction, a longer exposure time would be required for complete decomposition to occur. 

Hence, the point at which the rate of mass gain increases would be delayed. The opposite 

would clearly be the case with a thinner coating.  

4 Discussion 
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The 900°C ambient atmosphere fate of an h-BN coating on a Ti-6Al-4V substrate was 

qualitatively similar to that on chromia-former alloys. Unlike with a mass of h-BN powder, 

the oxidation rate did not tend to a plateau and both h-BN and its oxide underwent complete 

decomposition. As previously, to understand why, consideration must be given to the 

products of the reactions between the alloy elements and the coating.  

From the shortest duration of exposure, aluminium borate (Al4B2O9) was detected in 

diffractograms taken at the atmosphere interface. This indicates that a reaction readily took 

place between the boron trioxide that formed around the basal planes of the oxidising h-BN 

particles and an aluminium-based species that had its origins in the substrate. Despite 

titanium being the dominant Ti-6Al-4V component, there were no titanium borate peaks in 

the XRD plots from this system and nor was any boron detected in the oxide layer rutile 

grains.  

Al4B2O9 is one of two aluminium borate species that are stable in ambient atmosphere, with 

the other being Al18B4O33. 
33 Al4B2O9 can form at temperatures as low as 780°C, whilst 

temperatures greater than 1000°C are required for Al18B4O33. 
34 This material has been 

synthesised via various means that include a sol-gel route followed by calcination, 35 

chemical vapour deposition, 29 precipitation followed by annealing, 36 ball milling followed 

by calcination, 37, 38 and direct reactions of mixtures at elevated temperatures in air 31, 32, 34, 39 

or an argon atmosphere. 40 Across this range of reaction systems, it is the consensus that the 

key reaction takes place between alumina and boron trioxide. One popular proposed 

mechanism by which this occurs is via the solution-liquid-solid (SLS) growth mechanism. 41 

According to this theory, alumina or aluminium dissolves in molten boron trioxide and then 

when the solution becomes supersaturated, aluminium borate crystallites form and are 
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precipitated out. 32, 38-40 In the case of aluminium, this may follow the thermite-type reduction 

of boron trioxide by aluminium. 37  

The absence of alumina peaks in diffractograms taken both during and subsequent to the 

decomposition of h-BN and boron trioxide, however, suggests that an alternative reaction 

mechanism took place in this system. This is analogous to the case of heat-treated boron 

trioxide on SS304 where manganese borate but no manganese oxides were detected. 7 Whilst 

it is possible that the rate of reaction to form the borate species was exceptionally fast 

compared to the rate of reaction to form the oxide species, it is thought extremely unlikely 

that the second stage reaction could happen so fast and in such a complete manner as to not 

leave any XRD detectable trace of the intermediate oxide. Indeed, a driving force behind the 

development of new aluminium borate synthesis methods has been to increase the purity of 

the products as it is usually the case that they contain oxide impurities. 35 Hence, that no such 

impurities were detected in the aluminium borate formed in this study also supports an 

alternative reaction mechanism.  

A third reason why it is thought that the reaction between boron trioxide and the concurrently 

oxidising Ti-6Al-4V substrate was not between alumina and boron trioxide, is the size and 

temporal-dependence of size of the aluminium borate crystallites. In all previous studies that 

have been identified by the author, the product crystallites have grown to a maximum length 

of around 2 µm and there have been no reports of morphological or structural modifications 

occurring with extended reaction times, beyond a short threshold duration. 31 In contrast, 

those that formed in this system increased in length throughout the heat-treatments and they 

had a final mean length of 17 µm. Furthermore, it can reasonably be expected that they would 

have continued to grow had the supply of boron trioxide not become exhausted.  
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It is therefore proposed that as the h-BN and Ti-6Al-4V substrate concurrently oxidised, 

outwardly diffusing aluminium (III) ions from the alloy reacted with and consumed boron 

trioxide at the scale-coating interface to form aluminium borate. That no alumina formed 

indicates that all the aluminium ions that diffused through the oxide layer reacted with boron 

trioxide. The vertical orientation of the product crystallites at rutile grain boundaries shows 

that these grain boundary short circuit routes were the preferred cation diffusion paths, which 

is in line with what can be expected according to both thermodynamic and kinetic 

considerations. 42  

At this point it is pertinent to comment on the finding from the analogous chromia-former 

experiments that appreciable manganese and iron were present at the scale-film interface, but 

no manganese or iron oxides. 7 Based on this, it was proposed that the overlayer inhibited the 

formation of these oxide species. This was part of the reasoning behind the conclusion that 

chromium borate had formed via chromium (III) ions reacting with boron trioxide rather than 

reaction between chromia and boron trioxide. That rutile formed readily in the h-BN coated 

Ti-6Al-4V system is not inconsistent with this prior line of reasoning. This is because 

titanium dioxide has a lower Gibbs free energy of formation and hence a significantly lower 

dissociation pressure than the oxides of manganese, iron and chromium.   

Given the equivalencies that have been described between the fate of h-BN on Ti-6Al-4V and 

that on the chromia-forming substrates at 900°C, the essence of the model that was 

previously developed to explain the observed phenomena applies equally to this system 

(Figure 13). 

As the h-BN grains oxidised, they became enveloped around their basal plane peripheries by 

a growing layer of molten boron trioxide that caused the individual entities to expand. This 

was a consequence of the molar volume of boron trioxide at the reaction temperature being a 
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factor of four greater than that of h-BN. 43, 44 With subsequent exposure, the grains merged 

into a continuous dispersion of h-BN through a molten boron trioxide matrix. With the 

substrate oxidising concurrently, outwardly diffusing aluminium (III) ions reacted with, and 

consumed, the boron trioxide matrix to form aluminium borate. This depleted the diffusion 

barrier and maintained the oxidation of h-BN at a higher rate than would be the case in the 

absence of the reactive substrate. Ultimately, the oxidation of h-BN proceeded to completion 

and the boron trioxide was consumed in entirety by the underlying scale. 

The presence of 3-5 at.% nitrogen in the rutile grains suggests that when this species was 

liberated following the reaction of oxygen with h-BN, two pathways were open to it. It could 

depart as a gaseous species, or if the reaction occurred in sufficiently close proximity to 

surface adsorption sites, it could enter the scale as nitrogen anions. The similarity of the 

nitrogen ionic radius to that of oxygen, and the essentially uniform concentration of nitrogen 

throughout the full thickness of the oxide layer suggests that the diffusing nitrogen anions 

behaved as oxygen anions. This is supported by the absence of XRD peaks corresponding to 

nitrogen containing species, which indicates that nitrogen was present as a randomly 

distributed solute in solid solution. That no nitrogen was detected in the aluminium-rich oxide 

material or in the chromia-former oxide layers was possibly due to an increased affinity of 

titanium towards nitrogen, relative to aluminium and chromium. 45 

It may seem surprising when considering the significantly greater oxidation rate of Ti-6Al-4V 

relative to that of SS304, that complete decomposition occurred in 80% of the time. 

However, it was not the overall substrate oxidation rate that determined the influence of a 

substrate on the rate of decomposition of h-BN, but the rate at which reactive cations diffused 

through the oxide layer to the oxide-atmosphere interface. As was determined from the 

coupon cross section SEM and EPMA analysis, the Ti-6Al-4V scale grew predominantly at 
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the alloy-oxide interface. Furthermore, whilst outward cation diffusion in the stainless steel 

systems was almost exclusively in the form of the reactive chromium (III), outward cation 

diffusion through Ti-6Al-4V scale was dominated by titanium (IV), which did not react with 

boron trioxide.  

The absence of any discernible changes at the post-coating atmosphere interface with further 

heat-treatment was akin to that of the uncoated Ti-6Al-4V oxide layer not changing 

subsequent to 3 hours of exposure time. This has also been reported for Ti-6Al-4V oxidised 

at 750°C for longer than 72 hours, and a theory to explain it was developed by Du et al. 17, 18 

It was proposed that when growth stresses (which increase with scale thickness) caused by 

the mismatch in expansion coefficients between the scale and the substrate reach a critical 

level, cracks form at the alloy-oxide interface to relieve them. Thereafter, the progression of 

oxidation mechanisms start anew at these discontinuities, with a consequent cessation of 

cation diffusion to the atmosphere interface. This results in multi-layered scale in which thin 

horizontal bands of alumina exist between thicker bands of rutile. It is thought that this theory 

can also explain the static post-coating atmosphere interface because (i) the cessation of 

developments at this interface coincided with the scale adopting a multilayer structure, and 

(ii) the adoption of a multilayer structure coincided with a post-coating acceleration of scale 

growth. Indeed, by virtue of being able to rationalise findings from the oxidation of h-BN 

coated Ti-6Al-4V by invoking the prior theory concerning the oxidation of uncoated Ti-6Al-

4V, additional support is given to the validity of that theory. 

The research that has been described fulfilled the preproject aim of determining the fate of an 

h-BN coating on the archetypal SPF titanium alloy under 900 °C ambient atmosphere process 

conditions. In doing so, an interesting reaction system in which a metal and a ceramic 

undergo concurrent and interrelated high temperature corrosion has been discovered. 
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Furthermore, the findings indicate that the aluminum borate which formed did so via, what is 

thought to be, a hitherto unreported mechanism. With there being significant contemporary 

interest in fabricating aluminum borate as a strengthening agent for composite materials, 46, 47 

these findings may provide insight into a pathway by which to synthesise larger and purer 

aluminium borate crystallites than is possible from conventional routes. 

 

5 Conclusions 

1. In air at 900°C, the fate of an h-BN coating on a Ti-6Al-4V substrate was 

qualitatively similar to that on chromia-former alloys. This is in spite of the two 

substrate types comprising dissimilar alloying elements.  

2. As the h-BN grains became encompassed around their basal planes by molten boron 

trioxide, outwardly diffusing aluminium (III) ions from the underlying substrate 

reacted with it to form aluminium borate. This diminished the effectiveness of the 

protective diffusion barrier. Despite being the dominant cation in Ti-6Al-4V scale, 

titanium (IV) was not found to react with boron trioxide.  

3. Ultimately, both h-BN and its oxide underwent complete decomposition. The post-

coating atmosphere interface consisted of elongated aluminium borate crystallites 

protruding though at the grain boundaries of apparently equiaxed, 3-5 at.% nitrogen-

doped rutile grains. 3-5 at.% nitrogen was also dissolved in rutile grains throughout 

the scale cross section.  

4. The post-coating atmosphere interface did not change with further heat-treatment. 

This was attributed to the oxide layer growth rate having sharply accelerated upon 

decomposition of the barrier film, which led to discontinuities forming at the alloy-

oxide interface to relieve the resultant growth stresses. 
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Figure 1. TGA plots from Ti-6Al-4V and SS304 that were exposed to a dry 80% N2: 20% O2 

atmosphere for 72 hours at 900°C. 
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Figure 2. (a) The atmosphere interface of the scale that formed on Ti-6Al-4V coupons that 

were heat-treated in ambient atmosphere at 900°C was consistently a uniform medium brown 

colour. That shown was heat-treated for 3 hours. (b)  The atmosphere interface of the h-BN 

coated Ti-6Al-4V coupons subsequent to complete coating decomposition at 900°C in 

ambient atmosphere was consistently mottled grey and dark brown in colour. (c) Close up of 

a region of the surface shown in (b) to highlight fine detail. The coupons shown had the 

dimensions 50 x 50 x 5 mm. 
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Figure 3. Oxide-atmosphere interface XRD plots showing the development of crystalline 

species in the oxide layer formed on Ti-6Al-4V that was heat-treated in ambient atmosphere 

at 900°C. The peaks are indexed according to the ICDD reference files: α-Al2O3 (PDF 01-

070-5679), Rutile (PDF 01-086-0148). The dotted lines extending from the upper axis are to 

aid visualisation of the substrate peak shifts after 10 minutes of exposure. 
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Figure 4. SEM micrographs of the scale that formed on uncoated Ti-6Al-4V during 

atmospheric exposure at 900°C. (a) Oxide-atmosphere interface after 40 minutes of heat-

treatment: regions of incomplete α-Al2O3 coverage atop TiO2 are discernible. To aid clarity, 

examples of each of the morphologically distinct crystallite types are highlighted. (b) Oxide-

atmosphere interface after 3 hours of heat-treatment: complete coverage of α-Al2O3 (c) Upper 

region of scale cross section after 3 hours of heat-treatment (d) Full scale cross section of 

scale formed after 3 hours of heat-treatment (e) EPMA map of (d); blue= titanium and red= 

aluminium (f) Inner interface after 3 hours of heat-treatment: two monodisperse domains of 

differently sized crystallites are observable. Elemental compositions were equivalent for both.
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Figure 5. (a) XRD plot that was taken at the atmosphere interface of h-BN coated Ti-6Al-4V 

prior to heat-treatment. The substrate peaks are labelled and the h-BN peaks are indexed 

according to the ICDD reference file PDF 00-034-0421.  (b) SEM micrograph showing the h-

BN coating subsequent to volatilisation of organic binders.  

 



  

32 

 

Figure 6. XRD plots that were taken at the atmosphere interface of h-BN coated Ti-6Al-4V 

coupons that were heat-treated for various durations at 900°C in ambient atmosphere. This 2 

Theta range shows the progression of the strongest h-BN (PDF 00-034-0421) and B2O3 (PDF 

00-013-0570) peaks, alongside that of the rutile (110) peak (PDF 01-086-0148), as exposure 

time was increased. 
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Figure 7. Diffractogram taken at the atmosphere interface of h-BN coated Ti-6Al-4V that 

was exposed to ambient atmosphere at 900°C for 48 hours. (a) Full ordinate range is shown. 

Rutile peaks are indexed according to the ICDD reference file (PDF 01-086-0148) (b) The 

dominant rutile peaks are truncated to aid clarity of the Al4B2O9 peaks (PDF 00-009-0158). 
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Figure 8. XRD plots that were taken at the atmosphere interface of h-BN coated Ti-6Al-4V 

coupons that were heat-treated for various durations at 900°C in ambient atmosphere. Also 

shown is a diffractogram from uncoated Ti-6Al-4V that was exposed to these same 

conditions for 24 hours. This 2 Theta range shows the development of Al4B2O9 (PDF 00-009-

0158) as exposure time was increased, and also that Al2O3 (PDF 00-075-1862) did not form 

in the near surface region of any of the heat-treated coated samples.  
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Figure 9. SEM micrographs taken at the atmosphere interface when h-BN coated Ti-6Al-4V 

was exposed to ambient atmosphere at 900°C for (a) 1.5 h (b) 7.5 h (c) 18 h (d) 24 h (e) 36 h, 

and subsequently air quenched. 
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Figure 10. (a) – (c) SEM micrographs of the atmosphere interface of h-BN coated Ti-6Al-4V 

that was heat-treated in ambient atmosphere at 900°C for 48 hours. Microtube and microrod 

aluminium borate crystallites can be seen protruding through at the boundaries between 

more-equiaxed rutile crystallites. (d) EPMA map of (a); blue= titanium and red= aluminium.
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Figure 11. SEM micrographs and EPMA maps of the coated Ti-6Al-4V oxide layer cross 

sections after heat-treatment at 900°C in ambient atmosphere: (a) 18 hours; full cross section 

(b) 48 hours; upper region (c) 48 hours; full cross section (d) 60 hours; full cross section 

(blue= titanium and red= aluminium). 
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Figure 12. TGA plots from samples that were exposed to a dry 80% N2: 20% O2 atmosphere 

for 72 hours at 900°C. Main figure shows h-BN coated Ti-6Al-4V and uncoated Ti-6Al-4V. 

The mass gain for each is normalised to unit surface area of the substrate. Inset shows h-BN 

coated Ti-6Al-4V and the isolated coating. With the mass of the substrate having been 

several orders of magnitude greater than that of the coating, the ordinate is expressed as a 

percentage of the initial mass of h-BN. Due to considerable Δm differences, to aid clarity 

only the early stage of exposure is shown for one of the two traces in each plot. 



  

39 

 

Figure 13. Schematic of the proposed reaction mechanisms that lead to complete 

decomposition of an h-BN coating on Ti-6Al-4V in ambient atmosphere at 900°C. To aid 

clarity, only a single layer of h-BN is shown and the intergranular gaps have been 

exaggerated. 
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Table 1. Nominal wt.% composition of Ti-6Al-4V. 

 

 

 

  

Ti Al V Fe C N O H 

Bal 5.5-6.75  3.5- 4.5  <0.25  <0.08  <0.05  <0.2  <0.0125  
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Graphical Abstract 

Ti-6Al-4V forming is a key manufacturing process that typically employs a hexagonal boron 

nitride coating as a lubricant/release agent. In air at 900°C, the substrate and coating undergo 

concurrent and interrelated high temperature oxidation. This results in complete 

decomposition of the coating and a radically altered scale outer-interface comprising 

aluminium borate and nitrogen-doped rutile. 

 

 

 

 

 

 

 


