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Abstract  

Thermal barrier coatings were synthesized in a single step process from a slurry containing Al 

microspheres onto different Ni-based superalloys. Upon growth of the coating a top coat of hollow 

alumina spheres linked to an aluminium diffused coating through an alumina TGO formed. The 

isothermal and cyclic oxidation tests at different temperatures (900 till 1100°C) up to 1000h or 1500 

cycles revealed progressive growth of different thermal oxides depending on the substrate composition. 

Faster degradation of the coatings occurred in the titanium-rich substrates (e.g. IN-738LC and 

PWA1483) compared to the titanium-poor ones (CM-247LC and René N5). By comparing with 

conventional low activity aluminide coatings, it appeared that the incorporation of alloying elements 

(notably Ti and Ta) to the diffused layers upon the high activity slurry coating process is responsible 

for such fastest degradation. 

 

Keywords: slurry aluminide; superalloys; isothermal oxidation; cyclic oxidation. 

 

1. INTRODUCTION 

The use of thermal barrier coatings (TBCs) in the high pressure turbine components of aeroengines 

made of nickel based superalloys is compulsory nowadays to withstand the very high surface 

temperatures of the corrosive gas released from the combustion chamber. This system is often based 

on a top ceramic coat of yttria stabilized zirconia (YSZ) made by electron beam physical vapour 
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deposition (EB-PVD) with columnar structure to comply with thermal cycling, an intermediate -

Al2O3 thermally grown oxide (TGO) to attach the YSZ and to provide oxidation protection and an 

underlying -NiPtAl diffusion coating that acts as an aluminium reservoir [1]. New low-cost and 

environmentally friendly coatings were recently proposed in the European project “Particoat” [2] in 

which a water-based slurry containing Al microparticles was sprayed and annealed [3] onto pure nickel 

[4] and different nickel-based superalloys [5] or steels [6]. The isothermal oxidation behaviour of these 

coatings onto a pure Ni [7] and a René N5 superalloy [8] indicated faster oxidation kinetics and faster 

-NiAl’-Ni3Al transformation than in conventional low activity -NiAl although both systems grew 

duplex NiAl2O4/Al2O3 scales. In contrast, the presence of the hollow alumina top coat and the 

precipitates segregated at the thermally grown oxide limited the appearance of rumpling compared to 

the conventional coatings. Nevertheless, the incorporation of alloying elements from the substrate to 

the coating (e.g. titanium, tantalum, chromium…) may affect the corrosion/oxidation resistance of such 

coatings. Indeed, as pointed out by Evans et al. the bond coat is the most crucial component of the TBC 

system as its chemistry and microstructure influence durability through the structure and morphology 

of the TGO upon oxidation [9]. For instance, titanium grew non protective TiO2 on nanocrystalline IN-

738 superalloy [10] whereas interspersed tantalum rich oxide particles (CrTaO4/NiTa2O6) developed 

in the top spinel ((Ni(Cr,Al,Co)2O4) scale on PWA-1484 superalloy [11]. It therefore appears that 

further understanding in this field is required for these new single step thermal barrier coatings sintered 

from a slurry. For such purpose, the increasing amounts of alloying elements in the superalloys and 

their incorporation to the coatings, hence into the oxide layers were investigated in this work. The 

evolution of the diffusion coatings in terms of -NiAl’-Ni3Al and growth of topological close-

packed phases (TCPs) will be also considered to shed light on the durability of these new slurry 

coatings. 
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2. EXPERIMENTAL  

The slurry TBCs were obtained from a 1/10 PVA/H2O solution to which 45 mass% 5µm-sized Al 

microparticles were added [3]. After spray onto four nickel-based superalloys with different 

composition and crystal structure (Table 1) and dry in air, the slurries were annealed at 700°C/2h and 

additional 1100°C/2h in Ar(g). The traces of O2 (2 vpm) and H2O (5 vpm) in Ar were shown to be 

sufficient to grow the top coat and the TGO composed of hollow and plain α-Al2O3, respectively [4]. 

The slurry TBCs were compared with industrially manufactured low activity out-of-pack (70Cr-30Al 

donor, NH4F activator, treated at 1080°C for 6h in vacuum) and high activity pack cemented (60Cr-

40Al donor, NaCl activator, Al2O3 filler treated at 860°C for 6h in argon and subsequently annealed at 

1120°C for 2h in vacuum).  

 

Short (100h) isothermal tests were performed in a Setaram TGA92 thermobalance while for the long 

term (500 and 1000h) tests a Pyrox furnace was employed. In both cases, purging with Ar(g) was let 

in the chamber till the oxidizing temperatures (900, 1000, 1100°C) were reached and synthetic air 

replaced Ar(g). For the cyclic oxidation tests at 1000 and 1100°C ambient air was employed in a Delta 

Thermique furnace. The thermal cycles corresponded to a hot dwell of 45 min after which the samples 

were quenched by air flow for 15 min to reach surface temperatures of 40(±10)°C. Note however that 

the oxidation temperatures depended on the limit operating temperature of the substrates as gathered 

in Table 2. X-ray diffraction (XRD, Bruker AXS D8, KαCu=0.15406 nm), Raman spectroscopy (Jobin 

Yvon Horiba LabRam HR, λ=632.817 nm), light microscopy (Leica M165C), scanning electron 

microscopy with a coupled energy dispersive energy spectrometer (SEM/EDS, FEI-Quanta 

200F/EDAX and JEOL5410/Oxford) and Electron probe microanalysis (EPMA, JEOL JXA-1800) 

allowed to characterize the degradation of the coatings in the as-deposited condition and after oxidation. 

 

 

3. RESULTS AND DISCUSSION 
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3.1.- Coatings 

All the slurry coatings displayed the same structure as the one given in Figure 1 with a top coat of 

hollow alumina spheres, a very thin thermally grown alumina scale and a bottom aluminium diffused 

layer. In the backscattered electron mode of SEM and by EPMA some nickel was revealed at the top 

coat. A schematic illustration gathering the major mechanisms of formation of these coatings is 

included in Figure 2. Such mechanisms were thoroughly described in previous works [4,12,13]. Once 

the slurry containing the passivated Al microparticles is dried and annealing at sufficiently high 

temperatures starts, the phase transformation of the alumina shell surrounding the Al particles results 

in cracks through which Al diffuses out and wets the Ni-based substrate [4]. Then, Ni dissolves in 

molten Al [12] and the subsequent greatly exothermic reactions between Al and Ni bring about the 

synthesis of the Al-rich nickel aluminides by a self-propagating combustion mechanism [13]. Once all 

molten Al is consumed, solid state interdiffusion occurs, in particular upon the final temperature step 

of the synthesis process. However, the roughness of the interface between the top coat and the diffused 

layer increased with greater alloying element content in the substrate (Figure 3). Galetz et al. [13] 

proposed that molten Al builds a network between the Al particles at the top and the substrate surface 

resulting in a “stalagmite” microstructure that is more pronounced when using greater particles [14]. 

Here, the segregation of precipitates at the surface of the substrate seemed to limit the contact between 

Ni and Al, thus reducing the local temperature released from the great exothermal Ni-Al reactions. As 

a result, molten Al cannot homogeneously hit the substrate when compared to the absence of 

precipitates. In addition, and although different microstructures of the diffused layers were obtained 

depending on the initial composition and crystal structure of the Ni-based superalloys investigated, 

they all exhibited a typical microstructure of high activity aluminides also observed by Montero et al. 

on similar CM-247, IN-738 and René 80 superalloy substrates than ours [5]. In yet unpublished results, 

the EPMA X-ray maps of the slurry coatings revealed increasing partition of Ti and Ta to the 

TGO/diffusion coating interface and of Cr to the top of the diffusion layer with increasing content in 
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the substrate alloy, e.g. more Ti segregated in PWA-1483 (4.1 mass %Ti) than in CM-247 (0.7 

mass %Ti). The precipitates in the pack cemented coatings distributed very similarly to the slurry ones 

while the out-of-pack barely contained any precipitate as was also the case for slurry on pure Ni [4]. 

 

 

3.2- Isothermal oxidation 

The parabolic rate constants calculated using the complete law approach [15] were plotted in the 

Arrhenius diagram derived from a bulk -NiAl by Brumm and Grabke [16] in Figure 4. It appeared 

that the slurry coatings onto pure nickel grew transition -Al2O3 for the first 100h regardless of the 

oxidation temperature. In contrast, the coated superalloys exhibited an evolution from  to -Al2O3 

with increasing temperature in agreement with the well-known third element effect that Cr procures to 

develop -Al2O3 scales rapidly [17]. However, one must bear in mind that the greatest kinetics of the 

slurry coatings can be related to further oxidation of remnants of metallic Al in the spheres after the 

coating elaboration process [7]. Further extension to 500 and 1000h of oxidation displayed less 

differences in terms of specific mass gain compared to a low activity -NiAl. A similar slurry coating 

onto CM-247LC superalloy oxidised by Montero et al. at 1000°C for 1000h displayed in contrast much 

greater mass gains than a conventional high activity pack cemented coating but the mass gains were 

reduced by previous blasting of the top coat [18]. It shall be noted however that the top coat partially 

detached depending on the substrate (coating) composition (Table 3) likely during the cooling step ( 

50°C/min).  

 

This hypothesis was confirmed from the X-ray patterns (Table 3), where the incorporation of titanium 

and tantalum oxides became more relevant with oxidation time in all the systems. Additional tungsten, 

hafnium and spinel oxides appeared on N5, CM and PWA substrates. The EDS elemental maps in the 

cross sections confirmed the XRD results. Cr mainly partitioned to the interdiffusion zone (IDZ) [19] 
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and therefore could not contribute to the formation of Cr2O3. In contrast, Ta and Ti were found in both 

at the bond coat/TGO interface and within the IDZ. Such partition was previously reported by 

Bouchaud et al. for Ta [20] and by Pfening and coll. for Ti [21] and can be related to the relatively high 

diffusion coefficient of both refractory elements in these coating and alloy systems [22]. It was also 

noted that upon transformation of the -NiAl’-Ni3Al, dissolution of the precipitates of refractory 

elements occurred with temperature and time because of their limited solubilities in the -NiAl phase 

[e.g. 22].  

 

This is clearly demonstrated in Figure 5, where the low activity out-of-pack bond coat transformed less 

-NiAl phase than the high activity slurry one and therefore refractory-rich oxides precipitated in the 

duplex oxide scale with NiAl2O4 on top of a -Al2O3 grown in both coating systems. However, and in 

spite of further transformation of -NiAl into the L12 (or martensitic L10) ’-Ni3Al quoted to induce 

rumpling [23,24] in the slurry coatings than in the conventional CVD ones, the latter displayed a more 

rumpled surface. It therefore appeared that the presence of the refractory oxide precipitates within the 

scale and the top coat of hollow alumina particles allowed to pin the TGO and the underlying bond. As 

summarised in Table 4, Al diffusion into the substrate brought about the precipitation of TCPs, whose 

extent and composition depended on temperature and time and they can lead to a degradation of the 

mechanical properties upon mechanical loading [19]. The greater the temperature and time, the thicker 

the extent of the TCPs area except for CM-247LC since the precipitates seemed to solubilize in the /’ 

matrix. Additional needle-like precipitates in this area can also ascribed to AlN [25,26] with N from 

the substrate diffusing outwardly [27,28]. Similar TCPs were also found in the low activity out-of-pack 

aluminides after oxidation in terms of morphology and extension in a DS superalloy having a 

composition very alike to that of CM-247LC [20]. 

3.1.- Cyclic oxidation 

Figure 6 displays the mass gains per surface unit of René N5 and PWA 1483 aluminized using the 
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conventional low activity and the slurry methods upon cyclic oxidation at 1100°C in air. Compared to 

the low activity aluminide, some spallation compensated by further mass gains occurred in the slurry 

René N5. In contrast, the slurry PWA 1483 underwent significant mass losses in less than 100 cycles. 

Since the major mass loss can be attributed to the top coat of hollow spheres, it appears that quite 

extended areas became naked (see inset in Fig. 5). The naked surface displayed a dark yellow colour 

indicative of TiO2 and the presence of this oxide was confirmed by Raman spectroscopy and XRD. 

Therefore, it can be considered TiO2 as the cause of such spallation. Indeed, by decreasing the oxidation 

temperature to 1000°C (Figure 7), the top coat remained adherent until 1500 cycles of oxidation 

although some low intensity peaks of TiO2 were detected together with those of the major -Al2O3 and 

NiAl2O4 spinel oxide phases. 

 

The evolution of the coating microstructure with cycling was similar to the one observed under 

isothermal regime. However, the -NiAl’-Ni3Al transformation was comparatively less extended 

while the rumpling phenomenon was greater than in isothermal regime. Although the rumpling 

phenomenon is often reported to result from the volume change induced upon the ’ phase 

transformation [24,29], additional factors such as the differences of thermal expansion coefficients 

between the scale and the coating [30] and the coating and the substrate [31] in addition to the lateral 

growth of the scale [32] shall be also considered. Here, the precipitate-free aluminide coatings obtained 

by out-of-pack rumpled more than the slurry ones (Figure 8) and therefore confirms the pinning effect 

of both the precipitates in the coatings that limit the plastic deformation like in a composite material 

and of the top coat since the expansion and contraction of hollow spheres likely limit the introduction 

of additional stresses to the TGO.  

 

As result of interdiffusion, the composition of such TGO also evolved with the number of cycles at 

temperature. In particular, and as with the isothermal regime, Ta and Ti diffused outwardly and 
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incorporate in the TGO like in the examples shown in Figure 9 for the X-ray elemental maps of the 

slurry aluminised René N5 after 1000 cycles of oxidation at 1100°C and in Table 4 with the phases 

identified by XRD after different cycles of oxidation at 1000°C of the slurry, out-of-pack and pack 

cemented aluminides in PWA-1483. In the former, the maps clearly revealed major segregation on top 

of the Al-rich TGO likely resulting in mixed CrTaO4/NiTa2O6 or simple TaO2 oxides [11]. In the latter, 

TiO2 was unambiguously identified from 500 cycles onwards in the high activity (slurry and pack) 

aluminides in addition to the major contribution of α-Al2O3 but was absent in the precipitate-free low 

activity out-of-pack aluminide. Such TiO2 segregation was quoted to result from the very coating 

process itself [8] but additional outward diffusion could occur upon the increased β-NiAl  γ’-Ni3Al 

transformation of the high activity aluminides since Ti partitions to Ni3Al [33]. In spite of a greater 

relative intensity of TiO2 with respect the NiAl2O4 spinel all the scales (and top coat) appeared adherent 

even after 1500 cycles.  

 

In addition, the extent of the TCPs area also increased with temperature and time in a similar fashion 

than in the isothermal regime (Table 4). The thickness of the TCP extension was very alike in both high 

activity coatings but was slightly thicker in the out-of-pack ones probably from their greater initial Al 

content. Nevertheless, these results are very much in agreement with those proposed in the open 

literature for different aluminised nickel-based superalloy substrates [e.g. 24] and demonstrate the 

overall similar degradation mechanisms of these new slurry coatings to the conventional out-of-pack 

and pack aluminides. 

 

4. CONCLUSIONS 

The slurry coatings grown through a high activity process underwent relatively faster oxidation kinetics 

than bulk -NiAl materials at the different temperatures investigated (900, 1000 and 1100°C). 

Although remnants of metallic Al may contribute to the overall mass gain, the formation of titanium 

and tantalum oxides very likely enhanced growth of the oxide scales that were mainly based on a top 
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NiAl2O4 and a bottom -Al2O3. These detrimental oxides grew with increasing oxidation temperature 

in particular in the Ti and Ta-rich alloys. However, Cr remained trapped in the TCP phases and did not 

influence the oxidation kinetics. Although the oxidation kinetics and the -NiAl’-Ni3Al 

transformation were enhanced in the high activity slurry coatings, the refractory-rich precipitates at the 

hollow spheres top coat/diffusion layer interface and the presence of the top coat seemed to limit 

rumpling compared to the conventional low activity -NiAl ones. Nevertheless, extensive growth of 

TiO2 appears to be the major cause of spallation as demonstrated in the cyclic oxidation tests and 

therefore the operating temperature for the high activity coatings rich in Ti shall not surpass 1000°C. 
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Figure 1.- Slurry TBC coatings investigated. SEM top surface with hollow alumina particles 

(a), detail of the sintered hollow microparticles (b) and the corresponding cross section with the 

top coat and the diffused layer over the superalloy substrate (c). EPMA maps of (d) oxygen, (e) 

aluminium and (f) nickel to reveal the intermediate thermally grown oxide. 

 



  
 

Figure 2.- Schematic illustration of the mechanisms of formation of the slurry TBC coatings. 

(a) The passivated Al microspheres lay on the substrate after spray deposition and drying. (b) 

With increasing temperature Al diffuses into the substrate. The outermost layers of Al 

microspheres supply Al to the underlying layers. Ni starts to diffuse outwardly or to solubilise 

into molten Al. Thickening of the oxide shells occurs. (c) At higher temperatures, the alumina 

shells transform into the stable  phase. Al is consumed in the core which leaves behind a 

hollow structure. Ni diffuses preferentially to Al to form the -NiAl bond coat. 

 

 

 



 

Figure 3.- SEM cross sections of the as a function of superalloy substrate (a) and (d) René N5 

or CM-247, (b) and (e) PWA-1483, (c) and (f) IN-738LC. Note the rough interface between the 

hollow particles and the diffusion layer at the top and the different microstructures of the 

aluminium diffused layers.  

 

(a) (b) (c) 

(d) (e) (f) 

50 µm 



 

Figure 4.- Arrhenius plot of the kp values determined from the oxidation kinetics and 

comparison with the kp values from a pure -NiAl [16]. The data for pure Ni are taken from 

Ref. [7]. 

 



 

Figure 5.- Evolution of the microstructures in CM-247LC aluminised by (a) and (c) 

conventional low activity out-of-pack and by (b) and (d) high activity slurry after oxidation at 

1100°C in air for 500 h (a) and (b) and for 1000h (c) and (d). 

 

(a) (b) 

(c) (d) 



 

Figure 6.- Evolution of the mass gains per surface unit of the aluminised René N5 and PWA-

1483 with cyclic oxidation at 1100°C in air. Note the great spallation of the slurry aluminised 

PWA-1483 compared to René N5. 

 



 

Figure 7.- Evolution of the mass gains per surface unit of the PWA-1483 uncoated and 

aluminised with different methods with cyclic oxidation at 1000°C in air. 
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Figure 8.- Evolution of René N5 aluminised by out-of-pack and by slurry with the number of 

oxidation cycles at 1100°C in air. 

 

 



 

Figure 9.- EPMA X-ray maps of different elements and the SEM cross section of the slurry 

coated René N5 coated after cyclic oxidation at 1100°C in air for 1000 cycles. Note the great 

partition of Ta to the top of the oxide scale. 

 

 



Table 1. Nominal composition (mass%) of the nickel-based superalloys investigated. 

 

 Ni Cr Co Mo W Ta Al Ti Other 

René N5 61.6 7 8 2 5 7 6.2  0.2 Hf, 3.0 Re 

CM-247LC 61.7 8.1 9.2 0.5 9.5 3.2 5.6 0.7 1.4 Hf 

PWA-1483 61.2 12.2 9 1 3.8 5 3.6 4.1  

IN-738LC 61 16 8.5 1.7 2.6 1.7 3.4 3.4 0.9Fe, 0.3 Si 

 



Table 2.- Temperatures of oxidation of the different substrates as a function of the 

regime. 

 

Temperature (°C) Isothermal Cyclic 

900 CM-247, PWA-1483, IN-738LC -- 

1000 CM-247, PWA-1483 PWA-1483 

1100 CM-247, René N5 PWA-1483, René N5 

 



Table 3.- Oxide phases identified by XRD and their adherence (visual observations) to 

the respective coating. 

Oxidation 

 time (h) 

Substrate 

René N5 CM 247 PWA 1483 INCO 738 

Oxidation at 900°C 

100 X 

adherent adherent  

α-Al
2
O

3
 / Ta

x
O

y
 / TiO

2
 / 

HfO
2
 

α-Al
2
O

3
 / TiO

2
 X 

500 X 
adherent adherent adherent 

α-Al
2
O

3
 / Ta

x
O

y
 / TiO

2
 α-Al

2
O

3
 / TiO

2
 α-Al

2
O

3
 / TiO

2
 

1000 X 

adherent adherent Adherent 

α-Al
2
O

3
 / Ta

x
O

y
 / TiO

2
 / 

HfO
2
 

α-Al
2
O

3
 / NiAl

2
O

4
 / 

TiO
2
 

α-Al
2
O

3
 / TiO

2
 

Oxidation at 1000°C 

100 X 

adherent adherent 

X α-Al
2
O

3
 / Ta

x
O

y
 / TiO

2
 / 

HfO
2
  

α-Al
2
O

3
 / NiAl

2
O

4
 / 

TiO
2
  

500 X 

adherent adherent 

X α-Al
2
O

3
 / Ta

x
O

y
 / TiO

2
 / 

HfO
2
  

α-Al
2
O

3
 / NiAl

2
O

4
 / 

TiO
2
  

1000 X 

adherent adherent 

X α-Al
2
O

3
 / Ta

x
O

y
 / TiO

2
 / 

HfO
2
  

α-Al
2
O

3
 / NiAl

2
O

4
 / 

TiO
2
 / Ta

4
O  

Oxidation at 1100°C 

100 

adherent Partially detached 

X X α-Al
2
O

3
 / Ta

x
O

y
 / 

WO
2
  

α-Al
2
O

3
 / NiAl

2
O

4
 / 

Ta
x
O

y
 / TiO

2
 / HfO

2
 

500 

adherent Partially detached 

X X α-Al
2
O

3
 / Ta

x
O

y
 / 

AlTaO
4
 / WO

2
 

α-Al
2
O

3
 / NiAl

2
O

4
 / 

Ta
x
O

y
 / TiO

2
 / HfO

2
 

1000 

adherent Partially detached 

X X α-Al
2
O

3
 / Ta

x
O

y
 / 

AlTaO
4
 / WO

2
 

α-Al
2
O

3
 / NiAl

2
O

4
 / 

Mo
x
O

y
 / TiO

2
 / HfO

2
 

 



Table 4.- Thickness (± 2 µm)of TCP extension as a function of oxidation regime, 

temperature, and time of the slurry coatings on different substrates. 

 900°C 

 Isothermal Cyclic 

 500 h 1000 h 500  1000 1500 

CM-247LC 10 16 x x x 

PWA-1483 19 28 x x x 

IN-738LC 18 23 x x x 

 1000°C 

 Isothermal Cyclic 

 500 h 1000 h 500  1000  1500 

CM-247LC 12 24 x x x 

PWA-1483 21 36 21 24 29 

 1100°C 

 Isothermal Cyclic 

 500 h 1000 h 500  1000  1500 

CM-247LC 6 12 x x x 

René N5 45 62 39 44 60 

 

 



Table 5.- Oxide phases identified by XRD for the different aluminide coatings on PWA-

1483 after cyclic oxidation at 1000°C in air. (NB: the symbols > and >> indicate, 

respectively, greater or much greater relative intensity of the phase in the patterns). 

 500 cycles 1000 cycles 1500 cycles 

slurry 

β-NiAl β-NiAl >> γ’-Ni3Al β-NiAl > γ’-Ni3Al 

α-Al2O3 > TiO2 
α-Al2O3 > TiO2 >> 

NiAl2O4 

α-Al2O3 > TiO2 >> 

NiAl2O4 

Pack 

cementation 

β-NiAl β-NiAl >> γ’-Ni3Al β-NiAl > γ’-Ni3Al 

α-Al2O3 > TiO2 
α-Al2O3 > TiO2 >> 

NiAl2O4 

α-Al2O3 > TiO2 >> 

NiAl2O4 

Out-of-pack 

β-NiAl β-NiAl  β-NiAl >> γ’-Ni3Al 

α-Al2O3 >> 

NiAl2O4 
α-Al2O3 >> NiAl2O4 α-Al2O3 >> NiAl2O4 

 

 




