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Abstract 

BACK GROUND: Zeolite encapsulated transition metal complexes have proven to be better 

catalysts for most of the organic transformations as they share advantages of both homogeneous 

and heterogeneous catalysts because the complex inside the zeolite cage could move within the 

cavity at the same time cannot come out of it owing to its size.  Hence, various reports claim the 

application of these encapsulated complexes in various organic transformations. Introduction of 

bromine into aromatic compounds is an important-fundamental reaction in organic chemistry. On 

the other hand, oxidations of saturated and unsaturated compounds also find their application in 

synthesis of fine chemicals.  

RESULTS: The peak positions in cyclic voltammogram of encapsulated complex were unaltered 

accompanied by increase in current with scan rates substantiating the encapsulation of the 

complex within the cavity. This complex was catalytically active in presence of H2O2 towards 

the oxidation of cyclohexane and ethylbenzene. Its catalytic efficiency was examined towards 

oxidative bromination of organic substrates using KBr at room temperature wherein high para-

selectivity was obtained. It displayed better conversion/selectivity than Fe(opbmzl)2NO3 

retaining its catalytic activity up to 5 consecutive runs. Plausible mechanisms involving hydro-

peroxo intermediate have been proposed.  
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CONCLUSION: Zeolite encapsulated Bis[2,2'-hydroxyphenylbenzimidazole]Fe(III) complex 

behaved as a versatile catalyst for various organic transformations.  

Key words: Iron hydro-peroxo intermediate; oxidative bromination; electrochemical studies; 

heterogeneous catalysis, zeolite.  

1.0 Introduction 

Encapsulation of transition metal complexes within the voids of zeolite coalesce the 

reactivity of the metal complex with the sturdiness and stereochemistry of zeolite host. 1 It also 

affords an expedient path for heterogenization of homogeneous complexes that could be applied 

in catalysis and gas purification. 2-3 These catalysts proffer the advantage of shape selectivity and 

site isolation, due to the zeolite matrix, while retaining the solution reactivity of the metal 

complex. It has been widely recognized that space constraints imposed by the zeolite as well as 

specific interactions with the zeolite framework can persuade structural and functional 

modifications of the complex as compared to its solution that manifests its reactivity and 

catalytic properties. 4-7 Oxidative bromination is a process which generates electrophilic bromine 

using various oxidants. It has drawn the attention of researchers in recent years, as the organic 

bromides are widely used as synthetic precursors for various coupling reactions in organic and 

pharmaceutical synthesis beside their biological applications. 8 In the laboratory as well as 

industrial scale, however, bromination is generally carried out with hazardous, toxic and 

corrosive molecular bromine mostly in combination with chlorinated solvents. Moreover the use 

of molecular bromine causes a serious peril to the environment and human health due to its 

toxicity and corroding character and only one bromine atom is consumed in the reaction while 

the other is converted to HBr which escapes into the environment. 9  There are some reagents that 

have been developed as a substitute for Br2, such as N-bromosuccinimide/1-butyl-3-
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methylimidazolium bromide, ZrBr4/diazene, [K+18-crown-6]Br3, 1-butyl-3- methylpyridinium 

tribromide, 3-methylimidazolium tribromide, 1-butyl-3-methylimidazolium tribromide, 

pentylpyridinium tribromide, ethylene bis(N-methylimidazolium) ditribromide.10-17 Some 

systems including bromine as a reagent have also been developed. Such as, Br2/Ag2SO4, 

Br2/SbF3/HF, Br2/SO2Cl2/Zeolite, Br2/Zeolite, Br2/H2O2, Br2/H2O2/Layered Double Hydroxide-

WO4, Br2/tetrabutylammonium peroxydisulphate etc. 18-24 Besides being expensive in nature they 

have meager recovery and recycling of spent reagent and disposal of large amounts of HBr 

waste. Preparations of all these reagents involve liquid bromine at some stage, thereby, 

increasing the cost of the end-product. All the above accounted methods suffer from using not 

easily available compounds and others use highly-corrosive or expensive reagents. Therefore, 

catalytic oxidative bromination reaction has been still attracting attention to develop the more 

efficient method suitable for synthesis. 

From green chemistry point of view, hydrogen peroxide is considered as the best oxidant 

for oxidative halogenation as the by-product obtained is only water. Aqueous H2O2 is capable of 

oxidizing bromide in absence of catalyst in highly acidic medium (pH < 3), whereas at pH > 5.0, 

it has to be activated by homogeneous or heterogeneous catalysts. This feature has provided 

impetus for the development of myriad useful catalysts or reagents including transition metals 

based systems for oxidative bromination by H2O2. 
25-31 

Most of the model complexes reported were found to be catalytically active only in 

presence of acids. 32-34 These acids, although readily available and cheap, usually suffer from the 

drawbacks such as difficulty in separation from organic products and production of large 

volumes of hazardous wastes. 35-37 These disadvantages are of great concern in view of the 

growing ecological awareness in recent years. Though diverse materials have been explored as 
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catalysts for oxidative bromination, zeolite encapsulated transition metal complexes have been 

rarely used. 38-40 More over the application of Fe(III) complex encapsulated in zeolite-Y towards 

oxidative bromination is rarely studied. 

Similarly, oxidations of aliphatic and aromatic alkanes are industrially important 

processes, as the resulting products find their applications in manufacture of textiles, fine 

chemicals and pharmaceuticals. At industrial level, these reactions are often carried out using 

stoichiometric quantity of reagents or under harsh conditions. In order to overcome these 

drawbacks, new catalytic materials have been designed that could be operated in mild conditions. 

41-45  

Hence, present work is focused on synthesis and characterization of bis[2,2'-

hydroxyphenylbenzimidazole]Fe(III) complex encapsulated in the cavity of zeolite-Y and 

investigation of its catalytic activity towards oxidative bromination of aromatics and oxidation of 

cyclohexane and ethylbenzene. Influence of external parameters on the catalytic activity of the 

encapsulated complex was investigated for better performance of the catalyst. Hence in this 

work, the encapsulated complex is used for oxidative bromination of few aromatic substrates.  

2.0 Experimental  

2.1 Chemicals and Reagents 

Commercially available Na-Y zeolite was supplied from Sud-Chemie, India and was used 

as received without further purification. The other reagents like orthophenylenediamine, 4-

aminophenol, nitrobenzene, anisole (S.d. fine chem. Ltd, India), diphosphorus pentoxide, 

orthophosphoric acid, 2,6-di-tert-butyl-4-methylphenol (BHT), salicylic acid, phenol, 

Fe(NO3)3.9H2O, cyclohexane, aniline, toluene, ethylbenzene, benzene, silica gel, ethyl acetate, 

petroleum benzene, n-hexane (Merck), tetrabutylammonium bromide (Spectrochem. Pvt. Ltd, 
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India), vulcan carbon (Cabot corporation) and Methyl-1-phenyl-2-propanol (Sigma Aldrich) 

were used as received. 2-methyl-1-phenyl-2-propyl hydroperoxide (MPPH) was prepared 

according to a literature method using 2-methyl-1-phenyl-2-propanol.46 All the solvents were 

purified prior to use. 

2.2 Physical methods and analysis 

         All the samples were vacuum dried before analysis. The elemental analyses were obtained 

with an Elementar Vario micro cube CHNS analyzer. The iron content was determined using 

inductively coupled plasma-atomic emission spectroscopy (ICP-AES) at Atomic Mineral 

Directorate, Southern region, Bangalore. The surface area and pore volume were measured by 

Bruneur Emmett Teller (BET) method using Micromeritics surface area analyzer model ASAP 

2020. The XRD patterns were recorded on a Panalytical X’pert Pro MPD powder X-ray 

diffractometer using Cu Kα radiation (λ = 1.542 Å) in the 2θ range 10 - 60˚ at a scanning rate of 

0.25˚/min. The UV-visible-DRS spectra were measured using a Shimadzu UV-Vis-NIR model 

UV-3101P spectrophotometer having an integrating sphere attachment for the solid samples in 

BaSO4. The IR spectra of the samples were recorded in the range 400-4000 cm-1 as KBr disks on 

a Shimadzu 8400 s FT-IR spectrometer. The ESR spectra were recorded using a Bruker EMX 

EPR spectrometer X-band, ν = 9.431GHz at room temperature (Indian Institute of Science, 

Bangalore). The electrochemical properties were studied by recording the cyclic voltammograms 

of Fe(opbmzl)2NO3 and encapsulated complexes on a EG & G Model Versastat IIA Galvanostat/ 

Potentiostat with a digital recorder by using 0.1 M tetrabutylammonium perchlorate (TBAP) as 

the supporting electrolyte in DMF. The working electrode was prepared by taking a 1:1 weight 

ratio of Fe(opbmzl)2NO3 or encapsulated metal complexes in 1 mL of milli Q water. This paste 

was coated on platinum flag of 8.0 cm2 area; 2 mL of nafion binder (Sigma Aldrich) was then 
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added on this coating followed by air drying. The platinum flag electrode and standard calomel 

electrode (SCE) were used as the working and reference electrodes respectively. The CV of the 

Fe(opbmzl)2NO3 complex was taken both in solid and solution modes, using 0.01 M of the metal 

complex in DMF. Thermograms were recorded on a TA instrument under nitrogen atmosphere 

with heating rate of 10 °C/min from 20 to 1000 °C. The purity of the brominated products were 

confirmed from 1H NMR spectral analyses using Bruker 400 MHz multinuclear NMR 

spectrometer at room temperature. All the reaction products were analyzed using a Shimadzu 

14B gas chromatograph (GC) fitted with flame ionization detector using a BP-5 capillary 

column. 

2.3 Synthesis 

 (a)   Synthesis of Fe(III) exchanged zeolite-Y (Fe-Y) 

             In a typical experiment, 5 g of Na-Y zeolite was suspended in 300 mL distilled water 

containing Fe(NO3)3.9H2O (20.2 g, 50 mmol) and heated at 90 ˚C under stirring for 48 h. The 

obtained brown coloured solid was filtered, thoroughly washed with hot distilled water and then 

Soxhlet extracted using ethanol, till the filtrate was free from iron and subsequently dried at 150 

˚C for 12 h. The iron content in iron-exchanged zeolite-Y was found to be 1.7 %. 

(b) Synthesis of zeolite encapsulated bis[2-(2'-hydroxyphenyl)benzimidazole]Fe(III) 

{Fe(opbmzl)2-Y} 

2-(2'-hydroxyphenyl)benzimidazole (ohpbmzl) and the Fe(opbmzl)2NO3 complex were 

synthesized according to the reported methods. 47-48 

Fe(opbmzl)2-Y was synthesized by refluxing an ethanolic solution of ohpbmzl and Fe(III) 

exchanged zeolite-Y at 60 ˚C for 48 h and the product formed was washed with DMF and 

C2H5OH using Soxhlet extractor. The uncomplexed Fe(III) ions present in the zeolite-Y were 
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exchanged with Na+ ions by treating with aqueous 0.1 M NaCl solution, filtered and washed with 

distilled water and dried at 120 ˚C for 24 h. Iron content in the encapsulated complex was 

determined by AAS and was found to be 0.45 % (Table 1)(Scheme 1).  

(c) Catalytic activity towards probe reactions 

(i) Oxidative bromination 

Aqueous 30% H2O2 (2.27 g, 25 mmol) was added dropwise to the mixture of substrate (1.22 g, 

10 mmol) and KBr (2.38 g, 11.0 mmol) taken in 10 mL of CH3CN. 0.080 g of catalyst was added 

to it and the reaction mixture was stirred at room temperature. After the specified time of the 

reaction, the catalyst was filtered and solid was washed with ether. The combined filtrates were 

washed with saturated sodium bicarbonate solution. The organic extract was dried over 

anhydrous sodium sulfate and solvent was evaporated. The products were purified by column 

chromatography using ethyl acetate/petroleum benzene. The products were confirmed by 1H 

NMR spectroscopic and gas chromatographic techniques. 

(ii) Oxidation reactions 

In a typical experiment, cyclohexane (5.1 g, 60 mmol) and aqueous 30% H2O2 (17.0 g, 

150 mmol) were mixed in 10 mL CH3CN and heated to 70 ºC. An appropriate amount of catalyst 

(0.120 g) was added and the reaction was carried out for 6 h. The reaction products were 

analyzed using GC at specific time intervals by withdrawing a small aliquot. 

Ethylbenzene (4.2 g, 40 mmol), 30% aqueous H2O2 (9.06 g, 80 mmol) and catalyst (0.110 

g) in 10 mL CH3CN were heated at 60 ºC for 6 h. The reaction products were analyzed as 

mentioned in case of cyclohexane oxidation. 
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The effect of various parameters such as temperature, concentration of substrate and 

catalyst, substrate/H2O2 molar ratio and nature of solvents were checked to optimize the 

conditions for the best catalyst performance. 

3.0 Results and discussion 

3.1 X-ray diffraction studies 

The XRD patterns of the NaY, Fe-Y, Fe(opbmzl)2-Y and recycled Fe(opbmzl)2-Y are presented 

in the Figure 1. The diffraction patterns of Fe-Y and Fe(opbmzl)2-Y were similar to NaY but the 

relative intensity was drastically reduced. These observations specified that the zeolite 

framework did not undergo any significant structural changes during encapsulation. It was 

observed that the intensity of peaks due to (220) and (311) were reversed in case of Fe(opbmzl)2-

Y (220 < 311) as compared to that of NaY and Fe-Y (220 > 311) which  could be due to 

displacement of cations in the cavity to other sites (I' and II) during the formation of complex in 

the cavity.49-51  

In order to verify if the framework of Fe(opbmzl)2-Y is altered or not, after its application in the 

probe reactions, its XRD pattern after recycling was examined and observed that there was no 

major changes in its framework.  

3.2 Fourier Transform Infrared Spectral studies 

The FT-IR spectrum of NaY displayed an intense broad band at 3509 cm-1 due to the presence of 

hydroxyl groups in the supercages and in the sodalite cages (Figure 2). 52 The bands below 1200 

cm-1, located at 580, 713-785 and 1020 cm-1 were attributed to the double ring, symmetric and 

asymmetric stretching of Al-O-Si framework vibrations, respectively. 53-54 The FT-IR spectrum 

of Fe(opbmzl)2NO3 complex exhibited peaks at 3143, 1608, 1298, 1474 and 706 cm-1 due to νNH, 

νC=N/C=C, νC-N, δN-H and δC-H respectively corresponding to organic moiety in the complex (Figure 
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2). It also displayed peaks at 1536 and 901 cm-1 due to νN=O and νN-O, thus confirming the 

coordination of nitrate to Fe(III). The νNH, and νC=N/C=C peaks due to ligand moiety in the 

encapsulated complex were masked by zeolite vibrational peaks. The peaks due to νC-N and δN-H 

at 1385, 1493 cm-1 respectively appeared as weak peaks and were shifted to higher wave number 

when compared to the Fe(opbmzl)2NO3 complex. The characteristic vibrational bands of zeolite 

framework in metal exchanged zeolite or zeolite encapsulated complex were not shifted inferring 

that the zeolite framework has remained unaffected upon metal exchange and encapsulation of 

the complex.  

3.3 UV-vis DRS spectral studies 

UV-visible diffuse reflectance spectral data of ligand, Fe(opbmzl)2NO3 and encapsulated 

complexes are compiled in table 2. The Fe(opbmzl)2NO3 complex exhibited intra-ligand 

transitions at 219, 233 and 290 nm due to φ→φ*, π→π* and n→π* transitions respectively. The 

LMCT band was observed at 331 nm and the weak d-d transition band at 474 nm due to 

6A1g→4T1g (G) transition of an octahedral Fe(III) complex. 55-56 The encapsulated complex 

displayed intra- ligand bands at 248 and 295 nm due to π→π* and n→π* transitions respectively. 

The LMCT band was observed at 366 nm, while the d-d transition band was observed at 505 nm, 

further confirming an octahedral coordination of Fe(III) within the supercage. The LMCT and d-

d transitions in encapsulated complex were found to be red shifted as compared to the 

Fe(opbmzl)2NO3 complex. The shifting implied that the electronic transitions are remarkably 

influenced due to the interaction of the metal complexes within the walls of the zeolite 

framework. The shifting of bands is reasoned to the following facts; (i) ground and/or excited 

state of LMCT transition is altered by encapsulation of Fe(opbmzl)2(H2O)2 complex; (ii) Fe3+ 
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ions may vary the negative charge density of the framework oxygen leading to the shift of the 

lower and higher energy bands.51 

3.4 ESR spectral studies 

The ESR spectra of Fe(opbmzl)2Y and FeY are unresolved (Figure 3). The ESR spectrum of Fe-

Y was found to be isotropic with g values at 2.6 and 2.0 due to Fe(H2O)6
3+ in zeolite cage. 

However ESR spectrum of Fe(opbmzl)2Y showed a rhombic spectrum with g values at 4.7 and 

2.6 indicating a distorted octahedral coordination of Fe(III) inside the zeolite cavity, 

characteristic of high spin d5 Fe(III) in weak field environment. 57 

3.5 Thermal Analysis 

TG profiles of Fe-Y, Fe(opbmzl)2NO3 and Fe(opbmzl)2Y  are presented in Figure 4. The 

Fe(opbmzl)2NO3 complex underwent two-step decomposition. The first step (240-350 ºC) 

showed a weight loss of 10.8 % corresponding to the loss of nitrate ion and the second (350-970 

ºC) to decomposition of the ligand moiety (42.7 %). The encapsulated complex also showed two-

step decomposition profile. The first decomposition step (100-210 ºC) with a weight loss of 16.3 

% corresponds to loss of water molecules (both adsorbed by zeolite and coordinated to Fe in the 

complex), while the second step (200-900 ºC) could be attributed to the loss of complex. 

3.6 Electrochemical studies 

Encapsulation of transition metal complex within the cavity of zeolite-Y transforms the host 

from insulator to redox active. Earlier reports have demonstrated two kinds of mechanism for 

electron transfer; intra-zeolite and extra-zeolite pathways. 58-59 For the complexes within the 

zeolite cavity, intra-zeolite mechanism is predominant. In order to account for the mechanism in 

the materials under present study, electrochemical behaviour of Fe-Y, Fe(opbmzl)2NO3 and 

Fe(opbmzl)2Y was investigated using 0.1 M TBAP as supporting electrolyte in DMF (Figure 5). 
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The cyclic voltammogram of Fe-Y showed two cathodic reduction peaks at -0.384 and -0.980 V 

corresponding to Fe(IV)/Fe(III) and Fe(III)/Fe(II) couples respectively. The relative anodic 

peaks were observed at -0.776 V for Fe(II)/Fe(III) and -0.208 V for Fe(III)/Fe(IV) couples 

(Figure 5a). The cyclic voltammograms of Fe(opbmzl)2NO3 were recorded both in solid as well 

as in solution mode. In solid mode, two cathodic peaks at -0.711 and -0.058 V for Fe(IV)/Fe(III) 

and Fe(III)/Fe(II) couples were noticed. The corresponding anodic peaks were seen at -0.299 V 

[Fe(II)/Fe(III)] and 0.125 V [Fe(III)/Fe(IV)]. The cyclic voltammogram in solution mode 

exhibited cathodic peaks at -0.551 and -0.522 V for Fe(IV)/Fe(III) and Fe(III)/Fe(II) couples. 

The relevant anodic peaks were observed at -0.170 and 0.447 V for Fe(II)/Fe(III) and 

Fe(III)/Fe(IV) respectively. In both the modes, redox peaks due to ligand were also observed.  

The cyclic voltammogram of Fe(opbmzl)2-Y exhibited low intense peaks that may be due of low 

concentration of the complex in the cavity. It also presented ligand redox peaks as observed in 

case of Fe(opbmzl)2NO3 complex (Figure 5b). The cathodic peaks were observed at -0.422 and 

0.324 V for Fe(IV)/Fe(III) and Fe(III)/Fe(II) couples and the relevant anodic peaks were 

observed at -0.239 and 0.430 V for Fe(II)/Fe(III) and Fe(III)/Fe(IV) respectively. 

Compared to non-encapsulated complex, the peaks were relatively broadened upon 

encapsulation which could be due to the interaction of metal complex with the walls of the 

zeolite cage. During the course of interaction, metal complex may perturb the active sites present 

within the zeolite, inducing different interaction energies and modify the redox potential at 

different places in the zeolite. 60 If there is any drastic decrease in peak currents for zeolite 

modified electrode, then the electron transfer occurs via an extra-zeolite mechanism. CV of the 

encapsulated complex showed no decrease in peak currents and found to be independent of scan 

rate accompanied with exceptional stability for prolonged time without any change in redox 
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potential values (Figure 5), which underscores the intra-zeolite electron transfer pathway (Figure 

6).  According to the previous reports, if the electron transfer occurs between the species within 

the cavities of zeolite, peak intensity increases without any prominent shift in peaks positions, 

termed as intra-zeolite mechanism. 61-63  

3.7 Catalytic Reactions 

Influence of various reaction parameters on the probe reactions     

In order to optimize the reaction conditions for maximum conversion, impact of distinct reaction 

parameters viz. substrate and catalyst concentration, substrate to oxidant ratio, reaction 

temperature, solvents polarity, nature and concentration of brominating agent (in case of 

oxidative bromination) were investigated in detail. 

3.7.1 Oxidative bromination 

3.7.1.1 Effect of reaction temperature 

The effect of temperature on oxidative bromination was investigated by reiterating the reaction 

in the temperature range of 30-60 °C using 10 mmoles of aniline, 0.09 g of catalyst, 25 mmoles 

of H2O2 in 10 mL CH3CN in presence of 11 mmoles of KBr as the brominating agent (Table S1).  

Though variation in temperature had little effect on the conversion of aniline (30 °C; 84.4 % and 

60 °C; 88.0 %), decrease in regio-selectivity with increase in temperature was observed. This 

suggested that the aniline conversion was very susceptible to the reaction temperature and the 

most favorable temperature at which the aniline molecules had threshold energy to overcome the 

barrier in order to form p-bromoaniline was found to be 60 °C. 

3.7.1.2 Influence of solvents 

The solvent not only influences the reaction rate by dissolving the reactant molecules and 

intermediates in the solution, but also stabilize or destabilize the transition state and alters the 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
 A

rt
ic

le
concentration and distribution of intermediates formed during the reaction course at the active 

site of catalyst. It is also well known that using H2O2, oxidative bromination in acidic medium 

can be readily carried out. 64-65 The encapsulated complex Fe(opbmzl)2-Y catalyzed oxidative 

bromination in common organic solvents in absence of acid.  Thus in order to emphasize the role 

of catalyst on the reaction, various solvents in absence of an acid were used among which the 

reaction showed better conversion (84.4 %) in acetonitrile and the conversion followed the order; 

acetonitrile (84.4 %) > dichloroethane (76.0 %) > dichloromethane (74.3 %) > chloroform (70.5 

%) (Table S1). 

3.7.1.3 Influence of aniline concentration 

Influence of aniline concentration (5, 7, 10, 15, 20 and 25 mmole) on oxidative bromination was 

examined to obtain maximum conversion and better regio-selectivity (Figure S1). It was 

observed that 10 mmoles of aniline gave maximum conversion (84.4 %) while further increase in 

concentration to 25 mmoles decreased the conversion (69.6 %). Increase in aniline concentration 

results in increase in competition between the aniline molecules for the active sites, thus 

decreasing conversion.   

3.7.1.4 Influence of aniline: H2O2 mole ratio 

Oxidative bromination of aniline was carried out by varying the content of H2O2 (from 1:1 to 

1:3) by maintaining the other set of parameters constant (Figure S2). The bromination was 

maximum for 1:2.5 molar ratio. With further increase in molar ratio to 1:3, both % aniline 

conversion (76.9 %) and selectivity towards 4-bromoaniline decreased (76.8 %). It is well known 

that with increase in H2O2 content, the reaction medium gets diluted due to presence of water. 

3.7.1.4 Influence of nature and concentration of brominating agent 
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The effect of brominating agent was also studied for the oxidative bromination of aniline using 

H2O2 as oxidant and MBr (M = Li, Na, K) as a bromine source (Figure S3). Among them, KBr 

has been found to be the most efficient bromine source (84.4 % conversion) with better regio-

selectivity towards p-product (95.6 %). Though sodium bromide gave good conversion (79.4 %), 

regio-selectivity decreased (74.3 %) while LiBr gave very poor conversion (38.7 %). 

In order to account for the effect of concentration of KBr, three different concentrations were 

employed (5.5, 11.0 and 22.0 mmoles). The % aniline conversion and product selectivity was 

maximum for 11.0 mmoles of KBr (84.4 %) (Table S5). 

3.7.1.5 Influence of catalyst concentration 

The influence of catalyst concentration on oxidative bromination was investigated for four 

different concentrations of catalyst viz., 0.070, 0.080, 0.090 and 0.100 g (Figure S4). Conversion 

was highest for 0.090 g of catalyst (84.4 %) and decreased slightly above this concentration (84.1 

% for 0.100 g). With increase in the concentration of catalyst, the number of active sites also 

increases. This may decrease the conversion, as the oxidant and substrate may bind to different 

sites. For effective conversion, both substrate and oxidant have to bind to the same active site. 

3.7.1.6 Comparison of catalytic acitivity with NaY, FeY and Fe(opbmzl)2NO3 

The catalytic activity of encapsulated complex was compared with that of Fe-Y and 

Fe(opbmzl)2NO3 (Figure 7). The % aniline conversion and selectivity towards para-product 

followed the order; Fe(opbmzl)2-Y (84.4, 95.6 %) > Fe(opbmzl)2NO3 (76.5, 87.9 %) > Fe-Y 

(72.1, 74.6 %) (Figure 7). A blank reaction was also carried out in absence of the catalyst, 

wherein 7.4 % conversion was observed at optimized conditions.  
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The reaction was carried out using NaY, wherein 12.9 % aniline conversion with 34.6 % 

selectivity towards para-product was observed. This lower conversion explains the influence of 

redox active transition metal complex in the zeolite.  

3.7.1.6 Influence of nature of substrates 

Oxidative bromination of few aromatics was also carried out at the optimized conditions of 

aniline (Table 3). As -OH, OCH3, NH2 and CH3 groups are considered as ortho and para 

directing and activating groups, the activated aromatic substrates like phenol, anisole, aniline and 

toluene showed excellent para-selectivity and high conversion yielding respective mono-

selective products.  

Benzene being less active towards electrophilic substitution reaction, showed lower conversion 

(29.3 %), while deactivated aromatic ring such as nitrobenzene also gave lower conversion under 

optimized conditions (18.5 %). 4-substituted aromatics such as 4-aminophenol was selectively 

converted to 2-bromo derivative. The NMR spectra of brominated products is presented in 

Figure S5 (a-g). 

3.7.2 Cyclohexane oxidation 

    Another model reaction like cyclohexane oxidation was also performed in the similar way and 

various reaction parameters were optimized in the sequence as discussed earlier.  

3.7.2.1 Influence of temperature 

Effect of temperature was also investigated for cyclohexane oxidation maintaining the other 

parameters constant (Table S2). It was observed that, with increase in temperature from 30 to 70° 

C, cyclohexane conversion also advanced subsequently from 22.9 to 55.6 % along with increase 

in selectivity towards cyclohexanone (41.7 to 57.4 %). Thus, 70 °C was considered as 

optimum for better cyclohexane conversion.  
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3.7.2.2 Influence of solvents 

The nature of solvent also influences the catalytic activity. It was observed that among the 

solvents used, acetonitrile showed better conversion (55.6 %) and good selectivity towards 

cyclohexanone (57.4 %) owing to its good coordination ability (Table S2). It was observed that 

the cyclohexane oxidation was better in chloroform (51.2%) and least in methanol (38.6 %) 

which could be due to non-polar nature of chloroform.  

3.7.2.3 Influence of cyclohexane concentration 

The initial concentration of cyclohexane was found to be the key factor in the oxidation 

process. The conversion rate increased proportionately with enhancement in the cyclohexane 

concentration at the initial stages (30 - 60 mmoles) and declined at later stages.  As shown in 

Table S2, cyclohexane conversion followed the progression; 30 mmole (42.3 %) > 40 mmole 

(46.9 %) > 70 mmole (49.1 %) > 50 mmole (49.9 %) > 60 mmole (55.6 %).  

Hence, 60 mmoles was considered to be optimum concentration of cyclohexane for 

maximum conversion. 

3.7.2.4 Influence of cyclohexane: H2O2 mole ratio 

The effect of cyclohexane: H2O2 molar ratio was investigated for four different molar ratios; 1:1, 

1:2, 1:2.5 and 1:3 (Table S2). The conversion of cyclohexane showed an increasing trend with 

increase in molar ratio from 1:1 (29.5 %) to 1:2.5 (55.6 %). However above 1:2.5 molar ratio, the 

percentage conversion and cyclohexanone selectivity almost remained constant. 

The above result suggests that a large amount of oxidant is not an essential criterion in 

improving the catalytic performance of the catalyst. Thus 1:2.5 molar ratio was optimal for the 

reaction. 

3.7.2.5 Influence of catalyst concentration 
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The effect of catalyst concentration was also evaluated for 3 different concentrations (0.120, 

0.130 and 0.140 g) maintaining other parameters constant (Table S2). It was observed that the 

maximum conversion (55.6 %) was obtained when 0.130 g of catalyst was used. When 0.120 g 

of catalyst was used, the conversion was only 41.9 %. The conversion decreased when the 

catalyst concentration was increased to 0.140 g (50.3 %) 

3.7.2.5 Comparison of catalytic activity of Fe(opbmzl)2-Y with Na-Y, FeY and 

Fe(opbmzl)2NO3 towards cyclohexane oxidation 

To further establish the significance of the encapsulated complex, its performance was compared 

with FeY, Na-Y and Fe(opbmzl)2NO3. Cyclohexane conversion followed the order; 

Fe(opbmzl)2Y (55.6 %) > Fe(opbmzl)2NO3 (51.3 %) >Fe-Y (47.9 %), while cyclohexanone 

selectivity followed the order; Fe(opbmzl)2Y (57.4 %) > Fe-Y (54.4 %) > Fe(opbmzl)2NO3 (50.7 

%) (Figure 8). 

3.7.3 Ethylbenzene oxidation 

The encapsulated complex was used to catalyze the oxidation of ethylbenzene, by H2O2, to give 

acetophenone and benzaldehyde as major products and benzoic acid as minor product. 

3.7.3.1 Influence of temperature 

The effect of temperature on the oxidation of ethylbenzene was studied at five different 

temperatures (viz. 30, 40, 50, 60 and 70 ºC) with 4.2 g of ethylbenzene (40 mmol), 9.1 g of 

aqueous 30% H2O2 (80 mmol), and 0.001 g of catalyst in 10 mL of acetonitrile (Table S3). The 

performance of catalyst (conversion 62.7 %) increased with temperature up to 60 °C, but at 70 ºC 

though conversion increased marginally (65.9 %), the selectivity towards acetophenone and 

benzaldehyde drastically decreased with increase in selectivity towards benzoic acid (56.3 %). 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
 A

rt
ic

le
Thus, 60 ºC was the required temperature to get maximum selectivity towards acetophenone 

(53.6 %). 

3.7.3.2 Influence of solvents 

The catalytic activity was examined using acetonitrile, dichloromethane, methanol, acetone and 

ethanol. The ethylbenzene conversion was maximum in acetonitrile. The order of conversion was 

as follows; acetonitrile (62.7 %) > acetone (51.3 %) > ethanol (47.3 %) > methanol (43.5 %) > 

dichloromethane (36.2 %) (Table S3).  

3.7.3.3 Influence of ethylbenzene concentration 

The effect of ethylbenzene concentration on conversion was studied maintaining the other 

optimized conditions constant (Table S3). It was observed that conversion increased with 

increase in concentration of ethylbenzene from 30 mmoles (45.9 %) to 40 mmoles (62.7 %). 

Further increase in concentration to 50 mmoles, both conversion and selectivity towards 

acetophenone decreased (52.3 % and 31.5 % respectively). 

3.7.3.4 Influence of ethylbenzene: H2O2 mole ratio 

The influence of H2O2 concentration on the oxidation of ethylbenzene as a function of time has 

been studied considering ethylbenzene: H2O2 molar ratios of 1:1, 1:2 and 1:3 (Table S3). For a 

fixed amount of ethylbenzene (4.2 g, 40 mmol), catalyst (0.110 g) and acetonitrile (10 mL), the 

conversion of ethylbenzene was 62.7 % in 6h of reaction time at 60 ºC for the ethylbenzene to 

H2O2 molar ratio of 1:2. Increasing this ratio to 1:3 increased the conversion to 69.9 % but the 

selectivity towards acetophenone decreased drastically (23.3 %). 

3.7.3.5 Influence of catalyst concentration 

Among different concentrations of catalyst used, conversion was low (51.6 %) for 0.100 g of 

catalyst with 4.2 g of ethylbenzene (40 mmol) and 9.1 g of H2O2 (80 mmol) in 10 mL of 
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acetonitrile for 6 h (Table S3). Increasing the catalyst amount to 0.110 g, improved this 

conversion to 62.7 %. Further increment of catalyst amount to 0.120 g slightly reduced the 

conversion (59.3 %), while selectivity towards acetophenone decreased drastically to 19.3 %. 

3.7.3.6 Comparison with NaY, FeY and Fe(opbmzl)2NO3 

The catalytic activity of the encapsulated complex was compared with that of Fe(opbmzl)2NO3 

complex and Fe-Y (Figure 9).  Fe(opbmzl)2NO3 complex showed 58.6 % conversion of 

ethylbenzene under the above optimized conditions with selectivity towards acetophenone and 

benzaldehyde was 42.1 and 47.3 % respectively. Fe-Y showed 51.2 % conversion with 39.6 % 

acetophenone selectivity. The zeolite framework in encapsulated complex has influenced on the 

selectivity of oxidation products of ethylbenzene in that using H2O2 as oxidant, acetophenone 

was always obtained as the major product (53.6 % selectivity). 

3.7.4 Test for recyclability and heterogeneity of the reaction 

The recyclability of the catalyst has been tested for the probe reactions. The catalyst separated 

from the reaction mixture after the catalytic reaction and washed with acetonitrile, dried and 

subjected to further catalytic reactions under respective optimized conditions. No appreciable 

loss in the activity in all cases suggested that the catalyst is active even after second cycle with 

small decrease in the activity after third run (Table 4). To check the heterogeneous nature of the 

catalyst, reactions were carried out for 2 h at optimized conditions, catalyst was filtered and the 

reaction was continued for another 2h. The gas chromatographic analyses showed no further 

increment in the conversion confirming that the reactions did not proceed upon removal of the 

solid catalyst and the reactions were truly heterogeneous. 

Comparison of the catalytic activity of Fe(opbmzl)2-Y with other reported systems 

revealed that the present catalyst exhibits good conversion of aniline ( 84.4 %), cyclohexane 
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(55.6 ) and ethylbenzene ( 62.7%) with good selectivity towards para-substituted product (in this 

case 4-bromoaniline) (95.6%), cyclohexanone (42.6%) and acetophenone (53.6%) when 

compared to reported systems (Table 5-7) [66-80]. 

3.7.5 Mechanistic studies 

Oxidative bromination and oxidation of ethylbenzene was found to occur via ionic mechanism 

which was confirmed by carrying out the reactions in the presence of radical abstractor BHT 

(Schemes 2-4). In case of cyclohexane oxidation, the reaction did not proceed in presence of 

BHT, which could be considered as an evidence for radical mechanism (Scheme 3). 

To establish the possible reaction pathway for non-encapsulated Fe(opbmzl)2NO3 

complex, the complex was treated with H2O2 and progress of the reaction was monitored by UV-

visible absorption spectroscopy (Figure 10). The titration of DMF solution of [Fe(opbmzl)2NO3] 

with one-drop portions of 30% H2O2 dissolved in DMF (10-3 M) resulted in the slight shift of 

291 nm band to 293 nm along with the increase in its intensity, while band at 335 nm decreased 

in intensity with appearance of other band at 359 nm. UV band at 416 was broadened and shifted 

to 436 nm. These changes may be due to the formation of intermediate NO3(opbmzl)2Fe-OOH 

which finally transfers oxygen to the substrates. 81-83 

Similarly, reaction between H2O2 and complex in the zeolite cavity is expected to lead to 

the formation of [(H2O)(opbmz)2Fe-OOH] intermediate which may further react with the 

coordinated substrate to give oxidized products by homolytic cleavage of O-O bond of H2O2 

resulting in OH radicals or by heterolytic cleavage leading to oxidation of ethylbenzene and 

oxidative bromination, while in case of cyclohexane oxidation the reaction proceeded with 

homolytic cleavage of the intermediate. 
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For further confirmation for the type of mechanism in the probe reactions and to check 

for homolytic versus heterolytic scission of the peroxide O-O bond, the oxidative bromination 

and oxidation of cyclohexane and ethylbenzene under the optimized reaction conditions were 

carried out using methyl-1-phenyl-2-propyl hydroperoxide (MPPH) as a mechanistic probe.  It is 

known that, if the reaction proceed via heterolytic cleavage of the O-O bond, the reaction with 

MPPH and the catalyst should give 2-methyl-1-phenyl-2-propanol. On the other hand, homolytic 

cleavage of the hydroperoxide leads to a radical mechanism yielding acetone, benzyl alcohol, 

and benzaldehyde as some of the β-scission fragmentation products. 84- 85 The reactions were 

carried out using MPPH (1.7 g) under respective optimized conditions and the reaction products 

were analyzed by GC which revealed the presence of 2-methyl-1-phenyl-2-propanol in case of 

oxidative bromination and oxidation of ethylbenzene, whereas in case of cyclohexane oxidation, 

the product GC analysis revealed the presence of cyclohexanol, cyclohexanone, benzyl alcohol, 

benzaldehyde and unreacted cyclohexane  indicating that oxidative bromination and oxidation of 

phenol, styrene and ethylbenzene occurred by heterolytic cleavage of the O-O bond while 

oxidation of cyclohexane took place by homolysis of O-O bond of hydroperoxide. 

The [(H2O)(opbmz)2Fe-OOH]  formed in case of oxidative bromination would later react with 

Br- ion to liberate HOBr that may bind to the Fe center and attack the substrate by an 

electrophilic attack (Br+) to give bromo-product. 64, 86-88  

 

4.0 Conclusion 

Encapsulation of bis[2,2'-hydroxyphenylbenzimidazole]Fe(III) complex within the cavity of 

zeolite-Y was supported by reduction in pore volume. Presence of ligand and complex peaks in 

the IR spectrum with red-shift of LMCT transitions in UV-vis DRS spectrum further supported 
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this fact. From UV-vis and ESR spectral data, an octahedral coordination around Fe(III) in the 

encapsulated complex was assigned. An increased current without any change in peak potential 

with respect to difference in scan rates in the cyclic voltammogram of the complex described an 

intra-zeolite electron transfer within the cavity. The encapsulated complex showed higher 

catalytic activity and selectivity in all the reactions as compared to Fe(opbmzl)2NO3. Leaching 

tests indicated that the catalytic reactions were truly heterogeneous in nature. The catalyst can be 

reused three times without significant decrease in its activity. 
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Scheme 1: Preparative route for Fe(opbmzl)2-Y 
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Figure 1: XRD pattern of (a) Na-Y, (b) Fe(opbmzl)2-Y, (c) Fe-Y and (d) Fe(opbmzl)2-Y (Reused) 
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Figure 2: IR spectra of (a) Na-Y, (b) Fe(opbmzl)2-Y, (c) Fe(opbmzl)2NO3, (d) ohpbmzl and (e) Fe-Y. 

 
 
 

  
 

Figure 3: ESR spectra of a) Fe-Y and b) Fe(opbmzl)2Y 
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Figure 4: TGA decomposition profile of FeY, non-encapsulated and encapsulated complexes 
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 Figure 5: Cyclic voltammograms of a) Fe-Y, Fe(opbmzl)2NO3 in solution and solid mode and 

Fe(opbmzl)2Y, b) Fe(opbmzl)2Y at different scan rates. 
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Figure 6: Graphical representation of electron transfer between encapsulated complexes in 

zeolite Y cavities. 
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Figure 7: Reaction profile for oxidative bromination of aniline by the catalysts 
(Fe(opbmzl)2NO3, Fe-Y and Fe(opbmzl)2Y with respect to time. 
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Figure 9: Effect of Fe(opbmzl)2NO3, Fe-Y and Fe(opbmzl)2Y on % ethylbenzene conversion 
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Figure 10: UV-vis absorption spectra for the titration of 10-3 M Fe(opbmzl)2NO3 in DMF with  

10-3 M H2O2 solution in DMF. 
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Scheme 2: Oxidative bromination of aniline by Fe(opbmzl)2-Y 
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Scheme 3: Cyclohexane oxidation by Fe(opbmzl)2-Y 
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Scheme 4: Ethyl benzene oxidation by Fe(opbmzl)2-Y 
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Table 1: Physical and textural properties of catalysts 

Catalyst Colour Elemental analysis (%) Textural Properties 

Total pore 

volume 

(cc/g) 

Surface 

area 

(m
2
/g) 

C N Fe   

NaY White - - - 0.32 543.0 
Fe-Y Brown - - 1.7 0.26 350.5 

Fe(opbmzl)2-Y Light Brown 1.71 0.42 0.45 0.24 334.8 

Fe(opbmzl)2NO3 Wine red 57.68 
(58.23) 

12.62 
(13.06) 

9.48 
(10.41) 

- - 

* Calculated values in parenthesis 
 
 
 
 
 
 
 
 
 

Table 2: UV-Vis/DRS spectral data (λmax in nm) for the ligand, neat and encapsulated complexes 
 

Sample φ→φ* π→π* n→π* Charge 

Transfer 

d-d transitions 

ohpbmzl 212 240 292 ----- ----- 

Fe(opbmzl)2NO3 219 233 290 331 474 

Fe(opbmzl)2-Y 204 248 295 366 505 
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Table 3: Oxidative bromination of various organic substrates catalyzed by Fe(opbmzl)2-Y 

Entry Substrates Conversion 

(%) 

Product Selectivity (%) 

1 Aniline 84.4 4-bromoaniline (95.6 %); 2-bromoaniline (4.4 %) 

2 Phenol 72.3 4-bromophenol (100 %) 

3 Anisole 72.0 4-bromoanisole (100.0 %) 

4 Toluene 74.6 4-bromotoluene (93.0 %); 2-bromotoluene (7.0 %) 

5 4-aminophenol 79.2 2-bromo-4-aminophenol (100 %)) 

6 Benzene 29.3 Bromobenzene (100 %)) 

7 Nitrobenzene 18.5 3-bromo-nitrobenzene (100 %) 
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Table 4: Recycling studies of Fe(opbmzl)2-Y 

 

 

 

 

Runs Aniline conversion (%) Product Selectivity (%) 

OBA PBA 

I Cycle 84.4 4.4 95.6 

II Cycle 83.1 12.5 85.6 

III Cycle 79.3 14.6 80.3 

IV Cycle 72.6 21.4 78.6 

V Cycle 64.3 24.6 75.4 

Runs Cyclohexane conversion 

(%) 

Product Selectivity (%) 

OL ONE 

I Cycle 55.6 42.6 57.4 

II Cycle 52.3 44.3 55.7 

III Cycle 49.1 45.9 54.1 

IV Cycle 45.6 49.1 50.9 

V Cycle 38.8 51.4 48.6 

Runs Ethyl benzene 

conversion (%) 

Product Selectivity (%) 

AP BD BA 

I Cycle 62.7 53.6 32.9 13.5 

II Cycle 60.1 53.1 32.6 14.3 

III Cycle 56.3 49.7 30.6 19.7 

IV Cycle 51.1 49.3 28.3 22.4 

V Cycle 47.3 47.1 25.6 27.3 
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le Table 5: Comparison of the catalytic activity of Fe(opbmzl)2-Y catalyst with other reported systems towards oxidative bromination  

 

Sl. No Catalyst Reaction Conditions Substrate % conversion Product Selectivity (%) Reference

1 Polystyrene-

divinylbenzene bound 

Fe(III) complex of 

Schiff base prepared 

by treating 

triethylenetetramine 

with salicylaldehyde 

[Aniline] = 10 mmol; 

[KBr] = 20 mmol; [H2SO4] 

= 20 mmol; [H2O2] = 20 

mmol; water (10 mL); 

[catalyst] = 50 mg; room 

temperature; Time = 2.5 h 

Aniline 96.0 4-bromoaniline (85.0) 

2-bromoaniline (15.0) 

66 

2 Fe2O3/zeolite [Toulene] = 1 mL; [Br2] = 

0.5 mmol; [catalyst] = 10 

mg; CH2Cl2; Temperature 

= 40°C,  Time = 2 h; 

Toulene 89.0 4-bromotoluene (51.0) 

2-bromotoluene (38.0) 

67 

3 FePO4/SiO2 

 

CH4/ O2 = 1.0;  40 wt.% 

HBr/H2O = 2.0 ml/h; 

Temperature = 450 °C, 

CH4 17.1 CH3Br (51.2), CH2Br2 (7.5) 68 
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4 Fe(opbmzl)2-Y [Aniline] = 10 mmol; 

[KBr] = 11 mmol;  [H2O2] 

= 25 mmol; Room 

temperature;  Time = 3 h 

Aniline 84.4 4-bromoaniline (95.6) 

2-bromoaniline (4.4) 

Present 

work 

 

5 Fe(opbmzl)2-Y [Aniline] = 10 mmol; 

[KBr] = 11 mmol;  [H2O2] 

= 25 mmol; Room 

temperature;  Time = 3 h 

Toluene 74.6 4-bromotoluene (93.0) 

2-bromotoluene (7.0) 

Present 

work 

 

5 FePO4-SBA-15 [CH4] = 10 mL/min;40 

wt.% HBr/H2O 3.0 mL/h; 

CH4:O2 = 2:1 (v:v);  O2 = 5 

mL/min; [catalyst] =  2.0 g; 

Temperature = 590 °C. 

CH4 12.1 CH3Br (56.3), CH2Br2 (2.1) 69 
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le Table 6: Comparison of the catalytic activity of Fe(opbmzl)2-Y catalyst with other reported systems towards cyclohexane oxidation  

 

Sl. No Catalyst Reaction Conditions % conversion Product Selectivity (%) Reference

1 [Fe(III)(BPMP)Cl(l-O)Fe(III)Cl3] 

{BBMP = (bis(2-pyr- 

idylmethyl)-1,4-piperazine)} 

[H2O2] = 0.77 M; [catalyst] 

= 1.5 x 10-3 M in CH3CN; 

Temperature = 40 °C. 

19.2 Cyclohexanol (12.6) 

Cyclohexanone (6.6) 

 

70 

2 Fe(NC3)Si-MCM-41{ NC3.Si-

MCM-41= 3-

aminopropyltrimethoxysilane 

functionalized Si-MCM-41} 

CH3CN/Cyclohexane/H2O2 

15/2/2 v/v/v; [catalyst] = 

100 mg; Temperature = 

70°C; Time =12 h.  

30.0 Cyclohexanol (10.0) 

Cyclohexanone (20.0) 

71 

3 [FeTSPc]4−{TSPc = 

tetrasulfophthalocyanine} 

water/methanol (1:9); 

[cyclohexane] = 0.2 mol 

dm−3; oxidant = THBP 

(0.8 mol dm−3); [catalyst] = 

6 × 10−6 mol dm−3; Time = 

2h;  

20.4 Cyclohexanol (21.0) 

Cyclohexanone (21.0) 

Others (58.0) 

72 

4 Fe(opbmzl)2-Y [cyclohexane] = 60 mmol; 55.6 Cyclohexanol (42.6) Present 
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[catalyst] = 0.120 g; 

CH3CN (10 mL); 

Temperature = 70 ºC; Time 

= 6 h. 

Cyclohexanone (57.4) 

Others (1.0) 

work 

5 Fe(III)-Schiff base complex in a 

Zn-Al LDH {Schiff base =2-

amino nicotinic acid + 

salicylaldehyde} 

[cyclohexane] = 18mmol, 

[catalyst] = 0.05 g; CH3CN 

(10 mL); Temperature = 70 

°C; Time = 8h,  

45.5 Cyclohexanol (27.7) 

Cyclohexanone (72.3) 

 

73 

6. Chitosan-supported iron(III) 

tetraphenylporphyrin 

[catalyst] = 0.7843 g; 

Temperature = 145 °C; 

Time = 4.5h 

10.48 Cyclohexanol (20.8) 

Cyclohexanone (79.2) 

 

74 

7. [Fe(VTCH)2.2H2O]+-Y { 

VTCH=vanillinthiophene-2-

carboxylichydrazone} 

[cyclohexane] = 10mmol; 

[H2O2] = 10mmol; 

[catalyst] = 60mg; CH3CN  

(2mL); Temperature =  

26.4 Cyclohexanol (42.2) 

Cyclohexanone (57.8) 

 

75 
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8. 
[Fe(VFCH)2.2H2O] 

+-Y { VFCH=vanillinfuroic-2-

carboxylichydrazone] 

[cyclohexane] = 10mmol; 

[H2O2] = 10mmol; 

[catalyst] = 60mg; CH3CN 

(2mL); Temperature = 80 

°C; Time = 2h. 

11.6 Cyclohexanol (31.2) 

Cyclohexanone (68.8) 
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9. 
Fe(III)TPPCl 

(Fe(III)tetraphenylporphyrin 

chloride) complex-Y 

[cyclohexane] = 7.10 

mmol; [H2O2] = 12 mmol; 

[catalyst] = 0.21 g; CH3CN 

(13 ml); Temperature = 80 

°C; Time = 8 h 

18.0 Cyclohexanol (35.0) 

Cyclohexanone (38.0) 

Others (27.0) 
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le Table 7: Comparison of the catalytic activity of Fe(opbmzl)2-Y catalyst with other reported systems towards ethylbenzene oxidation  

 
 

Sl. No Catalyst Reaction Conditions % 

conversion 

Product Selectivity (%) Reference 

1 Fer- 

rocenecarboxaldehyde supported 

on SiO2/Al2O3 supported 

aminopropyl (Si/Al APTMS 

ferrocene) 

 [ethylbenzene] = 9.0  

mmol; [TBHP] = 9.0  

mmol; [catalyst] = 5.0  

mg, Temperature = 50 °C; 

Time = 24h 

37.0 

 

Acetophenone (87.0) 

Benzaldehyde(10.0) 

Others (3.0) 
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2 Fe3O4@SiO2–NH2@CS–Co(II) [catalyst] = 0.3 g; H2O2 =  

HOAc; KBr, Temperature 

= 70°C, Time = 60 min 

82.5 Acetophenone (80.4) 

Benzaldehyde(19.6) 
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3 Iron nanowire filled carbon 

nanotubes 

[ethylbenzene] = 4.35 

mol; 1.5 MPa O2; 

[catalyst] = 100 mg; 

CH3CN (30 mL), 

36.8 Acetophenone (60.2) 

Benzaldehyde(21.1) 

Others (9.7) 
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Time = 3 h, 

4 Fe(opbmzl)2-Y [ethylbenzene] = 40 

mmol; H2O2 = 80 mmol; 

[catalyst] = 0.110 g; 

CH3CN (10 mL); 

Temperature = 60 ºC; 

Time = 6 h. 

62.7 Acetophenone (53.6) 

Benzaldehyde(32.9) 

Others (13.5) 

Present 

work 

5. FeSHA/CPS (Fe- 

Salicylhydroxamate 

/chloromethylated polystyrene) 

Temperature = 100 ºC; 

[catalyst] = 1.5 mmol/L; 

[tetraglycol] = 0.0463 

mol/L; Time = 13 h; 

Lewis acid: 0.013 mol/L. 

14.0 Ethylbenzenehydroperoxide 

100.0 
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