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Abstract 

Large scale biopharmaceutical production of biologics relies on the overexpression of 

foreign proteins by cells cultivated in stirred tank bioreactors. It is well recognized 
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and documented fact that protein overexpression may impact host cell metabolism 

and that factors associated with large scale culture, such as the hydrodynamic forces 

and inhomogeneities within the bioreactors, may promote cellular stress. The 

metabolic adaptations required to support high level expression of recombinant 

proteins include increased energy production and improved secretory capacity, which, 

in turn, can lead to a rise of reactive oxygen species (ROS) generated through the 

respiration metabolism and the interaction with media components. Oxidative stress is 

defined as the imbalance between the production of free radicals and the antioxidant 

response within the cells. Accumulation of intracellular ROS can interfere with the 

cellular activities and exert cytotoxic effects via the alternation of cellular 

components. In this context, strategies aiming to alleviate oxidative stress generated 

during the culture have been developed to improve cell growth, productivity, and 

reduce product microheterogeneity. In this review, we present a summary of the 

different approaches used to decrease the oxidative stress in CHO cells, and highlight 

media development and cell engineering as the main pathways through which ROS 

levels may be kept under control.  

Keywords 

Chinese hamster ovary cells; CHO; oxidative stress; cell engineering; antioxidant 

1. Introduction 

Over the last two decades, with 62 approved recombinant proteins between 2011 and 

2016, protein-based pharmaceuticals (biologics or biopharmaceuticals) strategy has 

proven to be a key player in the development of treatments for complex diseases 

(Lagassé et al., 2017). Mammalian cells are the preferred host to produce recombinant 

therapeutics, such as monoclonal antibodies. Their intracellular machinery is capable 
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of producing post-translationally modified proteins (mainly glycosylated forms) 

displaying similar modifications to those observed in human cells. Several 

mammalian cell lines have been used for production of recombinant proteins, 

including murine myeloma (NS0, Sp2/0) cells, baby hamster kidney (BHK21) cells 

and human cell lines (HEK293 and HT-1080), however 70% of recombinant 

therapeutic proteins are produced in Chinese Hamster Ovary cells (CHO) (Dumont et 

al., 2016; Kim et al., 2012). 

For safety and raw material control considerations, biopharmaceutical industries are 

now using serum free, chemically defined cell culture media. However, the impact of 

serum depletion with regards to growth performance and culture viability is 

considerable, and can, in severe case, promote apoptosis (Yao et al., 2017). Both the 

antioxidant properties of serum and the link between free radicals and cell death are 

well established, and it is therefore likely that oxidative stress resulting from the 

serum-depletion is one of the root causes behind the decrease in cell viability 

(Halliwell, 2003; Lewinska et al., 2007). 

Oxidative stress is defined as the imbalance between the production of free radicals 

and the antioxidant response within the cells (Sies et al., 2017). Reactive oxygen 

species (ROS) are natural byproducts of aerobic metabolism, however, if their levels 

become too high, these compounds can impact cell health through their high reactivity 

towards biological components, including protein, lipids, RNA and DNA (Halliwell, 

2006). Protein are particularly vulnerable to oxidative modifications, notably by OH
•
 

which can react with all amino acid residues, or ROO
•
 which shows higher affinity for 

sulfur side-chain amino acids, such as L-cysteine and L-methionine, or aromatic 

amino acids such as L-tryptophan and L-tyrosine (Cai et al., 2013; Davies, 2016). 

This article is protected by copyright. All rights reserved. 



 

A
c

c
e

p
te

d
 A

r
ti

c
le

 
When cells are not able to counterbalance these damages, apoptosis is activated to 

prevent necrosis. Although this phenomenon is a naturally-occurring defense 

mechanism in organisms, it is not desirable in the context of bioprocesses. In addition 

to the negative impact on cell culture performance, production of free radicals during 

the culture can also be detrimental through the recombinant protein 

microheterogeneity (He et al., 2018; Xu et al., 2014). Recombinant protein 

microheterogeneity corresponds to all the recombinant protein variants that can be 

generated during the production process, namely charge variants, size, variants 

bearing different N-glycosylations, different levels of oxidation on specific amino 

acids such as tryptophan and methionine, etc… Overall, changes in proteins 

microheterogeneity may lead to changes in coloration of the recombinant protein of 

interest. These variants can originate from different post-translational modifications or 

non-enzymatic reactions (Beyer et al., 2018). Acidic variants of monoclonal antibody 

(mAb) have previously been shown to correlate with ROS levels, supporting the 

existence of a link between oxidative stress and recombinant protein 

microheterogeneity (Mallaney et al., 2014). 

In the context of biopharmaceutical production, oxidative stress can be caused by a 

number of factors, including bioreactor oxygen inhomogeneity, rich cell culture 

media, high productivity, and waste accumulation. One important process parameter 

during bioproduction is oxygen level. Maintaining a constant and homogenous 

oxygen level in the bioreactor is challenging and can be influenced by many 

parameters, such as gas flow, stirring speed, gas transfer capacity of the fluid and 

antifoam addition. In large bioreactors, local dO2 gradients can be formed (Xing et al., 

2009). This heterogeneity in oxygenation can result in localized hypoxic condition 

within the culture, and lead to an increase in the sensitivity of CHO cells to oxidative 
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stress that is detrimental to cell growth, culture productivity and/or product quality 

(Lewis et al., 2016; Lin et al., 1993; Lin et al., 1992). On the other hand, hyperoxia 

can also be a problem in bioprocesses. Restelli and coworkers showed that an 

excessive dO2 concentration in the culture impacted the glycosylation profile of 

recombinant erythropoietin produced in CHO cells (Restelli et al., 2006). The authors 

hypothesized that high dO2 concentrations promoted ROS production and ROS-

dependent protein alteration, and that the energetic cost of detoxification these toxic 

compounds could lead to a decrease in others critical metabolic processes. 

Another potential source of oxidative stress is the elevated energetic demands 

required by the cell to produce recombinant proteins. The main source of ATP in 

aerobic organisms is oxidative phosphorylation (OXPHOS), which takes place in the 

mitochondria. Therefore an increase of metabolic fluxes towards OXPHOS, the TCA 

cycle, and related pathways is often observed in cells producing recombinant protein 

(Templeton et al., 2013). However, complex I and III activities within the electron 

transport chain are the main source of ROS within the cells (Turrens, 2003). An 

increase in OXPHOS activity is, therefore, likely to generate ROS, among other 

pathway byproducts.  

In addition to the increase of energy requirements, the combination of the normal 

production of host protein and recombinant protein production can lead to an 

accumulation of protein in the endoplasmic reticulum (ER) (Mathias et al., 2018). ER 

is the central location for protein folding and the first step of the secretory pathway. 

Folding of proteins, in particular disulfide bond formation, requires an oxidative 

environment and, in certain cases, can induce ROS generation. For example, 

oxidation of ER oxidoreductin 1 (ERO1) is required in order to exchange its disulfide 
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bond with its enzymatic partner, the protein disulfide isomerase (PDI). This exchange 

releases H2O2 as a by-product in the ER (Tu et al., 2004). In addition, when the ER is 

overloaded by unfolded proteins, a protection system called the unfolded protein 

response (UPR) is activated by a number of transcription factors and can also lead to 

apoptosis and ROS production (Hetz, 2012). Activation of UPR transcription factors, 

such as the pro-apoptotic transcription factor C/EBP-homologous protein (CHOP) and 

the DNA damage-inducible 34 protein (GADD34), coupled to altered calcium 

homeostasis is accompanied by an increase in ROS. Furthermore, CHOP-dependent 

activation of GADD34 and ERO1α is reported to promote accumulation of ROS in 

the ER due to an increase of oxidation events (Marciniak et al., 2004). Moreover, 

ROS activate inositol-1,4,5trisphosphate receptors (IP3Rs) which release calcium in 

the cytoplasm. This calcium signaling induces mitochondrial oxidative stress and 

further ROS production (Cao et al., 2014). Therefore, it is essential that the cells have 

an efficient secretory machinery to avoid the accumulation of protein in ER and 

ultimately the overproduction of ROS. This relationship between accumulation of 

unfolded recombinant protein in the ER and oxidative stress has been evidenced in the 

biopharmaceutical production of blood coagulation factor VIII (Malhotra et al., 2008).  

During cultivation of mammalian cells, and especially in fed batch mode, a number of 

media components and cell metabolism byproducts are accumulating in the 

extracellular environment. Some cell culture media components such as vitamins, 

amino acids, glucose, and even antioxidant compounds such as polyphenolic 

compounds can generate ROS in the presence of oxygen (Halliwell, 2014; Kelts et al., 

2015; Schnellbaecher et al., 2019). Moreover, specific cell metabolism byproducts 

reported to be growth inhibitors can also lead to oxidative stress (Pereira et al., 2018). 

For example, phenyllactate, which was identified as a growth inhibitor in CHO cells, 
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promotes lipid peroxidation in rat cortex cells tissue (Fernandes et al., 2010; 

Mulukutla et al., 2017). Likewise, methylglyoxal, a byproduct of glucose and amino 

acid metabolism, has been shown to induce oxidative stress in rat cells (Fukunaga et 

al., 2005). In addition, this compound has also been shown to lead to increased levels 

of acidic species of mAbs produced in CHO cells (Chumsae et al., 2013).  

Due to this large number of potential sources of oxidative stress during bioprocesses 

and given the deleterious impact of ROS on process performances, different strategies 

have been developed over the past few decades to counteract this issue. In particular, 

the approach consisting in altering cell culture media, mainly via supplementation of 

the medium with antioxidant molecules, is widely described in literature. The 

decrease of oxidative stress in response to antioxidant supplementation, occurring 

through direct ROS scavenging or antioxidant cellular defense activation, has been 

shown to reduce cell death and the product microheterogeneity, and increase 

productivity of the process. While cell culture media modification is the currently 

preferred option in the CHO cell scientific community, the emergence of CHO omics 

has also opened up new avenues to alleviate oxidative stress by cell engineering.  

In this review, we first give an overview of the oxidative stress in mammalian cells by 

describing the potential sources of ROS during the cultivation as well as the cellular 

antioxidant defense. Thereafter, we provide a description of the two main strategies 

found in literature to alleviate oxidative stress: supplementation of media formulations 

with antioxidant molecules, and cell line engineering.  
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2. Oxidative stress in mammalian cells 

2.1. Sources of reactive species in mammalian cells 

2.1.1. Intracellular generation of ROS 

ROS refer to a group of molecules derived from oxygen, which, due their oxygen 

content or the presence of unpaired electrons, display high reactivity towards a large 

array of biomolecules. Among ROS, the free radical forms, such as the superoxide 

anion radical, the hydrogen hydroxyl radical, or the peroxyl radical, are more reactive 

than the corresponding reduced forms, hydrogen peroxide or organic hydroperoxide. 

In addition to ROS, other radical species such as reactive nitrogen species (RNS), 

reactive sulfur species (RSS), reactive carbonyl species (RCS), and reactive selenium 

species can be generated (Sies et al., 2017). The production of ROS and RNS can be 

enzymatic or non-enzymatic (Dhawan, 2014). Moreover, in the context of 

bioprocesses, reactive species can be generated intracellularly due to the cell 

metabolism, or extracellularly in the cell culture media due to deterioration of media 

components.  

The intracellular ROS mainly originate from the respiratory chain in the mitochondria 

(Turrens et al., 1985). Superoxide anions produced in the mitochondrial matrix will be 

dismuted into H2O2 by the manganese-dependent superoxide dismutase (MnSOD), 

while those generated in the intramembrane space are converted by the copper-zinc 

superoxide dismutase (CuZnSOD) (Fukai et al., 2011; Turrens, 2003). Superoxide 

radicals can also form peroxynitrite after reaction with nitric oxide originating from 

arginine degradation by nitric oxide synthases in the mitochondria and in the 

peroxisomes (Ghafourifar et al., 2005; Schrader et al., 2006). In addition, the 

superoxide anion, can react with H2O2 through the Haber-Weiss reaction, to produce 

the hydroxyl radical OH
• 
which is considered the most deleterious ROS (Nordberg et 
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al., 2001). Indeed, due to its high reactivity, OH

• 
non-preferentially oxidizes amino 

acids, DNA, or lipids. The hydroxyl radical can also be generated in presence of 

transition metal (Fe
2+

 or Cu
2+

) by the cleavage of H2O2 through the Fenton reaction. 

In contrast to the superoxide anion, H2O2 have less reactivity and can diffuse through 

membranes (D'Autreaux et al., 2007). Due to its diffusion properties, H2O2 has an 

important role in signaling. For example, H2O2 modulates the activity of transcription 

factors such as activator protein-1 (AP-1) involved in cell proliferation, apoptosis, 

survival, and cell differentiation. It also regulates the activity of the sterol regulatory 

element binding protein 1 (SREBP1) involved in cholesterol, lipids and fatty acids 

synthesis (Marinho et al., 2014).  

In addition to the mitochondria, ROS can also be produced in other locations within 

the cell. Beta-oxidation of fatty acids takes place in the mitochondria and in 

peroxisomes, which contain many types of oxidases such as Acyl-CoA oxidase and 

xanthine oxidase (Eaton et al., 1996; Schrader et al., 2006). In consequence, ROS 

generation also occurs in peroxisomes as a product of these enzymatic reactions. 

Another location for ROS generation is the ER. The lumen of the ER is an oxidative 

environment which promotes the biochemical reactions required for protein folding 

(Tu et al., 2004). Formation of disulfide bonds through the ERO1/PDI pathway, 

releases H2O2 in the ER lumen. Moreover, H2O2 is generated by NADPH oxidase 4 

(NOX4) and by the microsomal monooxygenase system (MNO) in the ER membrane 

(Brandes et al., 2014; Zangar et al., 2004; Zeeshan et al., 2016). ROS production in 

the ER can also activate the release of Ca
2+

 in the cytosol. In turn, this signaling 

cascade leads to a release of cytochrome c from the mitochondria and initiates 

apoptosis (Cao et al., 2014). This cascade of events shows the relationship between 

oxidative stress, ER stress, and apoptosis (Malhotra et al., 2007). Moreover, the 
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recombinant protein produced can itself be a source of reactive species. A large 

protein with a large number of cysteine will have a higher propensity to accumulate in 

ER due to the large number of disulphide bonds to be formed. The enzymes 

responsible for disulfide bond formation, ERO1 and PDI, will therefore generate more 

H2O2. This phenomenon was illustrated in yeast through the comparison of the 

expression of alpha amylase, a large protein with numerous cysteines but only four 

disulfide bonds, and human insulin precursor, a small protein with three disulfide 

bonds (Tyo et al., 2012). Because of the presence of many cysteines in the sequence 

of alpha amylase, the probability of incorrect disulfide bond formation is increased 

during protein folding. Along these line, Tyo and colleagues demonstrated that more 

oxidative and osmotic stress transcription factors were activated upon alpha amylase 

expression than human insulin precursor expression. Incorrect disulfide bonds can be 

reduced by PDI thanks to its isomerase activity (Wilkinson et al., 2004). However if 

the folding rate is too slow, misfolded proteins will accumulate in the ER leading to 

the unfolded protein response which, in turn, can promote oxidative stress (Malhotra 

et al., 2007).  

2.1.2. Cell culture media-derived ROS 

In addition to intracellular sources, medium components can react with oxygen, light, 

and other components to generate ROS (Grzelak et al., 2000). For example, riboflavin 

is light sensitive and can generate ROS by photooxidation. Grzelak and coworkers 

showed in their study that the riboflavin-dependent ROS production is amplified in 

presence of tryptophan, tyrosine, pyridoxine, and folic acid in medium (Grzelak et al., 

2001). Folic acid is also light sensitive in presence of oxygen and can be degraded to 

6-formylpterin and pterin-6-carboxylic acid, which, in turn, generate ROS (Gazzali et 

al., 2016; Juzeniene et al., 2016). Another vitamin, which is easily oxidized in cell 
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culture media and generates H2O2, is ascorbic acid (Long et al., 2009). More 

generally, thiol compounds present un the media can also be a source of H2O2 

following autoxidation reactions or interaction with other media components, such as 

metal ions (Grzelak et al., 2001; Hua Long et al., 2001). For example, reduced 

glutathione (GSH) can form complexes with copper in a reducing environment which 

leads to superoxide generation (Speisky et al., 2009). Glucose also reacts with oxygen 

and metal ions and produces ROS or reactive degradation products like methylglyoxal 

(Chumsae et al., 2013).  

ROS and byproducts generated by media components oxidation can lead to 

degradation of the overexpressed protein and an increase in product 

microheterogeneity. For example, a recent study have demonstrated that ROS were 

generated in the medium at high iron concentration (Xu et al., 2018). By lowering 

iron concentration, they managed to decrease both free radicals generation and mAb 

microheterogeneity, especially tryptophan oxidation responsible of mAb coloration 

levels (Xu et al., 2014). However, as lowering iron led to a decrease of product titer, 

an adaptation of the process through cell line adaptation and further basal medium 

modifications were required to restore the original titer.  

2.1.3. Antioxidant response in mammalian cells  

In order to maintain reactive species at non-deleterious levels, mammalian cells have 

developed an array of antioxidant systems, including different detoxification enzymes 

and signaling pathways. One of the major players of this defense is GSH (Figure 1). 

GSH is a tripeptide (γ-L-glutamyl-L-cysteinyl glycine) which can be oxidized to form 

glutathione disulfide (GSSG). GSH acts as a ROS scavenger and as the substrate of 
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detoxification enzymes such as glutathione peroxidases (GPXs) and glutathione-S-

transferases (GSTs) (Espinosa-Diez et al., 2015).  

Eight GPXs have been identified so far in mammalian cells: GPX1-4 are 

selenoproteins, while GPX5-8 use cysteines to carry out their enzymatic activity 

(Brigelius-Flohé et al., 2013). However, some of them, such as GPX5, are tissue-

specific and not present in CHO cells. These enzymes use GSH as a reducing 

substrate, but it has been shown that some of them can use other reducing substrates 

like thioredoxin or PDI. Their major substrate is H2O2, but they can also detoxify 

peroxynitrite and oxidized chain of lipids (LOOH). Other enzymes such as catalase 

and peroxiredoxins also detoxify H2O2 (Nordberg et al., 2001). 

Glutathione-S-transferases conjugate GSH with reactive electrophilic compounds to 

facilitate their removal from the cell through specific transporters (Salinas et al., 

1999). GSSG is returned to its monomeric active form (GSH) through the activity of 

glutathione reductase and cofactor NADPH.  

Two other proteins involved in antioxidant defense are glutaredoxins (Grx) and 

thioredoxins, which catalyze disulfide bond reductions. Thanks to this function, these 

proteins are capable of reversing post-translational modifications caused by ROS such 

as sulfenylation, glutathionylation, and cysteinylation (Hanschmann et al., 2013). 

Thioredoxins also transfer electrons to peroxiredoxins (Prxs), which are H2O2 

scavengers, and to methionine sulfoxide reductases which reverse methionine 

oxidation (Lu et al., 2014). Moreover, thioredoxins are involved in the modulation of 

some transcription factors activity such as Nuclear Factor-κB (NF-κB) and AP-1 

(Schenk et al., 1994). Oxidized thioredoxins are reduced by thioredoxin reductases 
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using NADPH as an electron donor while oxidized glutaredoxins are reduced by 

glutathione. 

Another important aspect of cellular antioxidant response is the number of signaling 

pathways involved. In presence of ROS, nuclear factor erythroid 2 (NRF2) dissociates 

from Kelch-like ECH-associated protein 1 (Keap 1). Free NRF2 will then activate the 

antioxidant response element (ARE) localized in genes coding for detoxifying 

enzymes such as glutathione-S-transferase and heme oxygenase-1, which degrades 

free heme (Gong et al., 2001), but also enzymes involved in the biosynthesis of GSH 

such as the catalytic and regulatory subunits of the glutamate-cysteine ligase (GCL) 

(Nguyen et al., 2003). Another example of a transcription factor involved in the 

antioxidant response is NF-κB. The activation of this transcription factors has been 

shown to correlate with the expression of antioxidant enzymes, such as superoxide 

dismutases (MnSOD and ZnCuSOD), GST-pi, and GPX-1, in different tissues 

(Morgan et al., 2011). However, it has been reported that NF-κB is also involved in 

the transcription of pro-oxidant enzymes, such as xanthine oxidase/dehydrogenase 

and inducible nitric oxide synthase. The sterol regulatory element binding proteins 2 

(SREBP-2) involved in lipid homeostasis, also contributes to the antioxidant response 

through the regulation of paraoxonase-2 expression in CHO cells (Gu et al., 2014). 

This enzyme is a hydrolase with a wide range of substrates, that has been reported to 

exert antioxidant activity in several tissues, including brain, ovarian carcinoma, and 

intestinal epithelial cells (Devarajan et al., 2018; Giordano et al., 2011; Précourt et al., 

2012).  

In the context of biopharmaceutical production, several cellular adaptations to 

increased ROS generation and oxidative stress have been reported. Templeton et al. 
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described a correlation between the production of mAb and increased fluxes into the 

TCA cycle during fed batch cell culture. Their metabolic flux analysis also showed 

that the ratio of NADPH/NADP
+
, which is high at the beginning of the process, 

decreased considerably during the late exponential and stationary phases (Templeton 

et al., 2013). Moreover, they observed the same effect on the intracellular GSH to 

GSSG ratio. As NADPH is required to recycle GSSG back to GSH, they suggested 

that the increased TCA cycle activity, which positively impacted mAb production, 

was a spontaneous cellular reaction to oxidative stress. Similarly, a rise in activity of 

the oxidative pentose phosphate pathway could also be a way for the cell to produce 

NADPH and strengthen its antioxidant defenses. The NADPH/NADP
+
 ratio is an 

indicator of the redox state of the cell and is often used as an oxidative stress marker 

(Blacker et al., 2016). However, there are cellular pathways that do not involve 

glutathione regeneration and use NADPH as a cofactor, one example is lipid 

biosynthesis (Lewis et al., 2014). Although oxidative stress will tend to decrease the 

intracellular NADPH/NADP
+
 ratio, it can also be impacted by other metabolic 

adaptations. 

3. Medium development approaches to limit oxidative stress  

Despite the array of internal antioxidant defense mechanisms, cultivated cells may 

benefit from extracellular antioxidant activity to reduce production-derived oxidative 

stress. Antioxidant components are extensively used in chemically defined serum-free 

media to counterbalance the loss of serum and hydrolysate antioxidant properties 

(Saito et al., 2003). This section summarizes classes of compounds bearing 

antioxidant properties that were assessed for culture of CHO cells (see Table 1). 

This article is protected by copyright. All rights reserved. 



 

A
c

c
e

p
te

d
 A

r
ti

c
le

 
3.1. Thiol compounds 

The majority of cellular antioxidant defense systems contain a thiol moiety. The mode 

of action of these compounds is broad : (i) They can act as a substrate for detoxifying 

enzymes (e.g. GSH), (ii) they can directly scavenge ROS (e.g. N-acetylcysteine 

(NAC)), or (iii) they can be involved in metal chelation (e.g. lipoic acid) (Biewenga et 

al., 1997; Deneke, 2000; Sun, 2010). In addition, they can participate in the 

thiol/disulfide intra or extracellular redox balance and/or in cell signaling (Deneke, 

2000; Go et al., 2013). Studies carried out by Yun and colleagues indicate that the 

addition of GSH in serum-free media reduces cell death and increase tissue 

plasminogen activator concentration (Yun et al., 2001). Besides GSH, a large number 

of thiol compounds with antioxidant properties can be supplemented to cell culture 

media to support cells defenses against oxidative stress. For instance, NAC is another 

a thiol antioxidant that is commonly used in CHO cell culture to prevent apoptosis 

induced by oxidative stress (Lord-Fontaine et al., 1999; Wu et al., 2008; Xue et al., 

2015). Some studies have demonstrated that NAC can improve production of 

recombinant human interferon-β-1a and erythropoietin, especially in combination 

with a sodium butyrate treatment (Chang et al., 1999; Oh et al., 2005). An alternative 

to NAC is N-acetylcysteine amine, which has been shown to be less cytotoxic than 

NAC (Wu et al., 2008). Both compounds act as ROS scavengers and are precursors of 

cysteine and GSH that can contribute to increasing intracellular GSH content. 

Through direct interaction with thiol groups, NAC is capable of modulating the 

activity of signaling molecules, such as transcription factor NF-κB and c-Jun N-

terminal kinase (JNK). However, this activity has only be demonstrated in specific 

cell type and further investigation will be required to gain a better understanding of 

the range of activities and antioxidant potential of NAC (Zafarullah et al., 2003). 
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The use of S-sulfocysteine as a replacement for cysteine in cell culture media has 

recently been shown to improve recombinant protein production by increasing the 

GSH pool in CHO cells (Hecklau et al., 2016). The use of S-sulfocysteine in feed 

solutions was hypothesized to reduce the production of hydrogen sulfide by protecting 

thiol groups against oxidation. In an additional study, the same lab reported that this 

compound could also lower antibody low molecular weight species and trisulfide 

bond levels by decreasing free hydrogen sulfide in the medium (Seibel et al., 2017). 

Similarly, supplementation of the culture with thiazolidine in feed solutions can help 

stabilize redox sensitive vitamins and amino acids, and decrease their ROS content in 

feed. These molecules are obtained by condensation of cysteine with pyruvate or 

alpha ketoacids. In 1985, the antioxidant properties of pyruvate and alpha ketoacids , 

such as alpha-ketoglutarate, were highlighted in CHO cells exposed to H2O2 (Andrae 

et al., 1985). Pyruvate has also been shown to scavenge H2O2 present in cell culture 

media, thereby ensuring its stability (Long et al., 2009; McCoy et al., 2015). Addition 

of thiazolidine molecules during cell culture led to a decrease of cell death at the end 

of the production process and an increase of a recombinant mAb titer (Kuschelewski 

et al., 2017). Interestingly, the decrease of oxidative stress is observed upon 

thiazolidine supplementation appears to occur through an increase of intracellular 

GSH levels and expression of MnSOD and CuZnSOD. 

Sulfur-containing amino acid, taurine, has also been reported to reduce cell death by 

increasing the GSH content, reducing lipid peroxidation, and reducing catalase and 

erythrocyte G6PD activity (Gurer et al., 2001). However, it has a low ROS 

scavenging activity compared to its precursors hypotaurine, s-carboxymethylcysteine, 

cysteamine, and cysteinesulphinic acid (Aruoma et al., 1988).  
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Finally, lipoic acid, a fatty acid derivative with antioxidant properties, is another thiol 

compound tested in the context of CHO cell cultivation. It was used in early 

chemically defined medium such as Ham’s F12 developed for CHO cells (Hamilton et 

al., 1977). Lipoic acid is known to reduce lipid peroxidation, scavenge ROS, and 

chelate iron and copper, thereby contributing to a reduction of cell death (Gurer et al., 

1999; Maharjan et al., 2016). However due to its insolubility in aqueous solutions, 

other thiol-containing molecules are generally preferred for medium supplementation. 

3.2. Vitamins 

Although the main function of vitamins is to act as enzyme cofactors, antioxidant 

properties have also been highlighted for some of these molecules. Alpha-tocopherol 

(vitamin E), is well known for its ROS scavenging properties and its ability to 

counteract lipids peroxidation. However, despite some attempts, this compound is 

rarely included in cell culture media composition due to its poor solubility in water 

(Halliwell, 2014). Ascorbic acid (vitamin C), a cofactor of enzymes involved in acetyl 

CoA metabolism, displays high reactivity towards oxygen, which both confers it with 

antioxidant potential, but can also be detrimental to the culture if it is not stabilized by 

other molecules, such as magnesium, selenium, or GSH (Dolińska et al., 2012; 

Touitou et al., 1996). Vitamin C protects cells from lipid peroxidation, through the 

regeneration of oxidized vitamin E. However, vitamin C supplementation during the 

culture does failed to positively impact CHO cell growth as a result of its high 

instability in culture media (Kurano et al., 1990). The development of more stable 

derivatives of these molecules was considered to address these solubility and stability 

issues (Hata et al., 1989). For example, the use of stabilized derivatives like L-

ascorbic 2-phosphate can help to decrease cell death and improve recombinant protein 
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titer (Yun et al., 2001). However, the use of vitamin derivatives comes with a risk of 

altered antioxidant potential that has to be carefully considered. 

3.3. Trace elements and chelators 

Trace elements are essential for cell function and survival, as they act as cofactors for 

key enzymes and play a major roles in cell signaling and metabolism (Arigony et al., 

2013; Hamilton et al., 1977). Metal ions may play a pro-oxidant or antioxidant role 

depending on their concentration. For instance, iron and copper are key players in 

ROS generation as they are involved in Fenton and Fenton-like reactions, respectively 

(Fenton, 1894; Pham et al., 2013). Another element, selenium, can, at relatively low 

concentrations, activate cellular antioxidant defense as it is a cofactor of detoxifying 

enzymes (Brigelius-Flohé et al., 2013; Fukai et al., 2011). Selenium has been reported 

to activate antioxidant defense as it is a cofactor of some GSH peroxidases and 

thioredoxin reductase (Powis et al., 1997; Weiss et al., 1997). In addition, it inhibits 

H2O2-induced TRPM2 channels impacting the Ca
2+

 influx (Naziroglu et al., 2013). 

However, it has to be used carefully as, at high concentrations, selenium can display 

pro-oxidant properties and generate ROS (Lee et al., 2012). Concentrations of 

selenium below 1 µM have been shown to be safe for CHO-K1 cells and are often 

included in cell culture medium (Zhang et al., 2006; Zwolak, 2015). However, toxic 

concentrations of selenium have to be determined for each cell line. Moreover, 

medium composition has to be considered when supplementing cultures with 

selenium as this compound can interact with other trace elements. Finally, 

selenocystine supplementation has also been demonstrated to decrease cell death of 

CHO cells exposed to lead-induced oxidative stress (Aykin-Burns et al., 2006).  
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To avoid the negative effect of trace element addition and facilitate their uptake by the 

cells, chelator molecules are usually used. Indeed, the chelation of reactive metal ions, 

like Fe
2+

 or Cu
2+

, can help decrease oxidative stress. Addition of components like 

transferrin, polyamines, and ferric citrate maintains iron in an inert state and promotes 

its transport into the cells, thereby improving cell viability and recombinant protein 

production (Bai et al., 2011; Gaboriau et al., 2004; Lovaas, 1997; Wang et al., 2011). 

Defroxamine and aurintricarboxylic acid in combination with GSH have also been 

shown to improve CHO cell viability during recombinant tissue plasminogen activator 

production (Yun et al., 2003).  

3.4. (Poly)-Phenolic compounds 

Phenolic compounds are well known for their antioxidant properties and their use in 

the treatment of diseases and aging has been the object of many studies (Mao et al., 

2017). The effects of (poly)-phenol derivative addition in CHO cell cultures has been 

assessed in both academic and industrial research. Epigallocatechin gallate and rutin 

were used to decrease acidic variants of a mAb produced by CHO cells (Hossler et al., 

2015). In addition, baicalein has been shown to decrease cell growth and increase 

recombinant mAb production (Ha et al., 2017). Baicalein can decrease ROS levels 

and inhibit the activity of transcription factors involved in the ER stress response by 

interacting with immunoglobulin protein (BiP) and CHOP. Furthermore, addition of 

butylated hydroxyanisole (BHA) has been reported to decrease apoptosis and reduce 

accumulation of blood coagulation factor FVIII in the ER after treatment of CHO 

cells with sodium butyrate (Malhotra et al., 2008). 

The addition of antioxidant molecules to cell culture media with the aim of reducing 

oxidative stress is an easily implemented and relatively successful approach used in 

This article is protected by copyright. All rights reserved. 



 

A
c

c
e

p
te

d
 A

r
ti

c
le

 
the industrial sector. However, such supplementations are to be investigated on a 

case-by-case basis, considering the different modes of action of the potential 

candidates, the chemistry of culture media, and the selected cell clones or cell lines 

used in the culture. In particular, potential interactions between the antioxidant 

supplements and components of the medium is a critical aspect of the optimization of 

the supplementation process. As they can both positively or negatively impact the 

culture depending on cases, it is important for such interactions them to be fully 

characterized, a fact that is often complicated by the non-disclosure of media 

formulations used in commercial processes. Due to the variability factors associated 

with supplementation, the use of empirical statistical analysis and high throughput 

assays is recommended. In bioproduction, it is generally assumed that the cell lines 

have different historical backgrounds (origin, clone, selection procedure) and, as a 

direct consequence, display differences in metabolism and sensitivity to oxidative 

stress (Reinhart et al., 2018). A better understanding of these differences can be 

obtained through the use of omics techniques, and can help experimenters highlight 

reactions leading to oxidative stress and adapt antioxidant supplementation to specific 

cell lines. 

4. Use of cell engineering to reduce oxidative stress 

Thanks to recent technical advances in genetics, cell engineering can be used to 

upregulate or downregulate pathways of interest. Considerable effort has been put into 

developing strategies to reduce apoptosis, with several efforts resulting in increased 

viability and, indirectly, improved process productivity (Meents et al., 2002). Notably, 

the overexpression of bcl-2 or bcl-xL has been successfully used to activate anti-

apoptotic pathways in CHO cells (Tey et al., 2000; Zustiak et al., 2014). A similar 

approach can be considered to relieve oxidative stress by increasing cellular defense 
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or decreasing ROS-generating cellular activities. As redox reactions are the basis of 

cellular energy production and protein folding processes, any attempts to reduce these 

fundamental reactions may negatively impact the production process. For this reason, 

the strategy aiming to increase the antioxidant defenses is generally seen as preferable 

for the purpose of recombinant protein production.  

The interest in genetic manipulation of the GSH biosynthesis pathway is not new. 

Already in 1996, Tamura and coworkers overexpressed human glutathione reductase 

in CHO cells and were able to increase their resistance to oxidative stress (Tamura et 

al., 1996). Likewise, in 2002, the overexpression of the GCL catalytic subunit was 

demonstrated to increase the resistance to lead-induced oxidative stress in CHO cells 

(Fernandes et al., 2002). More recently, in the bioprocess field, a high intracellular 

concentration of GSH in high producers was observed in a metabolome comparison of 

CHO cells (Chong et al., 2012). These results were then confirmed by a proteome 

comparison of high and low producer cultivated in bioreactors using a batch process. 

This study highlighted an up-regulation of genes related to the GSH pathway 

(Orellana et al., 2015). Similarly, GSH-related amino acid transporters have been 

reported to have higher expression during stationary phase, when the specific 

productivity is higher (Kyriakopoulos et al., 2013). Moreover, it has been shown that 

GSH plays a role in the maintenance of the redox status within CHO cell ER by 

preventing formation of non-native disulfide bonds (Chakravarthi et al., 2004). In this 

context, several studies have examined the biosynthesis and turnover of GSH in CHO 

cell factories. First, the overexpression of the regulatory subunit of GCL in CHO-K1 

cells was observed to promote clone productivity. Interestingly, this study also 

showed that the overexpression of GCL catalytic subunit does not impact recombinant 

protein production; suggesting that the intracellular GSH content is not the direct 
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cause of a higher productivity (Orellana et al., 2017). In another study, it was 

demonstrated that a partial inhibition of GCL by methionine sulfoximine (MSX) or 

buthionine sulfoximine (BSO) in GS–CHOK1SV cells leads to an increase in 

productivity (Feary et al., 2017). The authors hypothesized that partial inhibition of 

GSH synthesis helps to oxidize the ER environment. This modulation of the redox 

status of the ER increase the oxidized form of Ero1, thereby promoting activation of 

PDI enzymes and improving protein folding. Moreover, they suggest that the partial 

inhibition of GSH synthesis can be a selection method for high producer clones. 

Although there are still many unknowns concerning the involvement of the GSH 

synthesis pathway in recombinant protein production in CHO cells, and a certain 

degree of contradictory results, the aforementioned studies illustrate this pathway's 

potential. 

The expression of other antioxidant enzymes or transcription factors involved in 

oxidative stress has also been a target of cell engineering approaches. Overexpression 

of human peroxiredoxin 5 and human MnSOD in CHO cells were reported to lead to 

a decrease in cell death caused by oxidative stress (Banmeyer et al., 2004; Warner et 

al., 1993). However, it is worth noting that these studies were performed in CHO cells 

with the aim of mimicking cancer cell metabolism and growth, not in the context of 

heterologous protein expression. With regards to transcription factors, ATF4, which is 

activated during the UPR response and in oxidative stress conditions, was shown to 

protect fibroblasts against oxidative stress (Harding et al., 2003). Moreover, 

overexpression of ATF4 or GADD34, an activator of ATF4, were both reported to 

lead to an increase in titer in several CHO cell lines (Haredy et al., 2013; Ohya et al., 

2008; Omasa et al., 2008). 
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More recently, miRNA have been used to specifically target oxidative stress in CHO 

cells. In other cell lines, several miRNAs, including miRNA-145, miRNA-451 in 

erythroid cells and miR-1 and miR-133 in rat cells, have been shown to modulate 

oxidative (Jadhav et al., 2013). Although the use of miRNA in CHO cells has mostly 

been focused on the modulation of ER stress or, more generally, apoptosis, the 

potential of this approach for prevention oxidative stress is garnering more interest. 

Following depletion of miR-23 using a microRNA sponge, Kelly et al. observed an 

increase in production of the recombinant protein. In parallel, mitochondrial activity 

was boosted and production of antioxidative proteins Thioredoxin 1 and 

peroxiredoxin 6 was increased (Kelly et al., 2015). 

So far, due to the long lead times and heavy workloads associated with cell 

engineering, a limited number of studies have been published on improving the CHO 

cells chassis by genetic engineering in order to alleviate oxidative stress. However, 

the engineering of cell line has unquestionably proven its value as supported by the 

studies reporting its potential to reduced apoptosis and ER stress (Borth et al., 2005; 

Mohan et al., 2009; Pieper et al., 2017; Prashad et al., 2015). Oxidative stress cell 

engineering is complex due to the number of pathways involved and their 

interconnections of these pathways with other cellular functions. Despite this 

complexity and the long process needed to generate an appropriate clone, the work 

published so far is promising with regards to the use of cell engineering to alleviate 

oxidative stress in bioprocesses.  

5. Discussion 

With the development of high biomass and high productivity CHO bioprocesses, 

scientists faced a new hurdle in the increase of cellular stresses resulting from boosted 
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metabolism, higher resource demands (e.g. for dissolved oxygen), and higher waste 

accumulation. In this context, oxidative stress, which occurs when there is an 

imbalance between oxidant molecules accumulation and antioxidant response, can 

become an issue due to its detrimental impact on cell viability, productivity, and the 

integrity of the recombinant protein being produced. Dissolved oxygen, can be 

controlled to limit oxidative stress. However, maintaining dissolved oxygen 

homogeneity in the bioreactor is complicated to study and requires particular attention 

during scale up as large scale bioreactors often present different geometries to those 

used during process development. High dO2 usually has to be maintained in the 

bioreactor to avoid an oxygen dead zone even if simulation tools are now available to 

optimize process parameters depending on bioreactor size and dimensions 

(Dhanasekharan et al., 2005; Koynov et al., 2007).  

In light of the challenges encountered in trying to control all aspects of large scale 

bioreactor processes, the approaches consisting in making the cells and the culture 

process more resistant to potential sources of oxidative stress have to be considered. 

Although, increased energy metabolism and a consequent activity of the 

folding/secretion machinery have been observed or modeled in high producer cell 

lines, it remains possible to limit ROS byproducts of these cellular processes (Borth et 

al., 2005; Ghorbaniaghdam et al., 2014; Mathias et al., 2018; Prashad et al., 2015; 

Templeton et al., 2013). Two of the main strategies considered to date consist in (i) 

the supplementation of the cell culture media with antioxidant molecules, and (ii) the 

engineering of metabolic pathways associated to oxidative stress. Supplementation of 

cell culture media with antioxidant compounds appears to be the easiest and fastest 

solution from an industrial point-of-view. It requires few changes to the process, and 

can be implemented at later stages of process development. However, due to the 
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possible interactions of antioxidant molecules with other cell culture media 

components and variability between CHO cells lines, considerable time and effort has 

to be put into component screening to identify the best match for the combination of 

the cell line, media, and process. For this reason, cell engineering appears as an 

interesting alternative to supplementation. However, this approach requires early 

implementation and evaluation during process development, and a change in the cell 

line will be more complicated to put in place once the first clinical phases have been 

carried out for a given recombinant protein production process. This strategy remains 

to be extensively studied in CHO cells as cell engineering research has thus far mainly 

focused on the modulation of secretory pathways, apoptosis, and the unfolded protein 

response pathways. However, compelling evidence from microbial strains, such as 

Escherichia coli, Saccharomyces cerevisiae, and Yarrowia lipolytica, highlight the 

potential of this approach for controlling oxidative stress and promoting cell growth in 

cultures (Basak et al., 2012; Davy et al., 2017; Ukibe et al., 2009; Xu et al., 2017). 

Most of the studies cited in this review were performed on fed batch processes where 

the accumulation of waste and media components may be additional sources of 

oxidative stress. As described above, the supplementation of antioxidants can be used 

to scavenge ROS produced. However, removal or reduction of unstable components 

from the cell culture medium, such as ascorbic acid, is an alternative way to reduce 

reactive oxygen species (Halliwell, 2014). The use of cell engineering to reduce 

byproduct generation is another option. For example, it has recently been shown that 

phenyllactate production could be reduced by cell engineering of the phenylalanine-

tyrosine catabolic pathway (Mulukutla et al., 2019). Finally, continuous processes are 

another potential solution to issues arising from the accumulation of waste in the 

medium. This type of cultivation had gained in popularity in the industry as an 
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efficient way both increase process yields and better control product quality, however, 

the ability of this approach to reduce oxidative stress remains to be investigated 

(Kunert et al., 2016).  

To date, both supplementation and cell engineering strategies have focused on 

decreasing cell death and increasing of productivity, with little consideration going 

towards product quality. Recently, researchers have started to explore the impact of 

heightened antioxidant activity on product microheterogeneity. However, the 

possibility of reducing product microheterogeneity upon oxidative stress engineering 

in CHO cells remains undocumented.  

While media development is likely to remain the dominant strategy for the time being, 

oxidative stress engineering has shown promising results and offers a credible 

alternative to support recombinant protein production in CHO cells. Moreover, new 

tools, such as genome scale models, might provide insight into limitations and 

potential improvements to these strategies, and may open the door to the use of a 

combined approach, using both antioxidant supplementation and cell engineering, to 

control ROS production and oxidative stress, and simultaneously increase 

productivity and maintain product quality. 
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Table 

Table 1 : Antioxidant compounds used in CHO cells to reduce oxidative 

stress 

Component 

Way of action 

described in literature 

Effect observed References 

Thiol compounds 

Glutathione 

ROS scavenger  

Substrate for ROS 

scanvenger enzymes 

Maintain high 

mitochondria potential 

Decrease cell 

death 

Increase titer 

(Yun et al., 2001, 

2003) 

N-acetylcysteine 

and 

N-acetylcysteine 

amine 

ROS scavenger  

Increase of intracellular 

glutathione pool 

Decrease cell 

death 

Increase titer 

Impact on 

sialylation 

(Chang et al., 

1999; Ercal et 

al., 1996; Issels 

et al., 1988; Oh 

et al., 2005; 

Tanel et al., 

2007; Wu et al., 
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2008)  

S-sulfocysteine 

Stabilized cysteine 

Up regulation of SODs 

transcription 

Increase of intracellular 

glutathione pool 

Decrease cell 

death 

Increase titer 

Decrease 

recombinant 

protein fragments 

level 

Decrease 

recombinant 

protein trisulfides 

level 

(Hecklau et al., 

2016; Seibel et 

al., 2017) 

Thiazolidine 

Stabilization of the cell 

culture media  

Up regulation of SODs 

transcription 

Increase of intracellular 

glutathione pool 

Decrease cell 

death 

Increase titer 

(Kuschelewski et 

al., 2017) 
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Taurine and it 

precursors 

Increase of intracellular 

glutathione pool 

Reduce lipid 

peroxidation  

Reduce catalase and 

erythrocyte G6PD 

activity 

Reduce mitochondrial 

superoxide generation 

Decrease cell 

death 

 

(Aruoma et al., 

1988; Gurer et 

al., 2001; Jong 

et al., 2012)  

Lipoic acid  

ROS scavenger 

Iron and copper chelator 

Decrease cell 

death 

(Gurer et al., 

1999; Maharjan 

et al., 2016) 

 

 

Alpha ketoacids 

Pyruvate ROS scanvenger 

Decrease cell 

death 

Decrease 

recombinant 

(Andrae et al., 

1985; Kshirsagar 

et al., 2012; 

Long et al., 
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protein trisulfides 

level 

2009) 

Alpha-

ketoglutarate 

ROS scanvenger Iron 

chelator 

Decrease cell 

death 

(Andrae et al., 

1985; Bayliak et 

al., 2016) 

Vitamins 

Ascorbic acid and 

derivative 

ROS scavenger 

Decrease cell 

death 

Increase titer 

(Yun et al., 

2001) 

Alpha-tocopherol 

Lipid peroxyl radical 

scavenger 

Decrease cell 

death 

(Chepda et al., 

1999; Murati et 

al., 2017) 

Trace elements 

Selenium / 

selenocysteine 

Cofactor of antioxidant 

enzymes 

Regulate 

expression of 

Decrease cell 

death 

(Aykin-Burns et 

al., 2006; Gasser 

et al., 1985; 

Hamilton et al., 

1977; Weiss et 
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glutathione peroxidase al., 1997) 

 

Chelators 

Defroxamine Iron chelator 

Decrease cell 

death 

(Yun et al., 

2003) 

Aurintricarboxylic 

acid 

Iron chelator 

Decrease cell 

death 

(Tabuchi et al., 

2010) 

Polyamines Iron chelator 

Decrease cell death 

Increase titer 

(Gaboriau et al., 

2004; Lovaas, 1997) 

Phenolic compounds 

Butylated 

hydroxyanisole  

ROS scavenger 

Iron chelator 

Decrease cell death 

Increase titer 

(Malhotra et al., 

2008) 

Baicalein ROS scavenger Increase titer 

(Ha et al., 2017; 

Hamada et al., 

1993) 

Epicatechin gallate ROS scavenger 
Decrease 

recombinant protein 

(Hossler et al., 
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charge variants level 2015) 

Rutin ROS scavenger 

Decrease 

recombinant protein 

charge variants level 

(Hossler et al., 

2015) 

 

Figure 

Figure 1 : Major enzymatic reactions involving glutathione. 

Conjugation reactions with an electrophilic donor are catalyzed by glutathione-S-

transferases (GST).  

Reduction of substrate such as H2O2, lipid peroxide (LOOH) and peroxynitrite (ONOO
-
) are 

catalyzed by glutathione peroxidases (GPx). Disulfide bonds reduction can be catalyzed by 

glutaredoxins (Grx). Reduction of GSSG to GSH is catalyzed by the glutathione reductase (GR) 

and required NADPH. 
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