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Oxidative stress is a consequence of the use of oxygen in aerobic respiration by living organisms and is denoted as a persistent
condition of an imbalance between the generation of reactive oxygen species (ROS) and the ability of the endogenous
antioxidant system (AOS) to detoxify them. The oxidative stress theory has been confirmed in many animal studies, which
demonstrated that the maintenance of cellular homeostasis and biomolecular stability and integrity is crucial for cellular
longevity and successful aging. Mitochondrial dysfunction, impaired protein homeostasis (proteostasis) network, alteration in
the activities of transcription factors such as Nrf2 and NF-κB, and disturbances in the protein quality control machinery that
includes molecular chaperones, ubiquitin-proteasome system (UPS), and autophagy/lysosome pathway have been observed
during aging and age-related chronic diseases. The accumulation of ROS under oxidative stress conditions results in the
induction of lipid peroxidation and glycoxidation reactions, which leads to the elevated endogenous production of reactive
aldehydes and their derivatives such as glyoxal, methylglyoxal (MG), malonic dialdehyde (MDA), and 4-hydroxy-2-nonenal
(HNE) giving rise to advanced lipoxidation and glycation end products (ALEs and AGEs, respectively). Both ALEs and AGEs
play key roles in cellular response to oxidative stress stimuli through the regulation of a variety of cell signaling pathways.
However, elevated ALE and AGE production leads to protein cross-linking and aggregation resulting in an alteration in cell
signaling and functioning which causes cell damage and death. This is implicated in aging and various age-related chronic
pathologies such as inflammation, neurodegenerative diseases, atherosclerosis, and vascular complications of diabetes mellitus.
In the present review, we discuss experimental data evidencing the impairment in cellular functions caused by AGE/ALE
accumulation under oxidative stress conditions. We focused on the implications of ALEs/AGEs in aging and age-related diseases
to demonstrate that the identification of cellular dysfunctions involved in disease initiation and progression can serve as a basis
for the discovery of relevant therapeutic agents.

1. Introduction

Living cells produce various kinds of reactive oxygen species
(ROS) such as superoxide anion radical (O2

•−), hydrogen
peroxide (H2O2), and hydroxyl radical (HO•) [1, 2]. The
major endogenous sources of ROS include mitochondrial

electron-transportation chain (ETC) complexes I and III
and the NADPH oxidases of NOX family enzymes [3–5].
Additionally, ROS may be produced by xanthine oxidase,
cyclooxygenases (COXs, prostaglandin G/H synthases),
lipoxygenases, and the cytochrome P450- (CYP-) contain-
ing monooxygenase system [6–9]. ROS generation may be
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induced by exogenous factors such as UV light, X-ray, and
γ-ray irradiations, air pollutants, tobacco smoke, heavy
metals, and certain drugs [10, 11].

Under physiological conditions, living cells maintain low
intracellular concentrations of ROS due to the activity of the
endogenous antioxidant system (AOS) composed of both
enzymatic and nonenzymatic components capable of ROS
scavenging and, thereby, protecting cells from the deleterious
effects of high ROS concentrations (reviewed in [12–14]).
The enzymatic components include superoxide dismutases
(SODs), catalase, peroxiredoxins (Prxs), glutathione peroxi-
dases (GPx), and glutathione reductase (GR), while nonenzy-
matic components include ascorbic acid, alpha-tocopherol,
retinol, and various molecules with thiol groups such as glu-
tathione, lipoic acid, small protein thioredoxin, as well as
transition-metal ions such as Fe, Cu, Zn, and Mn [15–20].

At low concentrations, ROS exert regulatory effects on
cellular functions including proliferation, differentiation,
migration, and survival [21, 22]. This is provided by their
involvement in reversible posttranslational modifications
of key redox-sensitive amino acid residues in enzymes,
intracellular effectors of signal transduction pathways
(protein kinases and protein phosphatases), transcription
factors, cytoskeletal proteins, and molecular chaperones
[23–26]. Through this, oxidative protein modifications may
be caused either directly by ROS themselves or indirectly by
secondary products of ROS-induced oxidation reactions
occurring on both protein backbone and amino acid side
chains [27, 28].

However, insufficient AOS activity causes the accumula-
tion of ROS, which leads to oxidative stress that is denoted
as a persistent condition of an imbalance between ROS
generation and the ability of a biological system to detoxify
them leading to disruption in redox signaling/control and/or
molecular damage [29]. Oxidative stress induces lipid perox-
idation and glycoxidation reactions, which lead to the forma-
tion of highly reactive and electrophilic compounds that
attack free amino groups in proteins causing their covalent
modifications and resulting in the generation of advanced
lipoxidation end products (ALEs) and advanced glycation
end products (AGEs) [30].

ALE and AGE formation causes an impairment in the
protein structure due to covalent cross-linking resulting in
protein oligomerization and aggregation. This leads to alter-
ations in cellular functions, cell damage, and death. For
example, the impairment in mitochondrial, endoplasmic
reticulum (ER), and extracellular matrix (ECM) proteins
and those involved in cell cycle and control of gene expres-
sion has been observed in various studies [31, 32]. Oxidative
stress and oxidative stress-induced ALE and AGE formation
have been implicated in aging and in a variety of age-related
chronic diseases [33–37].

The present review focuses on recent advancements in
investigating the consequences of oxidative stress-induced
ALE/AGE accumulation for cellular functions and the impli-
cation of ALE/AGE formation in aging and age-related
human diseases such as chronic/acute inflammation, neuro-
degenerative disorders, atherosclerosis, and vascular compli-
cations of diabetes mellitus (DM).

2. Implication of ALEs and AGEs in Aging

2.1. Oxidative Stress and Aging. Aging is a progressive time-
dependent functional decline in an organism’s physiological
integrity and adaptability followed by a consequent irrevers-
ible decrease in its fertility and an increase in morbidity and
mortality risk [38]. In 1959, Denham Harman postulated a
free radical theory of aging that points to ROS accumulation
as the underlying reason for biomolecular oxidation and
cellular damage and as the explanation for the alterations in
cellular functions during aging [39]. Since that time, the
oxidative stress theory of aging has gained considerable
acceptance, despite numerous other proposed theories on
biological aging and senescence [40].

The reduction of oxidative stress by ROS scavengers
followed by the delay of the age-associated decline in physio-
logical processes and marked prolongation in the mean life-
span can be considered as a confirmation of the oxidative
stress theory of aging [41]. This theory has also been
approved in many animal models including S. cerevisiae,
transgenic mice, and long-lived species such as C. elegans,
birds, and naked mole-rat [42–44]. Among them, the naked
mole-rat (NMR, Heterocephalus glaber) is the longest-living
rodent known with a maximum lifespan of more than 28.3
years, which is 9 times longer than that of similar-sized labo-
ratory mice. Body composition, physiological functions
including reproductive function, and tissue morphology of
NMRs can be maintained from 2 to 24 years almost with
no changes and showing negligible senescence and no
spontaneous neoplasm [45].

Perez et al. [46] showed that the amount and activities of
both ROS and the antioxidant system in NMRs are similar to
those of shorter-living mice; however, NMRs exhibited
higher levels of oxidative biomolecular damage (DNA
damage, lipid peroxidation, and protein carbonyl formation)
even at an early age. However, NMRs demonstrated a higher
amount of free thiol groups and lower levels of urea-induced
protein unfolding and protein ubiquitination as well as
higher proteasome activity as compared to young C57BL/6
mice [46]. Interestingly, no one of these parameters was sig-
nificantly altered during the two decades of the NMRs’ life-
span. These data indicate that the existence of molecular
mechanisms underlying the maintenance of cellular homeo-
stasis and biomolecular stability and integrity are crucial for
cellular longevity and successful aging.

Indeed, alterations in the structure, functions, and oxida-
tion state of muscle proteins have been observed in aged
F344BN mice [47]. The content of regulatory proteins was
reduced by up to 75%, while the catalytic activity of enzymes
decreased by up to 50% in mice with aging. Additionally,
Duchenne muscular atrophy and loss of nerve supply along
with increased expression of immunoproteasome subunits
have been observed in aged animals [48]. The increased
lifespan of Tq mice has been reported to associate with the
stimulation of mitogen-activated protein kinase- (MAPK-)
mediated redox signaling, the increased expression of
stress-protective heat shock protein 25 (HSP25), and the
activation of antioxidant enzymes, catalase, and SODs,
suggesting that the oxidative stress-induced stimulation of

2 Oxidative Medicine and Cellular Longevity



endogenous defense mechanisms plays key roles in providing
health and longevity [49].

Proteostasis is an overall cellular protein homeostasis
provided by integrated protein control quality pathways
including biosynthesis, folding, trafficking, and elimination/-
degradation of damaged proteins [50, 51]. Maintaining
proteostasis is an important component of successful aging
because, in most metazoans, aging has been shown to be
accompanied by a decline in the activities of the protein
quality control machinery that includes molecular chaper-
ones, ubiquitin-proteasome system (UPS), and autophagy/-
lysosome activity, which results in the accumulation of
damaged and self-aggregating proteins [52]. During aging,
oxidative protein damage and covalent cross-linking followed
by the accumulation of the so-called “aggresomes” that are
toxic for cells have been shown [53, 54]. Long-lived species
have been observed to possess improved proteostasis in com-
parison with short-lived species as assessed by elevated HSP
levels, enhanced macroautophagy, and the UPS activity [55].
Additionally, the reestablishment of proteostasis due to lyso-
some activation followed by a metabolic shift that mobilizes
the degradation of protein aggregates has been observed in
immortal C. elegans germ lineages [43].

One of the most studied features of aging is the manifes-
tation of mitochondrial dysfunction [56, 57]. Mitochondria
are considered as both a major site of ROS generation and
the main target for ROS attack. The age-related increase in
mitochondrial ROS production by complex I, oxidative
stress-induced mutations in mitochondrial DNA (mtDNA),
and accumulation of mtDNA fragments inside the nucleus
have been observed in mouse liver [58]. These changes were
accompanied by oxidative damage and lipoxidation of
mitochondrial proteins including enzymatic components
of ETC and accumulation of lipofuscin produced by
covalently cross-linked and aggregated proteins; all these
alterations were abolished by rapamycin treatment. Addi-
tionally, a lesser amount mitochondrial ROS production
and higher cardiolipin content in erythrocytes of long-
lived species as compared to short-lived ones have been
reported [44]. Thus, age-dependent accumulation of oxi-
dized proteins may be caused by both an increase in mito-
chondrial ROS production and a decline in the proteolytic
capacity of either the ubiquitin/proteasomal or lysosomal
pathway [59].

The Nrf2 transcription factor serves as a master regulator
of cell response to oxidative stress, the Nrf2 dysfunction
being observed in various cell types during aging. The over-
expression of Nrf2 target genes, NADPH quinone oxidore-
ductase 1 (NQO1), glutamate cysteine ligase (GCLM), and
heme oxygenase 1 (HO1) have been shown in aged mouse
retinal pigment epithelium (RPE) cells as compared to youn-
ger mice under oxidative stress conditions [60]. Old mice also
exhibited higher O2

•− and MDA levels than younger mice.
The same genes were overexpressed under Nrf2 induction
conditions in the bronchial epithelium cells of old humans
as compared to young adult persons [61]. A disruption in
Nrf2 signaling causes reduced cell migration and an impaired
ability of the coronary artery endothelial cells to form
capillary-like structures [62].

The antioxidant system, including the glutathione
(GSH/GSSG) system and SODs, has been shown to be
involved in successful aging through the maintenance of
intracellular redox balance. Indeed, the altered ratio between
reduced, GSH, and oxidized, GSSG, forms of glutathione in
aging has been demonstrated by measurements of GSH con-
centration in red blood cells and levels of plasma oxidative
stress biomarkers such as F2-isoprostanes in younger and
elderly persons [63]. The elderly persons had markedly lower
concentrations of glycine, cysteine, and GSH along with
decreased GSH biosynthesis in erythrocytes as compared to
those in younger persons. However, glycine and cysteine
supplementation led to an increase in GSH concentration
and rate of its biosynthesis along with a significant decrease
in levels of oxidative stress biomarkers in the blood plasma.

A reduced ROS level due to the activation of another
AOS component, Mn-superoxide dismutase (SOD2),
through its deacetylation at the evolutionarily conserved
Lys122 residue by the conserved family of NAD+-dependent
deacetylases, sirtuins, have been reported as a factor involved
in lifespan control [64, 65]. Mammalian sirtuins 1 and 3,
SIRT1 and SIRT3, have been shown to regulate the activity
of SOD2 to protect muscle cells from oxidative stress [66].
They can promote mitochondrial biogenesis by activating
PGC-1α that is a transcriptional coactivator upregulating
antioxidant enzymes such as GPx, catalase, and SOD2 [67].

2.2. ALEs and AGEs in Aging. Oxidative stress induces
endogenous formation and accumulation of both ALEs and
AGEs, which can be produced from the same precursors
such as glyoxal and methylglyoxal and through the same
intermediates such as N-(carboxymethyl)-lysine (CML) and
N-(carboxymethyl)-cysteine (CMC). ALEs are generated
due to lipid peroxidation reactions, while AGEs result from
glycoxidation reactions; both of the pathways give rise to an
extraordinarily complex mixture of interrelated compounds
[30]. These compounds include highly reactive electrophilic
aldehydes and their derivatives such as 4-hydroxy-2-nonenal
(HNE), 4-oxo-2-nonenal (ONE), 4-hydroxy-hexanal (HHE),
acrolein (ACR), and malonic dialdehyde (MDA) [68, 69].
They interact with free amino groups in protein to cause
their covalent modification, cross-linking, oligomerization,
and aggregation. These processes cause intracellular dam-
age, impaired cell functions, and, ultimately, cell death to
be implicated in aging and various age-related chronic
diseases [70, 71].

2.2.1. Roles of ALEs in Aging. Changes in the amount of lipid
peroxidation products and activities of COX-2 and CYP2JA
in human brain have been reported to occur in an age-
dependent manner [72]. A significant increase in lipid
peroxidation and oxidative protein modification levels
accompanied by the loss of thiol groups, accumulation of
dityrosine, and ALE formation has been observed in mito-
chondria and synaptosomes during brain aging in rats [73].
Interestingly, the higher membrane resistance to lipid perox-
idation and the lower molecular damage caused by protein
lipoxidation have been shown to associate with significantly
reduced desaturase activity and peroxisomal betaoxidation
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in the brain and spleen of exceptionally old (128 ± 4weeks)
and adult (28 ± 4weeks) female mice as compared to old
(76 ± 4weeks) animals [74].

Aldehydes generated from polyunsaturated fatty acid
(PUFA) peroxidation such as HNE, MDA, and ACR have
been shown to form protein adducts that accumulate in the
intima, media, and adventitia layers of the human aorta lead-
ing to progressive cellular dysfunction and contributing to
the process of aging [75]. HNE, the most reactive and abun-
dant endogenously generated α,β-unsaturated hydroxyl-
aldehyde, has been shown to contribute to inhibiting elastin
repair by antagonizing elastogenic signaling of transforming
growth factor-β (TGF-β) through the inhibition of Smad2
translocation into the nucleus of human and murine skin
fibroblasts [76].

Additionally, the accumulation of HNE-modified
adducts, the decrease in elastin content, and the modification
of the epidermal growth factor (EGF) receptor by NHE have
been observed in the aorta of aged C57BL/6 mice. The con-
tent of elastin in connective tissue decreased, and the struc-
ture of elastin fibers was significantly altered with aging;
however, the oxidative protein modification level was very
poor indicating a complex role of ALEs in vascular wall
remodeling during aging [76].

2.2.2. Ages and AGE-RAGE Axis in Aging. AGE manifesta-
tion, especially in connective tissue, which leads to age-
dependent damage and covalent cross-linking in ECM
adhesion proteins such as collagen, laminin, and elastin has
been shown to contribute to the loss of skin and vessel elas-
ticity and degeneration of cartilages, ligaments, and eye lens
[77, 78]. The accumulation of AGEs and the fluorescent age
pigment, lipofuscin, both of which are typically of brown
color, has been shown to associate with aging and age-
related chronic diseases contributed by age-dependent
inhibition of both proteasomal and lysosomal protein deg-
radation pathways [79, 80].

Various age-related diseases arise due to alterations in
cell signaling pathways that proceed with the involvement
of the receptors for AGEs (RAGEs) and the AGE-RAGE axis.
For example, the colocalization of CML and RAGE along
with the activation of nuclear factor-κB (NF-κB) has been
observed in patients with age-related macular degeneration
indicating the possible role of the AGE-RAGE axis and the
NF-κB transcription factor in the pathogenesis of the disease
[81]. The accumulation of both AGEs and RAGEs in RPE
and photoreceptor cells has been accompanied by NF-κB
nuclear translocation and cell apoptosis [82]. These data
allowed suggesting that AGE accumulation induces RPE/-
photoreceptor cell activation during normal aging and
contributes to age-related pathologies in human retinas.

Additionally, diet-derived AGEs and lipofuscin have
been reported to disrupt the overall protein homeostasis
and to reduce the lifespan of D. melanogaster [83]. Oral
administration of glucose-, fructose-, and ribose-modified
albumin or artificial lipofuscin caused the accumulation of
AGEs in fly somatic tissues and hemolymph, and this was
accompanied by oxidative stress and the upregulation of
lysosomal cathepsin B activity. Interestingly, the decreased

glucose level observed under caloric restriction with no mal-
nutrition conditions led to the inhibition of enzyme activities
and the decrease in concentrations of metabolites of the
polyol pathway, sorbitol and fructose. This contributed to
the beneficial effects of caloric restriction including the
increase in the NADPH level required for other reduction
reactions such as GSH and other forms of AOS component
regeneration, and counteracted age-related changes derived
from the activities of the polyol pathway [84].

Thus, experimental data evidence key roles of both
ALEs and AGEs in the process of aging, being considered
as biomarkers of oxidative stress and mitochondrial dysfunc-
tion and as factors of aging and age-associated chronic
pathologies [85].

3. Roles of ALEs and AGEs in Age-Related
Chronic Diseases

3.1. Neurodegenerative Diseases. Oxidative stress and oxida-
tive protein damage can accelerate the formation of toxic
protein oligomers and aggregates in the nucleus and cyto-
plasm of nerve cells, which contributes to the pathogenesis
of neurodegenerative diseases such as Alzheimer’s disease
(AD), Parkinson’s disease (PD), Huntington’s disease (HD),
and amyotrophic lateral sclerosis (ALS) [86–88]. Despite
their distinct causative factors and clinical symptoms, these
diseases have common pathogenetic features such as mito-
chondrial dysfunction and ER stress implicated in excessive
ROS accumulation, impairment in proteostasis network,
and neuroinflammation [89].

Normal aging and neurodegeneration can be distin-
guished by the measurement of AGE concentration in the
brain tissue and cerebrospinal fluid. AGE/RAGE manifesta-
tion indicates neuropathological and biochemical alterations
such as excessive protein cross-linking, inflammation, and
neuronal cell death. For example, the accelerated accumulation
of AGEs in pathological deposits such as amyloid fibrils and
senile plaques has been observed in AD (Figure 1(a)), the most
common age-related dementing disorder [90]. The measure-
ment of various AGEs and ALEs in the brain cortex of AD
patients demonstrated a significant, although heterogeneous
increase in the concentrations of CML, N(epsilon)-malon-
dialdehyde-lysine, N(epsilon)-carboxyethyl-lysine, and other
protein oxidation adducts [91]. Methylglyoxal has been sug-
gested to be one of the major carbonyl species responsible
for AGE formation in AD [92].

AGEs can stimulate the expression of inducible nitric
oxide synthase (iNOS), and colocalization of AGEs and iNOS
has been demonstrated in astrocytes and microglia of AD
patients (Figure 1(a)) as revealed by immunochemical
analysis [93]. Additionally, an increase in traumatic brain
injury-induced nitric oxide generation catalyzed by iNOS
and persistent tyrosine nitration adjacent to the injury site
have been reported [94]. These effects were accompanied
by oxidative stress-induced cell death through apoptosis
induction and receptor-mediated serine/threonine protein
kinase-mediated necrosis.

Mitochondrial dysfunction and mutations in mtDNA
genes encoding ETC complex I subunits with the subsequent
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impairment in ATP production and elevated ROS generation
along with disruption in both UPS and autophagy-lysosome
protein degradation pathways have been observed in all types

of neurodegeneration [95]. Damaged mitochondria accumu-
late tensin homolog deleted from chromosome 10- (PTEN-)
induced kinase 1 (PINK1) that recruits parkin, a protein of
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early onset of PD is associated with mutations in synuclein-alpha (SNCA), ubiquitin carboxy-terminal hydrolase L1 (UCHL1),
PTEN-induced kinase 1 (PINK1), leucine-rich repeat kinase 2 (LRRK2), mitochondrial serine protease 2 (HTRA2), parkin, and
parkin-associated protein DJ1 involved in oxidative stress. (c) ALS is a lethal disorder characterized by the death of motor neurons in the
brain and spinal cord. Mutations in SOD1 may interfere with the neurofilament heavy polypeptide (NEFH) and the translocation
machinery, the translocase of the inner/outer membrane (TIM/TOM) that is involved in familial ALS. Proapoptotic THFα acts
through its receptor, TNFR, to induce inflammation and apoptotic cell death. The main glutamate transporter protein, excitatory
amino acid transporter (EAAT2), is inhibited by ROS produced by mitochondria. Glutamate acts through its receptor (GluR) to increase
calcium release from ER and to enhance oxidative stress and mitochondrial damage. Permission 190019 for usage of the following KEGG
pathway images was kindly granted by Kanehisa Laboratories [141]: map05010—Alzheimer’s disease; map05012—Parkinson’s disease;
map05014—amyotrophic lateral sclerosis (ALS).
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the ubiquitin E3 ligase complex, as shown in PD patients
(Figure 1(b)) [96, 97]. This causes the ubiquitination of mito-
chondrial proteins, which can further bind to the autophagic
proteins, p62/SQSTM1 and lc3, resulting in the degradation
of mitochondria through the autophagy pathway, the process
denoted as mitophagy [98]. Significant increases in the
expression of p62/SQSTM1 both at the mRNA and protein
levels along with the activation of mitochondrial/lysosomal
biogenesis following PINK1/parkin-mediated mitophagy
have been observed in familial AD [99].

Nrf2 and transcription factor EB (TFEB), which play key
roles in mitochondrial and lysosomal biogenesis, respec-
tively, have been demonstrated to translocate into the
nucleus following the mitophagy induction. Additionally,
the multifaceted protective potential of Nrf2 signaling in
patients with neurodegenerative diseases and in primary
mouse HD and WT microglia and astrocytes has been
reported [100, 101]. Oxidative stress-induced covalent mod-
ification of Cys151 in Kelch-like ECH-associated protein 1
(Keap1), the E3 ligase substrate adaptor protein and primary
negative regulator of Nrf2, has been shown in HD [100]. Nrf2
expression is orchestrated and amplified by the coexpression
of antioxidant and anti-inflammatory genes as shown, for
example, in the primary monocytes from HD patients, in
which the repressed expression of proinflammatory cyto-
kines such as IL-1, IL-6, IL-8, and tumor necrosis factor-α
(TNF-α) was observed (Figure 1(a)).

The oxidative modification of Cys111 in Cu/Zn SOD
(SOD1) has been implicated in the pathogenesis of various
diseases, while mutation in SOD1 (Figure 1(c)) has been
found in 20% of familial ALS [102]. Unlike native SOD1,
cysteinylated SOD1 is not oxidized, suggesting that the
cysteinylation protects this antioxidant enzyme from hydro-
gen peroxide-induced oxidation as shown in the culture of
nerve cells. The existence of the cross-talk between the
overexpression of SOD1 and regulation of mitochondrial
unfolded protein response (UPR) has been postulated [103].

In the nervous system, proteasomes play key roles in
maintaining the neuronal protein homeostasis, while an
alteration in their activity contributes to pathogenesis of
neurodegenerative diseases [104, 105]. The accumulation of
large-ordered fibrils formed by β-sheet-enriched proteins
denoted as amyloid fibrils in neuronal cells is characteristic
for all types of neurodegenerative diseases, being a result of
UPS dysfunction and, consequently, accumulation of polyu-
biquitinylated proteins in nervous tissue [106, 107]. A
decreased capacity for the removal of oxidized proteins and
the accumulation of damaged and misfolded proteins causes
metabolic dysfunction and initiates cell death through apo-
ptosis or necrosis. These disturbances lead to progressive
amyloid plaque formation, loss of neurons, brain atrophy,
cerebrovascular amyloid angiopathy, and vascular minerali-
zation in an age-dependent manner [108].

ER stress has also been implicated in many chronic
neurodegenerative diseases including AD and HD, while
prolonging ER stress results in cell death. An important role
in this process belongs to ER-localized stress-sensing and
stress-triggering proteins such as IRE1α, ATF6, and PERK
(Figure 1). During UPR, they activate the apoptotic signaling

pathway, while fortilin, a prosurvival molecule, inhibits
apoptosis by directly binding to IRE1α and reducing both
its kinase and RNAse activities [109].

3.2. Atherosclerosis. The accumulation of both ALEs and
AGEs progressively leads to cellular dysfunction and tissue
damage involved in the progression of other oxidative
stress-induced chronic diseases such as atherosclerosis and
diabetes mellitus. Hyperglycemia can induce oxidative stress
and tissue damage through either repeated acute changes in
glucose metabolism or long-term biomolecular glycation
and AGE formation [110]. This can further trigger inflam-
mation and cell proliferation contributing to the develop-
ment of atherosclerosis and vascular dysfunction through
the initiation of oxidation of low-density lipoproteins (LDLs)
and their interaction with mononuclear cells, endothelial
cells, and smooth muscle cells [111–113]. Glycation of LDLs
increases their atherogenicity, while high-density lipopro-
teins (HDLs) have been reported to impede the glycation of
LDL apolipoprotein B (apoB) [114].

In an atherosclerotic lesion, macrophages express scaven-
ger receptors on the surface of their cell membrane to bind
oxidized LDLs from blood vessel walls and to develop into
foam cells. The oxidation of LDLs causes the formation of
HNE-apoB adducts that contribute to the atherogenicity of
LDLs and their binding capacity to scavenger receptors
[110]. Additionally, the transportation of oxidized lipids in
lipoprotein complexes has been suggested to play a role in
the pathogenesis of atherosclerosis, those transported by
LDL being associated with high risk, while those transported
by HDL being indicative for protection against disease
progression [115].

The LDL receptor has a high affinity to apoE which in
humans exists in three isoforms: apoE2, apoE3, and apoE4,
the latter being a major risk factor for cardiovascular diseases
and Alzheimer’s disease (Figure 1(a)). The redox status of
various serum apoE isoforms determined by oxidative mod-
ification in their redox-sensitive cysteine residues has been
shown to be different. The quantitative ratios of nonreduced
apoE to total serum apoE from patients with apoE4/E3 were
higher than those from apoE3/E3 subjects; this may be used
as the disease indicator [116].

3.3. Diabetes Mellitus. The key roles of oxidative stress in the
onset of diabetes mellitus and in the development of its com-
plications have been demonstrated in various animal models.
For example, under impaired redox balance conditions,
increased Nrf2 and nitrotyrosine levels along with decreased
SOD2, GPx, HO1, and endothelial nitric oxide synthase
(eNOS) levels have been demonstrated in diabetic skin in
mice [117]. Impairment in lipid and glucose metabolism,

oxidative phosphorylation, and phospho-5′-AMP-activated
protein kinase-α- (AMPKα-) mediated signaling along with
the downregulation of eNOS, HO1, and sarcoplasmic reticu-
lum calcium-ATPases 1 and 2 (SERCA 1 and SERCA 2) has
been observed in diabetic rat skeletal muscle [118].

Reactive aldehydes such as HNE, when excessively
produced under oxidative stress conditions, exhibit cytotoxic
effects and play key roles in the pathophysiology of diabetes
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mellitus through the involvement in both development and
progression of the disease [119]. For example, increased pro-
tein carbonyl content was observed in patients with type 2
DM associated with neuropathy [120]. Increased levels
of oxidative stress biomarkers along with oxidized lipid
accumulation and serum albumin glycoxidation have been
reported in diabetic mice [121]. AGE-modified albumin
causes diabetes-induced liver damage and impairment in
the activities of proteolytic enzymes and ETC carriers. Both
experimental and clinical diabetes mellitus are characterized
by impaired wound healing and defect in vascular endothelial
growth factor (VEGF) expression. Lipid peroxidation reac-
tions have been shown to be involved in the pathogenesis
of altered VEGF regulation and angiogenesis to stimulate
wound healing in diabetic mice [122].

The high glucose concentration observed in diabetes
mellitus activates the polyol (sorbitol-aldose reductase) path-
way, which leads to intracellular sorbitol accumulation. The
inability of sorbitol to pass through the cell membrane in
insulin-independent tissues (the retina, kidney, and nervous
system) causes an increase in intracellular osmotic pressure
and, subsequently, cell damage. Under oxidative stress condi-
tions, all intermediates of the polyol pathway (sorbitol, fruc-
tose, and fructose-1-phosphate) can glycate proteins leading
to AGE formation, and this is implicated in microvascular
complications of diabetes mellitus [123]. Interestingly, an
increase in glucose and glycogen levels observed under
caloric restriction conditions has been found to cause the
significant decrease in the activities of the polyol pathway
enzymes, along with the activation of hexokinase, glucose-
6-phosphate-dehydrogenase (pentose phosphate pathway
enzyme), and glucose-6-phosphatase (glycogen degradation
enzyme) in both diabetic and nondiabetic rats [124]. There-
fore, caloric restriction contributes to the attenuation of
hyperglycemia observed in diabetes mellitus.

Also, glycoxidation of IgG by methylglyoxal generated by
hydrogen peroxide has been shown to create novel epitopes
and to alter IgG immunogenicity in patients with type 2
DM [125]. Through binding to their receptors, RAGEs,
AGEs can greatly accelerate the progression of the disease
and the development of its microvascular complications
such as diabetic nephropathy, retinopathy, and neuropathy
[126–128]. The AGE-RAGE axis has been implicated in cell
capillary loss, capillary basement membrane thickening,
increased vascular permeability, and disruption of the
blood-tissue barrier, along with increased leukocyte-to-
endothelial cell adhesion and neovascularization observed in
experimental animal models with DM [129].

Type 2 diabetes has been characterized by the formation
of glycated hemoglobin along with increased levels of serum
AGEs and full-length RAGE [130, 131]. Furthermore,
patients with vascular complications had a significantly
higher level of the soluble form of RAGE (sRAGE), decoy
AGE receptor, than those without complications, while
the level of sRAGE was associated with the severity of
nephropathy [132]. Patients with type 1 diabetes have been
shown to demonstrate higher levels of sRAGE and endoge-
nous secretory RAGE (esRAGE) as compared to healthy
donors [133, 134].

The blockade of RAGE using the sRAGE extracellular
ligand-binding domain has been demonstrated to cause
wound healing and the suppression of cytokines TNF-α
and IL-6 and matrix metalloproteinase-2, -3, and -9 expres-
sion in diabetic mice [135]. This was accompanied by
increased levels of platelet-derived growth factor (PDGF)
and VEGF along with the enhancement of well-vascularized
granulation tissue. Impaired angiogenic response in diabetic
mice was dependent on RAGE-mediated regulation, while
sRAGE restored diabetes-associated impairment of angio-
genic response in vivo [136].

The formation of AGEs has been reported to correlate
with glycemic control. For example, AGE-modified serum
albumin and apolipoprotein A-II levels are highest in
patients with type 2 DM with poor glycemic control; in total,
19 modification sites corresponding to 11 proteins have been
identified using a highly sensitive proteomic approach with
the application of reverse-phase HPLC and mass spectrome-
try [137]. Additionally, fibrinogen and insulin-like growth
factor- (IGF-) binding protein 1 are tightly connected to met-
abolic changes and vascular complications in patients with
diabetes mellitus. The complexes of these two proteins have
been shown to undergo glycoxidation, which reduces their
stability and is possibly implicated in the hypercoagulation
observed in type 2 DM [138].

All the abovementioned oxidative stress-induced meta-
bolic and structural alterations may underlie the so-called
“metabolic memory,” the phenomenon that consists in
the development of micro- and macrovascular complica-
tions of diabetes mellitus even after improved glucose
levels [139]. Early intensive glycemic control can decrease
the risk of diabetic vascular complications as shown in
diabetic rats, in which oxidative stress and nitric oxide
levels in urine and the renal cortex soon after the estab-
lishment of good glycemic control were not different from
those observed in healthy animals [140]. However, when
glycemic control was delayed to 6 months, diabetic nephrop-
athy developed in diabetic rats. Hyperglycemia induces oxi-
dative stress, which if prolonged, causes mitochondrial
dysfunction, polyol pathway activation, ALE production,
AGE-RAGE axis stimulation, and subsequent diabetic
vascular complications.

4. Conclusion

Accumulated data evidence that oxidative stress-induced
excessive generation of reactive aldehydes produced
through lipid peroxidation and glycoxidation reactions with
consequent protein cross-linking, oligomerization, and
aggregation and formation of protein oxidation adducts
are implicated in aging and various chronic age-related dis-
eases. In the present review, we focused on neurodegenera-
tive diseases and cardiovascular disorders, complications of
diabetes mellitus, and atherosclerosis, the incidence and
prevalence of which increase with age. These age-related
chronic diseases are becoming a major challenge for medi-
cine and public health worldwide, because the number of
subjects suffering from these increases, causing demo-
graphic changes all over the world. This dictates more
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investigations in the field to elucidate metabolic and struc-
tural changes that lead to alterations in cell signaling
events with the involvement of ALEs and AGEs in the
onset and progression of the age-associated diseases. The
discovery of novel oxidative stress biomarkers and drug
targets and new approaches in their clinical applications
along with reconsidering health care policies are of
crucial importance.
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