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Summary 

Oxidative stress is the resultant damage due to redox imbalances (increase in destructive free 

radicals (ROS) and reduction in antioxidant protection/pathways) and is linked to ageing in many 

tissues including skin.  In ageing skin there are bioenergetic differences between keratinocytes and 

fibroblasts which provide a potential ageing biomarker. The differences in skin bioenergy are part of 

the mitochondrial theory of ageing which remains one of the most widely accepted ageing theories 

describing subsequent increasing free radical generation. Mitochondria are the major source of 

cellular oxidative stress and form part of the vicious cycle theory of ageing. External and internal 

sources of oxidative stress include UVR/IR, pollution (environment), lifestyle (exercise and diet), 

alcohol and smoking all of which may potentially impact on skin although many exogenous actives 

and endogenous antioxidant defence systems have been described to help abrogate the increased 

stress.  This also links to differences in skin cell types in terms of the UVR action spectrum for nuclear 

and mitochondrial DNA damage (the latter a previously described UVR biomarker in skin). Recent 

work associates bioenergy production and oxidative stress with pigment production thereby 

providing another additional potential avenue for targeted anti-ageing intervention in skin.. This new 

data supporting the detrimental effects of the numerous wavelengths of UVR may aid in the 

development of cosmetic/sunscreen design to reduce the effects of photoageing. Recently, complex 

II of the mitochondrial electron transport chain appears to be more important than previously 

thought in the generation of free radicals (suggested predominantly by non-human studies). We 

investigated the relationship between complex II and ageing using human skin as a model tissue. The 

rate of complex II activity per unit of mitochondria was determined in fibroblasts and keratinocytes 

cultured from skin covering a wide age range. Complex II activity significantly decreased with age in 

fibroblasts (P=0.015), but not in keratinocytes. This was associated with a significant decline in 

transcript expression (P=0.008 and P=0.001) and protein levels (P=0.0006 and P=0.005) of the SDHA 

and SDHB catalytic subunits of complex II respectively. In addition there was a significant decrease in 

complex II activity with age (P=0.029) that was specific to senescent skin cells, our study being the 

first to investigate these differences with senescence and skin age. There was no decrease in 

complex IV activity with increasing age, suggesting possible locality to complex II. Our study provides 

a future potential biomarker for monitoring the progression of skin ageing. 

 

The Mitochondrial Free Radical Theory of Ageing and Senescence 

Ageing describes the progressive functional decline of an organism over time, leading to an 

increased susceptibility to age-related diseases such as cancers, and eventually to the death of the 

organism. Despite a vast repertoire of ageing studies performed over the past century, the exact 

causes of ageing remain unknown. There are several theories of ageing that have been proposed 



including the ‘wear and tear theory of ageing’, the ‘antagonistic pleiotropy theory of ageing’ and the 

‘disposable soma theory of ageing’.  There are a large number of studies into how and why we age 

that involve the mitochondria which are dynamic organelles found within the cytoplasm of 

eukaryotic cells, and are responsible for the production of the majority (approximately 90%) of 

cellular energy via oxidative phosphorylation and the electron transport chain (ETC), in the form of 

adenosine triphosphate (ATP) [Birch-Machin 2006]. A natural by-product of oxygen metabolism in 

the mitochondria is the formation of reactive oxygen species (ROS). Free radicals, in particular ROS, 

contribute to oxidative stress through a variety of mechanisms. Interaction with nucleic acids (both 

in the mitochondria (mtDNA) and nucleus (nDNA), results in mutations that predispose to DNA 

strand breaks. Oxidation of lipids by ROS can damage cellular structures, for example the 

phospholipid cellular membranes, and result in premature cell death.  However at low levels, ROS 

have important roles in cell signalling and homeostasis. Unlike nuclear DNA (nDNA), multiple copies 

of mitochondrial DNA (mtDNA) exist within each cell and are found in close proximity to the electron 

transport chain (ETC) making them extremely vulnerable to the effects of oxidative stress, 

exacerbated further by the fact that mtDNA has limited repair mechanisms [Anderson et al., 2014]. 

As mtDNA encodes subunits of the ETC, ROS-induced damage has the potential to alter ETC function 

and decrease the efficiency of ATP production. Harman proposed the ‘free radical theory of ageing’, 

which suggested that free radicals can affect and are possibly the cause of the ageing process of 

animals. [Barja 2013]. Within this theory the Vicious Cycle Theory of Ageing was included which 

proposes that ROS production from the mitochondrial ETC is able to cause damage to the mtDNA 

found in close proximity. MtDNA encodes the majority of mitochondrial proteins, so errors in gene 

expression of mtDNA may result in dysfunctional mitochondrial subunits. Dysfunctional 

mitochondria are then thought to contribute to further ROS leakage due to their inefficiency, which 

could then exacerbate mtDNA damage in a continuing vicious cycle [Bandy and Davison 1990, 

Kandola et al., 2015]. Evidence does exist in support of the theory in the various mechanisms and 

components involved in mitochondrial-related ageing [Hayakawa, 1992; Hudson et al., 1998; Kujoth 

et al., 2005; Trifonovic et al., 2005; Thayer et al., 2003; Birket et al., 2007]. More recently the process 

of mitohormesis has been proposed based on observations that low concentrations of ROS can 

induce a positive response whilst higher concentrations of ROS promotes damage; an interesting 

concept that different levels of oxidative stress may have opposite biological outcomes [Hudson et 

al., 2016]. 

 

Senescence describes the transformation of cells from a proliferating to a non-proliferating state, as 

a tumour suppressive mechanism to prevent cells with potentially cancerous DNA mutations from 

undergoing replication. Cells lose the ability to divide yet remain viable which is in contrast to 

biological ageing that describes the functional decline of a whole organism over time eventually 

leading to death [Bowman and Birch-Machin, 2016]. Mitochondrial dysfunction is thought to play a 

role in the increased levels of senescent cells observed with age [Passos et al., 2007; Birket et al., 

2009; Passos et al., 2010] . However, not all cells in older organisms become senescent, as the 

induction of senescence is a stress response which only occurs in a minority of cells exposed to 

unfavourable conditions, or with mutations leading to oncogenic activation. More recently complex 

II has been shown to be implicated in human dermal fibroblast senescence and ageing [Anderson et 

al., 2014; Bowman and Birch-Machin, 2016; Boulton and Birch-Machin 2015]. Bowman et al 

demonstrated that complex II activity, transcript and protein levels decrease with age. Moreover, 



these effects are only seen in senescent cell populations. This result was shown to be specific to 

complex II as no change with complex IV was observed. Therefore this decrease in complex II activity 

could result in an increase in ROS resulting in mtDNA damage and oxidative stress which are known 

to contribute to the ageing process [Bowman and Birch-Machin 2016].  Recently, Correia-Melo et al. 

(2016) induced mitochondrial degradation to completely eliminate all mitochondria and 

demonstrated that these cells did not undergo hallmark changes of cellular. 

 

Sources of ROS 

The skin can undergo two distinct types of ageing; intrinsic (chronological) and extrinsic ageing 

(photoageing) via environmental insults, such as ultra violet radiation (UVR) [Birket and Birch-

Machin 2007; Krutman and Schroeder 2009]. Solar radiation is comprised of UVR (UVA and UVB), 

visible light and infrared (IR) [Krutman and Schroeder 2009] with a relative contribution of 

approximately 6%, 40% and 54% respectively. UVR is the main extrinsic influence of skin ageing 

[Kandola et al., 2015; Oyewole et al., 2013]; either by the production of ROS or via direct DNA 

damage. A possible mechanism as to how UVR is able to accelerate the ageing process could be via 

its interaction with mitochondria, where it may contribute to a vicious cycle of increasing damage 

[Kandola et al., 2015; Oyewole et al., 2014]. UVR may increase ROS levels, or cause mtDNA damage 

directly, which could result in an increase in mitochondrial dysfunction and a further production of 

ROS in a continuing vicious cycle and a putative increase in photoageing, as mitochondria are 

thought to play a prominent role in this process [Kandola et al., 2015]. This has led to the 

development of mtDNA as an established biomarker of UVR-induced damage [Birch-Machin et al., 

2013]. 

 

Relatively little is known about the role of IRR in photoageing and/or mitochondria damage. 

Evidence exists that IRR has a detrimental effect on human skin such as increased intracellular ROS, 

gene expression of MMPs[Hudson et al., 2016]. Interestingly, the mitochondria is believed to be a 

key cellular target involved in the pathogenesis of IRR induced premature ageing in the skin via the 

enzyme cytochrome C Oxidase (also known as complex IV of the ETC) acting as a chromophore for 

IRA.  

 

Pollution is another major environmental cause of ROS production [Koohgoli et al., 2016]. Particles 

of less than 0.1μm diameter, defined as ultrafine particles, are particularly harmful with vehicle 

exhaust emissions being a major source [Li et al., 2003; Lodovici and Bigagli 2011]. Ultrafine particles 

specifically are able to penetrate tissues more easily and have been found to localise in mitochondria 

within epithelial and macrophage cells [Li et al., 2003] and most environmental pollutant agents 

have the ability to induce ROS [Lodovici and Bigagli 2011; Valavanidis 2009]. Adsorption at the 

surface of ultrafine particles leads to ROS generation which then induces oxidative stress; ultrafine 

particles that adsorb transition metal ions on their surface are able to produce ROS via the Fenton 

reaction described below [Lodovici and Bigagli 2011]. Whilst further work is required to support the 

relationship between pollution and premature ageing via mitochondria-mediated mechanisms, it 



provides important evidence to enhance knowledge on the role mitochondria play in the ageing 

process in both skin and other organs exposed to environmental pollutants such as lungs [Meyer 

2013; Hou et al., 2010].  

 

Mitochondria are responsible for the production of the majority of ROS within a cell, and these 

potentially harmful radicals are modulated by the expression of endogenous antioxidants involving 

the nuclear factor erythroid 2-related factor 2 (Nrf2)- kelch-like ECH-associated protein 1 (Keap1) 

pathway [Magesh et al., 2012] or via external anti-oxidants in the diet [Birch-Machin and Oyewole 

2015; Darvin et al., 2008]. Carotenoid substances, found in fruit and vegetables, as well as vitamins 

A, C, and E are said to be most protective and correlate negatively with levels of oxidative stress. 

Inducers of ROS, for example smoking and UVR exposure, can reduce levels of carotenoid 

antioxidants and thereby further potentiate levels of oxidative stress [Darvin et al., 2008]. In 

addition, a study showed that tomato paste can protect human skin against UVR-induced effects 

partially mediated by oxidative stress such as erythema (skin redness) and extracellular changes such 

as mtDNA damage  [Rizwan et al., 2011]. 

 

In conclusion, the Mitochondrial Free Radical Theory of Ageing is one of the most accepted theories 

as to why we age, and because many age-related diseases appear to be linked to oxidative stress, 

there have been many attempts to modulate longevity using exogenous antioxidants from plant and 

food sources. Since ROS are important signalling molecules [Desler et al., 2011; Fischer et al., 2012], 

the dose and target of the administered antioxidant would have to be considered to prevent the 

alteration of cellular homeostasis. More recent developments in the field of mitohormesis provides 

an interesting concept for the varying roles oxidative stress plays in ageing. Continuing evidence 

supports the proposal that mitochondria are heavily implicated in the ageing process and warrants 

further work in this intriguing area. 
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