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Background: Most breast cancers, even

those that are initially responsive to

tamoxifen, ultimately become resistant.

The molecular basis for this resistance,

which in some patients is thought to in-

volve stimulation of tumor growth by

tamoxifen, is unclear. Tamoxifen in-

duces cellular oxidative stress, and be-

cause changes in cell redox state can

activate signaling pathways leading to

the activation of activating protein-1

(AP-1), we investigated whether tam-

oxifen-resistant growth in vivo is asso-

ciated with oxidative stress and/or ac-

tivation of AP-1 in a xenograft model

system where resistance is caused by

tamoxifen-stimulated growth. Methods:

Control estrogen-treated, tamoxifen-

sensitive, and tamoxifen-resistant

MCF-7 xenograft tumors were assessed

for oxidative stress by measuring levels

of antioxidant enzyme (e.g., superoxide

dismutase [SOD], glutathione S-trans-

ferase [GST], and hexose monophos-

phate shunt [HMS]) activity, glutathi-

one, and lipid peroxidation. AP-1 pro-

tein levels, phosphorylated c-jun levels,

and phosphorylated Jun NH2-terminal

kinase (JNK) levels were examined by

western blot analyses, and AP-1 DNA-

binding and transcriptional activities

were assessed by electrophoretic mobil-

ity shift assays and a reporter gene sys-

tem. All statistical tests are two-sided.

Results: Compared with control estro-

gen-treated tumors, tamoxifen resistant

tumors had statistically significantly in-

creased SOD (more than threefold; P =

.004) and GST (twofold; P = .004) ac-

tivity and statistically significantly re-

duced glutathione levels (greater than

twofold; P<.001) and HMS activity (10-

fold; P<.001). Lipid peroxides were not

significantly different between control

and tamoxifen-resistant tumors. We

observed no differences in AP-1 protein

components or DNA-binding activity.

However, AP-1-dependent transcrip-

tion (P = .04) and phosphorylated c-Jun

and JNK levels (P<.001) were statisti-

cally significantly increased in the

tamoxifen-resistant tumors. Conclu-

sion: Our results suggest that the con-

version of breast tumors to a tamoxi-

fen-resistant phenotype is associated

with oxidative stress and the subse-

quent antioxidant response and with

increased phosphorylated JNK and

c-Jun levels and AP-1 activity, which

together could contribute to tumor

growth. [J Natl Cancer Inst 2000;92:

1926–34]

Tamoxifen is the most prescribed drug

for the prevention and treatment of breast

cancer (1,2). However, in breast cancer

patients, the disease eventually progresses

with the emergence of tamoxifen-resistant

tumor cells. Tamoxifen is thought to act

primarily by competitive blockade of the

estrogen receptor (ER) (3,4). Experimen-

tal and clinical evidence suggests that an

important form of tamoxifen resistance is

the acquired ability of the tumor cells to

be stimulated, rather than inhibited, by the

drug after prolonged treatment (5–9).

We have developed an in vivo experi-

mental model for tamoxifen resistance us-

ing ER-positive MCF-7 human breast

cancer cells grown in athymic nude mice

(5). Tamoxifen treatment suppresses tu-

mor growth for several months, but

growth eventually resumes as the tumors

become stimulated by tamoxifen (5). The

mechanisms underlying the conversion

from growth suppression to growth stimu-

lation are still unclear. However, several

studies using the MCF-7 in vivo model

have already discarded a number of po-

tential mechanisms for growth stimula-

tion by tamoxifen, including altered

tamoxifen uptake or metabolism (6,10)

and lost or altered ER (11).

Another possible mechanism for

growth stimulation by tamoxifen is an al-

tered intracellular redox status leading to

activation of downstream signaling path-

ways. Cellular redox status is a balance

between the rate of pro-oxidant genera-

tion, either exogenous or endogenous, and

the cellular enzymatic and nonenzymatic

antioxidant capacities. A number of stud-

ies (12–16) have shown that, depending

on the cellular microenvironment, tamoxi-

fen can affect the intracellular redox sta-

tus as either a pro-oxidant or an antioxi-

dant. For example, tamoxifen has the abil-

ity to protect lipids, proteins, and DNA

against oxidative damage (13) and can it-

self be activated into reactive electro-

philic metabolites (14). Moreover, evi-

dence suggests that tamoxifen can induce

phase I and phase II metabolizing en-

zymes (15), which may contribute to its

beneficial antioxidant activity but may

also be responsible for its own activation.

It is also known that changes in the intra-

cellular redox status can lead to the acti-

vation of important transcription factors,

including activating protein-1 (AP-1)

(17,18).

AP-1 is a heterodimeric transcription

factor that is composed of various mem-

bers of the Jun and Fos families (19) and

binds to DNA at specific AP-1 binding

sites. AP-1 activity is determined in part

by phosphorylation of these complex

components. Importantly, the transcrip-

tional activity of c-Jun is increased by

phosphorylation by the Jun NH2-terminal

kinases (JNKs)/stress-activated protein

kinases (SAPKs), which are preferentially

activated by a variety of environmental

and cellular stresses (20), including oxi-

dative stress (21). AP-1 activity can also

be coregulated by protein–protein interac-

tions between AP-1 and the ER (22). Fur-

thermore, tamoxifen can function as an

agonist in coactivating ER/AP-1 on pro-

moters regulated by AP-1 sites (22–26).

The observation that AP-1 is important

in several mitogenic signaling pathways

(27,28) led us to hypothesize that an in-

crease in cellular AP-1 activity, perhaps

resulting from tamoxifen-induced oxida-

tive stress and the changes in intracellular

redox status, may contribute to the devel-
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opment of tamoxifen-resistant tumor

growth. In this study, we looked for evi-

dence of oxidative stress and changes in

AP-1 activity in the MCF-7 in vivo nude

mouse model of tamoxifen resistance.

MATERIALS AND METHODS

Breast Cancer Cells

ER-positive MCF-7 human breast cancer cells

(originally obtained from Dr. H. Degani at the Weiz-

mann Institute of Science, Rehovoth, Israel) were

used for all experiments, unless otherwise stated.

Tissue culture methods have been described previ-

ously (29). Exponentially growing cultures were

treated with 12-O-tetradecanoylphorbol 13-acetate

(TPA) (50 ng/mL) in the presence of serum-

containing medium for the indicated times. A doxo-

rubicin-resistant subclone of MCF-7, MCF-7 Adria

(obtained from Dr. K. Cowan, National Cancer In-

stitute, Bethesda, MD), known to express high levels

of c-Jun, was used as an internal standard in the

electrophoretic mobility shift assay. ER-negative

human MDA-MB-435 breast cancer cells were cul-

tured as described previously (30) and were used to

obtain ER-negative xenograft tumors.

Athymic Nude Mouse Model of

Tamoxifen-Stimulated Growth

Animal care was in accordance with institutional

guidelines. Four- to 6-week-old female ovariecto-

mized BALB/c athymic nude mice (Harlan Sprague-

Dawley Inc., Madison, WI) were given a subcuta-

neous injection in the mammary fat pad of 5 × 106

MCF-7 cells or their transfectant derivatives (see

below) and hormonally treated as described previ-

ously (5,7). Estradiol pellets (0.25 mg; Innovative

Research, Rockville, MD) were placed subcutane-

ously in the interscapular region of the mice to

stimulate tumor growth. When tumors reached a di-

ameter of 8–12 mm (2–4 weeks), each mouse was

randomly allocated to one of the following four

groups: 1) control estrogen-treated, 2) removal of

the estrogen pellet (i.e., estrogen withdrawal only),

3) estrogen withdrawal and treatment with 500 �g

of tamoxifen citrate (AstraZeneca, Macclesfield,

U.K.) in peanut oil (subcutaneously injected daily

Monday through Friday), or 4) estrogen withdrawal

and treatment with 5 mg of ICI 182,780 (AstraZen-

eca) in castor oil (subcutaneously injected weekly).

Tumor growth was assessed and tumor volumes

were measured as described previously (29).

Tumors were removed during estrogen treatment

(control estrogen-treated tumors) and at various

times after the treatment with the antiestrogen drugs

tamoxifen and ICI 182,780. Antiestrogen-sensitive

tumors are defined as those harvested during the first

3 months of treatment when tumor growth is inhib-

ited by tamoxifen. Thus, these tumors are defined as

tamoxifen sensitive (tamoxifenS) and ICI 182,780

sensitive (ICIS), respectively. Tumors were usually

harvested 2 weeks after the initiation of treatment

unless otherwise stated. For the DNA-binding stud-

ies, tumors were also harvested at 1, 2, and 3 months

after tamoxifen treatment began. After 3–5 months

of continuous treatment, growth resumes and tumor

progression is evident as an increase in tumor vol-

ume. Tumors that first undergo growth inhibition

and then resume growth after prolonged antiestrogen

treatment are defined as tamoxifen resistant (tamoxi-

fenR) or ICI 182,780 resistant (ICIR). We have

shown previously that tamoxifen resistance in this

model is due to tamoxifen-stimulated tumor growth

(5,7).

In the estrogen-withdrawal group of mice, tumors

were removed after 2 weeks (estrogen withdrawalS)

or several months later after tumor growth resumed

(estrogen withdrawalR). Each tumor analyzed was

from a different mouse; tumor tissues were removed

from each mouse and kept at −190 °C for later

analyses.

Antioxidant Enzyme Assays

Antioxidant enzyme activities were assessed in

the control (estrogen-treated), tamoxifenS, and

tamoxifenR groups (five tumors per group). Homog-

enates of frozen tumors (20 [wt/vol]) were prepared

in a 0.25 M sucrose solution (0 °C) with a Potter–

Elvehjem glass–Teflon homogenizer driven by an

electric drill at 500 rpm with pulse homogenization

six times at 20-second intervals. Homogenates were

centrifuged for 10 minutes at 10 000g at 4 °C to

remove nuclei, mitochondria, and lysosomes, and

the supernatants were collected. The activities of

superoxide dismutase (SOD) (Cu/Zn form) and cata-

lase were measured in the tumor homogenates, and

the activities of glutathione S-transferase (GST) and

the hexose monophosphate shunt (HMS) were mea-

sured in the 10 000g supernatants. Enzyme activities

were assayed with optimal incubation times and pro-

tein concentrations to ensure the linearity of the re-

action velocity. SOD activity (�g/mg protein) was

measured by luminometric detection of the superox-

ide anion produced in the xanthine–xanthine oxidase

system (31). Catalase activity (�g/mg protein) was

determined spectrophotometrically by measuring the

rate of disappearance of H2O2 (32). GST activity

(nmol � min−1 � mg−1 protein) was measured spectro-

photometrically with 1-chloro-2,4-dinitrobenzene as

the substrate (33). HMS activity (nmol � min−1 �

mg−1 protein) was assessed spectrophotometrically

by the production of reduced nicotinamide adenine

dinucleotide phosphate (NADPH) with the use of

glucose 6-phosphate as the substrate (34); HMS ac-

tivity represents the sum of glucose 6-phosphate de-

hydrogenase and 6-phosphogluconate dehydroge-

nase activities.

Lipid Peroxidation and

Glutathione Levels

Lipid peroxidation was assessed in tumors from

the control estrogen-treated, tamoxifenS, and

tamoxifenR groups (five tumors per group) by the

quantitation of the appearance of conjugated diene

double bonds in lipid extracts (35). Briefly, lipids

were extracted from 10 000g supernatants with chlo-

roform–methanol, dried under a nitrogen atmo-

sphere, redissolved in cyclohexane, and analyzed

spectrophotometrically at 233 nm to quantify diene

conjugation as detected by peak absorption. Lipid

peroxidation is expressed as �Abs/mg protein,

where �Abs is the difference in absorbance between

the sample and the cyclohexane solvent.

Reduced glutathione (GSH) and oxidized gluta-

thione (GSSG) levels (�mol/g wet wt) were deter-

mined from the control estrogen-, tamoxifen-, estro-

gen-withdrawal-, and ICI 182,780-treated tumors

(four tumors per group). The glutathione content of

tumor cytosol supernatants was estimated by high-

performance liquid chromatography (36). Protein

content was measured by the Bradford method (Bio-

Rad Laboratories, Richmond, CA).

Protein Extraction and Western Blot

Analysis of Phosphorylated c-Jun and

JNKs/SAPKs Forms

Phosphorylated forms of c-Jun and JNKs/SAPKs

were analyzed with the use of PhosphoPlus antibody

kits (Cell Signaling, Inc., Beverly, MA) according to

the manufacturer’s directions. Briefly, pellets of in

vitro cultured cells or ground, frozen tumor powders

from the control estrogen-treated, tamoxifenS, and

tamoxifenR groups (at least eight tumors per group)

were manually homogenized in lysis buffer (Cell

Signaling, Inc.). After microcentrifugation at 14 000g

for 30 minutes at 4 °C, supernatants were collected,

and the protein concentration was determined. Ali-

quots (25 �g) of protein from each sample were

separated under denaturing conditions by electro-

phoresis with 10% polyacrylamide gel containing

sodium dodecyl sulfate and transferred by electrob-

lotting onto nitrocellulose membranes (Schleicher &

Schuell, Inc., Keene, NH). The blots were stained

with StainAll Dye (Alpha Diagnostic International,

Inc., San Antonio, TX) to confirm uniform protein

transfer. Separate membranes were then reacted with

either c-Jun- or JNK/SAPK-specific PhosphoPlus

antibodies that specifically recognize the phosphor-

ylated forms. The membranes were stripped and re-

blotted for total c-Jun and JNK/SAPK with antibod-

ies that recognize the respective proteins

independently of their phosphorylation status. Blots

were developed by chemiluminescence (Cell Signal-

ing, Inc.). Each sample was analyzed twice on sepa-

rate immunoblots. Bands were quantified by densi-

tometric scanning of developed films with the use of

the Image 1.61/ppc software program of the Na-

tional Institutes of Health, Bethesda, MD.

Electrophoretic Mobility Shift Assay

Nuclear extracts from cells or individual tumors

(five tumors per group) were prepared as described

previously (28) with minor changes. Briefly, cells or

ground-up, frozen tumor powders were disrupted in

lysis buffer (i.e., 10 mM HEPES, 1 mM EDTA, 60

mM KCl, 0.5 mM dithiothreitol [DTT], 0.5% Noni-

det P-40 [NP-40], and protease inhibitors [1 mM

phenylmethyl sulfonyl fluoride, 0.4 �M aprotinin,

and 10 �M leupeptin]), and nuclei were isolated by

microcentrifugation at 2500g at 4 °C for 10 minutes.

The isolated nuclei were lysed by three cycles of

freezing/thawing in nuclear suspension buffer (250

mM Tris [pH 7.8], 400 mM KCl, 0.5 mM DTT, 20%

glycerol, and protease inhibitors) and microcentri-

fuged at 16 000g at 4 °C for 10 minutes, and the

supernatants (nuclear protein extracts) were col-

lected. Protein concentrations were determined with

the use of the Bradford method. Electrophoretic mo-

bility shift assays were performed with 10 �g of

nuclear protein extract in a 20-�L reaction mixture

containing 20 mM HEPES (pH 7.9), 40 mM KCl, 1
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mM EGTA [i.e., ethylene glycol-bis(�-aminoethyl

ether)-N,N�-tetraacetic acid], 1 mM phenylmethyl

sulfonyl fluoride, 0.5 mM DTT, 1% glycerol, 2 �g

of poly (dI-dC), and 100 pg of [�-32P]adenosine tri-

phosphate end-labeled, double-stranded oligo-

nucleotide probe containing an AP-1 binding site (5�

CTAGTGATGAGTCAGCCGGATC 3�; Strata-

gene, La Jolla, CA; the AP-1 binding site is under-

lined). Reaction mixtures were incubated for

30 minutes at room temperature. For oligonucleotide

competition experiments, the reaction mixtures were

preincubated with a 100-fold excess of unlabeled,

cold oligonucleotide probes containing an AP-1 or

Sp-1 binding site (Stratagene) for 20 minutes before

the addition of the radioactive probes. The reaction

mixtures were separated on 5% nondenaturing poly-

acrylamide gels at 4 °C. After electrophoresis and

drying, gels were autoradiographed, and shifted

bands were quantified on a PhosphoImager (Mo-

lecular Dynamics, Sunnyvale, CA). The AP-1 DNA-

binding activity of individual tumors was normal-

ized between gels with the use of an internal

standard extract of MCF-7 Adria cells. Electropho-

retic mobility shift assays of the same extracts were

repeated a minimum of two times.

AP-1/CAT Reporter Constructs,

Stable Transfection, and

Chloramphenicol Acetyltransferase

Assay

To study AP-1-dependent gene transcription, we

used a chloramphenicol acetyltransferase (CAT) re-

porter system as described previously (37,38). The

reporter construct, Col-TREx5/TKCAT (TREx5),

contains five copies of a consensus AP-1 binding

site (5� ATGAGTCAG 3�) upstream of the herpes

simplex virus-thymidine kinase (HSV-tk) minimal

promoter. The same site is also a synthetic consen-

sus TPA responsive element (TRE). We also used a

control construct, TRE�-72/TKCAT (TRE�-72),

upstream to position −109 of the HSV-tk promoter,

that contains a point mutation in the AP-1 site (5�

TGGAGTCAG 3�) that eliminates both basal and

inducible AP-1 activities (37,38).

To generate stable transfection clones, we plated

MCF-7 cells at a density of 8 × 105/100 mm2. After

24 hours, the cells were cotransfected with 10 �g of

the TREx5 or TRE�-72 AP-1/CAT reporter con-

structs and with 1 �g of the pSV2neo selection plas-

mid (Clontech Laboratories, Inc., Palo Alto, CA)

containing the neomycin resistance gene with the

use of the LipofectAMINE reagent (Life Technolo-

gies, Inc. [GIBCO BRL], Rockville, MD), according

to the manufacturers directions. G418-resistant (600

�g/mL) individual clones were screened for TPA-

inducible AP-1 transcriptional activity (50 ng/mL

TPA for 8 hours), and CAT assays were performed

as described below.

TPA-inducible TREx5 clones and noninducible

TRE�-72 clones were grown in nude mice and

treated with tamoxifen as described above. Tumors

were harvested from the control estrogen-treated,

tamoxifenS, and tamoxifenR groups (four to eight

mice per group). Tumor samples were homogenized,

and extracts were made as described previously (39).

Protein concentrations were determined, and the

same amount of protein from each clone was ana-

lyzed for CAT activity by thin-layer chromatogra-

phy and quantitated on a PhosphoImager (Ambis,

San Diego, CA). We calculated the relative CAT

activity by dividing the CAT activity of the tamoxi-

fen-treated tumors by the CAT activity of the control

estrogen-treated tumors of the clone. All CAT as-

says were repeated two times with each sample.

Statistical Methods

Differences in the mean values of tumor antioxi-

dant enzyme activities (SOD, HMS, and GST), glu-

tathione levels, DNA-binding activities, and AP-1-

dependent CAT activities among the treatment

groups were analyzed by Student’s t test as pairwise

comparisons with respect to the control estrogen-

treated group or to the tamoxifenS group, as speci-

fied. Bonferroni’s correction was used to adjust for

multiple comparisons. The mean values of western

blot band densities of phosphorylated c-Jun and

JNKs/SAPKs were compared by two-way analysis

of variance. For purposes of statistical analyses, data

were transformed by taking logarithms to equalize

variances. All P values are two-sided.

RESULTS

Antioxidant Enzyme Activity

We have developed and studied an

experimental in vivo model that mimics

the clinical scenario of acquired resis-

tance of breast cancer to tamoxifen or

other endocrine therapies, such as estro-

gen-withdrawal or ICI 182,780 treatment

(7). In the nude mouse model, ER-

positive MCF-7 xenograft tumors are es-

tablished in the presence of estrogen (con-

trol estrogen-treated tumors), and the

estrogen is withdrawn before the start of

any antiestrogen treatment. Tumor growth

is initially inhibited, but it eventually re-

sumes after continued treatment. Tumors

inhibited by tamoxifen are defined as

tamoxifen-sensitive (tamoxifenS) tumors,

and tumors that resumed growth are de-

fined as tamoxifen-resistant (tamoxifenR)

tumors. We have shown previously that

tamoxifen stimulates tamoxifenR tumor

growth (5,7). In parallel, tumors inhibited

by estrogen withdrawal or ICI 182,780

are defined as estrogen-withdrawalS or

ICIS tumors, respectively, and tumors that

resumed growth are defined as estro-

gen-withdrawalR or ICIR tumors, respec-

tively.

To investigate the relationship between

tamoxifen resistance and altered cellular

redox status, we first measured the activ-

ity levels of different antioxidant enzymes

in control estrogen-treated, tamoxifenS,

and tamoxifenR tumors grown in nude

mice (Table 1). SOD activity was notably

increased by tamoxifen, with a greater

than fourfold increase in tamoxifenS tu-

mors (P<.001) and a greater than three-

fold increase in tamoxifenR tumors (P �

.004). Catalase activity was not statisti-

cally significantly different among the tu-

mor groups. GST activity was statistically

significantly increased in the tamoxifenR

tumors (twofold; P � .004) relative to the

control estrogen-treated or the tamoxifenS

tumors. TamoxifenR tumors also had in-

creased protein levels of GST-Pi, a mem-

ber of the GST enzyme complex, as mea-

sured by western blot analysis (data not

shown).

The most striking effect of tamoxifen

was a profound inhibition of the produc-

tion of NADPH by the HMS (Table 1). In

tamoxifenS tumors, the HMS activity was

statistically significantly reduced to less

than half the activity detected in the con-

trol estrogen-treated tumors (P<.001). In

tamoxifenR tumors, the HMS activity was

further statistically significantly reduced

by another fourfold to 10-fold in total

(P<.001). Thus, tamoxifen treatment and

the development of tamoxifenR by

MCF-7 breast tumors in vivo are associ-

ated with changes in antioxidant activi-

ties, suggesting that the tumors are expe-

riencing oxidative stress.

Oxidative Stress

Lipid peroxidation is a process gener-

ated by the effect of reactive oxygen spe-

cies and occurs when the antioxidant

defense mechanisms are being over-

whelmed (40). Glutathione, via its redox

cycling, is a potent antioxidant that pro-

vides cells with a substantial degree of

protection against oxidative stress (41).

Because decreased HMS activity and

NADPH levels would be expected to

greatly reduce glutathione levels, we next

measured lipid peroxidation and glutathi-

one levels (Table 1). Lipid peroxidation

was statistically significantly higher in the

tamoxifenS tumors (P � .016) but then

returned to baseline levels after resistance

emerged (Table 1). In contrast, levels of

both GSH and GSSG were markedly re-

duced in the tamoxifenR tumors as com-

pared with the control estrogen-treated tu-

mors (greater than twofold; P<.001 and P

� .02, respectively). GSH levels were de-

creased only slightly in tamoxifenS tu-

mors compared with those in control es-

trogen-treated tumors, and GSSG levels

were reduced by 1.7-fold in tamoxifenS

tumors compared with those in control es-

trogen-treated tumors. Importantly, there

were marked and statistically significant

differences in the GSH levels between the

tamoxifenS and tamoxifenR tumors

(P<.001). These results suggest that the
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development of tamoxifen resistance in

MCF-7 breast tumors in vivo is associated

with increased susceptibility to oxidative

stress and depletion of glutathione levels

as the tumors attempt to respond to the

oxidative stress.

To confirm that the marked decrease in

total glutathione levels in resistant tumors

was specific for tamoxifen, we measured

glutathione levels in tumors from mice

treated either with estrogen withdrawal or

with the estrogen antagonist ICI 182,780.

Although, compared with the levels in

control estrogen-treated tumors, glutathi-

one levels decreased slightly in tumors

that had acquired resistance to estrogen

withdrawal and in ICIS or ICIR tumors,

glutathione levels in the tamoxifenR tu-

mors were still substantially lower than

those in all other tumors.

To learn whether tamoxifen-induced

oxidative stress is mediated though the

ER, we measured total glutathione levels

in xenograft tumors of ER-negative

MDA-MB-435 human breast cancer cells.

Tamoxifen does not inhibit in vivo growth

of this cell line, and long-term experi-

ments are not possible because the tumors

become too large. Tamoxifen treatment

for 29 days resulted in no reduction in

glutathione levels in these tumors (data

not shown), suggesting that the effect

of tamoxifen might be mediated through

the ER.

Tamoxifen Resistance and AP-1

DNA-Binding Activity

Because oxidative stress has been

shown to activate the AP-1 transcription

factor, which increases cell proliferation

(27,28), we explored the effect of tamoxi-

fen on AP-1 composition and activity in

MCF-7 tumors in vivo. AP-1 is a heterodi-

meric transcription factor complex that is

composed of proteins from the Jun and

Fos families. Comparison of control es-

trogen-treated, tamoxifenS, and tamoxif-

enR tumors revealed that there were no

apparent changes in messenger RNA or

protein levels of the Jun and Fos family

members c-Jun, JunD, JunB, Fra-1, and

c-Fos (data not shown).

Using electrophoretic mobility shift as-

says, we next compared AP-1 DNA-

binding activity in nuclear extracts from

control estrogen-treated, tamoxifenS, and

tamoxifenR tumors (Fig. 1, A). Tamoxif-

enS nuclear extracts were made from es-

tablished tumors 2 weeks, 1 month, 2

months, and 3 months after tamoxifen

treatment began. Although there was a

modest reduction in AP-1 DNA-binding

activity during the first 2 months of

tamoxifen treatment, there were no statis-

tically significant differences in AP-1

DNA-binding activity between control es-

trogen-treated tumors and tamoxifen-

treated tumors at any time (Fig. 1, A).

DNA-binding assays performed with

AP-1 oligonucleotides containing one or

five copies of the AP-1 site produced

comparable results (data not shown). Us-

ing specific antibodies to various AP-1

family members (c-Jun, JunD, Fra-1, and

c-Fos), we determined the composition of

the AP-1 DNA-binding complexes. We

found no appreciable differences in the

composition of the DNA-binding com-

plexes among any of the control or

tamoxifen-treated groups (data not

shown).

Although tamoxifen treatment did not

appear to change AP-1 DNA-binding ac-

tivity, we detected a fourfold decrease

in AP-1 DNA-binding activity in estro-

gen-withdrawalS tumors (P<.001) and

in estrogen-withdrawalR tumors (P<.

001) (Fig. 1, B). We observed a 3.5-

fold decrease in AP-1 DNA-binding

activity in ICIR tumors (P<.001). One

aberrant tumor in the ICIS treatment

group did not show a decrease in AP-1

DNA-binding activity. Thus, although

tamoxifen, estrogen withdrawal, and

ICI 182,780 all inhibited tumor growth

in vivo, only tamoxifen maintained

AP-1 DNA-binding activity at initial lev-

els.

Association of Increased AP-1

Transcriptional Transactivating

Activity With Development of

TamoxifenR Growth

AP-1 DNA-binding activity does not

necessarily reflect the transcriptional ac-

tivity of this transcription factor complex

(42). To determine whether AP-1 DNA-

binding activity is a direct reflection of its

ability to promote transcription in this

system, we developed stable transfectants

of MCF-7 cells expressing CAT reporter

gene constructs containing either five

copies of a synthetic AP-1 DNA-binding

site (TREx5) or a control mutated AP-1

DNA-binding site lacking basal and in-

ducible AP-1 activities (TRE�-72) up-

Table 1. Antioxidant enzyme activity, lipid peroxidation, and glutathione levels in hormonally treated MCF-7 tumors*

Tumor
group

Mean (95% confidence interval)

SOD,†
�g/mg protein

Catalase,†
�g/mg protein

GST,† nmol/min
per mg protein

HMS,† nmol/min
per mg protein

LPO,†
�Abs/mg protein

GSH,‡
�mol/g protein

GSSG,‡
�mol/g protein

E2 1.25 1.74 0.93 12.10 717 2.725 0.434
(0.29–2.21) (1.33–2.15) (0.60–1.26) (10.34–13.86) (488–946) (2.692–2.758) (0.279–0.589)

TamS 5.01 2.38 0.97 5.42 2217 2.391 0.248
(3.76–6.26) (1.69–3.07) (0.77–1.17) (4.66–6.18) (1243–3191) (2.322–2.460) (0.179–0.317)

TamR 4.34 2.61 1.83 1.30 874 1.297 0.156
(3.54–5.15) (1.77–3.45) (1.50–2.16) (1.03–1.57) (504–1244) (1.281–1.313) (0.103–0.209)

−E2
R ND ND ND ND ND 2.162 0.563

(2.101–2.223) (0.357–0.769)
ICIS ND ND ND ND ND 2.002 0.301

(1.975–2.029) (0.242–0.360)
ICIR ND ND ND ND ND 2.139 0.250

(2.053–2.225) (0.179–0.321)

*SOD � superoxide dismutase (Cu/Zn form); GST � glutathione S-transferase; HMS � hexose monophosphate shunt; LPO � lipid peroxidation; GSH �

reduced glutathione; GSSG � oxidized glutathione; ND � not done; E2 � control estrogen tumors; TamS
� tamoxifen-sensitive tumors; TamR

� tamoxifen-

resistant tumors; −E2
R

� estrogen-withdrawal resistant tumors; ICIS
� ICI 182,780-sensitive tumors; ICIR

� ICI 182,780-resistant tumors.

†Tumors from five mice per treatment group. �Abs � difference in absorbance between the sample and the cyclohexane solvent.

‡Tumors from four mice per treatment group.
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stream to a minimal promoter (37). TPA

induced CAT activity in vitro in the

two TREx5 clones tested but not in the

TRE�-72 clone (Fig. 2, A). The stable

transfectants were then grown as tumors

in the nude mice and treated with tamoxi-

fen. In tumors grown from the control

TRE�-72 clone, the low basal CAT ac-

tivity gradually declined during tamoxi-

fen treatment (Fig. 2, B and C). In con-

trast, a statistically significant increase

in CAT activity was detected in tamoxif-

enR tumors in both TREx5 clones (two-

fold to threefold; P � .04 and P � .006

for TREx5 clones 1 and 2, respectively).

The finding that AP-1 transcriptional ac-

tivity increased at the time of tamoxifenR

growth was reproducible in two different

clones and in two independent in vivo ex-

periments.

Hyperphosphorylation of c-Jun in

TamoxifenR Tumors

AP-1 transcriptional activity is in-

creased by phosphorylation at two spe-

cific serine residues in the c-Jun compo-

nent of AP-1 (42). These residues, Ser 63

and Ser 73, are phosphorylated by the

JNKs (43,44). Furthermore, JNK activity

can be increased by various stresses (20),

including oxidative stress (21) and/or glu-

tathione depletion (45), conditions ob-

served in our model with tamoxifen treat-

ment, especially during tamoxifenR growth.

Because we observed an induction of

oxidative stress in the tumors during the

emergence of tamoxifen resistance, we

determined the phosphorylation status of

c-Jun from control estrogen-treated,

tamoxifenS, and tamoxifenR tumors (Fig.

3, A). No statistically significant changes

were detected between the control estro-

gen-treated tumors and tamoxifenS tu-

mors. However, the tamoxifenR tumors

(of both untransfected MCF-7 tumors and

stable TREx5 transfectants) had statisti-

cally significantly higher levels of phos-

phorylated c-Jun (greater than twofold;

P<.001), even after correcting for minor

changes in total c-Jun levels.

Because the JNKs are the major ki-

nases known to phosphorylate c-Jun at

Ser 63 and Ser 73, we next measured

phosphorylated (i.e., active) JNK family

members in the control estrogen-treated,

tamoxifenS, and tamoxifenR tumors (Fig.

3, B). We saw that the tamoxifenR tumors

contained statistically significantly higher

levels of both the 46-kd and 54-kd phos-

pho-JNK forms compared with the

tamoxifenS tumors (>1.8-fold and 1.5-

fold; P<.001 and P � .008, respectively,

for 46-kd and 54-kd phospho-JNK forms,

after correcting for minor changes in the

level of total JNK). Thus, both increased

phospho-c-Jun levels and increased JNK

activity accompanied the increase in AP-

1-dependent transcription in the tamoxif-

enR tumors.

DISCUSSION

The emergence of tamoxifen resistance

is a major problem in the treatment of

breast cancer, and understanding the

mechanisms by which resistance arises

could have major clinical implications for

preventing or circumventing it. Our re-

sults show that the development of ac-

quired tamoxifen resistance of xenograft

MCF-7 tumors in vivo is associated with

both increased susceptibility to oxidative

Fig. 1. Activating protein-1 (AP-1) DNA-binding activity of control estrogen-, tamoxifen-, estrogen-

withdrawal-, and ICI 182,780-treated MCF-7 breast cancer xenograft tumors. Nuclear extracts from tumor

groups (five mice per group) were analyzed by electrophoretic mobility shift assay with the use of an AP-1

oligonucleotide probe. A) Tumors from control estrogen-treated (E2), tamoxifen-sensitive (the groups in-

cluded 2 weeks [2w], 1 month [1m], 2 months [2m], and 3 months [3m] tamoxifen treatment during the

growth-inhibited [TamS] phase), and tamoxifen-resistant (during the growth-stimulated [TamR] phase) xe-

nograft mice were harvested and analyzed for AP-1 DNA-binding activity. B) Tumors from control estrogen-

treated (E2,), estrogen-withdrawal-treated (−E2), or estrogen-withdrawal-treated/ICI 182,780-treated xeno-

graft mice at the sensitive, growth-inhibited phase (2 weeks of treatment, −E2
S or ICIS) and at the resistant,

growth-stimulated phase (−E2
R or ICIR) were harvested and analyzed for AP-1 DNA-binding activity. Top

panels: representative electrophoretic mobility shift assay gels of the tumor nuclear extracts. For TamS, only

2 weeks of treatment is shown. An internal standard extract of MCF-7 Adria cells (MCF-7/Adr) was included

in each panel for normalization of the AP-1 binding reactions between gels. An excess of unlabeled AP-1

oligonucleotide (+ AP-1) was used to competitively inhibit specific AP-1 binding, and a nonspecific Sp-1

oligonucleotide (+ Sp-1) was added as a further negative control for this specificity. Arrows point to the

specific AP-1 complexes, and the nonspecific band is designated “ns.” Bottom panels: relative AP-1

DNA-binding activity in the treated tumors. Specific AP-1 complexes were quantitated on a PhosphoImager,

and the DNA-binding activity of individual tumors was normalized between gels. AP-1 DNA-binding

activity in the tumor groups was calculated relative to the control estrogen-treated group, and calculated

means (±95% confidence intervals) were analyzed statistically by Student’s t test as pairwise comparisons

versus the control estrogen-treated group. * � P<.001. Electrophoretic mobility shift assays with the same

samples were repeated a minimum of two times.
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stress and increased AP-1 activity.

Tamoxifen affects the intracellular redox

status in breast tumors, increases lipid

peroxidation, and induces the activity of a

number of antioxidant enzymes. Pro-

longed tamoxifen treatment resulted in tu-

mors that were tamoxifen resistant and

growth stimulated and had a reduced an-

tioxidant cellular capacity, as evidenced

by a striking decrease in HMS activity

and a marked depletion of glutathione.

These oxidative changes after prolonged

Fig. 2. Activating protein-1 (AP-1) transcriptional activity in tamoxifen-treated

tumors. MCF-7 breast cancer cells were stably transfected with chloramphenicol

acetyltransferase (CAT) constructs containing either five copies of a consensus

AP-1 site (TREx5 clones) or a control mutated AP-1 site (TRE�-72 construct).

A) 12-O-Tetradecanoylphorbol 13-acetate (TPA) induction of TRE�-72 and

TREx5 clones in vitro. Cells of two TREx5 clones (clone TREx5/1 and clone

TREx5/2) and one TRE�-72 clone were left untreated (−) or were treated with

TPA (50 ng/mL) for 8 hours, and extracts were analyzed by the CAT assay, as

described in the “Materials and Methods” section. In B and C, AP-1-dependent

CAT activity is indicated in tamoxifen-treated tumors. The transfectant clones

were injected into nude mice and treated with estrogen and tamoxifen. Tumors

(four to eight mice per group) were harvested for CAT analysis after establish-

ment in the presence of estrogen (E2), 2 weeks after tamoxifen treatment began

(during the tamoxifen-inhibited growth phase, TamS), and at the appearance of

tamoxifen-resistant growth (TamR). All tumors were from individual mice. CAT

assays were performed with the use of the same amount of protein extract for

individual tumors of each clone. B) CAT assay of clones TRE�-72 and TREx5.

The TRE�-72 clone has low basal CAT activity, so its autoradiographs were

exposed longer than those of the TREx5 clones. All of the tumors analyzed from

the stable transfectants are shown. CAT assays of the same samples were re-

peated twice. C) Quantitation of relative CAT activity of the TRE/CAT clones

shown in B. The CAT assays were quantitated on a PhosphoImager, and the

relative CAT activity in the tumor groups was calculated relative to that of the

control estrogen-treated group of each clone. TamoxifenR calculated means

(±95% confidence intervals) were analyzed statistically by Student’s t test com-

pared with the tamoxifenS group. CP � chloramphenicol.

Fig. 3. Phosphorylation of c-Jun and Jun NH2-terminal kinase (JNK) in the

tamoxifen-treated tumors. Protein extracts (25 �g) of control estrogen-treated

(E2), tamoxifen-sensitive (TamS), and tamoxifen-resistant (TamR) MCF-7 breast

cancer xenograft tumors were analyzed by western blot analysis with antibodies

that recognize the phosphorylated forms of the proteins. A) Blots probed with

anti-phospho c-Jun antiserum specific for Ser 63 (top panel) and anti-total c-Jun

antiserum, which recognizes c-Jun independently of its phosphorylation status

(bottom panel). Controls were MCF-7 cells either untreated (−) or treated in

vitro (+) with 12-O-tetradecanoylphorbol 13-acetate (TPA) at a dose of 50

ng/mL for 1 hour. B) Blots probed with anti-phospho JNK (54 kd and 46 kd)

antiserum recognizes Thr 183 and Tyr 185 phosphorylation. Arrows point to the

54-kd and 46-kd JNK family members. A representative gel is shown of two or

three tumors per group. Mean values of western blot band densities of phos-

phorylated c-Jun and JNKs/stress-activated protein kinases (SAPKs) were com-

pared by two-way analysis of variance. Ab � antibody; M.W. � molecular

weight.
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treatment appear to be specific to tamoxi-

fen because this marked reduction in glu-

tathione levels and, consequently, in-

creased susceptibility to oxidative stress

were not found in tumors from mice

treated with estrogen, with estrogen with-

drawal, or with the pure antiestrogen ICI

182,780.

A remaining open question is to what

extent all of the oxidative changes are ER

dependent. It is known that tamoxifen’s

antiangiogenic effects and its potential to

induce oxidative stress are, at least in part,

ER independent (46–48), although the

role of the two ER subtypes is still unclear

(49). A recent study (50) demonstrating

that the oncostatic action of melatonin on

breast cancer cells is mediated by in-

creased glutathione levels and is restricted

to ER-positive cells suggests a link be-

tween cellular redox state and ER. In ad-

dition, the lack of oxidative stress in ER-

negative MDA-MB-435 tumors from

tamoxifen-treated mice and preliminary

in vitro data also suggest that tamoxifen-

induced oxidative stress in MCF-7 tumors

may be ER mediated.

Because changes in the cellular redox

status can lead to the induction of AP-1

and because AP-1 is important in a vari-

ety of mitogenic signaling pathways

(27,28), we studied this transcription fac-

tor complex in our tamoxifenR in vivo

model. We found that the AP-1 transcrip-

tional activity was increased as tumors

progressed to a tamoxifenR phenotype. It

is possible that the observed increase in

the antioxidant enzyme GST, whose ex-

pression is regulated by AP-1 (51), re-

flects a parallel increase in AP-1-

dependent transcription. Other reports

have shown that prolonged tamoxifen

treatment dramatically affects the expres-

sion of a number of phase II enzymes,

such as GST (52–54), probably through

the antioxidant response element con-

tained in the promoter of these genes (54)

and that these genes may also be regu-

lated by AP-1 (51). In agreement with our

finding, Astruc et al. (25) also have re-

ported that prolonged tamoxifen treat-

ment markedly increases the cellular re-

sponse to inducers of AP-1.

Although we found increased AP-1

transcriptional activity in the tamoxifenR

tumors, neither expression of Jun and Fos

family members nor AP-1 DNA-binding

activity was altered. These findings are

similar to those in other reports (27,28).

In contrast, Dumont et al. (55) reported

that the progression of MCF-7 tumor cells

(MCF-WES cells) to a tamoxifen-

stimulated/tamoxifen-resistant phenotype

is associated with increased AP-1 DNA-

binding activity. However, MCF-WES

tamoxifenR tumors have a markedly de-

creased ER content, and although the tu-

mors are still estrogen sensitive, they are

globally resistant to all antiestrogens. In

contrast, the tamoxifenR tumors in this

study, which have increased AP-1 tran-

scriptional activity, express high levels of

ER, remain estrogen dependent (5), and

are growth inhibited by pure steroidal an-

tiestrogens (6,7). Thus, although both

types of tamoxifenR tumors share a com-

mon regulatory pathway, namely AP-1,

they may differ in how the pathway is

activated. Whether these differences in

AP-1 activation account for the diver-

gence in their cellular phenotype remains

to be investigated.

Our data also demonstrate that in-

creases in JNK activity and c-Jun phos-

phorylation are associated with the

tamoxifenR phenotype. Increased c-Jun

phosphorylation by tamoxifen may poten-

tiate c-Jun transcriptional activity (42,56)

and could also enhance the agonistic ef-

fects of tamoxifen at AP-1 sites, as pro-

posed by Webb et al. (22). JNK can be

activated by diverse stress stimuli (20,42),

including oxidative stress (21). Oxidative

stress can alter the level of intracellular

glutathione, which can be a key regulator

for the induction of JNKs (45). Because

both oxidized and reduced glutathione

levels are markedly decreased in our

tamoxifenR tumors but not in our tamoxi-

fenS tumors, our cumulative data suggest

the possibility that chronic tamoxifen ad-

ministration leads to oxidative stress and

a reduction in glutathione levels followed

by activation of JNK and increased AP-1

activity. The increased AP-1 activity

could then provide the tumor cells with a

sufficient growth stimulus to offset any

growth-inhibitory effects of the antiestro-

gen mediated via the ER pathway. Recent

data demonstrating a substantial increase

in JNK activity in tamoxifen-resistant hu-

man breast tumors (57) further support

this hypothesis.

Although our data show that prolonged

tamoxifen treatment of MCF-7 tumors in

nude mice results in oxidative stress and

increased AP-1 activity, to conclude that

these pathways mediate tamoxifenR

growth, it will be necessary to determine

whether increasing or inhibiting AP-1 ac-

tivity or cellular sensitivity to oxidative

stress will affect the emergence of the

tamoxifenR phenotype. In this context, it

is interesting that overexpression of c-Jun

in MCF-7 cells results in a tamoxifenR

phenotype both in vitro and in vivo (58).

Confirmation of the role of oxidative

stress and AP-1 in the development of

tamoxifenR could provide new strategies

to delay or even to prevent this important

clinical problem.
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