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OPEN

REVIEW

Oxidative stress and calcium dysregulation
by palmitate in type 2 diabetes

Luong Dai Ly1,2,6, Shanhua Xu1,2,6, Seong-Kyung Choi1,6, Chae-Myeong Ha3, Themis Thoudam3,

Seung-Kuy Cha1,2, Andreas Wiederkehr4, Claes B Wollheim5, In-Kyu Lee3 and Kyu-Sang Park1,2

Free fatty acids (FFAs) are important substrates for mitochondrial oxidative metabolism and ATP synthesis but also cause serious

stress to various tissues, contributing to the development of metabolic diseases. CD36 is a major mediator of cellular FFA

uptake. Inside the cell, saturated FFAs are able to induce the production of cytosolic and mitochondrial reactive oxygen species

(ROS), which can be prevented by co-exposure to unsaturated FFAs. There are close connections between oxidative stress and

organellar Ca2+ homeostasis. Highly oxidative conditions induced by palmitate trigger aberrant endoplasmic reticulum (ER) Ca2+

release and thereby deplete ER Ca2+ stores. The resulting ER Ca2+ deficiency impairs chaperones of the protein folding

machinery, leading to the accumulation of misfolded proteins. This ER stress may further aggravate oxidative stress by

augmenting ER ROS production. Secondary to ER Ca2+ release, cytosolic and mitochondrial matrix Ca2+ concentrations can also

be altered. In addition, plasmalemmal ion channels operated by ER Ca2+ depletion mediate persistent Ca2+ influx, further

impairing cytosolic and mitochondrial Ca2+ homeostasis. Mitochondrial Ca2+ overload causes superoxide production and

functional impairment, culminating in apoptosis. This vicious cycle of lipotoxicity occurs in multiple tissues, resulting in β-cell

failure and insulin resistance in target tissues, and further aggravates diabetic complications.
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INTRODUCTION

Free fatty acids (FFAs) are important sources of fuel

required for efficient cellular energy production. FFAs enter

mitochondria via carnitine palmitoyltransferase 1 (CPT1) and

undergo β-oxidation to generate acetyl-CoA, which serves as a

substrate for the Krebs cycle. Fatty acid metabolism generates

reducing equivalents used by the electron transport chain

(ETC) for ATP synthesis.1 Increased β-oxidation attenuates

further mitochondrial FFA uptake through the formation of

malonyl CoA, an inhibitor of CPT1. Excess FFA critically

induces reactive oxygen species (ROS) generation, resulting in

lipotoxicity associated with ER stress, calcium dysregulation,

mitochondrial dysfunction and cell death.

Palmitate, stearate and oleate are the most abundant FFAs,

accounting for 70–80% of total plasma FFAs.2 FFA concentra-

tions in patients with type 2 diabetes are significantly higher

than in healthy subjects.3,4 Compared with normal subjects,

rates of palmitate appearance in plasma are 1.5- and 3-fold

higher in type 2 diabetic individuals during nocturnal and

postprandial states, respectively.4 In the Paris Prospective

Study, increased plasma FFA concentration and decreased

2-h plasma insulin levels are considered to be independent

predictors of type 2 diabetes in subjects with a history of

impaired glucose tolerance. Among impaired glucose tolerance

subjects who develop type 2 diabetes, 78% are in the highest

tertile of fasting FFA concentrations. It has been suggested

that lipotoxicity is associated with uncompensated insulin

secretion in patients with insulin resistance, leading to overt

type 2 diabetes.5

In this review, we summarize the molecular mechanisms

leading to palmitate-induced toxicity in type 2 diabetes,

including sources of ROS generation and Ca2+-mediated

pathogenic changes. These mechanisms show harmful

cross-interactions. Endoplasmic reticulum (ER) Ca2+ release

due to palmitate-induced oxidative stress results in cytosolic

and mitochondrial Ca2+ overload, which may further accelerate

1Department of Physiology, Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Gangwon-Do, Republic of Korea; 2Mitohormesis

Translational Research Center, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea; 3Department of Internal Medicine, Kyungpook

National University Hospital, Daegu, Korea; 4Mitochondrial Function, Nestlé Institute of Health Sciences, Lausanne, Switzerland and 5Department of Cell

Physiology and Metabolism, University of Geneva, Geneva, Switzerland

Correspondence: Professor K-S Park, Department of Physiology, Institute of Lifestyle Medicine, Yonsei University, Wonju College of Medicine, Ilsan-ro 20,

Wonju, Gangwon-Do 26426, Republic of Korea.

E-mail: qsang@yonsei.ac.kr

6These authors contributed equally to this work.

Received 22 July 2016; revised 7 October 2016; accepted 16 October 2016

Experimental & Molecular Medicine (2017) 49, e291; doi:10.1038/emm.2016.157
& 2017 KSBMB. All rights reserved 2092-6413/17

www.nature.com/emm

http://dx.doi.org/10.1038/emm.2016.157
mailto:qsang@yonsei.ac.kr
http://dx.doi.org/10.1038/emm.2016.157
http://www.nature.com/emm


ROS generation from mitochondria and facilitate permeability

transition (PT) pore opening. The activation of store-operated

Ca2+ (SOC) entry triggered by ER Ca2+ depletion augments the

persistent Ca2+ load. The interruption of such vicious cycles of

ROS formation and Ca2+ dysregulation may be a good

therapeutic target for the prevention and treatment of meta-

bolic diseases related to lipotoxicity.

CD36: FATTY ACID TRANSPORTER OR RECEPTOR?

CD36 is an 88-kDa, ditopic, heavily N-linked glycosylated

transmembrane protein that is also known as fatty acid

translocase (FAT).6 CD36 is abundantly expressed in tissues

with a high capacity for fatty acid metabolism (for example,

adipose tissue, cardiac and skeletal muscles).6–8 Other cells

and tissues including liver,9 endothelial cells,10 monocytes,

macrophages,11,12 pancreatic β-cells13 and podocytes14 also

express CD36.

Muscle-specific over-expression of CD36 enhances FFA

uptake and thus decreases plasma triglyceride and fatty acids

levels.15 Conversely, FFA uptake is impaired in CD36 null

mice with high plasma concentrations of cholesterol and

triglyceride.16 CD36 expression is low in normal hepatocytes

and does not have a significant role in FFA uptake.8,9,17–19 The

Pro90Ser CD36 mutation in humans perturbs the FFA uptake

of muscle and adipose tissue, but hepatic uptake is not affected

under suppressed or slightly increased concentrations of

palmitate.18 Consistently, hepatic FFA uptake is not disturbed

in CD36 knockout mice.8 Under a high-fat diet or in hepatic

steatosis, CD36 is highly inducible by activation of nuclear

receptors, including liver X receptor, pregnane X receptor,

peroxisome proliferator-activated receptor γ and the aryl

hydrocarbon receptor.9,17,19 However, controversies arise

concerning the impact of CD36 on fatty liver disease.

Hepatocyte-specific CD36 disruption significantly reduces

hepatic triacylglycerol, diacylglycerol (DAG) and cholesterol

ester content and improves insulin sensitivity when a

high-fat diet is consumed.19 However, liver-specific CD36

overexpression attenuated hepatic steatosis and insulin

resistance in another study with transgenic mice.17,19

In addition to its role in FFA transport, CD36 has an

important role in signal transduction through the activation of

non-receptor tyrosine kinases of the Src family, including Fyn

and Lyn.20,21 The binding of long chain (LC)-FFAs to CD36

stimulates the tyrosine phosphorylation of downstream pro-

teins, inducing pro-inflammatory and atherogenic responses

associated with diabetes, atherosclerosis, thrombosis, and

Alzheimer disease.20 Ligand binding to CD36 also stimulates

phospholipase C (PLC) and, as a consequence, IP3-mediated

ER Ca2+ release. This signaling pathway contributes, for

example, to the sensing of LC-FFA in taste buds.22 In addition,

CD36 stimulates SOC influx. The associated increase in Ca2+

activates Ca2+-dependent phospholipase A2 and prostaglandin

synthesis involved in inflammatory responses.21

Interestingly, CD36 is upregulated in response to high

glucose in insulin-secreting cells and in patients with diabetic

nephropathy. Such regulation of CD36 expression may lead to

the exacerbation of glucolipotoxicity via increased FFA

uptake.23,24 In insulinoma cells, CD36 induction increases the

uptake of FFA, leading to the blunting of the functional

interplay between glucose and lipids in insulin secretion

as a consequence of impaired oxidative metabolism.25 The

disruption of the CD36 gene, however, protects from obesity-

associated steatosis and insulin resistance.26 In diabetic animals,

a lack of CD36 attenuates NADPH oxidase (NOX)-dependent

ROS generation. Moreover, the targeted disruption of CD36 in

macrophages shows protective action against atherosclerosis.27

Therefore, CD36 could be a therapeutic target for the treatment

of metabolic dysfunction worsened by dyslipidemia.

Sulfo-N-succinimidyl derivatives have been developed as

selective inhibitors for CD36.28,29 Preincubation with a CD36

inhibitor prevents saturated FFA-induced ROS production

and cytotoxicity.24,30 Sulfo-N-succinimidyl derivatives also

inhibit oxidized low-density lipoprotein (oxLDL) uptake in

macrophages.21 Recently, Souza et al.31 demonstrated that the

5A peptide antagonizes oxLDL binding to CD36, inhibiting

inflammation and oxidative stress in vascular tissues. The 5A

peptide, through its inhibition of CD36, also reduces

glomerular injury and tubule-interstitial fibrosis in animal

models of chronic kidney disease.31

OXIDATIVE STRESS INDUCED BY FATTY ACIDS

Reactive oxygen species are essential signaling molecules

that regulate physiological cell functions.32 However, the

overproduction of ROS in pathologic conditions has detri-

mental consequences, causing organellar stress, injury and cell

death.33,34 Palmitate is a potent inducer of ROS in a number of

cell types, including pancreatic β cells,35–37 cardiomyocytes,34,38

vascular smooth muscle cells,39 endothelial cells,40 skeletal

muscle cells,41 glomerular podocytes,30 hepatocytes42 and

adipocytes.43 CD36 appears to be required for fatty acid-

induced ROS production due to the fact that the knockdown

of CD36 prevents palmitate-dependent oxidative stress.23

Increased mitochondrial fatty acid oxidation has been

proposed as the main process leading to ROS generation in

lipotoxicity (Figure 1). The oxidation of palmitate delivers

excess electrons to the ETC, which thus causes superoxide

overproduction.44–46 There are, however, conflicting data in the

literature showing that the acceleration of β-oxidation actually

relieves oxidative stress, and the inhibition of mitochondrial

fatty acid uptake aggravates ROS production.47,48 The

molecular mechanisms for cellular ROS generation by

palmitate, therefore, remain to be fully elucidated.

Palmitate-induced superoxide cannot be fully eliminated by

the addition of the complex III inhibitor antimycin A, revealing

that ROS are also generated through sources other than the

ETC.44 In chondrocytes, a mixture of oleate and palmitate

enhances ROS production and induces cell apoptosis, mainly

by upregulating the protein levels of NOX4.49 Notably, NOX4

is expressed in mitochondria and contributes to mitochondrial

ROS production.50,51 A recent study suggests that the activation

of protein kinase Cα (PKCα) by palmitate increases ROS

production through NOX2 upregulation in cardiomyocytes.38
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An upstream stimulus of PKC is DAG, which is produced

either in a membrane-delimited manner with Gq/11-coupled

PLC or by enzymatic synthesis from phosphatidic acid.

Palmitate increases DAG in a number of cell types.52–54 The

formation of this signaling molecule may be responsible for

palmitate-induced PKC activation and ROS generation

(Figure 1). Moreover, there is crosstalk between mitochondria

and the NADPH oxidase system via feed-forward amplification

of ROS production.55 The involvement of ER oxidoreductin 1

alpha (ERO1α) and disulfide isomerase during ER stress,

as well as ER-mitochondrial Ca2+ dysregulation in ROS

overproduction, will be discussed later in this review.

Unlike palmitate, oleate is an unsaturated fatty acid with a cis

double bond at position 9. Oleate may stimulate ROS genera-

tion but may also protect from oxidative stress. Oleate has been

reported to increase intracellular H2O2 production in rat

smooth muscle cells,56 pancreatic β-cells,57 and human hepa-

toma HepG2 cells.58 Other studies, however, reported no effect

of oleate on ROS generation in smooth muscle cells from the

human coronary artery59 or Chang liver cells.60 Oleate is even

able to attenuate or abolish palmitate-induced ROS synthesis

when the two fatty acids are used in combination.30,61 Despite

apparently conflicting data, there is some convincing evidence

that oleate does not increase mitochondrial ROS level when

employing a technique specifically detecting mitochondrial

ROS.38,61 Reduced ROS generation in the presence of oleate

is correlated with a protective effect of unsaturated FFAs on ER

stress and cytotoxicity.

PALMITATE INDUCES ER STRESS

Approximately one-third of all newly synthesized proteins are

imported into the ER.62 Proteins trafficking through the ER

undergo post-translational processing modifications, including

glycosylation and chaperone-assisted protein folding. The

oxidative folding process, especially the generation of disulfide

bonds, generates a large amount of ROS.63 Therefore, redox

homeostasis is vital to maintain ER folding capacity. Palmitate-

induced ROS formation impairs ER redox status and leads to

the accumulation of misfolded or unfolded proteins.64,65 The

associated excess workload beyond the protein folding capacity

of the ER activates the unfolded protein response in an attempt

to reestablish normal ER function.66 Unfolded protein response

-dependent signaling is initiated by three ER transmembrane

proteins: inositol-requiring protein 1α (IRE1α), protein kinase

RNA-like endoplasmic reticulum kinase (PERK) and activating

transcription factor 6 (ATF6). These stress sensors normally

bind to a luminal ER chaperone called the binding immuno-

globulin protein (BiP or GRP78). BiP has a high affinity

for unfolded proteins. As unfolded proteins accumulate in the

ER lumen, BiPs detach from the stress sensors activating

downstream signaling, leading to three main outcomes:

Figure 1 Palmitate induces ROS overproduction. (1) Increased β-oxidation, (2) DAG-PKC-NOX, (3) CHOP-ERO1α and PDI under ER stress.

ROS produced by palmitate triggers PLC activation, ER Ca2+ release, ER stress and mitochondrial dysfunction, which, in turn, aggravate

ROS generation. CHOP, CCAAT-enhancer-binding protein homologous protein; DAG, diacylglycerol; ERO1α, ER oxidoreductin 1 alpha;

NOX, NADPH oxidase; PDI, protein disulfide isomerase; PKC, protein kinase C; PLC, phospholipase C; ROS, reactive oxygen species.
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(1) the overall attenuation of translation, with the simultaneous

(2) promotion of the translation of ER chaperones and

(3) the restoration of the ER-associated degradation (ERAD)

system.67,68 If the stress is too severe to be resolved by the

unfolded protein response, the cell triggers a death program to

be eliminated.

The condensation of palmitoyl-CoA, the activated form of

palmitate and serine, is the first step in the biosynthesis of

ceramide, which is catalyzed by serine palmitoyltransferase.

Ceramide activates protein phosphatase 2A and PKC, both of

which can inhibit Akt activation, leading to insulin resistance in

skeletal muscle and adipose tissue.69,70 This pathogenic process

activates pro-apoptotic signaling and cytochrome c release from

mitochondrial inter-membrane space.71 Ceramide also inhibits

mitochondrial beta-oxidation, which aggravates palmitate-

induced lipotoxicity.72 Intriguingly, ceramide induces the loss

of the ER calcium pool and ER stress. The inhibition of

the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) by

ceramide has been suggested as the main mechanism of ER

calcium depletion.73

Unlike palmitate, oleate does not cause a significant ER stress

response.30,38,61 Moreover, oleate prevents palmitate-induced

ER stress, c-Jun N-terminal kinase (JNK) activation and cell

death,74,75 all of which are consistent with reduced ROS

generation. A key difference between the two fatty acids is

that oleate, but not palmitate, activates diacylglycerol acyl

transferase (DGAT). The stimulation of DGAT lessens DAG

accumulation by converting it to triacylglycerol.76–78 Using
3H-labeled palmitate, it was shown that oleate attenuates

palmitate-induced DAG formation and instead leads to the

preferential accumulation of triacylglycerol.79 Oleate promotes

the mitochondrial oxidation of palmitate by increasing CPT1

expression. This mechanism contributes to diminished total

palmitate and palmitate-derived toxic metabolites.78

The ER stress response could be a therapeutic target to

prevent palmitate-induced lipotoxicity. There have been

attempts to tackle diseases of protein misfolding, such as cystic

fibrosis, α1 antitrypsin deficiency, Alzheimer disease and type

2 diabetes, using the chemical chaperone 4-phenylbutyric

acid.80–83 Taurine-conjugated ursodeoxycholic acid (TUDCA)

has also been tested as a chaperone to protect hepatocytes from

palmitate-induced ER stress and apoptosis.84 Salubrinal,

a selective chemical inhibitor of eIF2α phosphatase, was

introduced to prevent ER stress.85 Further studies revealed,

however, that salubrinal treatment shows deleterious effects in

pancreatic β-cells and other cell types.86,87

Several studies have demonstrated that knockdown of ER

stress proteins (for example, CCAAT-enhancer-binding protein

Figure 2 Palmitate disturbs intracellular Ca2+ homeostasis. ROS activate IP3R and RYR, which release Ca2+ from the ER. The deprivation

of ER Ca2+ leads to ER stress and CHOP upregulation. Ca2+ is transported into mitochondria through a specialized structure composed of

IP3R, VDAC, MCU and GRP75. Excessive Ca2+ in mitochondria leads to cytochrome c release. SOC entry triggered by ER Ca2+ depletion

elicits the persistent influx of Ca2+ into cytosol and mitochondria. High intracellular calcium activates calpain signaling. Cytochrome c,

CHOP and calpain all provoke caspase activation and cell death. CHOP, CCAAT-enhancer-binding protein homologous protein; GRP75,

75 kDa glucose-regulated protein; MCU, mitochondrial Ca2+ uniporter; ROS, reactive oxygen species; SOC, store-operated Ca2+; VDAC,

voltage-dependent anion channel.
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homologous protein (CHOP)) has protective effects on

palmitate-induced apoptosis in insulin-secreting cells,68,88

podocytes75 and other cell types.84,89 However, CHOP

knockout mice suffer from steatohepatitis and fibrosis due to

the pro-inflammatory actions of CHOP-deleted macrophages

in the liver. Therefore, more research is required to find better

interventions to prevent palmitate-induced ER stress without

serious adverse events.

ER CALCIUM DEPLETION BY PALMITATE

Luminal ER Ca2+ concentration is particularly important for

protein folding. High levels of Ca2+ in the ER lumen

(4400 μM) are required for interactions among ER chaperones

and between chaperones and unfolded proteins.66 SERCA

maintains high ER Ca2+ concentrations. A chronic reduction

of ER Ca2+ stores elicits the accumulation of unfolded or

misfolded proteins and initiates an ER stress response

(Figure 2).66,90 Exposure to thapsigargin, an inhibitor of

SERCA, is applied to induce ER stress experimentally by

depleting the ER Ca2+ stores. Palmitate-induced ER stress is

also associated with a sustained reduction of the ER Ca2+ pool,

which has been demonstrated directly through cytosolic and

ER Ca2+ measurements.30,68,88,91 ER Ca2+ loss caused by FFA

triggers the unfolded protein response to rescue cells from

misfolded protein overload or programmed cell death.92

ER proteome analysis in the liver of ob/ob mice shows a

fundamental shift in ER function in obesity from protein

synthesis to lipid synthesis and metabolism.93 One important

factor inducing ER calcium depletion in obesity is the

increased phosphatidylcholine/phosphatidylethanolamine ratio,

which disrupts ER calcium refilling capacity by inhibiting

SERCA activity. This regulation did not occur at the level of

expression, as the SERCA protein was slightly more abundant

in ob/ob mice compared to lean mice. The suppression of

phosphatidylcholine synthesis from phosphatidylethanolamine

normalized the phosphatidylcholine / phosphatidylethanola-

mine ratio, protected against ER stress and improved systemic

glucose homeostasis.

The accumulation of misfolded proteins causes ROS

generation from the oxidative folding machineries in the ER

and mitochondria.94 Defective disulfide bond formation

depletes glutathione in the ER and produces oxygen radicals

via ERO1α and protein disulfide isomerase.63 Intriguingly, ROS

produced by ERO1α activates type 1 IP3 receptors (IP3R) and

stimulates ER Ca2+ release.95 Consequent ER Ca2+ loss further

deteriorates the protein-folding process and augments ROS

generation. Furthermore, prolonged ER stress increases CHOP

expression, which upregulates ERO1α, causing additional

oxidative stress. This positive feedback mechanism amplifies

oxidation-triggered IP3R activation and ER Ca2+ release

(Figure 1). Blocking this vicious cycle between ER ROS

formation and ER Ca2+ release could be a pertinent therapeutic

strategy. In support of this approach, we observed that

palmitate-induced ER Ca2+ loss was prevented by both ROS

scavengers or the inhibition of IP3 generation.
30

It is noteworthy that H2O2-mediated oxidative stress can

activate PLCγ and generate IP3 and DAG in astrocytes and lung

endothelial cells.96,97 Consistent with these findings, PLC

activation was observed in podocytes treated with either

palmitate or H2O2. Pretreatment with a PLC inhibitor

attenuated palmitate-induced ER Ca2+ loss, suggesting that

IP3 generation from phosphatidylinositol 4,5-bisphosphate

(PIP2) contributes to ER Ca2+ release via the IP3R.
30

In addition, DAG, the other signaling molecule produced by

PLC activity, may also participate in palmitate-dependent ER

Ca2+ loss. This hypothesis was supported by experimental

evidence showing that palmitate-induced ER Ca2+ depletion

and ER stress were surprisingly augmented by treatment with a

DAG kinase blocker, leading to DAG accumulation.30 DAG

accumulation activates PKCδ.74 PKC activity upregulates NOX

(Figure 1), and more ROS are thus generated, as discussed

earlier, leading to further ER Ca2+ loss. The inhibition of PKC

blunted the effect of palmitate on ER Ca2+, suggesting a critical

pathogenic role for DAG-mediated PKC activation.30

We propose a synergistic stimulation of Ca2+ release from

the ER by IP3 and DAG, although further detailed studies are

required to substantiate our working model.

PALMITATE DISTURBS INTRACELLULAR CALCIUM

HOMEOSTASIS

Plasma membrane Ca2+ ATPase (PMCA) and SERCA establish

1000- to 10 000-fold change gradients of Ca2+ concentrations

across the plasma membrane and the ER membrane.90

Therefore, inappropriate and uncontrolled cytosolic Ca2+

increases that result from Ca2+ influx from the extracellular

space or release from the ER are a burden for the cell as it tries

to maintain intracellular Ca2+ homeostasis. Ca2+ stress may

initiate pathogenic processes such as calpain-mediated cell

death. In β-cells, for instance, it was observed that palmitate-

induced ER Ca2+ release activates the calcium-dependent

pro-apoptotic protease calpain-2.92

Ca2+ release from the ER participates in cell death

mechanisms. The luminal ER Ca2+ level is an important factor

determining susceptibility to apoptosis triggered by different

kinds of proapoptotic stimuli, including ceramides and

arachidonic acid.98,99 Recent discoveries support these

observations by revealing a role for ER-mitochondrial contacts,

known as the mitochondria-associated ER membrane (MAM)

in apoptosis (Figure 2). MAMs are specialized sub-

compartments of the ER where the distance between the ER

and the mitochondrial membranes is o25 nm.100 MAMs have

been reported as either larger or tighter in diabetic mice on a

high-fat diet.101,102 The physical contact points between the ER

and mitochondria are enriched for specific membrane proteins

such as the IP3 receptor, the voltage-dependent anion channel

and the mitochondrial Ca2+ uniporter (MCU). Additional

adaptor proteins, including GRP75, are also required to

establish high capacity Ca2+ transfer from the ER to the

mitochondria.103 The increased density of MAMs in the cells

of animals fed a high-fat diet may aggravate ER Ca2+ depletion
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and mitochondrial Ca2+ overload, although this hypothesis

requires further experimentation.104

The activation of Ca2+ signals via PLC-mediated IP3
generation depletes ER Ca2+ and may thus have a negative

impact on ER function and cell survival.90 To prevent this

pathogenic consequence, there is an innate response to refill

the ER Ca2+ reservoir. In the ER membrane, the stromal

interaction molecule (STIM), a transmembrane protein with

luminal EF hands, senses ER Ca2+ levels. A decrease in ER Ca2+

leads to STIM translocation to the plasma membrane-ER

junctions. In these sub-plasma membrane areas, STIM proteins

oligomerize to form clusters to recruit Orai1, a plasmalemmal

Ca2+ channel. Orai1 mediates SOC entry until ER Ca2+ stores

are refilled, at which point STIM oligomers again become

dispersed. Notably, palmitate-treated cells maintain STIM1

oligomerization, signifying that ER Ca2+ release and depletion

of stores persist.30 Upon extracellular Ca2+ addition, palmitate-

treated cells show strong and sustained increases in cytosolic

Ca2+, whereas there is a negligible influence on Ca2+ influx in

control cells (Figure 2).30 This evidence suggests that ER Ca2+

depletion by palmitate induces sustained SOC entry,

which may raise cytosolic and mitochondrial Ca2+ to an

intolerable level. Low extracellular Ca2+ conditions protect

against palmitate-induced cytotoxicity, suggesting that SOC

contributes to the harmful effects of palmitate.105 It should

be noted that Ca2+ influx via SOC entry is essential

for physiological process such as immune cell activation.

Moreover, there have been no reports of a truly selective

SOC inhibitor until now. Nevertheless, we suggest that the

prevention of sustained SOC activation could be a candidate

for therapeutic targets to prevent lipotoxicity.

MITOCHONDRIAL DYSFUNCTION BY PALMITATE

Mitochondria have an essential role in energy metabolism,

biosynthetic processes, Ca2+ homeostasis and the integration of

apoptotic signals.106,107 Ca2+ in the mitochondrial matrix

and extramitochondrial locations modulates mitochondrial

functions, including intermediary metabolism and ATP

synthesis. Mitochondrial Ca2+ activates pyruvate dehydrogen-

ase, Krebs cycle activity, mitochondrial transporters, and ATP

synthase.108–110 MCU is the main molecule responsible for

mitochondrial Ca2+ uptake and the activation of mitochondrial

metabolism.111,112 Unexpectedly, no obvious phenotype was

initially observed in mice lacking MCU.113 In animals with a

cardiac muscle-specific deletion, however, MCU deficiency

induces defects in acute metabolic stimulation and protects

against ischemia-reperfusion injury.114 Local increases in cyto-

solic Ca2+ arrest the movement of mitochondria, allowing the

organelle to efficiently take up and sequester Ca2+ into its

matrix to stimulate mitochondrial energetics.115 Excess

mitochondrial Ca2+ uptake, in contrast, induces mitochondrial

permeability transition pore opening, followed by cytochrome c

release and apoptotic cell death (Figure 2).116

Accumulating evidence suggests that human subjects with

obesity or insulin resistance exhibit reduced oxygen consump-

tion rates, decreased expression of mitochondrial proteins, and

impaired ATP synthesis.117,118 Mitochondrial dysfunction

decreases β-oxidation and may elevate plasma FFA concentra-

tion, thereby aggravating lipotoxicity. The supplementation of

tricarboxylic acid cycle substrates to facilitate mitochondrial

FFA metabolism rescues lipotoxicity in insulin-secreting

cells.47,119 However, excessive FFA in mitochondria stimulates

superoxide generation from the ETC, leading to cytotoxicity.44

Mitochondria are dynamic organelles that undergo

continuous fusion and fission.120 During this process,

dysfunctional mitochondria are separated and degraded by

mitophagy, which acts as a quality control mechanism.121

Palmitate induces mitochondrial depolarization, morpho-

dynamic fragmentation and impaired ATP synthesis.30

Furthermore, palmitate suppresses autophagic activity, which

may increase the proportion of dysfunctional mitochondria.

Defective fission allows mitochondria to become more

elongated but also more susceptible to glucolipotoxicity.121,122

The deterioration of mitochondrial function induces PT pore

opening followed by caspase activation and apoptosis. The

major known stimuli for PT pore opening are oxidative stress

and matrix Ca2+ overload, both of which are observed during

palmitate overload (Figure 2). Mitochondrial antioxidants

effectively protect from palmitate-induced ER Ca2+ depletion,

IP3 generation, ER stress and cell death.30 These findings

demonstrate the important role of mitochondrial ROS in the

palmitate-induced vicious cycle of calcium dysregulation and

apoptosis.

FUNCTIONAL CONSEQUENCES OF LIPOTOXICITY AND

IMPLICATIONS

Pancreatic beta cell failure and diabetes

During the glucose stimulation of pancreatic β-cells, insulin

synthesis represents more than half of total protein synthesis in

this highly specialized cell type. This high synthesis rate of

insulin is further exaggerated in the context of insulin

resistance, when proinsulin production is approximately

1 000 000 molecules per minute.123 Therefore, ER function in

β-cells is prone to be overloaded in individuals on a high-

calorie diet with limited physical activity. Saturated FFAs exert

extra stress on β-cells due to the induction of ROS production.

In an attempt to overcome this stress, β-cells upregulate the

expression of chaperone proteins and reduce the ER workload

as part of the ER stress response. Once a threshold of ER stress

has been reached, palmitate may shift the β-cell response from

physiologic adaptation to a pro-apoptotic program.124

ER stress in β-cells is a critical step in the pathogenesis of

type 2 diabetes (Figure 3). Both high glucose and lipid

stimulation produce mitochondrial ROS synergistically.

Compared to other cell types, β-cells are highly susceptible to

oxidative stress. High glucose and/or palmitate have been

reported to decrease SERCA2b expression and ER Ca2+ level

in β-cells.92 Inflammatory cytokines, acting as pathogenic

molecules in type 1 diabetes, also attenuate SERCA2b expres-

sion in β-cells.125 Therefore, ER stress caused by insufficient ER

Ca2+ content may be an important factor in the development

of diabetes. In addition, the deletion or inactivation of WFS1,
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which is mutated in Wolfram syndrome, results in reduced ER

Ca2+ content and increases ER stress in β-cells.92,126 Genome

studies revealed a link between WFS1 polymorphism and a

high risk of type 2 diabetes,127 which may be due to the

reported ER stress in β-cells. Palmitate, but not oleate, has been

shown to trigger NF-κB activation and ER stress, which may be

one mechanism to induce interleukin 1β (IL-1β) and

downstream chemokines and cytokines, culminating in mild

inflammation in human islets, although this does not directly

cause β-cell dysfunction and apoptosis.128

Mitochondrial function in β-cells is particularly important

because glucose/lipid/amino acid metabolism and insulin

secretion depend on mitochondrial function.129 It has been

demonstrated that mitochondrial morphodynamics protect

β-cells from lipotoxicity.130 The inhibition of mitochondrial

fission and/or defective mitophagy augments sensitivity to

glucolipotoxicity.122 Mitochondrial Ca2+ is a crucial regulator

of mitochondrial energy metabolism,108 as mentioned earlier.

Therefore, Ca2+ transport from the ER to the mitochondria can

affect mitochondrial metabolism as well as β-cell death. The

pathogenic role of the ER-mitochondrial Ca2+ connection in

mitochondrial dysfunction and β-cell failure by palmitate

deserves further investigation.

Insulin resistance in target tissues

It is well-known that palmitate induces insulin resistance by

disrupting intracellular insulin signaling in diverse cell types

such as hepatocytes, cardiac and skeletal muscle cells,

adipocytes, podocytes, hypothalamic neurons, and pancreatic

α-cells.42,131–136 Palmitate exposure activates JNK, which

phosphorylates IRS-1 on serine307 and decreases Akt

phosphorylation, leading to the impairment of downstream

signaling. Intriguingly, neuronal cells are more prone to the

cytotoxic effects of palmitate. Compared to other cell types,

neuronal cells are sensitive to lower doses and shorter exposure

time.135 Oleate, again, prevents palmitate-induced insulin

resistance in many cases.137–139

Palmitate-induced oxidative stress is the main mechanism

disrupting insulin signaling (Figure 3). As discussed above,

ROS are derived from multiple sources: mitochondrial ETC,

DAG-PKC-NOX and CHOP-ERO1α. ROS can activate not

only JNK but also other serine kinases, such as p38 MAPK,

GSK-3β and IKKβ in skeletal muscle.140 In HepG2 cells treated

with palmitate, p38 MAPK and JNK activities are significantly

attenuated by siRNA-mediated NOX3 silencing.42 However, in

another hepatic cell line, ROS-induced JNK activation was not

completely reversed, even when efficiently suppressing ROS

levels using antioxidants.45 The findings suggest that other

mechanisms are also involved in palmitate-induced insulin

resistance. One possible explanation is the intracellular

accumulation of ceramide, which may activate JNK via mixed

lineage kinase-3.141,142

Ca2+ is another modulator of insulin signaling, the mole-

cular mechanisms of which are still poorly understood.143

Ca2+/calmodulin was suggested to have an important role in

the insulin-mediated translocation and exocytosis of glucose

transporter type 4 (GLUT4) vesicles in 3T3-L1 adipocytes.

A more recent study found that the Ca2+ chelator BAPTA144

operates through the depolarization of microtubules rather

than Ca2+ chelation.145 In L6 myotubes, ER Ca2+ release

through both ryanodine receptor 1 (RYR1) and IP3R promotes

insulin-dependent GLUT4 trafficking to the plasma

membrane.146 Palmitate impairs mitochondrial calcium

retention capacity and impairs insulin-stimulated GLUT4

translocation in L6 myotubes, which was fully restored by

adding an inhibitor of PT pore opening.147 Finally, several

studies have suggested that either enlarged or insufficient

MAMs fail to maintain normal ER-mitochondrial Ca2+

homeostasis. Altered MAM structures may, therefore, indirectly

affect the translocation and fusion of GLUT4 vesicles

with the plasma membrane.148 Does palmitate-induced

ER-mitochondrial Ca2+ dysregulation affect GLUT4 trafficking

in a ROS-independent manner? Does palmitate affect insulin-

dependent and/or contraction-dependent GLUT4 translocation

Figure 3 Proposed mechanism of lipotoxicity in type 2 diabetes. Oxidative stress and calcium dysregulation form a vicious cycle that

disturbs critical organelle function. Lipotoxicity resulting from ER stress and mitochondrial dysfunction contributes to pancreatic β-cell

failure, insulin resistance in target tissues and diabetic complications.

ROS and Ca2+ in lipotoxicity
LD Ly et al

7

Experimental & Molecular Medicine



in muscle? More studies are needed to address such potential

Ca2+-mediated mechanisms of lipotoxicity.

Diabetic complications

Chronic diabetic complications have traditionally been

attributed to long-term exposure to high glucose. The four

classical pathways of hyperglycemia-induced complications

include (1) increased polyol pathway flux, (2) increased

intracellular formation of advanced glycation end products

(AGE), (3) the activation of PKC and (4) the stimulation of the

hexosamine pathway. Those pathways are connected by the fact

that intracellular high glucose induces elevated mitochondrial

ROS production, which leads to a decrease in GAPDH activity.

As a result, upstream glycolytic metabolites are diverted into

the pathogenic pathways described above.149 In addition, high

glucose augments the expression and activity of members of

the NOX family.150–152 A detailed description of this crosstalk

between NOX and mitochondrial ROS generation has been

described elsewhere.55,153

Intriguingly, accumulating evidence supports a synergistic

effect between palmitate and high glucose leading to diabetic

complications. Such findings have led to the concept of

glucolipotoxicity. Oxidative stress may be a common mechan-

ism explaining the harmful synergistic effects of the two

nutrients. In bovine and human retinal endothelial cells,

NOX2-derived ROS overproduction was significantly higher

when the cells were exposed to palmitate and high glucose

rather than high glucose alone. Consequently, mitochondrial

DNA damage is observed as early as 48 h when bovine retinal

cells are exposed to palmitate and high glucose. Similar

mtDNA damage was only observed after 96 h when high

glucose was added alone.154 The separate exposure of HUVEC

cells to either palmitate or high glucose increases ROS

production, but the highest ROS levels were observed upon

treatment with both.155 These experiments clearly demonstrate

that glucolipotoxicity, which was originally proposed to affect

β-cells, may be similarly harmful to other tissues.

In diabetic nephropathy, functional and structural alterations

in podocytes accompany disease progression. In this cell type,

palmitate reduces tyrosine phosphorylation following insulin

stimulation.156 This defect downstream of insulin receptor

signaling also impairs GLUT4 translocation in podocytes.

Palmitate-induced intracellular calcium dysregulation also

participates in diabetic nephropathy. In podocytes, elevated

cytosolic Ca2+ concentrations induce actin remodeling, which

increases albumin permeability. These structural alterations in

podocytes also have a critical role in the pathogenesis of

proteinuric glomerular disease.30

Furthermore, elevated palmitate may also exert harmful

effects in periodontitis linked to type 2 diabetes. In mice fed

a high-fat diet, which serve as a model of type 2 diabetes, CD36

is overexpressed in gingival fibroblasts. In human gingival

fibroblasts, palmitate also provokes mRNA expression of pro-

inflammatory cytokines and chemokines, as well as IL-6, IL-8

and CXCL1.157 This evidence supports the hypothesis that

palmitate exposure may worsen diabetic complications.

CONCLUSION

The accumulation of palmitate and derived metabolites, e.g.,

DAG, induces oxidative stress and ER Ca2+ depletion, leading

to ER stress and mitochondrial dysfunction. Excessive ER Ca2+

release and mitochondrial Ca2+ overload further amplify

oxidative stress. This close interaction between oxidative stress

and Ca2+ dysregulation results in a vicious cycle of increasingly

impaired cell function and death. The activation of

stores-operated Ca2+ entry may chronically disturb cytosolic

and organellar Ca2+ homeostasis; this hypothesis will require

further investigation. The disruption of Ca2+ regulation

by oxidative stress also contributes to insulin resistance.

These hypotheses provide an integrated mechanistic view of

lipotoxicity, which has pivotal roles during the progress of

diabetes and its complications. In this review, we have

suggested future therapeutic approaches to type 2 diabetes via

interference with the basic molecular mechanisms overstimu-

lated during lipotoxicity.
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