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Abstract

Until now, it is not known how the antioxidant and digestive enzymatic machinery of fish

early life stages will change with the combined effects of future ocean acidification and

warming. Here we show that high pCO2 (~1600 μatm) significantly decreased metabolic

rates (up to 27.4 %) of flatfish larvae, Solea senegalensis, at both present (18 °C) and

warmer temperatures (+4 °C). Moreover, both warming and hypercapnia increased the heat

shock response and the activity of antioxidant enzymes, namely catalase (CAT) and gluta-

thione S-transferase (GST), mainly in post-metamorphic larvae (30 dph). The lack of

changes in the activity of CAT and GST of pre-metamorphic larvae (10 dph) seems to indi-

cate that earlier stages lack a fully-developed antioxidant defense system. Nevertheless,

the heat shock and antioxidant responses of post-metamorphic larvae were not enough to

avoid the peroxidative damage, which was greatly increased under future environmental

conditions. Digestive enzymatic activity of S. senegalensis larvae was also affected by

future predictions. Hypercapnic conditions led to a decrease in the activity of digestive

enzymes, both pancreatic (up to 26.1 % for trypsin and 74.5 % for amylase) and intestinal

enzymes (up to 36.1 % for alkaline phosphatase) in post-metamorphic larvae. Moreover,

the impact of ocean acidification and warming on some of these physiological and biochem-

ical variables (namely, lower OCR and higher HSP and MDA levels) were translated into lar-

vae performance, being significantly correlated with decreased larval growth and survival or

increased incidence of skeletal deformities. The increased vulnerability of flatfish early life

stages under future ocean conditions is expected to potentially determine recruitment and

population dynamics in marine ecosystems.
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Introduction

Ocean acidification and warming are among the most relevant environmental challenges that

marine organisms will face in tomorrow’s oceans [1–4]. The continuous absorption of atmo-

spheric CO2 by the oceans is expected to change seawater chemistry, with forecasts estimating

a drop of 0.3–0.4 units in ocean pH by the year 2100. At the same time, the oceans are becom-

ing warmer, and will continue as global surface temperature is expected to increase 1.1–6.4°C

by the end of the century [5]. These environmental stressors may drive organisms outside their

tolerance boundaries, compromising the overall fitness and survival of local populations.

Many organisms may cope with such climate-related changes, within limits, by adjusting

mechanisms across levels of biological organization [4], including physiological protective

mechanisms such as integrated heat shock and oxidative stress responses. When exposed to

environmental fluctuations, organisms may be induced to produce heat shock proteins (HSP) to

repair, refold, and eliminate damaged or denatured proteins [6]. Additionally, environmental

stress may also induce the production of reactive oxygen species (ROS) [7]. The increase in ROS

production may affect cellular integrity [8], and can injure cellular mechanisms by lipid peroxi-

dation, one of the most frequent cellular injury processes where ROS react with membrane-

associated lipids [7]. ROS production in marine organisms is controlled by efficient antioxidant

capacity, characterized by a set of antioxidant enzymes which can together detoxify ROS [9].

When the above-mentioned protective mechanisms fail after exposure to environmental

stress, organisms might limit the energy available, and growth, motility, ingestion, and diges-

tion may suffer several functional disturbances [10]. In what concerns digestion, a correct mat-

uration of the digestive system is essential to transform macronutrients from food into a form

that can be easily digested, absorbed and assimilated, in order to supply dietary nutrients

required for normal growth and development [11]. The digestive enzymes (pancreatic and

brush border intestinal enzymes) are part of the metabolic regulatory mechanisms [10] and are

thus widely used in studies as markers of fish larval development and as indicators of fish con-

dition and physiological state [11–14]. The normal maturation of the enterocytes in developing

fish larvae is characterized by a decrease of pancreatic enzyme activity (namely, trypsin and

amylase), and by a marked increase in intestinal brush border membrane enzyme activity

(such as alkaline phosphatase—ALP). This efficient brush border membrane digestion is repre-

sentative of an adult mode of digestion [15]. A correlation between the major landmark events

in digestive tract differentiation and the ontogenetic development of the digestive enzyme

activities has been described in several fish species [16–19].

The activity of digestive enzymes is expected to be affected by external factors that modify met-

abolic functions, such as temperature and pH [10]. So far, the influence of ocean acidification on

the digestive efficiency and enzymatic activity of marine organisms has been studied on marine

invertebrate organisms [20–22]. The susceptibility of fish species to ocean acidification has

received far less attention, since fish have developed an effective acid-base regulatory mechanism

[23–25]. Nevertheless, the early life stages are expected to be more susceptible to changes in sea-

water pCO2 and more prone to extracellular changes than juvenile and adult fish [24,26]. Indeed,

several morphological, physiological and behavioral disturbances have been observed in fish early

stages [26–34], including the target species of this study, the flatfish Solea senegalensis. In a previ-

ous study, the survival, growth and development of sole larvae showed to be negatively impacted

by ocean warming and acidification [see 29], but the underlying mechanisms remain unknown.

Here we provide a comprehensive set of physiological and biochemical responses of S. sene-

galensis early life stages to ocean warming (+4°C) and acidification (ΔpH = 0.5), which

includes: i) oxygen consumption rates (OCR), ii) heat shock response (HSR; namely HSP70),

iii) antioxidant enzyme activities (GST—glutathione S-transferase, and CAT—catalase), iv)
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lipid peroxidation (MDA—malondialdehyde concentration), and v) digestive enzymatic activi-

ties (trypsin, amylase and ALP). Additionally, a correlation analysis was performed to link

these parameters with the morphological data from our previous work [29].

Materials and Methods

Ethics statement

This study was authorized by the Portuguese National Authority for Animal Health (Direcção-

Geral de Alimentação e Veterinária), and it was performed in strict accordance with the recom-

mendations of the Animal Care and Use Committee of the Faculty of Sciences of the University

of Lisbon.

Egg collection and larval rearing

Eggs of Senegal sole were collected from broodstock fish at IPMA—Estação Piloto de Piscicul-

tura de Olhão (CRIP Sul, Olhão, Portugal) in June 2012, and transferred to the aquaculture

facilities in Laboratório Marítimo da Guia (Cascais, Portugal). Senegal sole larvae were reared

and collected in the same experiment published by Pimentel et al. [29].

After a short (2 h) acclimation period, eggs and larvae were exposed for one month to: i)

18°C—the mean sea surface temperature in summer (sSST) and normocapnia (pCO2 =

~400 μatm), ii) 18°C and hypercapnia (pCO2 = ~1600 μatm; ΔpH = 0.5), iii) 22°C—the future

sSST warming scenario for the western coast of Portugal in 2100 (+ 4°C) and normocapnia,

and iv) 22°C and hypercapnia. This species inhabits the Western Iberian Upwelling Ecosystem,

part of the Canary Current Upwelling System, one of the four major eastern boundary currents

of the world. In these regions, actual pCO2 levels may reach up to 500 μatm [35–37] and are

thus expected to exceed the level of 1000 μatm projected for 2100 [5].

Larvae were reared in twelve recirculating seawater systems (three per treatment). Newly-

hatched larvae were distributed randomly into three 19-L rearing tanks at a density of 70 larvae

L-1. Feeding was adjusted according to larval development at each experimental condition. Lar-

vae opened the mouth around 2 dph and started to feed on rotifers, Brachionus plicatilis.

Enriched (AlgaMac-3050) Artemiametanauplii were introduced at 5 dph and their proportion

in the diet was gradually increased, becoming the only prey offered at 8 dph. After larval settle-

ment, frozen metanauplii were also introduced in the tank. Rotifer and Artemia density were

adjusted twice a day to assure optimal prey density.

Temperatures (18.0 ± 0.2 and 22.0 ± 0.2°C) were controlled via Heilea chillers (Guangdong,

China). The pH was automatically adjusted in each tank via a Profilux (Kaiserslautern, Ger-

many) connected to a pH probe (WaterTech pH 201S) and operating a solenoid valve con-

nected to a CO2 tank. The pH of each tank was also measured daily using a portable pH meter

(SevenGo pro SG8, Mettler Toledo), in order to cross-calibrate the pH probes and to adjust the

set points of the systems as required. Average pH values of the control and low pH treatments

were 8.02 ± 0.05 and 7.51 ± 0.05, respectively. The salinity was kept at 35.4 ± 0.4. Ammonia

and nitrite were monitored regularly and maintained within recommended levels.

Seawater carbonate system speciation (see S1 Table) was calculated weekly from total alka-

linity (determined according to Sarazin et al. [38]) and pHmeasurements. Total dissolved inor-

ganic carbon (CT), pCO2, bicarbonate concentration and aragonite saturation were calculated

using the CO2SYS software [39], with dissociation constants fromMehrbach et al. [40] as refit-

ted by Dickson &Millero [41].

Fish larvae were collected at 10 dph (pre-metamorphic stage), 20 dph (intermediate stage—

undergoing metamorphosis) and 30 dph (post-metamorphic stage). Larvae were immediately

placed in liquid nitrogen and then stored at -80°C for posterior biochemical analyses.
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Oxygen consumption rates

Oxygen consumption measurements were determined according to previously established

methods [42,43]. Nine pre-metamorphic (10 dph) and nine post-metamorphic (30 dph) larvae

from each treatment (three per replicate) were individually placed in sealed water-jacketed res-

pirometry chambers (RC300 Respiration cell, Strathkelvin, North Lanarkshire, Scotland) con-

taining 1-μm filtered and UV-irradiated seawater from each treatment condition mixed with

antibiotics (50 mg L-1 streptomycin) to avoid bacterial respiration. Water volumes were

adjusted in relation to animal mass (up to 10 mL) to minimize larval stress. Respiration cham-

bers were immersed in water baths (Lauda, Lauda-Königshofen, Germany) to control tempera-

ture. The respiratory runs occurred after an acclimation period of about 2 h and lasted between

3 to 6 h. Oxygen consumption was also measured in chambers containing just water (blanks)

for correction of possible bacterial respiratory activity. Oxygen concentrations were recorded

with Clark-type O2 electrodes connected to a multi-channel oxygen interface (Model 928,

Strathkelvin, North Lanarkshire, Scotland). At the end of the respirometry trials, the mean

minimum level of oxygen achieved was of 86.8 ± 6.6%.

Heat shock response, antioxidant enzymes and lipid peroxidation

Preparation of tissue extracts. After 10 and 30 days of acclimation to the different climate

change scenarios, whole larvae were pooled from each replicate tank, comprising a total of

three replicates per treatment. Homogenates were prepared using 150 mg wet tissue from each

replicate tank. All samples were homogenized in 250 μL of phosphate buffered saline solution

(PBS, pH 7.3, composed by 0.14 M NaCl, 2.7 mM KCl, 8.1 mM Na2HP04 and 1.47 mM

KH2P04), by using a glass/PTFE Potter Elvehjem tissue grinder (Kartell, Italy). All homoge-

nates were then centrifuged during 20 min at 14000 g at 4°C. HSP, antioxidant enzyme activi-

ties, lipid peroxidation and total protein expression were measured in the supernatant fraction.

All enzyme assays were tested with commercial enzymes obtained from Sigma (Missouri,

USA), and each sample was run in triplicate. The enzyme results were normalized by measur-

ing the total protein content of the samples according to the Bradford method [44].

Heat shock response. HSP70 content (HSC70/HSP70) was assessed by ELISA (Enzyme-

Linked Immunoabsorbent Assay) as previously described by Rosa et al. [43]. Briefly, a total of

5 μL of homogenate supernatant was diluted in 250 μL of PBS, and 50 μL of the diluted sample

was added to 96-well microplates MICROLON600 (Greiner Bio-One GmbH, Germany) and

incubated overnight at 4°C. Microplates were washed on the next day in 0.05% PBS-Tween-20

and 100 μL of blocking solution (1% Bovine Serum Albumin, BSA) was added to each well. For

2 hours, the microplates were incubated at room temperature in darkness. Then, 50 μL of a

solution of 5 μg mL-1 primary antibody anti-HSP70/HSC70 (that detects both 72 and 73 kDa

proteins, which corresponds to the molecular mass of inducible HSP70 and constitutive

HSC70, respectively) was added to each well. Wells were then incubated at 37°C for 90 min.

The non-linked antibodies were removed by washing the microplates, which were then incu-

bated for 90 min at 37°C with 50 μL of the secondary antibody [anti-mouse IgG Fab specific,

ALP conjugate (1 μg mL-1) from Sigma-Aldrich (Germany)]. After another wash, 100 μL of

substrate p-nitrophenyl phosphate tablets (Sigma-Aldrich, Germany) was added to each well

and incubated at room temperature (10 to 30 min). Subsequently, 50 μL of stop solution (3 M

NaOH) was added to each well, and the absorbance was read at 405 nm in a 96-well microplate

reader (BIO-RAD, Benchmark, USA). The amount of HSP70/HSC70 in the samples was then

calculated from a standard curve of absorbance based on serial dilutions (from 0 to 2000 ng

mL-1) of purified HSP70 active protein (Acris, USA). The results were expressed in relation to

the protein content of the samples (ng HSP70/HSC70 mg protein-1).
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Antioxidant enzymes. Glutathione S-transferase: GST activity was determined according

to the procedure described by Rosa et al. [45] and Lopes et al. [46], optimized for a 96-well

microplate. This assay uses 1-chloro-2,4-dinitrobenzene (CDNB) as substrate, which conju-

gates with the thiol group of the glutathione (GSH), causing an increase in absorbance. 180 μL

of substrate solution (composed by 200 mM L-glutathione reduced, Dulbecco's PBS and 100

mM CDNB solution) was added to each well of a 96-well Nunclon microplate (Thermo Scien-

tific Nunc, USA), along with 20 μL of GST standard or sample. Equine liver GST was used as a

positive control to validate the assay. The enzyme activity was determined spectrophotometri-

cally at 340 nm by measuring the formation of the conjugate of GSH and CDNB. The absor-

bance was recorded every minute for 6 min, using a plate reader (BioRad, California, USA).

The increase in absorbance per minute was estimated and the reaction rate at 340 nm was

determined using the CDNB extinction coefficient of 0.0053 εμM (μM−1 cm−1) as follows:

GST activity ¼

DA340=min

0:0053
�

Total volume

Sample volume
� dilution factor:

The results were expressed in relation to the protein content of the samples (nmol min−1

mg−1 protein).

Catalase: The assay for the determination of CAT activity was based on Aebi [47]. In this

assay, CAT activity is assessed by measuring the rate of removal of hydrogen peroxide (H2O2).

The reaction can be followed by a decrease in absorbance as the H2O2 is converted into oxygen

and water. At the end of the assay, H2O2 is consumed and CAT is inactivated. The total reac-

tion volume of 3 mL was composed of 50 mM potassium phosphate buffer (pH 7.0) and 12.1

mMH2O2 as substrate. The reaction started by the addition of the samples into quartz cuvettes

with an optical path length of 10 mm. The consumption of H2O2 [extinction coefficient of 0.04

εmM (mM−1 cm−1)] was monitored at 240 nm and 25°C, once every 15 s for a 180 s incubation

period, using a Helios spectrophotometer (Unicam, UK). Standard CAT activity was measured

using a bovine CAT solution (1523.6 U mL−1) as a positive control for the validation of the

assay. CAT activity was calculated using the following equation:

CAT activity ¼

DA240=min

0:04
�

Total volume

Sample volume
:

The results were expressed in relation to the protein content of the samples (nmol min−1

mg−1 protein).

Lipid peroxidation. Lipid peroxidation was determined by the quantification of malondial-

dehyde (MDA), a specific end-product of the oxidative degradation process of lipids. The thio-

barbituric acid reactive substances (TBARS) assay was used to quantify MDA as described by

Rosa et al. [45]. Homogenates were treated with 8.1% sodium dodecyl sulfate, 20% trichloroace-

tic acid (pH 3.5), thiobarbituric acid and a 15:1 (v/v) mixture of n-butanol and pyridine. In the

TBARS assay, the thiobarbituric acid reacts with the MDA to yield a fluorescent product, which

was detected spectrophotometrically at 532 nm. MDA concentrations were calculated with the

Microplate Manager 4.0 software (BIO-RAD, USA), based on an eight-point calibration curve

(from 0 to 0.3 μMTBARS) using MDA bis (dimethyl acetal; Merck, Switzerland). The results

were expressed in relation to the protein content of the samples (nmol mg−1 protein).

Digestive enzymes

Preparation of tissue extracts. Two different groups of digestive enzymes were assayed: a)

extracellular enzymes (more specifically, the pancreatic enzymes trypsin and amylase), and b)

brush border enzymes linked to cell membranes (more specifically, the intestinal enzyme ALP).

Flatfish Larvae in a Changing Ocean
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Enzyme activities were measured in triplicates (using pooled larvae from each replicate

tank) for each development stage (10, 20 and 30 dph larvae) under the different experimental

conditions. Before homogenization, larvae were dissected in order to separate pancreatic and

intestinal segments, as described by Cahu and Zambonino-Infante [48]. Samples were homoge-

nized using a glass/PTFE Potter Elvehjem tissue grinder (Kartell, Italy) in 30 volumes (v/w) of

ice-cold Tris-HCl (50 mM) and mannitol (2 mM) buffer at pH 7.0. The homogenates were

then divided into two different aliquots of 1.5 mL and processed differently. Aliquots for

assessing pancreatic enzymes were centrifuge at 3300 g (for 3 min) at 4°C, and the supernatants

were removed for enzyme quantification. Intestinal brush border membranes for the determi-

nation of intestinal enzymes were purified according to Crane et al. [49]. Enzyme activities

were expressed as specific enzyme activity, in units per milligram of protein (U mg-1 protein),

and the soluble protein of crude enzyme extracts was quantified by the Bradford's method [44]

using bovine serum albumin as standard.

Trypsin. Trypsin activity was assayed according to Holm et al. [50] using 0.1 MN

α-benzoyl-DL-arginine p-nitroanilide (BAPNA) as substrate in 50 mM Tris-HCl buffer con-

taining 20 mM CaCl2 at pH 8.2. The changes in absorbance were measured at 25°C during 2

min at 407 nm, using a UV-1800 Shimadzu UV spectrophotometer (Japan). One unit of

trypsin activity corresponded to 1 μmol of 4-nitroaniline liberated in 1 min per mL of

extracellular enzymatic extract, based on the extinction coefficient of the substrate [8200 εM

(M-1 cm-1)].

Amylase. Amylase activity was quantified according to Metais [51] at 37°C and measured

using soluble starch-iodine (0.3%) dissolved in Na2HPO4 buffer at pH 7.4 as substrate. Briefly,

50 μL of enzymatic extract was mixed with the substrate (3 g L-1 starch in Na2PO4, pH 7.4) and

incubated for 30 min at 37°C. The reaction was stopped with 20 μL of 1 N HCL. After the addi-

tion of 2 mL of N/3000 iodine solution, the absorbance was read at 580 nm, using a UV-1800

Shimadzu UV spectrophotometer (Japan). One unit of α-amylase activity was defined as 1 mg

of starch hydrolyzed per min and per mL of extracellular enzymatic extract at 37°C.

Alkaline phosphatase. ALP was quantified according to the procedure described by Bes-

sey [52] and Hausamen [53] using 5 mM p-nitrophenyl phosphate (PNPP) as substrate in 30

mMNa2CO
3-H2O and 1 mMMgCl2-6H2O buffer at pH 9.8. The enzymatic extract was mixed

with the substrate solution and the change in absorbance was measured at 37°C during 2 min

at 407 nm, using a UV-1800 Shimadzu UV spectrophotometer (Japan). One unit of ALP activ-

ity corresponded to 1 μmol of the substrate hydrolyzed in 1 min per mL of the brush border

enzymatic extract (extinction coefficient of 18300 εM, M-1 cm-1).

Statistical analyses

ANOVA was used to test whether significant differences existed between replicates of each

experimental treatment. As no differences were found between replicates, all the samples from

the same treatment were pooled and analyzed together. Three-way ANOVAs and Tukey HSD

tests were then used to evaluate the effect of temperature, pCO2 and developmental stage on

the metabolism (OCR), HSR (HSP70), antioxidant (GST and CAT), lipid peroxidation (MDA)

and digestive enzyme (trypsin, amylase and ALP) activities.

Pearson’s correlation coefficients were used to analyze potential relationships between the

variables analyzed in this study (OCR, HSR, lipid peroxidation, antioxidant and digestive enzy-

matic activities), and also with those obtained in our previous study with this species (namely

survival, specific growth rates and skeletal deformities; see [29]).

All statistical analyses were performed for a significance level of 0.05, using Statistica 12.0

software (StatSoft Inc., Tulsa, USA).
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Results

Oxygen consumption rates

The effect of warming and high pCO2 on the metabolic rates of S. senegalensis larvae is pre-

sented in Fig 1A (see also S2 Table). OCR were significantly affected by temperature and pCO2

(p<0.05), but not by developmental stage (p>0.05). Sole larvae displayed significantly higher

OCR under normocapnia (23.11 μmol O2 h
-1 g-1 at present-day temperature and 34.85 μmol

O2 h
-1 g-1 at the future warming scenario). At higher pCO2, OCR decreased significantly to

16.82 and 25.28 μmol O2 h
-1 g-1 (at present-day temperature and future warming scenario,

respectively). No significant interaction was found between the three factors (p>0.05).

Fig 1. Impact of ocean acidification and warming on the metabolism, heat shock response and lipid
peroxidation of Solea senegalensis larvae. A) Oxygen consumption rates (OCR),B) heat shock protein 70
(HSP70) concentrations, andC) malondialdehyde (MDA) levels in 10 and 30 dph larvae at different
temperature and pH scenarios. Values are given as means + SD. Different letters (lower case for 10 dph
larvae; capital letters for 30 dph) represent significant differences between the different climate scenarios
(p<0.05). Asterisks represent significant differences between 10 and 30 dph larvae for the same treatment
(p<0.05).

doi:10.1371/journal.pone.0134082.g001
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Heat shock response

The HSR of sole larvae was significantly (p<0.05) affected by temperature and pCO2, and also

by developmental stage (Fig 1B; see also S2 Table). Additionally, a significant interaction was

observed between these three factors (p<0.05). The HSR (inducible HSP70) increased under

hypercapnia in both pre- and post-metamorphic larval stages, especially under the warming

treatment. In general, post-metamorphic larvae presented a stronger HSR than pre-metamor-

phic larvae (16.7 to 92.9 percentage points higher), except under the warming and high pCO2

scenario, where HSR decreased 17.9 percentage points and the differences between stages were

not statistically significant.

Antioxidant enzymes

The impact of high pCO2 and environmental warming on antioxidant enzymes (CAT and

GST) of S. senegalensis larvae is shown in Fig 2 (see also S2 Table).

CAT activity (Fig 2A) was significantly affected by developmental stage (p<0.05), but not

by temperature and pCO2 or by the interaction between factors (p>0.05). The highest value of

CAT activity (6.10 ± 0.95 nmol min-1 mg-1 protein) was observed in the post-metamorphic lar-

vae exposed to warming and high pCO2. Pre-metamorphic larvae showed always lower values

than post-metamorphic larvae, and no significant variation (p>0.05) was observed among

treatments (between 2.42 ± 0.67 and 2.81 ± 1.43 nmol min-1 mg-1 protein).

Fig 2. Impact of ocean acidification and warming on the antioxidant response of Solea senegalensis

larvae. A) catalase (CAT), and B) glutathione S-transferase (GST) activities of 10 and 30 dph larvae at
different temperature and pH scenarios. Values are given as means + SD. Different letters (lower case for 10
dph larvae; capital letters for 30 dph) represent significant differences between the different climate scenarios
(p<0.05). Asterisks represent significant differences between 10 and 30 dph larvae for the same treatment
(p<0.05).

doi:10.1371/journal.pone.0134082.g002
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GST activity (Fig 2B) was significantly affected by temperature and developmental stage, as

well as by the interactions between factors (p<0.05). GST activity in pre-metamorphic larvae

was also lower than in post-metamorphic larvae (p<0.05), and similar in all treatments

(p>0.05). In contrast, the GST activity of post-metamorphic larvae increased significantly with

temperature (p<0.05). The highest value (12.64 ± 1.51 nmol min-1 mg-1 protein) was observed

under the combined effect of warming and high pCO2.

Lipid peroxidation

Lipid peroxidation (based on MDA levels) was also significantly affected by temperature,

pCO2, developmental stage, and the interaction between these three factors (p<0.05) (Fig 1C,

see also S2 Table). Lipid peroxidation increased significantly with warming in both develop-

mental stages. The lowest value (0.039 ± 0.007 nmol mg-1 protein) was found in pre-metamor-

phic larvae exposed to the present-day conditions. The effect of ocean acidification on MDA

levels was only significantly noted under the warming scenario. In fact, the highest MDA values

(0.26 ± 0.02 and 0.25 ± 0.03 nmol mg-1 protein in pre- and post-metamorphic larvae, respec-

tively) were found when larvae were exposed to the combined effects of higher temperature

and pCO2. MDA buildup was generally more pronounced in post-metamorphic larvae, except

under the future combined scenario.

Digestive enzymes

The effect of warming and high pCO2 on digestive enzymes of sole larvae is presented in Figs

3–5 (see also S2 Table). Both extracellular enzymes (trypsin and amylase) increased throughout

development, while the brush border enzyme ALP significantly increased.

Trypsin activity (Fig 3) was significantly affected by temperature, pCO2 and developmental

stage, as well as by the interactions between factors (p<0.05). Trypsin activity increased with

temperature only in 10 dph larvae. Regardless of temperature, trypsin activity decreased signifi-

cantly with hypercapnia in both 10 and 20 dph larvae (p<0.05), but not in 30 dph larvae

(p>0.05). The highest trypsin activity (0.57 ± 0.02 U mg-1 protein) was observed in 10 dph lar-

vae under warming and normocapnia, and the lowest value (0.08 ± 0.01 U mg-1 protein) was

observed under present-day temperature and hypercapnic conditions.

Amylase activity (Fig 4) was also significantly affected by the three factors (temperature,

pCO2 and developmental stage), as well as by most interactions between them (p<0.05). Amy-

lase activity was also highest (0.07 ± 0.01 U mg-1 protein) in 10 dph larvae under warming and

normocapnia. Before metamorphosis, amylase activity decreased significantly (p<0.05) with

warming and hypercapnia (up to 0.036 ± 0.011 U mg-1 protein), but showed no significant var-

iation (p>0.05) at 20 dph (values between 0.018 ± 0.002 and 0.026 ± 0.007 U mg-1 protein)

and 30 dph (values between 0.003 ± 0.001 and 0.018 ± 0.002 U mg-1 protein).

ALP activity (Fig 5) was significantly affected by pCO2 and development stage (p<0.05), but

not by temperature neither by the interaction of the three factors (p>0.05). ALP activity

decreased with hypercapnia, especially when combined with warming (p<0.05). The lowest

activity level of ALP (0.007 U mg-1 protein) was detected at 10 dph under warming and hyper-

capnic exposure, while the highest value (0.019 U mg-1 protein) was detected at 30 dph under

warming and normocapnic conditions.

Correlation between variables

The correlations between the variables analyzed in the present study for 10 and 30 dph larvae

are presented in Tables 1 and 2, respectively. Table 2 also includes the correlations between the

variables analyzed in the present study with those obtained in our previous study [29].
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The metabolism of 10 dph larvae was positively correlated with GST (r = 0.95; p = 0.041)

and trypsin (r = 0.94; p = 0.044), while the metabolism of 30 dph larvae was found to be posi-

tively correlated with amylase (r = 0.92; p = 0.040). Moreover, based on our previous findings

[29], we found that the incidence of skeletal deformities in 30 dph larvae was positively corre-

lated with HSP levels (r = 0.99; p = 0.005), while specific growth rates (SGR) were positively

correlated with OCR (r = 0.99; p = 0.014) and amylase levels (r = 0.97; p = 0.030). On the other

hand, survival was negatively correlated with HSP (r = -0.93; p = 0.049) and MDA levels (r =

-0.98; p = 0.025). No other significant relationship was found (p>0.05).

Discussion

Early life stages of marine fish are expected to be particularly sensitive to environmental stress-

ors, due to the lack or low functional capacity of some organ systems (e.g., gill epithelium) and

to the high rates of metabolism needed to fuel growth and development. In our previous study

with S. senegalensis eggs and larvae [29], the exposure to future conditions caused a decline in

Fig 3. Impact of ocean acidification and warming on the trypsin activity of Solea senegalensis larvae.
Enzyme activity inA) 10 dph,B) 20 dph, andC) 30 dph larvae at different temperature and pH conditions.
Values are given as means + SD. Different letters represent significant differences between the different
climate scenarios (p<0.05). Lower-case letters indicate differences between treatments at the same
development stage; capital letters represent differences between 10, 20 and 30 dph larvae for the same
treatment.

doi:10.1371/journal.pone.0134082.g003

Flatfish Larvae in a Changing Ocean

PLOSONE | DOI:10.1371/journal.pone.0134082 July 29, 2015 10 / 18



the hatching success, larval survival and growth of this flatfish species. Moreover, hypercapnia

and warming amplified the incidence of skeletal deformities (by 32%), including severe defor-

mities such as lordosis, scoliosis and kyphosis. Here we show that these climate change-related

variables also affected the metabolism, HSR, lipid peroxidation, as well as the activity of antiox-

idant and digestive enzymes.

The metabolic rate of S. senegalensis larvae increased with temperature as expected (follow-

ing normal Q10 values), but exposure to hypercapnic conditions triggered a 25% reduction in

OCR. Metabolic depression, and the consequent reduction of total energy expenditure, is an

important strategy to survive under acute environmental stress [54,55], because it allows

organisms to put some biological processes in stand-by as a strategy for saving energy, priori-

tizing the survival of the individual [2,56]. Protein synthesis is an ATP-consuming process, and

a reduced ATP demand of most cells might lead to a reduction in protein synthesis, which

would by definition restrict growth [57,58]. Indeed, the lower OCR in sole larvae was strongly

and positively correlated with lower SGR.

Most organisms display an integrated stress response (heat shock response and antioxidant

enzyme activity) to prevent the increase in ROS formation [59] and the protein damage and

Fig 4. Impact of ocean acidification and warming on the amylase activity of Solea senegalensis larvae.
Enzyme activity inA) 10 dph,B) 20 dph, andC) 30 dph larvae at different temperature and pH conditions.
Values are given in mean + SD. Different letters represent significant differences between the different climate
scenarios (p<0.05). Lower-case letters indicate differences between treatments at the same development
stage; capital letters represent differences between 10, 20 and 30 dph larvae for the same treatment.

doi:10.1371/journal.pone.0134082.g004
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Table 1. Correlation analysis between physiological and biochemical variables of 10 dph Solea senegalensis larvae.

OCR HSP MDA CAT GST Trypsin Amylase

HSP 0.03

MDA 0.47 0.89

CAT -0.37 -0.46 -0.51

GST 0.95 -0.29 0.17 -0.18

Trypsin 0.94 -0.22 0.25 -0.05 0.98*

Amylase 0.61 -0.77 -0.40 0.16 0.83 0.78

ALP 0.50 -0.84 -0.52 0.09 0.74 0.65 0.98*

Pearson’s coefficients between the variables analyzed in the present study, namely oxygen consumption rates (OCR), heat shock protein (HSP)

concentrations, malondialdehyde (MDA) levels, antioxidant enzyme activities (catalase—CAT and glutathione S-transferase—GST) and digestive enzyme

activities (trypsin, amylase and alkaline phosphatase—ALP). Asterisks represent significant correlations (p<0.05).

doi:10.1371/journal.pone.0134082.t001

Fig 5. Impact of ocean acidification and warming on the alkaline phosphatase activity of Solea
senegalensis larvae. Enzyme activity inA) 10 dph,B) 20 dph, andC) 30 dph larvae at different temperature
and pH conditions. Values are given in mean + SD. Different letters represent significant differences between
the different climate scenarios (p<0.05). Lower-case letters indicate differences between treatments at the
same development stage; capital letters represent differences between 10, 20 and 30 dph larvae for the
same treatment.

doi:10.1371/journal.pone.0134082.g005
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unfolding [60] caused by environmental stressful conditions. The ability of elevated cellular

HSP levels to strengthen thermal and chemical tolerance in animals is well documented [61–

63]. In the present study, the exposure of sole larvae to warmer temperatures and higher pCO2

levels triggered an increase in HSP70 levels in both developmental stages, thus indicating a

stress response. Marine organisms possess also a powerful set of antioxidant enzymes that

helps to detoxify ROS and reduce the negative effects on fitness [64,65]. Indeed, CAT and GST

concentrations of post-metamorphic larvae increased by 88 and 72%, respectively, from pres-

ent-day to forthcoming conditions. However, pre-metamorphic larvae may lack a fully devel-

oped antioxidant defense system and may be more exposed to tissue damage, as there were no

differences in CAT and GST concentrations between treatments. Altogether, inducible HSP70,

CAT and GST responses seem to constitute an integrated response of post-metamorphic larvae

during exposure to warmer temperatures and hypercapnic conditions.

Despite the increment of HSR and antioxidant enzyme activities, this significant up-regula-

tion was not effective against cellular injuries. Lipid peroxidation still increased under high

temperature and pCO2 conditions, as suggested by the higher MDA levels, a specific end-prod-

uct of the oxidative degradation process of lipids. Environmental factors are known to be

responsible for significant changes in MDA levels indicating that organisms are facing some

adjustments due to oxidative stress conditions. In addition to the effect of temperature, high

pCO2 was further responsible for exacerbating the heat-induced cellular injuries. This matches

findings in crustaceans that show an earlier onset of thermal limitation under elevated pCO2 as

a general principle [1,66,67].

Besides affecting the stress response (HSR and oxidative stress tolerance) of sole larvae,

future ocean conditions also affected the activity of digestive enzymes. The ontogenetic devel-

opment of the digestive system of sole larvae occurred as expected [16], characterized by a

decrease in the activity of pancreatic enzymes followed by an increase in intestinal (brush bor-

der) enzyme activity. These opposing trends of ontogenetic variation may suggest the matura-

tion of enterocytes, but further histological analysis would be necessary to confirm it.

Regardless of this, elevated CO2 conditions led to a general decrease in the activity of the diges-

tive enzymes, both pancreatic and intestinal enzymes, especially in pre-metamorphic sole lar-

vae. Morphological and physiological impairments in the digestive system (namely gut and

Table 2. Correlation analysis between physiological, biochemical andmorphological variables of 30 dph Solea senegalensis larvae.

Survival SGR Malformations OCR HSP MDA CAT GST Trypsin Amylase

SGR -0.27

Malformations -0.96* 0.05

OCR -0.16 0.99* -0.03

HSP -0.93* -0.03 0.99* -0.12

MDA -0.98* 0.42 0.88 0.30 0.83

CAT -0.88 0.28 0.76 0.13 0.71 0.94*

GST -0.76 0.65 0.55 0.52 0.47 0.88 0.90*

Trypsin 0.83 0.17 -0.81 0.31 -0.81 -0.80 -0.90 -0.62

Amylase -0.37 0.97* 0.13 0.92* 0.03 0.54 0.47 0.80 -0.03

ALP 0.70 0.27 -0.69 0.41 -0.69 -0.69 -0.85 -0.55 0.98* 0.05

Pearson’s coefficients between the variables analyzed in the present study, namely oxygen consumption rates (OCR), heat shock protein (HSP)

concentrations, malondialdehyde (MDA) levels, antioxidant enzyme activities (catalase—CAT and glutathione S-transferase—GST) and digestive enzyme

activities (trypsin, amylase and alkaline phosphatase—ALP), and those obtained in our previous study with this species [29], namely survival, specific

growth rates (SGR) and the incidence of skeletal malformations. Asterisks represent significant correlations (p<0.05).

doi:10.1371/journal.pone.0134082.t002
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pancreas) of fish early life stages under ocean acidification have already been observed [27,28],

but no connection has been established between altered functional development and digestive

enzymatic activities.

All together, the results from the present study indicate that ocean warming and acidifica-

tion pose significant stress to S. senegalensis larvae, especially to pre-metamorphic stages.

Besides affecting the metabolism, HSP and antioxidant responses, lipid peroxidation and the

activity of digestive enzymes, the impact of these climate change-related variables on some of

these physiological and biochemical variables was further translated into fish performance. As

mentioned above, lower oxygen consumption rates under hypercapnia were correlated with

reduced larval growth. Moreover, the increase in HSP and MDA levels under high temperature

and pCO2 conditions, which are indicators of stress and tissue damage, was negatively corre-

lated with larval survival. HSP levels were also positively correlated with the incidence of skele-

tal deformities. Other studies have shown that conditions that induce the heat shock response

may also induce abnormal development [68–70]. In fact, environmental stress factors are

among the most important factors that can induce skeletal deformities during fish develop-

ment [71]. More studies should establish links between biochemical markers, physiological and

morphological parameters in an attempt to demonstrate the effects from cellular processes up

to the whole-animal level, in order to provide a more conclusive evidence of the sensitivity of

marine fish early life stages to ocean climate change.
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