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Abstract

It has been suggested that oxidative stress may play a role in the pathogenesis of Autism Spectrum Disorders (ASD), but the
literature reports somewhat contradictory results. To further investigate the issue, we evaluated a high number of
peripheral oxidative stress parameters, and some related issues such as erythrocyte membrane functional features and lipid
composition. Twenty-one autistic children (Au) aged 5 to 12 years, were gender and age-matched with 20 typically
developing children (TD). Erythrocyte thiobarbituric acid reactive substances, urinary isoprostane and hexanoyl-lysine
adduct levels were elevated in Au, thus confirming the occurrence of an imbalance of the redox status of Au, whilst other
oxidative stress markers or associated parameters (urinary 8-oxo-dG, plasma radical absorbance capacity and carbonyl
groups, erythrocyte superoxide dismutase and catalase activities) were unchanged. A very significant reduction of Na+/K+-
ATPase activity (266%, p,0.0001), a reduction of erythrocyte membrane fluidity and alteration in erythrocyte fatty acid
membrane profile (increase in monounsaturated fatty acids, decrease in EPA and DHA-v3 with a consequent increase in v6/
v3 ratio) were found in Au compared to TD, without change in membrane sialic acid content. Some Au clinical features
appear to be correlated with these findings; in particular, hyperactivity score appears to be related with some parameters of
the lipidomic profile and membrane fluidity. Oxidative stress and erythrocyte membrane alterations may play a role in the
pathogenesis of ASD and prompt the development of palliative therapeutic protocols. Moreover, the marked decrease in
NKA could be potentially utilized as a peripheral biomarker of ASD.
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Introduction

Autism spectrum disorders (ASD) are complex neuro-develop-

mental disorders characterized by impairment in social interaction

and communication, and exhibition of repetitive and stereotypic

behaviours. Diagnosis of ASD is based on clinical features only,

and at present there are no validated biomarkers for diagnostic

and/or screening purposes [1]. Genetic susceptibility, immuno-

logic alterations, and environmental factors have been proposed to

play an etio-pathogenic role in ASD [2]. It has been suggested that

oxidative stress may play a role in the etio-pathogenesis of ASD

[3–5]. Oxidative stress is defined as the disruption of the normal

intracellular balance between reactive oxygen species (ROS),

produced either during aerobic metabolism or as a consequence of

pathologic processes and antioxidant defence mechanisms [6].

Oxidative stress, in turn, induces the secretion of numerous

vasoactive and pro-inflammatory molecules [7] leading to

neuroinflammation [2]. Oxidative stress has been suggested to

underlie several other mental disorders, including schizophrenia

and bipolar disorder [8–10], and neurodegenerative pathologies

such as Alzheimer disease [11]. Oxidative stress is the result of

increased production of pro-oxidant species or decreased antiox-

idant defences; glutathione redox status has indeed been found to

be decreased in autistic patients, also in the post-mortem analysis

of Autistic brain tissues [12].

Oxidative stress can be detected by studying a panel of different

markers [13], some of which, such as DNA, proteins and

polyunsaturated fatty acid (PUFA) residues, are pathognomonic

of oxidative damage of biomolecules. It is worth mentioning that

lipid peroxidation was found to be elevated in autism [14] and that

PUFA are important for neurodevelopment [15]. Noteworthy, the

imbalance of membrane fatty acid composition and PUFA loss can

affect ion channels and receptors [16]. In particular, Ca2+ channel

deficiency was found in Au [17], but never correlated to

membrane parameters.
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The aim of our study was to evaluate an integrated biomarker

panel in Autistic (Au) children, in order to assess the possible

imbalance of their redox status. The rationale for the choice of the

parameters we examined was based on the strong correlation

between: a) erythrocyte fatty acid membrane profile and

preservation/degeneration of brain functions in aging and in

neurodegenerative diseases [18,19]; b) erythrocyte membrane v6/
v3 balance and inflammation markers [20]; c) peripheral and

central nervous system markers of oxidative stress [21]. All these

biomarkers are components of an intertwined biological system,

wherein erythrocyte membrane functional and structural charac-

teristics act as a sensor of pathological changes. The recognition of

biochemical alterations occurring in ASD subjects may also result

in therapeutic methods aimed at reducing some of the symptoms.

Also, the examined parameters are a potentially useful biomarker

of ASD.

Materials and Methods

Ethics Statement
The present study was conducted according to the guidelines

laid down in the Declaration of Helsinki and all procedures

involving human patients were approved by Local Ethical

Committee (Azienda USL Bologna, CE 10020- n.30, 06/04/

2010 prot 45424/10-03). Written consent was obtained from all

parents and also from children through pictures and simplified

information.

Subjects
A total of 48 children were approached as part of the present

case–control study. Of these, 25 had a diagnosis of Autism (Au)

and 23 were classified as Typically Developing (TD) children. Of

these, 21 were recruited for inclusion in the study from the autism

group (4 F and 17 M), and 20 in the TD group (6 F and 14 M).

Reasons for rejection included: taking fish oil supplements (two

subjects in the Au group), taking vitamins and/or other substance

known to have antioxidant properties (two subjects in Au group

and 3 subjects in TD group).

Au group mean age was 6.8 years (SD=2.23 years, median= 6

years, range 5–12 years); in TD group mean age was 7.6 years

(SD=1.96 years, median= 7 years, range 5–12 years). Both the

non-parametric comparison of the average age in the two groups

and the comparison by gender (chi-square test), were not

significant, confirming the comparability between cases and

controls.

All the patients were admitted to Child Neuropsychiatric Unit

of the Maggiore Hospital of Bologna (Neurological Sciences

Institute IRCCS-Bologna), for assessment by a comprehensive

diagnostic- neurological workup and regular follow-ups. None of

the autistic patients had active epilepsy at the time of blood and

urine sampling. One patient experienced a first and (at the

moment of writing this paper) single benign rolandic seizure six

months after the blood and urine collection (this patient was the

only one with a normal intellectual level). Any medical and

neurological comorbidity was excluded by electroencephalography

(recorded during awake and sleep), cerebral magnetic resonance

imaging, standard clinical and neurological examination, neuro-

metabolic and genetic investigations (including 550 band karyo-

type, and molecular assay for Fragile X and MECP2). No infective

or inflammatory disease was detected at the time of blood

collection. No subject underwent any surgery intervention in the

four months prior to blood and urine collection.

Autism diagnosis was made according to the Diagnostic and

Statistical Manual of Mental Disorders IV (DSM IV TR [22])

criteria, Autism Diagnostic Observation Schedule (ADOS) [23]

and Childhood Autism Rating Scale (CARS) [24] by two clinicians

(a child neuro-psychiatrist and a child psychologist) experienced in

the field of autism (P.V., F.R.). Developmental and cognitive levels

were assessed by Psychoeducational Profile-3 (PEP-3) [25] and

Leiter International Performance Scale–Revised (Leiter-R) [26].

Parents were questioned regarding the age of onset of early autistic

signs. Demographic and clinical features of Au group are

summarized in Table 1. Control group children were healthy

TD children, recruited in the local community, with no sign of

cognitive, learning and psychiatric involvement, as clinically and

anamnestically determined by three experienced clinicians (A.G.,

P.V., F.R.). All TD were attending mainstream school and had not

been subjected to stressful events. Dietary habits were assessed by a

Food Questionnaire. All patients and controls were on a typical

Mediterranean diet.

Biochemical Evaluations
Blood samples, obtained from Au and TD children, were

collected in Na2-EDTA (,9 mL) and heparin (,5 mL) vacutai-

ners. Some hematological parameters were carried out by routine

laboratory techniques. One ml Na2-EDTA whole blood was set

apart for lipidomics evaluation. The remaining blood was

centrifuged (10 min. at 10006g) in order to separate the plasma,

which was frozen at 280uC in 1 mL eppendorf sterile tubes. Na2-

EDTA and heparinised plasma was used for a radical absorbance

capacity (ORAC) test and protein carbonyl evaluation, respec-

tively. After diluting (1:1) the cell suspension with sterile Phosphate

Buffered Saline (PBS), mononuclear white blood cells were

separated from red cells by Ficoll (Histopaque 1077, Sigma,

St.Louis, MO, USA) density gradient centrifugation. Cells were

lysed in 1 mL TrizolH Reagent (Invitrogen, Milan, Italy) and

stored at 280uC for other evaluations. In order to remove all

Ficoll residue red blood cells were washed three times with PBS.

Erythrocytes in Na2-EDTA were stored at 4uC and then used for

the evaluation of Na+/K+-ATPase activity (NKA) and cell

membrane fluidity. Heparinised red blood cells (RBC) were used

for the evaluation of superoxide dismutase (SOD) and catalase

activity. In particular, for SOD activity measurement, heparinised

RBC were lysed in 4 volumes of ice-cold water and then stored at

280uC. The remaining heparinised RBC were diluted 30-fold in

PBS and subsequently lysed in 10 mM potassium phosphate buffer

pH 7.2. Lysates were stored at280uC and subsequently were used

for catalase activity evaluation. Spot urine samples (10 mL) from

Au and TD were collected. Proteinuria and creatinine determi-

nations were carried out by laboratory techniques. The remaining

urine was centrifuged at 1200 g for 10 min in order to remove

insoluble materials. Five mL of clear urine were aliquoted and

stored at 280uC for hexanoyl-lysine adduct (HEL) and 8-

isoprostane evaluations. The remaining urine was filtered with

0,45 mm filter, supplemented with 0.05% sodium azide and stored

at 280uC for 8-hydroxy-29-deoxyguanosine (8-oxo-dG) analysis.

Urinary 8-isoprostane. Urinary 8-isoprostane (also known

as 8-epi-PGF2a, 8-iso-PGF2a or 15-isoprostane F2t) was deter-

mined by the use of a competitive ELISA kit (Oxford Biomedical

Research Inc., Oxford, MI, USA). As suggested by the manufac-

turer, urine samples are diluted 1:5 with a buffer provided in the

kit. The 15- isoprostane F2t in the samples competes with 15-

isoprostane F2t conjugated to horseradish peroxidase (HRP) for

binding to a polyclonal antibody specific for 15-isoprostane F2t
coated on the microplate. A substrate was added and the

absorbance was measured at 450 nm in a microplate reader.

The 15-isoprostane F2t concentration was expressed in ng per

milligram of creatinine.
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Urinary hexanoyl-lysine adduct. Hexanoyl-lysine adduct

(HEL) concentration was measured by a competitive ELISA kit

(JaICA, Fukuroi, Shizuoka, Japan) in unfiltered urine of autistic

and control children. According to the manufacturer’s instruc-

tions, urine samples were diluted five times with PBS. Some urine

samples containing proteins were treated with 14 mg/mL alpha-

chymotrypsin in PBS (pH 7.4) and incubated at 37uC O.N.

Samples were filtered using ultra filters with cut-off molecular

weight 10 kDa (Amicon Ultra, Millipore, Cork, Ireland). The

absorbance was measured at 450 nm using a microplate reader.

The HEL concentration was expressed in nmol per milligram of

creatinine (nmol/mg creatinine).

Urinary 8-oxo-dG. Urinary 8-hydroxy-29-deoxyguanosine

(8-oxo-dG) was measured using the HT 8-oxo-dG ELISA Kit

(Trevigen Inc. Gaithersburg, MD, USA) according to the

manufacturer’s instructions. Briefly, filtered urine was diluted

1:20 with a buffer provided by the kit and added to a plate pre-

bounded with 8-oxo-dG. Bound and sample 8-oxo-dG compete

for binding to the anti-8-oxo-dG which was then added to the

plate; the antibody fraction captured by the immobilized 8-oxo-dG

in the plate was then detected by means of a HRP-conjugated

secondary antibody. The assay was developed with tetramethyl-

benzidine substrate (TMB) and the absorbance was measured in a

microplate reader at 450 nm. The 8-oxo-dG concentration was

expressed in ng per milligram of creatinine.

Protein carbonyl determination. Protein carbonyls were

determined in plasma samples using the Protein Carbonyl ELISA

kit (Enzo Life Sciences Inc. Farmingdale, NY, USA) following the

manufacturer’s instructions. Plasma (5 mL) was derivatized with

dinitrophenylhyidrazine (DNPH); derivatized proteins were then

adsorbed to an ELISA plate. The adsorbed protein was then

probed with biotinylated anti-DNP antibody followed by strepta-

vidin-linked horseradish peroxidase. The absorbance was read at

450 nm using a spectrophotometer plate reader (Victor II, Pelkin-

Elmer, Waltham, MA, USA). Plasma samples were assayed in

duplicate, and protein carbonyl concentration was expressed as

nanomoles of carbonyl groups per milligram of protein in the

sample (nmol/mg).

Plasma radical absorbance capacity (ORAC). The

ORAC assay was carried out on a Fluoroskan FLH ascent

(Thermo Fisher Scientific, Inc. Waltham, MA, USA) with

fluorescent filters (excitation wavelength: 485 nm; emission filter:

538 nm). following a previously published procedure [27].

Briefly, in the final assay mixture (0.2 mL total volume),

fluorescein sodium salt (85 nM) was used as a target of free radical

attack with 2,29-azobis(2-amidino-propane) dihydrochloride

(AAPH) as a peroxyl radical generator. Trolox, a water-soluble

analogue of vitamin E, was used as a standard control and

calibration curves were determined for 10, 20, 30, 40, 50 mM
solution. Fluorescence measurements, carried out at 37uC, were
recorded at 5 min intervals, up to 30 min after the addition of

AAPH. The ORAC values, calculated as difference of the areas

under the quenching curves of fluoresceine between the blank and

the sample, were expressed as Trolox equivalents (TE), pH=7.4.

All the assays were performed with three replicates.

Superoxide dismutase (SOD) activity. SOD activity was

determined in erythrocyte lysates by a competitive colorimetric

inhibition assay, as previously described [28,29]. This method is

based on water-soluble tetrazolium salt, WST-1 (2-(4-Iodophenyl)-

3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monoso-

dium salt) (Dojindo Laboratories Co., Kumamoto, Japan), which

produces a water-soluble formazan dye upon reduction with the

superoxide anion generated by xanthine and xanthine oxidase

(Sigma-Aldrich, St. Louis, MO, USA). SOD activity reduces the

superoxide concentration and inhibits formazan formation. A

SOD standard curve was obtained; different dilutions of erythro-

cyte lysates were assayed in order to find a sample dilution that

falls within the range of standard curve linearity. Samples or

standards (10 mL) were incubated for 20 min at 37uC with 100 mL
reaction mixture containing 500 mM WST-1 and 75 mM xanthine

in 50 mM CHES (2-N-(Cyclohexylamino) ethanesulphonic acid,

pH 8.0. Finally, 10 mL Xanthine Oxidase (350 mU/mL) (Sigma-

Aldrich, St. Louis, MO, USA) was added. Formazan formation

was measured at 450 nm using a 96-well plate reader (Victor2

Multilabel Counter, Perkin-Elmer, Waltham, MA, USA). SOD

concentration, expressed in units per milligram of hemoglobin,

was determined using the SOD standard curve.

Catalase activity. Catalase activity was determined in

erythrocyte lysates using a method described by Ou and Wolff

[30], based on the specific reaction of FOX-1 reagent (250 mM
ammonium ferrous sulfate, 100 mM xylenol orange, 0,1 M

sorbitol, 25 mM H2SO4) with H2O2 to yield a color complex

having absorption maximum at 560 nm. The catalase causes

decomposition of H2O2 such that residual H2O2 is inversely

proportional to the activity of the catalase. One milliliter of

erythrocyte lysates was incubated for 4 min. with 100 mL of

2.2 mM H2O2. Subsequently, 50 mL aliquots of the incubation

mixtures were removed and rapidly mixed with 950 mL of FOX-1

reagent in eppendorf tubes, which were then incubated at room

temperature for 30 min. Absorbance was measured at 560 nm.

Catalase concentration was expressed in units per milligram of

hemoglobin.

Erythrocyte plasma membrane fluidity. Erythrocytes

plasma membrane fluidity was studied by determining the

fluorescence anisotropy (reciprocal of fluidity) of two probes,

TMA-DPH (1-(4-trimethylammoniophenyl)-6-phenyl-1,3,5-hexa-

triene), and DPH (1-6-phenyl-1,3,5-hexatriene); used to evaluate

membrane fluidity of the outer and the inner leaflet of cell

membrane, respectively [31]. The fluorescent probes were

purchased from Molecular Probes Inc (Eugene, OR, USA). The

incubation with TMA-DPH and DPH was performed as described

by Sheridan and Block [32]. Briefly, 3 ml of TMA-DPH and DPH

(1023 mol/L) were incubated for 5 min and 45 min respectively,

at room temperature (23uC) with 2 ml of erythrocyte membranes

(final concentration of 100 mg/mL) in 50 mmol/L Tris-HCl

buffer solution, pH 7.4. Fluorescence intensities (100 readings

each) of the vertical and horizontal components of the emitted

light were measured on a Perkin-Elmer MPF-66 spectrofluorom-

eter equipped with two glass prism polarizers (excitation wave-

length 365 nm, emission wavelength 430 nm). Sample tempera-

ture was maintained at 37uC using an external bath circulator

(Haake F3). Steady-state fluorescence anisotropy (r) of TMA-DPH

and DPH was calculated using the equation.

r~ IvG-Ihð Þ= Ivz2Ihð Þ

where G is an instrument factor correcting for unequal detection

of vertically (Iv) and horizontally (Ih) polarized light.

Na+/K+-ATPase activity. Na+/K+-activated Mg2+-depen-

dent ATPase activity was determined in cell membranes by the

Kitao method [33]. ATPase activity was assayed by incubating

1 mL of erythrocyte plasma membrane after sonication (three

bursts, 15 s each) at 37uC in a reaction medium containing MgCl2
(5 mmol/L), NaCl (140 mmol/L), KCl (14 mmol/L) in 40 mmol/

L Tris-HCl, pH 7.7. The ATPase reaction was initiated with the

addition of 3 mmol/L Na2ATP and stopped 20 min later by the

addition of 1 mL of 15% trichloracetic acid. The tubes were then

centrifuged at 1100 g for 10 min and the inorganic phosphate (Pi)

Oxidative Stress & Membrane Alterations in Autism
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hydrolysed from the reaction was measured in the supernatant by

a colourimetric assay using a KH2PO4 standard [34]. ATPase

activity, assayed in the presence of 10 mmol/L ouabain, was

subtracted from the total Mg2+-dependent ATPase activity to

calculate the activity of Na+/K+-ATPase. Protein concentration

was determined as described by Bradford [35], using serum

albumin as a standard. The interassay variation was 5.3%, while

the intra-assay variation was 8.1%.

Lipoperoxide levels (TBARs)

measurement. Lipoperoxide levels were evaluated using Cay-

man’s thiobarbituric acid reactive substances (TBARs) assay kit.

The product of fatty acid peroxidation, malondialdehyde (MDA),

reacts with thiobarbituric acid (TBA) to yield a product that is

measured fluorometrically. Membranes (100 mg of membrane

proteins) were centrifuged at 3000 g for 15 min after the addition

of 30% trichloroacetic acid, and 0.5 mL of the resulting

supernatant was mixed with 1.1 mL of TBA reagent (equal

volumes of 0.67% TBA aqueous solution and glacial acetic acid;

v/v). The reaction mixture was heated for 60 min at 95uC in a

sand bath. After cooling to room temperature, 5 mL of n-butanol

was added and the mixture was shaken vigorously for 2 min.

Thereafter, samples were centrifuged at 4000 g for 15 min, then

150 mL from each vial were loaded to the plate for fluorometric

assay and the fluorescence of samples and standards was read at an

excitation wavelength of 530 nm and an emission wavelength of

550 nm. The lipid peroxide level (Lp) was expressed in terms of

MDA content (mM), using 1,19,3,39-tetramethoxypropane as a

standard.

Sialic acid. Sialic acid content of RBC membranes was

determined by the periodate thiobarbituric acid method of Denny

et al. [36]. Briefly, membranes (1 mg membrane proteins/mL)

were first hydrolyzed in 0.05-mol/L H2SO4 in a final volume of

0.1 mL for 1 hour at 80uC to release SA [37]. Standards and

samples were both incubated with (assay samples) or without

(correction samples) 0.25 mL periodate solution (0.025 mol/L

periodic acid in 0.25 mol/L HCI) at 37uC for 30 minutes [38].

After reduction of excess periodate with 0.25 mL 0.32 mol/L

sodium thiosulfate, the reaction was completed by addition of

1.25 mL 0.1-mol/L thiobarbituric acid. The samples were heated

at 100uC for 15 minutes and then cooled to room temperature.

The product was extracted with acidic butanol and colorimetri-

cally assayed with a spectrophotometer at 549 nm. The readings

of correction samples were subtracted from those of assay samples,

thus corrected readings were obtained.

Protein content was determined by Bradford method to

normalize the sialic acid content using BSA as standard [35].

Erythrocyte membrane lipidomic analysis. The erythro-

cyte fatty acid membrane profile analysis was carried out as

previously described, using the erythrocyte membrane pellet

obtained by standard methods [39]. For this study, selection of

the erythrocyte fraction was made by modification of a literature

procedure for the selection of aged erythrocytes (red blood cell age

.3 months), with cells selected for high density and small diameter

compared to the average erythrocyte population [40].

One mL of whole blood was first centrifuged at 2000 g for

5 min to eliminate the plasma, and a second round of

centrifugation was then carried out at 4000 g at 4uC for 5 min

in order to yield a stratification by cell density. The bottom layer

(2.5 mm from the bottom of tube) consisted of erythrocyte cells,

which were evaluated for their diameter using a ScepterTM

2.0 Cell Counter (Merck Millipore, Milan, Italy) to characterize

the cell selection from each blood sample. The results were also

compared with the cell population obtained from standard density

gradient separation [41,42].

Briefly, lipids were extracted from erythrocyte membranes

according to the method of Bligh and Dyer [43]. The phospholipid

fraction was controlled by TLC as previously described [39], then

treated with KOH/MeOH solution (0.5 M) for 10 min at room

temperature and under stirring [44].

Fatty acid methyl esters (FAME) were extracted using n-hexane;

the hexane phase was collected and dried with anhydrous

Na2SO4. After filtration, the solvent was eliminated by evapora-

tion using a rotating evaporator, and the thin white film of the

FAME was subsequently dissolved in a small volume of n-hexane.

Approximately 1 mL of this solution was injected into the GC. A

Varian CP-3800 gas chromatograph, with a flame ionization

detector and an Rtx-2330 column (90% biscyanopropyl-10%

phenylcyanopropyl polysiloxane capillary column; 60 m, 0.25 mm

i.d., 0.20 mm film thickness) was used for the analysis. Temper-

ature was held at 165uC held for the initial 3 min, followed by an

increase of 1uC/min up to 195uC, held for 40 min, followed by a

second increase of 10uC/min up to 250uC, held for 5 min. The

carrier gas was helium, held at a constant pressure of 29 psi.

Methyl esters were identified by comparison with the retention

times of commercially available standards or trans fatty acid

references, obtained as described elsewhere [45].

Statistics
All experiments were carried out in duplicate or triplicate and

were usually repeated three times.

To compare Au and TD groups, normality tests were applied to

all numeric variables, following which appropriate parametric tests

(ANOVA, Student’s t for independent data) or the nonparametric

equivalent (Wilcoxon-Mann-Whitney) were used. Non-parametric

correlation (Spearman’s rho) was used to correlate clinical features

and biochemical data in the Au group (non-parametric ANOVA

for cognitive/developmental level). Differences were considered

significant at p,0.05.

To account for multiple testing we used the Benjamini and

Hochberg false discovery rate (FDR) [46]. FDR corrected p-values

(pFDR) were evaluated separately for a) comparisons of biochem-

ical parameters in Au and TD and b) correlations of clinical

features and biochemical data in Au. In particular, the compar-

isons of biochemical parameters included a1) erythrocyte mem-

brane features and molecules, oxidative stress markers (in urine

and plasma) and antioxidant enzyme activities in erythrocytes (12

comparisons); a2) erythrocyte membrane fatty acids (19 compar-

isons). As for the correlations between Au clinical features and

biochemical data, pFDR was calculated for CARS global score (31

comparisons), CARS activity level (hyperactivity) item (31

comparisons), CARS body use (stereotypes) item (31 comparisons),

cognitive/developmental impairment levels (31 comparisons). Age

was compared with all biochemical data (31 comparisons).

Even though it is usual to set at ,0.05 the significance level of

statistic tests, Benjamini & Hochberg [46], as well as others [47],

have argued that a more liberal threshold (as high as 0.1 or even a

bit higher) may be reasonable for pFDR.

Statistical analysis was performed using SAS v. 9.2.

Results

1. Comparisons between Au and TD
1.1 Oxidative stress markers in urine and plasma and

antioxidant enzymes activities in erythrocytes (Fig. 1 and

table 2). Peroxidation of arachidonic acid causes membranes to

release 8-isoprostane, a prostaglandin-F2-like compound. Oxi-

dized arachidonic acid or other omega-6 fatty acids, such as

linoleic acid, may also react with protein lysine residues, yielding
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HEL. Both 8-isoprostane (p,0.01; pFDR= 0.0278) and HEL

(p,0.05; pFDR= 0.076) were found in higher amount in the urine

of Au than in the urine of TD children (+47% and +45%,

respectively). However, the amount of 8-oxo-dG, derived from the

oxidation of nucleic acid bases by free radicals, did not

significantly differ between the two groups.

Plasma levels of carbonyl groups (an oxidative modification of

proteins) and plasma radical absorbance capacity (a measure of the

antioxidant capacity, which is reduced by free radicals) did not

differ between the two groups.

Similarly, neither SOD nor catalase enzymatic activity

measured in erythrocytes were found to differ between the two

groups.

1.2 Erythrocyte membrane features and molecules (Fig. 2

and table 2). TMA-DPH and DPH are two probes used to

evaluate membrane fluidity of the outer and the inner leaflet of cell

membrane, respectively. Taking into account that TMA-DPH and

DPH fluorescence anisotropy is inversely related to the fluidity of

the microenvironment where the probe is located, it was found

that membrane fluidity was decreased in Au with respect to TD.

The decrease reached the statistical significance (p,0.05) for both

the outer and inner membrane (pFDR= 0.0368, pFDR= 0.0469,

respectively).

The activity of Na+/K+-ATPase, an active ion transporter

localized in the plasma membrane, was markedly decreased

(266%) in Au in comparison with TD (p,0.0001; pFDR,0.0001),

Figure 1. Scatter plot showing oxidative stress markers in urine and plasma and antioxidant enzymes activities in erythrocytes.
Au=Autistic children; TD= typically developing children. Horizontal bars indicate means. Standard deviation values and whether parametric or not
parametric statistic tests were applied, are reported in Tab. 2. p,0.01 highly significant; p,0.05 significant; ns, not significant.
doi:10.1371/journal.pone.0066418.g001
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with no overlapping values between Au and TD (Au min. 1.41,

max. 3.38; TD min. 5.27, max. 10.75).

TBARS assay measures MDA generated from the decomposi-

tion of primary and secondary lipid peroxidation products.

TBARS were found to be significantly higher (+41%) in the

erythrocyte membrane from Au children in comparison with those

from TD children (p,0.01; pFDR=0.0125).

Sialic acid levels in erythrocyte did not differ between Au and

TD.

1.3 Analysis of erythrocyte membrane fatty acids

(Table 3). The percentage of oleic, palmitoleic and vaccenic

acids and, in general, total MUFA were increased in Au with

respect to TD children. This caused also a decrease in SFA/

MUFA ratio in Au with respect to TD children (p,0.05;

pFDR=0.07329).

The relative amount of the different PUFA was also altered,

since EPA and DHA-v3 acids were decreased in Au children

(216%, p,0.05, pFDR=0.10308 and 214%, p,0.01,

pFDR=0.0722, respectively), causing an increase in v6/v3 ratio

(+16%, p,0.05, pFDR=0.07329). The results were interpreted

using the fatty acid-based functional lipidomic approach [48].

2. Correlation between Au Clinical Features and
Biochemical Data (Main Results Reported in Fig. 3 and
Table 4)
Non-parametric correlation (Spearman’s rho) was used to

correlate clinical features and biochemical data in the Au group.

CARS global scores were inversely related with v6 arachidonic

acid (p,0.05; pFDR= 0.31104) and PUFA (p,0.05;

pFDR=0.18450). CARS activity level item scores (hyperactivity)

were negatively correlated with TMA-DPH (p,0.01;

pFDR=0.03720), oleic acid (p,0.05; pFDR=0.15035), v6
arachidonic acid (p,0.05; pFDR=0.15035), MUFA (p,0.05;

pFDR=0.11728) and PUFA (p,0.01; pFDR=0.03720), and

directly correlated with SFA (p,0.001; pFDR=0.00930), palmitic

acid (p,0.01; pFDR=0.03720), SFA/MUFA (p,0.001

pFDR=0.03720). TMA-DPH was correlated with age (p,0.01

pFDR=0.2376). CARS body use item scores (stereotypes) were not

significantly related to any biochemical marker.

When only cognitive/developmental impaired Au children (n:

19) were considered, the non parametric ANOVA revealed that

the level of cognitive/developmental impairment was inversely

related with v6 arachidonic acid (p,0.05; pFDR=0.33199), and

directly related with 8-isoprostane (p,0.05; pFDR=0.33199), total

SFA (p,0.05; pFDR=0.33199) and palmitic acid (p,0.05;

pFDR=0.33199), while cognitive impairment and total PUFA

showed only a trend of inverse correlation (p= 0.0553;

pFDR=0.33199).

Even if it was beyond the scope of this research, additional

correlations were performed within Au clinical features. We found

a significant correlation between CARS global score and other

clinical features, such as cognitive/developmental delay

(r = 0.52009, p,0.05; pFDR= 0.18450), hyperactivity

(r = 0.61669, p,0.01; pFDR= 0.10440), CARS body use item

scores (stereotypes) (r = 0.52009, p,0.01; pFDR= 0.18450). More-

over, the variable stereotypes was related to CARS activity levels

item score (hyperactivity) (r = 0,60308, p,0.01; pFDR= 0.03060).

3. Statistics
FDR analysis confirmed the statistical significance of most

uncorrected p values in both comparisons Au vs TD and in

correlations between clinical features and biochemical parameters.

Discussion

There is increasing evidence that autistic patients show excessive

ROS production and several studies reported the presence of

Table 2. Erythrocyte membrane features and molecules, oxidative stress markers in urine and plasma, antioxidant enzymes
activities in erythrocytes.

Mean values 6 St. Dev % difference Au vsTD Statistical significance

Au (N=21) TD (N=20) p values pFDR

Erythrocyte membrane features and molecules

Na+/K+-ATPaseu 2.5460.58 7.3961.62 266% ,0.0001 ,0.0001

TMA-DPHu 0.2760.02 0.2560.03 +8% 0.0123 0.0368

DPHu 0.2760.02 0.2560.03 +8% 0.0196 0.0469

TBARSu 0.7260.38 0.5160.37 +41% 0.0021 0.0125

Sialic Acidu 6.1964.36 7.6367.08 219% 0.7248 0.7248

Oxidative stress markers in urine

8-Isoprostaneu 3.0461.50 2.0760.54 +47% 0.0069 0.0278

HEL* 0.1660.09 0.1160.05 +45% 0.0380 0.0760

8-Oxo-dG* 484.806130.07 426.466163.64 +14% 0.2127 0.346

Oxidative stress markers in plasma

Carbonyl Groups* 0.3060.08 0.2760.11 +11% 0.2509 0.3763

ORACu 2.4760.86 2.3660.94 +5% 0.4573 0.5487

Antioxidant enzymes activities in erythrocytes

SOD activityu (Au N=12) 26.1064.02 25.4963.78 +2% 0.2960 0.3947

Catalase activity* (Au N= 12) 29.2866.34 31.25611.06 26% 0.5783 0.6309

Au: Autistic children; TD: typically developing children; p values were calculated with non parametric Wilcoxon-Mann-Whitney test (u) or parametric ANOVA test (*);
p,0.05: significant; p,0.01 highly significant; pFDR: Benjamini and Hochberg False Discovery Rate (FDR) corrected p-values.
doi:10.1371/journal.pone.0066418.t002
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different peripheral biomarkers of oxidative stress [13,49,50].

However, the great heterogeneity of the syndrome makes it

difficult to assess whether this finding is occasional and whether it

is restricted to a sub-group of patients. Moreover, not all oxidative

stress markers appear to be altered in patients, and it is still

unknown whether oxidative stress, if really present, is secondary to

a generic inflammatory status or due to genetic alterations still to

be recognized. In addition, most researchers addressing this

problem have a tendency to evaluate few markers at a time, thus

making it very difficult to compare data obtained in different

patient’s subgroups [51,52]. To our best knowledge, this is the first

study, which evaluated, at the same time, a wide range of different

but strongly related biological biomarkers in a group of Au

children that underwent a rigorous clinical characterization.

Figure 2. Scatter plot showing erythrocyte membrane features and molecules. Au=Autistic children; TD= typically developing children.
TMA-DPH and DPH values are inversely correlated with the outer and the inner membrane fluidity, respectively. TBARS= Thiobarbituric Acid Reactive
Substances. Horizontal bars indicate means. Standard deviation values and whether parametric or not parametric statistic tests were applied, are
reported in Tab. 2. p,0.01 highly significant; p,0.05 significant ns, not significant.
doi:10.1371/journal.pone.0066418.g002
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Among the oxidative stress parameters we evaluated, we found, in

Au compared to TD, a significant increase in TBARS, 8-

isoprostane and HEL, which are markers of lipid peroxidation.

No significant differences were found in the oxidative biomarkers

8-oxo-dG and ORAC. This finding suggests that the oxidative

stress-related phenomena are localized mainly at the cell surface.

Systemic involvement is suggested by detection of these markers

both in urine and in erythrocytes.

The fatty acid composition of the brain and neural tissues is

characterized by high PUFA concentrations, which play a very

important role in signal transduction [53], neuro-inflammation

[54] and cellular repair and survival [55]. Erythrocyte membrane

fatty acid composition is a very sensitive indicator of the status of

different tissues and may reflect the fatty acid composition of brain

[56]. In a number of neurodevelopmental conditions, including

Attention Deficit Hyperactivity Disorder (ADHD) and dyslexia,

reduced concentrations of erythrocyte membrane PUFA have

been reported [57]. Moreover, a polymorphism in the gene cluster

associated with the fatty acid desaturase-2 gene (FADS2) for Delta

6-desaturase (the rate-limiting step in PUFA synthesis) was

described in patients with ADHD [58,59], pointing to a possible

correlation between membrane fatty acid composition and

hyperactivity.

Table 5 summarizes published data about alterations in

erythrocyte membrane fatty acid composition in ASD children.

In our study, a significant increase of erythrocyte membrane

MUFA and of v6/v3 ratio (due to a decrease in EPA and DHA)

was shown. These results are partially superimposable to those

reported by Bell et al. [60]. Alteration in membrane lipid

composition was not related to dietary habits, since they did not

significantly differ between Au and TD, as evidenced by the Food

Questionnaire. On the other hand, oxidative stress is not a likely

explanation for the specific decrease of the v3, since this would

have also affected the v6 PUFA family. The observed imbalance

in v6/v3 ratio may lead to the proinflammatory status reported

previously in ASD children [12,61,62]. The significant increase in

MUFA may be representative of a feedback remodelling of

erythrocyte membrane lipid composition. It is interesting to note

that a study on adipocyte membranes showed DHA loss coexistent

with MUFA increase [63].

It has not escaped our notice that the membrane fluidity

decrease we observed cannot be directly explained on the ground

of these alterations in fatty acid composition. Schengrund et al.

[64] recently reported a decrease in cholesterol and a related

increase in GM1 ganglioside in erythrocyte membranes from ASD

children, which could affect membrane fluidity. However, we

failed to observe any change in membrane sialic acid - a

component of GM1 ganglioside, in Au patients.

Na+/K+-ATPase maintains intracellular gradients of ions that

are essential for cellular activities. Despite the crucial role of NKA

in cellular metabolism and the fact that it accounts for

approximately 30% of the total body energy consumption and

for 50% brain energy consumption, very little is known about

NKA in autism. In a mouse model of Angelman Syndrome, a

neurodevelopmental disorder associated with autism, an intrinsic

alteration of membrane properties of pyramidal neurons in

hippocampal area CA1 has recently been observed [65].

Alterations were also observed in resting membrane potential,

Table 3. Erythrocyte membrane Fatty Acid profile.

Mean values (6 St. Dev)
% differences
Au vs TD Statistical significance

Au (N=21) TD (N=20) p values pFDR

DHA omega 3 (22:6)* 4.8061.08 5.6260.67 214% 0.0065 0.07220

Total Monounsaturated Fatty Acids (MUFA)* 18.0361.25 17.0460.98 +6% 0.0076 0.07220

Vaccenic acid (18:1)u 1.3060.16 1.2060.11 +9% 0.0220 0.07329

Oleic acid (18:1)* 16.4261.25 15.6060.94 +5% 0.0228 0.07329

SFA/MUFAu 2.3860.24 2.5260.19 25% 0.0232 0.07329

Palmitoleic acid (16:1)u 0.360.08 0.2460.09 +25% 0.0262 0.07329

v6/v3 ratio* 6.6661.62 5.7660.67 +16% 0.0270 0.07329

EPA omega 3 (20:5)u 0.4360.16 0.5160.14 216% 0.0434 0.10308

Total Polyunsaturated Fatty Acids (PUFA)u 39.4061.80 40.1861.74 22% 0.1173 0.24763

Trans 18:1u 0.1160.05 0.1460.07 221% 0.1863 0.35397

Eicosatrienoic acid omega 6 (20:3)u 2.2560.45 2.1360.34 +6% 0.3714 0.64151

Stearic acid (18:0)* 18.5861.04 18.7860.88 21% 0.4940 0.76378

Total Saturated Fatty Acids (SFA)* 42.3161.96 42.6061.53 21% 0.6012 0.76738

Linoleic omega 6 (18:2)u 12.260.96 12.6661.34 24% 0.6012 0.76738

Total TRANSu 0.2360.08 0.2460.06 21% 0.6180 0.76738

Trans-ARAu 0.1260.06 0.1160.03 +9% 0.6756 0.76738

Arachidonic acid omega 6 (20:4)* 19.5761.67 19.3961.13 +1% 0.6866 0.76738

EFA deficiencyu 0.6660.07 0.6760.08 21% 0.7961 0.84033

Palmitic acid (16:0) * 23.7361.94 23.8261.48 0% 0.8810 0.88100

Au: Autistic children; TD: typically developing children; ARA, arachidonic acid; DHA, docosahexaenoic acid; EFA, essential fatty acids; EPA, eicosapentaenoic acid; MUFA,
monounsaturated fatty acids; PUFA; polyunsaturated fatty acids; SFA, saturated fatty acids; TRANS, transfatty acids; p values were calculated with non parametric
Wilcoxon-Mann-Whitney test (u) or parametric ANOVA test (*); p,0.05: significant; p,0.01 highly significant; pFDR: Benjamini and Hochberg False Discovery Rate
(FDR) corrected p-values.
doi:10.1371/journal.pone.0066418.t003
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Figure 3. Relevant correlations between Au clinical features and biochemical data. Au patients were divided into three levels of cognitive/
developmental impairment as follows: 1: mild, 2: moderate, 3: severe. TMA-DPH values are inversely correlated with the outer membrane fluidity.
SFA= Saturated Fatty Acids. CARS activity level item score denotes hyperactivity. p,0.01 highly significant; p,0.05 significant. More details are
reported in Tab.4.
doi:10.1371/journal.pone.0066418.g003
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Table 4. Significant correlations of clinical features and biochemical data in Autistic children.

CARS global scores CARS activity item (Hyperactivity)
Cognitive/developmental
impairment level Age

Total SFA NS r = 0.70834; p,0.001; pFDR = 0.00930 p,0.05; pFDR = 0.33199 NS

SFA/MUFA NS r = 0.57825; p,0.001;
pFDR=0.03720

NS NS

TMA-DPH NS r=20.58923; p,0.01; pFDR= 0.03720 NS r 20.6054; p,0.01;
pFDR= 0.2376

Total PUFA r =20.52589; p,0.05;
pFDR= 0.18450

r =20.58719; p,0.01; pFDR= 0.03720 p= 0.0553; pFDR= 0.33199 NS

Palmitic acid (16:0) NS r = 0.59763; p,0.01; pFDR = 0.03720 p,0.05; pFDR = 0.33199 NS

Arachidonic acid
v6 (20:4)

r =20.432: p,0.05;
pFDR= 0.31104

r =20.45377; p,0.05; pFDR= 0.15035 p,0.05; pFDR = 0.33199 NS

Total MUFA NS r =20.49446; p,0.05; pFDR= 0.11728 NS NS

Oleic acid (18:1) NS r =20.46048; p,0.05; pFDR= 0.15035 NS NS

8-isoprostane NS NS p,0.05; pFDR = 0.33199 NS

Non-parametric correlation (Spearman’s rho, r) was used to correlate clinical features (CARS, CARS activity item and Age) and biochemical data in the Autistic children
group. Non-parametric ANOVA was used for Cognitive/developmental impairment level. MUFA, monounsaturated fatty acids; PUFA; polyunsaturated fatty acids; SFA,
saturated fatty acids. p,0.05: significant; p,0.01 highly significant.
pFDR: Benjamini and Hochberg False Discovery Rate (FDR) corrected p-values.
doi:10.1371/journal.pone.0066418.t004

Table 5. Summary of published results on fatty acid composition of erythrocyte membrane.

fatty acid composition of
erythrocyte membrane Patients

Highly unsaturated fatty acids (HUFA) decreased One ASD patient [75]

Stearic acid (18:0) increased 18 Au children with developmental regression [76]

Arachidic acid (24:0) increased

Total SFA increased

Oleic acid (18:1 n-9) decreased

Nervonic acid (24:1) increased

Total MUFA decreased

Linoleic acid (18:2 n-6) increased

Arachidonic acid (ARA) (20:4 n-6) decreased

Docosapentaenoic acid (DPA) (22:5 n-6) increased

Docosapentaenoic acid (DPA) (22:5 n-3) decreased

Total v3 decreased

ARA:EPA ratio (20:4 n-6/20:5n-3) increased

Stearic acid (18:0) increased 11 children with classical autism or Asperger [76]

Arachidic acid (24:0) increased

Nervonic acid (24:1) increased

Docosapentaenoic acid (DPA) (22:5 n-6) increased

Docosapentaenoic acid (DPA) (22:5 n-3) decreased

Total v3 decreased

ARA:EPA ratio (20:4 n-6/20:5n-3) increased

Eicosenoic acid (20:1n9) increased 20 Au children with developmental regression (mean age 3.5 years) [77]

Erucic acid (22:1n9) increased

total MUFA increased

a-Linolenic acid (18:3 n-3) decreased 49 Au children (mean age 7.5 years) [78]

ARA:EPA ratio (20:4 n-6/20:5 n-3) increased

ARA, arachidonic acid; EPA, eicosapentaenoic acid; MUFA, monounsaturated fatty acids; PUFA; polyunsaturated fatty acids; SFA, saturated fatty acids.
doi:10.1371/journal.pone.0066418.t005
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threshold potential, and action potential amplitude correlated with

significant increases in the expression of the a1 subunit of Na+/

K+-ATPase [64]. In postmortem tissues from different brain

regions of autistic subjects, a specific increase in NKA in the

frontal cortex and cerebellum was found. The authors suggested

that such increase might be due to compensatory responses to

increased intracellular calcium concentration in autism [66].

On the contrary, we showed a very significant reduction of

erythrocyte NKA in Au compared to TD, in keeping with a similar

report by Kurup and Kurup [67]. There is no overlap between the

range values of the two groups, suggesting that this parameter

might be a biomarker of autism. Future work should be addressed

at understanding how sensitive and specific is the decrease of NKA

as far as autism is concerned. A number of other factors may affect

NKA; for example, a positive correlation between the molecular

activity of Na+/K+-ATPase units and the membrane content of

DHA has been shown [68] and a reduction of NKA has also been

related to oxidative stress [69,70]. Changes in ATPase activities

might stem from sub-conformational changes in the enzymes

depending on their microenvironment, indirectly reflecting

changes in surrounding lipids and in membrane fluidity [71].

Noteworthy, some clinical features were correlated with some

parameters of the lipidomic profile. In our study, hyperactivity is

the clinical aspect found to be most highly related to erythrocyte

membrane features. The higher the fluidity of the erythrocyte

membrane and the lower the PUFA concentration, the greater was

the hyperactivity level. Also, the severity of hyperactivity was

directly and highly correlated with erythrocyte SFA and palmitic

acid concentration. These data not only suggest that such

disequilibrium in membrane fatty acid composition may be a

useful tool to assess the severity of the autistic clinical picture, but

also suggest possible therapeutic interventions with a tailored and

balanced fatty acid intake. Two distinct double blind trials showed

an improvement in hyperactivity score in autistic children treated

with v3 supplementation [72,73]. Despite these encouraging

results, a recent Cochrane meta-analysis stated that ‘‘to date there

is no high quality evidence that omega-3 fatty acids supplemen-

tation is effective for improving core and associated symptoms of

ASD’’ [74]. Nevertheless, our data clearly show an imbalance of

membrane fatty acids and their correlation with relevant clinical

features, thus pointing to the importance of restoring the

membrane equilibrium. However, the intake of v3 should be

accompanied by antioxidant protection. For example, since our

data also show the alteration of the redox balance of Au,

supplementation of PUFA in the absence of antioxidant protection

might paradoxically worsen the picture, as, in oxidative milieu,

PUFA undergo a peroxidation process and may become, in turn,

pro-oxidant. Also, omega-6/omega-3 balance might modulate

neurotransmitters of the central nervous system: increased omega-

3 fatty acid concentrations in cell membranes have been shown to

affect serotonin and dopamine neurotransmission, especially in the

prefrontal cortex [75]. Taking into account that serotoninergic

and dopaminergic systems are deeply involved in ASD [76,77],

cell membrane lipid profile restoration could play a significant

therapeutic role in improving some ASD features.

Conclusions
Taken together, these results show significant erythrocyte

membrane alterations in Au, at structural and functional levels,

and an increase of lipid peroxidation markers. These alterations,

and in particular the marked decrease in NKA, may play a role in

the pathogenesis of ASD and potentially may be useful tools as

peripheral biomarkers of ASD to be exploited for a more precise

or an earlier diagnosis of ASD. Future work will be addressed at

understanding the reason(s) for the impairment of the NKA and

associated relevance to the pathogenesis of ASD. Finally, our data

suggest the presence of systemic alterations in ASD, and

emphasizes the possibility of an integrated approach aimed at

correcting the membrane defects by means of nutraceutic tools.
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