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In both type 1 and type 2 diabetes, the late diabetic compli-
cations in nerve, vascular endothelium, and kidney arise from
chronic elevations of glucose and possibly other metabolites
including free fatty acids (FFA). Recent evidence suggests
that common stress-activated signaling pathways such as nu-
clear factor-�B, p38 MAPK, and NH2-terminal Jun kinases/
stress-activated protein kinases underlie the development of
these late diabetic complications. In addition, in type 2 dia-
betes, there is evidence that the activation of these same stress
pathways by glucose and possibly FFA leads to both insulin
resistance and impaired insulin secretion. Thus, we propose
a unifying hypothesis whereby hyperglycemia and FFA-

induced activation of the nuclear factor-�B, p38 MAPK, and
NH2-terminal Jun kinases/stress-activated protein kinases
stress pathways, along with the activation of the advanced
glycosylation end-products/receptor for advanced glycosyla-
tion end-products, protein kinase C, and sorbitol stress path-
ways, plays a key role in causing late complications in type 1
and type 2 diabetes, along with insulin resistance and im-
paired insulin secretion in type 2 diabetes. Studies with anti-
oxidants such as vitamin E, �-lipoic acid, and N-acetylcysteine
suggest that new strategies may become available to treat
these conditions. (Endocrine Reviews 23: 599–622, 2002)
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I. Introduction

THERE IS CONSIDERABLE evidence that hyperglycemia
results in the generation of reactive oxygen species

(ROS), ultimately leading to increased oxidative stress in a
variety of tissues. In the absence of an appropriate compen-
satory response from the endogenous antioxidant network,
the system becomes overwhelmed (redox imbalance), lead-
ing to the activation of stress-sensitive intracellular signaling
pathways. One major consequence is the production of gene
products that cause cellular damage and are ultimately re-
sponsible for the late complications of diabetes.

In addition to playing a key role in late diabetic compli-
cations, activation of the same or similar signaling pathways
also appears to play a role in mediating insulin resistance and
impaired insulin secretion. The ability of antioxidants to

Abbreviations: AG, Aminoguanidine; AGE, advanced glycosylation
end-products; AP, activator protein; CCCP, carbonyl cyanide m-chlo-
rophenylhydrazone; CoA, coenzyme A; DHLA, dihydrolipoic acid;
FFA, free fatty acids; GFAT, glutamine:fructose-6-phosphate amido-
transferase; GSH, glutathione; IKK, I�B kinase; IR, insulin receptor; IRS,
insulin receptor substrate; JNK/SAPK, NH2-terminal Jun kinases/stress
activated protein kinases; LA, �-lipoic acid; MCR, metabolic clearance
rate; NAC, N-acetyl-l-cysteine; NAK, NF-�B-activating kinase; NF-�B,
nuclear factor-�B; NIK, NF-�B-inducing kinase; NO, nitric oxide; PBN,
�-phenyl-tert-butylnitrone; PKC, protein kinase C; PPAR�, peroxisomal
proliferator-activated receptor-�; PTPase, protein tyrosine phosphatase;
RAGE, receptor for AGE; RNS, reactive nitrogen species; ROS, reactive
oxygen species; SOD2, manganese superoxide dismutase; UCP, uncou-
pling protein; VEGF, vascular endothelial growth factor.
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protect against the effects of hyperglycemia and free fatty
acids (FFA) in vitro, along with the clinical benefits often
reported following antioxidant therapy, supports a causative
role of oxidative stress in mediating and/or worsening these
abnormalities. In this review, we propose the existence of
common biochemical processes whereby oxidative stress in-
duced by hyperglycemia and FFA causes insulin resistance,
�-cell dysfunction, and late diabetic complications.

II. Overview of the Development of Type 2 Diabetes

Type 2 diabetes is characterized by excessive hepatic glu-
cose production, decreased insulin secretion, and insulin
resistance (1–5). Insulin resistance most often precedes the
onset of type 2 diabetes by many years, is present in a large
segment of the general population, and is multifactorial (1,
2). There are convincing data to indicate a genetic component
associated with insulin resistance (1, 6–9). Insulin resistance
is a feature of the offspring of parents with type 2 diabetes,
and longitudinal studies of families indicate that it is a major
risk factor for developing type 2 diabetes. In Pima Indians,
a group with a very high prevalence of insulin resistance and
type 2 diabetes, the insulin resistance has been suggested to
have a codominant mode of inheritance (10)

Insulin resistance is also caused by acquired factors such
as obesity, sedentary life style, pregnancy, and hormone
excess (1, 3). During its early stage, insulin resistance is
compensated for by hyperinsulinemia, thus preserving nor-
mal glucose tolerance. Reaven (2) and others (11–13) have
obtained data indicating that approximately 25% of non-
diabetic individuals exhibit insulin resistance within the
range of that observed in patients with type 2 diabetes. De-
terioration into impaired glucose tolerance occurs when ei-
ther insulin resistance increases or the insulin secretory re-
sponses decrease, or both. Elevated glucose causes oxidative
stress due to increased production of mitochondrial ROS
(Table 1 and Ref. 14), nonenzymatic glycation of proteins (15,
16), and glucose autoxidation (17, 18). Elevated FFA can
cause oxidative stress due to increased mitochondrial un-
coupling (19, 20) and �-oxidation (21, 22), leading to the
increased production of ROS. In addition, hyperglycemia-
and FFA-induced oxidative stress leads to the activation of
stress-sensitive signaling pathways. This, in turn, worsens
both insulin secretion and action, leading to overt type 2
diabetes. Furthermore, insulin-resistant patients, with and
without type 2 diabetes, are at increased risk for devel-
oping the metabolic syndrome, a major cause of heart
disease, hypertension, and dyslipidemia (2, 23, 24). In this
review, we now propose that oxidative stress induced by
elevations in glucose and FFA plays a key role in causing
insulin resistance and �-cell dysfunction. Thus, treatment
aimed at reducing the degree of oxidative stress and ac-
tivation of stress-sensitive signaling pathways would ap-
pear to warrant consideration for inclusion as part of the
treatment program for patients with type 2 diabetes.

III. Oxidative Stress and Complications of Diabetes

There is considerable evidence that hyperglycemia causes
many of the major complications of diabetes including ne-

phropathy, retinopathy, neuropathy, and macro- and micro-
vascular damage (1, 14, 25–27). Oxidative stress resulting
from increased production of ROS (or their inadequate re-
moval) plays a key role in the pathogenesis of late diabetic
complications (Table 1, Fig. 1, and Refs. 14, 16, and 28–42).
In uncontrolled diabetes, the level of superoxide dismutase,
the enzyme responsible for inactivating the superoxide rad-
ical (43), along with the levels of the antioxidants vitamin E
and �-lipoic acid [LA (Fig. 2)], are decreased (36, 44–48).
There is also some evidence that a deficiency in erythrocyte
catalase, an enzyme responsible for the removal of H2O2, is
associated with increased frequency of diabetes (49, 50). Al-
though our understanding of how hyperglycemia-induced
oxidative stress ultimately leads to tissue damage has ad-
vanced considerably in recent years (14, 28, 51–53), effective
therapeutic strategies to prevent or delay the development of
this damage remain limited (54–57).

A. Hyperglycemia leads to mitochondrial dysfunction and
activation of stress pathways both in vitro and in vivo

In vivo studies reveal that oxidative stress due to hyper-
glycemia occurs before late complications become clinically
evident (30, 35, 36, 38–41, 58, 59), indicating that oxidative
stress plays a crucial role in the pathogenesis of late diabetic
complications (28–31, 33, 35, 41, 59–61). One area of intense
study has been the regulation of stress-activated signaling
pathways including nuclear factor-�B (NF-�B), p38 MAPK,
NH2-terminal Jun kinases/stress-activated protein kinases
(JNK/SAPK), advanced glycosylation end-products (AGE)/
receptor for AGE (RAGE), and protein kinase C (PKC).

Compelling evidence demonstrating the importance of
ROS generation in mediating hyperglycemia-induced cellu-
lar damage was recently provided (62). In bovine endothelial
cells, exposure to hyperglycemia initially increased the pro-
duction of intracellular ROS and activated NF-�B. Subse-
quently, PKC activity, AGE, and sorbitol levels increased.
Disruption of mitochondrial ROS production was achieved

TABLE 1. Selected examples of biologically important
reactive species

Type Free radicals Nonradicals

ROS Superoxide, �O2
� Hydrogen peroxide, H2O2

Hydroxyl, �OH Hydrochlorous acid, HOCl
Peroxyl, �RO2
Hydroperoxyl, �HO2

�

RNS Nitric oxide, �NO Peroxynitrite, OONO�

Nitrogen dioxide, �NO2
� Nitrous oxide, HNO2

ROS and RNS are defined as highly reactive molecules including
charged species such as superoxide, hydroxyl radical, and nitric oxide
and uncharged species such as hydrogen peroxide (31, 407). The
formation of these species is discussed in the text. Oxidative stress is
defined by Halliwell (407) as a serious imbalance between the pro-
duction of reactive species and antioxidant defenses, leading to po-
tential tissue damage. Table adapted from P. Rösen, P. P. Nawroth,
G. King, W. Möller, H. J. Tritschler, and L. Packer (2001). The role
of oxidative stress in the onset and progression of diabetes and its
complications: a summary of a Congress Series sponsored by
UNESCO-MCBN, the American Diabetes Association, and the Ger-
man Diabetes Society. Diabet Metab Res Rev 17:189–202 (31). Copy-
right © 2001 John Wiley & Sons, Ltd. Reproduced with permission.
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using several different approaches including: 1) treatment
with carbonyl cyanide m-chlorophenylhydrazone (CCCP),
a small molecule uncoupler of mitochondrial oxidative
phosphorylation; 2) overexpression of uncoupling protein
(UCP)1, a protein uncoupler; or 3) overexpression of man-
ganese superoxide dismutase (SOD2), the mitochondrial
antioxidant enzyme. Each of these approaches blocked
the hyperglycemia-induced increase in ROS production
(Fig. 3). Consequently, the hyperglycemia-induced effects
on NF-�B, PKC, AGE, and sorbitol were also suppressed.

Moreover, the effects of hyperglycemia on ROS formation

and NF-�B activation preceded the stimulation of the other
systems. Therefore, these data indicated that activation of
NF-�B was an initial signaling event. If extended to other cell
types and tissues, these studies would suggest that oxidative
stress is the initial change induced by high glucose, followed

FIG. 1. Proposed general theory of how elevated FFA and hyperglycemia result in the pathophysiology of diabetes via the generation of ROS.
This diagram shows the proposed causative link between hyperglycemia, elevated FFA, mitochondrial ROS generation (67, 408), oxidative stress,
activation of stress-sensitive pathways (NF-�B, p38 MAPK, JNK/SAPK, and others), insulin resistance, �-cell dysfunction, and diabetic
complications (51, 62). The proposed sequence of events reflects recent in vitro data that showed disruption of mitochondrial ROS production
blocked the hyperglycemia-induced increase in ROS production along with hyperglycemia-induced effects on NF-�B, PKC, AGE, and sorbitol
(62). Increased production of sorbitol (formed as a consequence of the hyperglycemia-mediated increase in aldose reductase activity), AGE,
cytokines, prostanoids, along with PKC activation, can function as positive regulatory feedback loops to chronically stimulate stress-sensitive
pathways. ROS (and RNS) can inflict damage directly upon cellular macromolecules that, in turn, result in oxidative stress.

FIG. 2. Chemical structures of vitamin C (1), LA (2), and vitamin E
(�-tocopherol; 3).

FIG. 3. Hyperglycemia-induced ROS formation and inhibitory effects
of mitochondrial uncoupling agents and manganese superoxide. Bo-
vine aortic endothelial cells were incubated for 2 h in 5 mM glucose
(low) or 30 mM glucose (high) alone, and 30 mM glucose plus either 0.5
�M CCCP, UCP1, or SOD2 (MnSOD). cDNAs for UCP1 and SOD2
were cloned into plasmid pEB and used to prepare cationic liposomes.
Intracellular ROS were measured using the fluorescent probe 2�,7�-
dichlorodihydrofluorescein diacetate (H2DCFDA). *, P � 0.01 (com-
pared with 5 mM glucose); #, P � 0.01 (compared with 30 mM glucose).
[Derived from Ref. 62.]
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by activation of other pathways that lead to cellular dys-
function and damage (14) (Fig. 1).

B. ROS generation and oxidative stress

In the process of mitochondrial respiration, molecular ox-
ygen is essential for the complete metabolism of glucose and
other substrates during the production of ATP. During the
course of normal oxidative phosphorylation, however, be-
tween 0.4 and 4% of all oxygen consumed is converted into
the free radical superoxide (�O2

�) (Refs. 63–68 and Table 1).
Subsequently, �O2

� can be converted into other ROS and
reactive nitrogen species (RNS). This �O2

� is normally elim-
inated by antioxidant defenses. �O2

� molecules within the
mitochondria are quickly converted to H2O2 by the key
mitochondrial enzyme, SOD2 (Refs. 63, 64, and 69, and Fig.
4). H2O2 is then either detoxified to H2O and O2 by gluta-
thione peroxidase (in the mitochondria), or diffuses into the
cytosol and is detoxified by catalase in peroxisomes. How-
ever, in the presence of reduced transition metals such as Cu
or Fe, H2O2 can be converted to the highly reactive �OH
radical (Fenton reaction; Fig. 4).

Excessive levels of ROS lead to the damage of proteins,
lipids, and DNA (70, 71). Thus, the aforementioned endog-
enous antioxidant systems exist within cells to neutralize
ROS, and these systems are critical to maintaining proper
cellular function. A major cellular antioxidant is reduced
glutathione (GSH), which is regenerated most efficiently by
glutathione reductase and reduced nicotinamide adenine
dinucleotide phosphate (Ref. 72 and Fig. 4). It can also be
regenerated by LA in concert with other antioxidants (Refs.
73 and 74 and Figs. 4 and 5). When the aforementioned
endogenous antioxidant network fails to provide a sufficient
compensatory response to restore cellular redox balance,
GSH levels fall and oxidative stress ensues. In addition to
their ability to directly inflict damage upon cellular macro-
molecules, ROS play a significant role in activating stress-
sensitive signaling pathways that regulate gene expression
resulting in cellular damage (75–77).

C. NF-�B: a primary target for activation by hyperglycemia,
ROS, oxidative stress, and inflammatory cytokines

One major intracellular target of hyperglycemia and oxi-
dative stress is the transcription factor NF-�B (59, 78–81).
NF-�B can be activated by a wide array of exogenous and
endogenous stimuli including hyperglycemia, elevated FFA,
ROS; TNF-�, IL-1�, and other proinflammatory cytokines;
AGE-binding to RAGE; p38 MAPK; DNA damage; viral in-
fection; and UV irradiation (79). NF-�B plays a critical role
in mediating immune and inflammatory responses and ap-
optosis. The aberrant regulation of NF-�B is associated with
a number of chronic diseases including diabetes and
atherosclerosis.

NF-�B is activated through a common pathway, which
involves the phosphorylation-induced proteasome-medi-
ated degradation of the inhibitory subunit, I�B (82). A gen-
eral overview of the sequence of events leading to NF-�B
activation is shown (Fig. 6). In resting cells, NF-�B is present
in the cytoplasm as an inactive heterodimer, consisting of the
p50 and p65 subunits complexed with an inhibitor protein
subunit, I�B. After stimulation, a serine kinase cascade is
activated leading to the phosphorylation of I�B (83). This
event primes I�B as a substrate for ubiquitination and sub-
sequent degradation, freeing the NF-�B heterodimer to
translocate to the nucleus. NF-�B regulates the expression of
a large number of genes, including growth factors [e.g., vas-
cular endothelial growth factor (VEGF)], proinflammatory
cytokines (e.g., TNF-� and IL-1�), RAGE, adhesion molecules
(e.g., vascular cell adhesion molecule-1), and others. Many
products of the genes regulated by NF-�B also, in turn, ac-
tivate NF-�B (e.g., VEGF, TNF-�, IL-1�, and RAGE).

Enzymes that catalyze the ubiquitination and degradation
of phospho-I�B are constitutively active, indicating that the
principal regulatory step in the activation of NF-�B is I�B
phosphorylation (82, 83). The enzyme that phosphorylates
I�B is I�B kinase (IKK), a heterotrimeric complex consisting
of two catalytic subunits, IKK� (also called IKK1) and IKK�
(also called IKK2), and a regulatory subunit, IKK� (84, 85).
IKK is activated after serine phosphorylation catalyzed by

FIG. 4. Exogenous and endogenous stimuli leading to ROS generation and activation of stress-sensitive gene expression. The endogenous
antioxidant enzymes including GSH, superoxide dismutase, GSH peroxidase, and catalase function to maintain redox equilibrium. However,
in situations such as chronic hyperglycemia, the compensatory response is inadequate, leading to both ROS (and RNS) formation and activation
of stress- and redox-sensitive gene expression (e.g., via the redox-sensitive transcription factor NF-�B) (76, 77). Catalase is localized primarily
in peroxisomes, whereas GSH peroxidase is the major peroxidase in mitochondria. [Derived from Ref. 78.]
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upstream serine kinases, including NF-�B-inducing kinase
(NIK) (86) and NF-�B-activating kinase (NAK) (87). Al-
though both IKK�- and IKK�-subunits are subject to serine
phosphorylation, only substitution of these sites in IKK�
completely prevents the activation of total IKK activity
(85, 88).

Interestingly, IKK� is directly inhibited by aspirin and
salicylate (89), along with several antiinflammatory cyclo-
pentenone prostaglandins including 15-deoxy-�12,14-prosta-
glandin J2 (90, 91), making these agents important tools with
which to study the NF-�B pathway. The latter compound
along with its metabolites are of particular interest because
1) they are naturally occurring derivatives of prostaglandin
D2; 2) they are thought to exert antiinflammatory activity in
vivo (92, 93); and 3) they are natural high-affinity ligands for
the peroxisomal proliferator-activated receptor-� (PPAR�)
(94), the molecular target for insulin sensitizing drugs (95–
97). The recent discoveries and characterization of IKK�,
NIK, and NAK provide a unique opportunity to investigate
and potentially identify novel molecular targets of antioxi-
dant action, which have the demonstrated ability to block
activation of the NF-�B pathway.

D. Hyperglycemia-dependent NF-�B activation in patients
with diabetes mellitus

When patients with diabetes mellitus were studied, a pos-
itive correlation of NF-�B activation in peripheral blood
mononuclear cells was found with the quality of glycemic
control (indicated by hemoglobin A1C) (98, 99). Moreover, a
significant correlation between mononuclear NF-�B binding
activity and the severity of albuminuria was observed in
diabetic patients with renal complications (99). When pa-
tients with diabetes were treated with the antioxidant LA, a
significant suppression of NF-�B activation, as well as of
plasma markers for lipid oxidation, was observed (98, 99).
These observations further support the idea that hypergly-
cemia-induced late diabetic complications result from a cycle

of oxidative stress-mediated cellular damage, which further
exacerbates the condition of increased oxidative stress.

E. Decreased levels of antioxidants in diabetes and
prevention of NF-�B activation by antioxidants

In addition to an increase in ROS, a decrease in antioxidant
capacity occurs in diabetes mellitus (36, 46–48, 100). A de-
cline in important cellular antioxidant defense mechanisms,
including the glutathione redox system, vitamin C-vitamin E
cycle, and the LA/dihydrolipoic acid (DHLA) redox pair
(Figs. 2 and 5), significantly increases susceptibility to oxi-
dative stress. Thus, attempts have been made to reduce ox-
idative stress-dependent cellular changes in patients with
diabetes by supplementation with naturally occurring anti-
oxidants, especially vitamin E (54, 101, 102), vitamin C, and
LA. Oral vitamin E treatment appears to be effective in nor-
malizing abnormalities in retinal hemodynamics and im-
proving renal function in patients with type 1 diabetes of
short disease duration (Ref. 54 and Fig. 7). Vitamin E was

FIG. 5. Interaction and regeneration of endogenous antioxidants by
LA and DHLA. Interaction and regeneration of endogenous antioxi-
dants occurs through a cooperative set of reactions that can involve
many substances (73, 74). Shown here is a highly simplified example
of how LA and DHLA are capable of interacting with dihydroascor-
bate (DHA), vitamin C (Vit C), glutathione (oxidized, GSSG; reduced,
GSH) to regenerate vitamin E (Vit E). LA after reduction to DHLA is
able to facilitate the nonenzymatic regeneration of vitamin C and
GSH, both of which are able to regenerate vitamin E. Reducing equiv-
alents for the conversion of LA to DHLA are provided by reduced
nicotinamide adenine dinucleotide or nicotinamide adenine dinucle-
otide phosphate (not shown). R�, Vit C�, Vit E�, charged species. [Re-
printed with permission from J. L. Evans and I. D. Goldfine: Diabetes
Technol Ther 2:401–413, 2000 (106).]

FIG. 6. Model of NF-�B by hyperglycemia, FFA, and cytokines. See
text for details of events leading to NF-�B activation. NIK (83) and
NAK (87) are serine kinases that function as IKK� kinases. [Adapted
and updated with permission from P. J. Barnes and M. Karin: N Engl
J Med 336:1066–1071, 1997 (79). © Massachusetts Medical Society,
2001. All rights reserved.]
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beneficial in those individuals with the poorest glycemic
control and the most impaired retinal blood flow (Ref. 54 and
Fig. 7). These data suggest that vitamin E and perhaps sup-
plementation with other antioxidants may provide an addi-
tional benefit in the treatment of either diabetic retinopathy
or nephropathy.

In patients with diabetes, LA levels are reduced (48, 74,
103). LA has long been used for the treatment of diabetic
neuropathy in Germany (56), and recent evidence indicates
that it increases insulin sensitivity in patients with type 2
diabetes (104–106). LA is a naturally occurring antioxidant
and cofactor in the pyruvate dehydrogenase complex and
participates in establishing a cellular antioxidant network by
raising intracellular glutathione levels (Ref. 107 and Fig. 5).
LA has been shown to 1) quench free radicals, 2) prevent
singlet oxygen-induced DNA damage, 3) exhibit chelating
activity, 4) reduce lipid peroxidation, 5) increase intracellular
glutathione levels, and 6) prevent glycation of serum albu-
min (73, 74). LA is able to reduce oxidative stress-mediated
NF-�B activation in vitro (74, 108, 109) and in patients with
type 2 diabetes (98, 99).

Activation of NF-�B can also be blocked by several other
thiol-containing antioxidants including N-acetyl-l-cysteine
(NAC) (110–112), a positively charged analog of LA with
increased potency (113), and the glutathione precursor l-2-
oxothiazolidine-4-carboxylic acid (114). Other clinically
available antioxidants reported to have antiinflammatory,
antioncogenic, and/or antiatherogenic properties that have
been shown to block the activation of NF-�B include res-
veratrol (115, 116), (-)-epicatechin-3-gallate (117), pycnog-
enol (118), silymarin (119), and curcumin (120). IRFI-042, a
novel vitamin E analog, inhibited the activation of NF-�B and
reduced the inflammatory response in myocardial ischemia-
reperfusion injury (121). �-Phenyl-tert-butylnitrone (PBN), a
“spin-trapping” agent that reacts with and stabilizes free
radical species (122–125), significantly reduced the severity

of hyperglycemia in both alloxan- and streptozotocin-
induced diabetes coincident with inhibiting both alloxan-
and streptozotocin-induced activation of NF-�B (126). Inhib-
iting the activation of NF-�B prevents the activation and the
transcription of genes under NF-�B control, including VEGF
and others (127–129). An important goal of future studies in
this area will be the determination of which antioxidants are
the most effective at preventing NF-�B activation, along with
the identification of the molecular site(s) of their action.

F. VEGF: an initiator of diabetic complications?

VEGF is an endothelial-cell-specific mitogen that plays a
specific and critical role in the process of blood vessel for-
mation (angiogenesis) (130–133). The development of a vas-
cular supply is essential for organogenesis in utero, and for
wound healing and reproductive functions in adults (130).
Angiogenesis is also implicated in the pathogenesis of a
variety of disorders including the growth and metastasis of
solid tumors, retinopathy, age-related macular degeneration,
and others (131, 132). Although the process of angiogenesis
is complex and dependent upon a variety of growth factors
and other components, the critical importance of VEGF and
its interaction with its cognate tyrosine kinase receptor
(VEGFR-2, KDR/Flk-1) in regulating vessel formation has
been well established (130–133).

VEGF has been identified as a primary initiator of prolif-
erative diabetic retinopathy and as a potential mediator of
nonproliferative retinopathy (134–138). VEGF has also been
implicated in the development of nephropathy and neurop-
athy in patients with diabetes (134, 139). VEGF serum con-
centrations were significantly higher in children with type 1
diabetes and markedly increased in adolescents and young
adults with microvascular complications compared with
healthy controls and diabetic patients without retinopathy or
nephropathy (140). In adults with type 1 diabetes, plasma
VEGF was significantly higher in patients with nephropathy
compared with normoalbuminoric diabetics (141). Plasma
VEGF was significantly increased in patients with type 1
diabetes exhibiting no clinical signs of vascular disease, sug-
gesting that increased circulating VEGF might serve as an
early indicator for the eventual development of microvas-
cular complications (142). In light of the important role
played by VEGF in the etiology of several complications of
diabetes, the identification of safe and effective approaches
to mitigate its production and/or action potentially would
have significant therapeutic importance.

G. Antioxidants inhibit VEGF production

VEGF production is stimulated by hypoxia, hyperglyce-
mia, AGE, and activation of stress-sensitive pathways in-
cluding NF-�B, p38 MAPK, and JNK/SAPK (143–152). How-
ever, only a limited number of studies have evaluated
whether antioxidants provide protection against hypergly-
cemia- or stress-induced VEGF production. Antioxidants in-
hibited VEGF expression induced by AGE in retinal vascular
endothelial cells (146), and the thiol-containing antioxidant
NAC inhibited VEGF production stimulated by H2O2 in en-
dothelial cells (148) and in three human melanoma cell lines

FIG. 7. Vitamin E treatment increases retinal blood flow patients
with diabetes. An 8-month, randomized, double-blind, placebo-
controlled crossover trial evaluated 36 patients with type 1 diabetes
and 9 nondiabetic subjects. Subjects were randomly assigned to either
1800 IU vitamin E/d or placebo for 4 months and followed, after
treatment crossover, for an additional 4 months. Retinal blood flow
was measured at baseline and at months 4 and 8 using video fluo-
rescein angiography. *, P � 0.003 (compared with baseline). [Derived
from Ref. 54.]
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(129). Several groups (153, 154) have shown that hypoxia
stimulates the activation of NF-�B (a positive regulator of
VEGF expression), and that mitochondrial ROS are required
for this effect. Rotenone (an inhibitor of mitochondrial com-
plex I), NAC, and pyrrolidinedithiocarbamic acid (an anti-
oxidant) abolished the hypoxia-stimulated increase in ROS
production, activation of NF-�B, and VEGF production (153).
In light of the ability of VEGF to be induced by hypergly-
cemia and stress, it is likely that this area of research will
receive increasing attention.

H. JNK/SAPK and p38 MAPK pathways: other primary
targets for activation by hyperglycemia, ROS, and
inflammatory cytokines

The JNK (also referred to as SAPK) and p38 MAPKs are
members of the complex superfamily of MAP serine/threonine
protein kinases. This superfamily also includes the ERKs (155).
In contrast to ERKs (also referred to as MAPKs), which are
typically activated by mitogens, JNK/SAPK and p38 MAPK are
known as stress-activated kinases. This can be attributed to the
fact that the activities of these enzymes are stimulated by a
variety of exogenous and endogenous stress-inducing stimuli
including hyperglycemia, ROS, oxidative stress, osmotic stress,
proinflammatory cytokines, heat shock, and UV irradiation
(Ref. 156 and Fig. 8).

Activated JNK/SAPKs bind to and phosphorylate the
transcription factor cJun, which is one component of the
activator protein (AP)-1 transcription factor complex (along
with other members of the cFos and cJun families). Transac-
tivation of cJun by JNK/SAPKs enhances the expression of
genes with AP-1 recognition sites including cJun, thereby
initiating a positive feedback loop (76). The redox regulation
of AP-1 has been studied extensively and serves as a model
for the redox regulation of other transcription factors includ-
ing NF-�B and activating transcription factor-2. A closely
related member of this family of transcription factors is AP-2.
This transcription factor is activated by inflammatory cyto-
kines and prostaglandins in cultured mesangial cells (157),
and its DNA-binding activity in vitro is redox sensitive (158).
Activation of AP-2 is associated with decreased expression of
SOD2, a major antioxidant enzyme (159).

The most familiar function attributed to the JNK/SAPK
pathway is its role as a mediator of apoptosis (160). Blockade
of the JNK/SAPK pathway by expression of dominant neg-
ative cJun increases cell survival, an effect that can also be
achieved by treatment with the thiol antioxidant and redox
regulator, NAC (161, 162). JNK/SAPK is activated by hy-
perglycemia-induced oxidative stress and is likely involved
in apoptosis mediated by hyperglycemia in human endo-
thelial cells (163). Interestingly, H2O2 generation, JNK/SAPK

FIG. 8. Overview of the MAPK superfamily. The p38 MAPK and JNK/SAPK are contained within the larger MAPK (also called ERK)
superfamily (155, 156, 167, 409). Activation of the p38 MAPK pathway results in a variety of cellular changes in transcription, many of which
are mediated through the activation of activating transcription factor (ATF)-2. Significant cross-talk and synergism exist especially between
the p38 MAPK and JNK/SAPK pathways. In addition, recent data indicate a negative impact on the insulin signaling pathway by p38 MAPK
(249) and JNK/SAPK (237).
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activity, and subsequent apoptosis induced by hyperglyce-
mia could be suppressed by the antioxidant vitamin C (163).
Another study confirmed the activation of JNK/SAPK by
hyperglycemia and reported that this effect was enhanced by
angiotensin II (164) and by the products of the lipoxygenase
pathway in RIN m5F cells (165). A recent study (166) has
found that the induction of gene 33/Mig-6, a transcription-
ally inducible adaptor protein frequently associated with
pathological conditions of chronic stress including diabetic
nephropathy, requires JNK/SAPK. Furthermore, transient
expression of this stress protein results in the selective acti-
vation of JNK/SAPK, suggesting the existence of a reciprocal
positive feedback loop. Thus, induction of this protein by
JNK/SAPK could serve as a potential marker for pathologies
associated with chronic oxidative stress.

Activation of p38 MAPK also influences a large number of
cellular processes including inflammation and immunity,
cell growth and apoptosis, and tissue-specific responses to
stress by regulating gene expression, other signaling path-
ways (e.g., NF-�B, insulin, cytokine, arachidonate, and oth-
ers), and cytoskeletal rearrangement. In addition, p38 MAPK
rapidly regulates other serine kinases (155). Chronic activa-
tion of the p38 MAPK pathway is often associated with
disease pathology, including inflammation, ischemia/reper-
fusion injury, infectious disease, and neuronal disease (167).
In this regard, selective p38 MAPK inhibitors are in clinical
development as antiinflammatory agents (168–170).

p38 MAPK is activated in response to hyperglycemia and
in diabetes. In vascular smooth muscle cells, treatment with
insulin (100 nm) and hyperglycemia (25 mm) for 12–24 h
induced the activation of p38 MAPK. This was associated
with a marked impairment in inducible nitric oxide (NO)
synthase induction upon subsequent acute exposure to in-
sulin (171). In rat aortic smooth muscle cells, glucose (16.5
mm) caused a 4-fold increase in p38 MAPK (172). In glo-
meruli of rats made diabetic by streptozotocin, p38 MAPK
activity was increased compared with controls, followed by
increased phosphorylation of heat shock protein 25, a down-
stream substrate of p38 MAPK (173). These effects appeared
to be the result of increased ROS production. Taken together,
these recent data suggest that the NF-�B, JNK/SAPK, and
p38 MAPK pathways are candidate stress-sensitive signaling
systems that can chronically lead to the late complications of
diabetes.

I. Additional important hyperglycemia-activated pathways

In addition to the stress-sensitive pathways discussed
above, hyperglycemia activates several other well-character-
ized biochemical pathways that play a significant role in the
development of diabetic complications. In each case, activa-
tion of these pathways appears to be linked to a hypergly-
cemia-mediated rise in ROS production and consequent
increase in oxidative stress (51, 62).

a. AGE/RAGE pathway. AGE describes a heterogeneous
group of proteins, lipids, and nucleic acids that are formed
nonenzymatically (174, 175). AGE formation is enhanced in
the presence of hyperglycemia and oxidative stress (176,
177). AGE bind to their cognate cell-surface receptor, RAGE,

resulting in the activation of postreceptor signaling, gener-
ation of intracellular oxygen free radicals, and the activation
of gene expression (175, 178–184). Retinal expression of
VEGF, a mediator of the late complications of diabetes (134,
139), is increased by AGE-RAGE interaction (146). Thus,
AGE are not only markers, but act also as mediators of late
diabetic complications and chronic vascular diseases.

b. PKC pathway. In tissues in which diabetic complications
develop, the concentration of diacylglycerol, an allosteric
activator of PKC, is increased (52). As a consequence of the
increase in diacylglycerol, several isoforms of PKC are acti-
vated. PKC-� is the major isoform that is induced in the
vasculature, kidney, and retina (52). Increased PKC activity
arises from chronic hyperglycemia and is associated with
many processes involved in the pathology of diabetic com-
plications including the regulation of vascular permeability,
blood flow, and neovascularization. The significance of the
activation of the PKC pathway as a major cause of diabetic
complications is strongly supported by the ability of a spe-
cific synthetic inhibitor of PKC-� to ameliorate abnormal
retina and renal hemodynamics in diabetic rats (55). Fur-
thermore, activation of the PKC pathway by hyperglycemia
synergizes with other kinase pathways. For example, in mes-
angial cells, hyperglycemia led to a PKC-dependent enhance-
ment of the activation of MAPK by the vasoactive peptide
endothelial-1 (185). Interactions between these pathways and
perhaps other stress-activated pathways are likely to play an
important role in determining the long-term effects of
hyperglycemia.

c. Polyol pathway. When intracellular glucose rises, aldose
reductase activity is stimulated and catalyzes the formation
of sorbitol, which can be oxidized to fructose by sorbitol
dehydrogenase (186). Sorbitol accumulates intracellularly,
causing cell damage. Furthermore, stress-sensitive signaling
pathways including p38 MAPK and JNK are strongly acti-
vated by sorbitol. The significance of the activation of the
polyol pathway as a cause of diabetic complications has been
demonstrated in transgenic mice that overexpress the aldose
reductase gene (187–190), and by the observations that in-
hibitors of this enzyme prevent the development of neurop-
athy, nephropathy, retinopathy, and cataract formation in
these animals (191).

d. Hexosamine pathway. Several lines of evidence have estab-
lished that the excessive flux of glucose or FFA into a variety
of cell types results in the activation of the hexosamine bio-
synthetic pathway (192–196). It has been proposed that the
activation of this pathway leads to insulin resistance and the
development of late complications of diabetes (192–197).
Transgenic mice that overexpress glutamine:fructose-6-
phosphate amidotransferase (GFAT), the rate-limiting en-
zyme of hexosamine biosynthesis, are insulin resistant (194,
198). Overexpression of GFAT in the liver of transgenic mice
shifts their phenotype toward energy storage, resulting in
hyperlipidemia and obesity (199). In mesangial cells, over-
expression of GFAT increased NF-�B-dependent promoter
activation (200). The hexosamine pathway also functions as
a cellular “sensor” of energy availability and mediates the
effects of glucose on the expression of several gene products
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including leptin (201–203). Recent data have implicated the
activation of the hexosamine pathway by hyperglycemia-
induced increase in ROS formation. In bovine endothelial
cells, hyperglycemia induced a significant increase in the
hexosamine pathway (204), which was blocked by an inhib-
itor of electron transport, a mitochondrial uncoupling agent
(CCCP), and the expression of either UCP1 or SOD2 (204).

J. ROS generation by enzymatic pathways of arachidonic/
linoleic acid metabolism

The formation of superoxide and other ROS is not only a
consequence of hyperglycemia, but is also a product of cer-
tain enzymes that utilize molecular oxygen for catalysis in-
cluding cyclooxygenases and lipoxygenases (Fig. 4). Studies
have established that the leukocyte type 12-lipoxygenase is
activated by growth factors, inflammatory cytokines, and
hyperglycemia (reviewed in Ref. 53). Several oxygenated
products of this important enzyme are able to activate
growth and stress-sensitive kinases (205) and signaling path-
ways linked to increased vascular and renal disease, includ-
ing PKC, vascular smooth muscle cell hypertrophy, in-
creased matrix production, and oncogene activation (206–
208). Furthermore, 12(R)-hydroxyeicosatetraenoic acid, a
product of the 12-lipoxygenase enzyme, is an extremely po-
tent angiogenic agent (209) and is able to activate NF-�B and
increase the expression on VEGF (144, 209). In addition, the
superoxide anion can interact with NO, forming toxic free
radicals called peroxynitrites (Table 1). These RNS impair the
ability of NO to maintain vascular tone and could promote
or accelerate the atherosclerotic process (210–212). In this
context, numerous studies have reported the clinical benefit
of antioxidants in improving vascular tone (213–217).

IV. Oxidative Stress and Insulin Resistance

Oxidative stress is not only associated with complications
of diabetes, but has been linked to insulin resistance in vivo
(defined as a subnormal response to a given amount of in-
sulin) (33, 218–221). In vivo, studies in animal models of
diabetes indicate that antioxidants, especially LA, improve
insulin sensitivity. Several clinical trials have also demon-
strated improved insulin sensitivity in insulin-resistant
and/or diabetic patients treated with the antioxidants vita-
min C, LA, vitamin E, and glutathione (104, 222–225).

In patients with type 2 diabetes, both acute and chronic
administration of LA improves insulin resistance as mea-
sured by both the euglycemic-hyperinsulinemic clamp and
the Bergman minimal model (Refs. 104, 105, 226, and 227 and
Fig. 9). In addition, the short-term (6 wk) oral administration
of a novel controlled release formulation of LA lowered
plasma fructosamine levels in patients with type 2 diabetes
(228).

A. Activation of stress-kinases, IRS phosphorylation, and
insulin resistance

Oxidative stress leads to the activation of multiple serine
kinase cascades (229–231). There are a number of potential
targets of these kinases in the insulin signaling pathway,

including the insulin receptor (IR) and the insulin receptor
substrate (IRS) family of proteins. Increased phosphorylation
of the IR or IRS on discrete serine or threonine sites decreases
the extent of their tyrosine phosphorylation, and is consistent
with impaired insulin action (232–237). The serine/threonine
phosphorylated forms of IRS molecules are less able to as-
sociate with the IR and downstream target molecules, espe-
cially phosphatidylinositol 3-kinase (232, 238), resulting in
impaired insulin action including protein kinase B activation,
and glucose transport (239–241).

In 3T3-L1 adipocytes, induction of oxidative stress with
H2O2 inhibits insulin-stimulated glucose transport (242–244).
This effect is selective for insulin-stimulated signaling com-
pared with platelet-derived growth factor-stimulated signal-
ing (245) and was reversed by preincubation with the anti-
oxidant LA (243). We have made similar observations using
rat L6GLUT4 muscle cells (246) and have found that the
protective effects of LA were associated with its ability to
prevent the H2O2-induced decrease in the intracellular level
of glutathione (247). Others (248) have recently reported the
direct protective effect of glutathione on insulin action in
HTC rat hepatoma cells transfected with the IR. After acute
exposure to H2O2, we find that the NF-�B and p38 MAPK
pathways are markedly activated and that their activation
can be blocked by pretreatment with LA (Fig. 10).

To determine whether the protective effects of LA could
also be observed under more physiological conditions, we
have used hyperglycemia to induce oxidative stress and
blunt the effects of insulin. Incubation of L6GLUT4-IR cells
(L6 cells in which both GLUT4 and the IR were transfected)
with 20 mm glucose caused a marked decrease in insulin-
stimulated glucose transport (P � 0.001; Fig. 11). Coincuba-
tion with LA (100 �m) completely protected against the hy-
perglycemia-induced insulin resistance (Fig. 11).

In L6 muscle cells, activation of p38 MAPK by oxida-
tive stress (H2O2) is linked to H2O2-mediated inhibition of

FIG. 9. LA increases insulin-stimulated glucose metabolism in pa-
tients with type 2 diabetes. Intravenous (IV) administration of LA
is able to significantly increase insulin sensitivity [as judged by per-
cent change (�) in metabolic clearance rate (MCR)] in patients with
type 2 diabetes, whereas oral administration exerts a lesser effect.
1) Seventeen-percent increase in MCR (P � 0.05, data replotted from
Ref. 104); 2) 30% increase in MCR (P � 0.05, data replotted from Ref.
227); 3) 55% increase in MCR (P � 0.05, data replotted from Ref. 226).
[Reprinted with permission from J. L. Evans and I. D. Goldfine:
Diabetes Technol Ther 2:401–413, 2000 (106).]
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insulin-stimulated glucose transport (249). Inhibition of in-
sulin signaling was reversed by a specific inhibitor of p38
MAPK (249). Interestingly, p38 MAPK has been suggested as
an activator of the glucose transporter (250, 251). Due to the
existence of multiple isoforms of this enzyme (156, 167), it is
possible that this latter effect is mediated by a different iso-
form. In addition, both TNF-� and anisomycin (strong acti-
vators of JNK/SAPK) stimulate IRS-1-associated JNK/SAPK
activity, resulting in increased serine phosphorylation of
IRS-1 catalyzed by JNK/SAPK (237, 252). Consequently,
insulin-stimulated tyrosine phosphorylation of IRS-1 was
substantially reduced and insulin action was impaired.

B. IKK�, IRS proteins, and insulin resistance

Recently, it has been reported that IKK�, which activates
NF-�B, is increased in insulin-resistant muscle from a variety
of sources (253). Activation of IKK� inhibits insulin action;
salicylates and ligands for PPAR�, both of which inhibit
IKK� activity (90, 91), restore insulin sensitivity both in vitro
and in vivo (254, 255). Treatment with aspirin and salicylates
alters the phosphorylation patterns of the IRS proteins, re-
sulting in decreased serine phosphorylation and increased
tyrosine phosphorylation (254, 255). Recent evidence sug-
gests that the potent insulin sensitizing activity of adiponec-

tin (Acrp30), the circulating protein secreted from adipo-
cytes, may be also associated with inhibition of NF-�B
activation (256–258).

Support for the importance of IKK� in insulin resistance
in vivo is provided by results of recent gene knockout ex-
periments in mice. IKK� (�/�) heterozygotes were more
insulin sensitive (as judged by increased glucose infusion
rate during hyperinsulinemic-euglycemic clamp) compared
with their normal (�/�) littermates (254, 255). This improve-
ment in insulin sensitivity was even more dramatic when
IKK� (�/�) mice were crossbred with insulin-resistant ob/ob
mice. Preliminary clinical evidence implicating IKK� in in-
sulin resistance has also been recently provided. Treatment
of nine patients with type 2 diabetes for 2 wk with high-dose
aspirin (7 g/d) resulted in reduced hepatic glucose produc-
tion and fasting hyperglycemia and increased insulin sen-
sitivity (259). Taken together, these data support a role for
activation of IKK� in the pathogenesis of insulin resistance
and suggest that it might be an attractive pharmacological
target to increase insulin sensitivity.

Additional evidence derived from cellular models, trans-
genic animals, and humans demonstrates the importance of
IRS proteins in the regulation of �-cell function (260–264).
Accordingly, enhanced serine/threonine phosphorylation
on the IR or its substrates due to increased stress-sensitive
kinase activity [e.g., NF-�B-activating kinases, p38 MAPK,
JNK/SAPK, PKC�, or other serine/threonine kinase(s)]
could provide a mechanistic explanation to link activation of
the stress pathways to multiple cellular pathologies.

C. Oxidative stress, protein tyrosine phosphatases, and
insulin resistance

In conjunction with the stress-induced activation of serine
kinase cascades, alteration of the intracellular redox balance

FIG. 10. Activation of NF-�B and p38 MAPK in L6 cells is blocked by
LA. A, L6 muscle cells were incubated with the H2O2-generating
system followed by measurement of NF-�B activation. Cells were
treated for 30 min in the absence (lane 1) and presence of glucose
oxidase (100 mU/ml) and glucose (5 mM, lanes 2 and 3). In lane 3, cells
were preincubated for 18 h with LA (100 �M). NF-�B (p50 subunit)
was measured by gel shift analysis. H2O2 treatment increased the
binding of the p50 subunit of NF-�B (lane 2). This effect was blocked
by preincubation with LA (lane 3). B, Cells were preincubated (as
described above) in the absence (lanes 1 and 2) and presence of LA
(lanes 3 and 4). Next, cells were washed and glucose oxidase (100
mU/ml) and glucose (5 mM) were added (lanes 2 and 4). Cells were
solubilized, loaded on Tris-glycine gels, and filters were probed with
anti-phospho-p38 MAPK antibody. H2O2 caused a marked activation
of p38 MAPK, as judged by the increase in p38 MAPK phosphorylation
(compare lanes 1 and 2). In the absence of H2O2, LA had no discernible
effect on p38 MAPK phosphorylation (compare lanes 1 and 3). How-
ever, preincubation of cells with LA produced a substantial decrease
in H2O2-induced p38 MAPK phosphorylation (compare lanes 2 and 4).
Similar results have been obtained in other cells types, including
nerve and endothelial cells, and in response to hyperglycemia-induced
oxidative stress (data not shown).

FIG. 11. Protective effect of LA on hyperglycemia-induced suppres-
sion of insulin-stimulated glucose transport. L6GLUT4 muscle cells
[obtained from Dr. John Lawrence, Jr., University of Virginia, Char-
lottesville, VA (246)] were stably transfected to express the human IR
(designated as L6GLUT4-IR cells). L6GLUT4-IR cells were cultured
for 5 d in DMEM containing 5 mM glucose, 20 mM glucose, or 20 mM
glucose plus LA (100 �M; LA). Cells were washed, incubated with
increasing concentrations of insulin for 30 min, and 2-deoxy-D-glucose
uptake was measured as described previously (247). Data points rep-
resent means � SEM for three separate experiments using triplicate
incubations (P � 0.001, 5 mM vs. 20 mM; ANOVA followed by Dun-
nett’s post test; 5 mM vs. 20 mM � LA, not significant).
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can also result in the oxidation and inactivation of protein
tyrosine phosphatases (PTPases) (75, 265–267). This class of
enzymes, along with dual-function phosphatases, plays a
major role in regulating a variety of signaling pathways
including the stress-activated pathways (268–273). It has
been known for quite some time that phosphotyrosyl turn-
over is essential for insulin-stimulated glucose transport in
adipocytes and muscle (274, 275). Although the selective and
reversible inhibition of certain PTPases such as PTP-1B im-
proves insulin action and is antidiabetogenic (276–281), ox-
idation of the cysteine residues required for catalytic activity
inactivates PTPases and can result in insulin resistance in
vitro (274, 275).

Thus, the activation of each pathway (NF-�B, p38 MAPK,
and JNK/SAPK) is sensitive to oxidative stress. Furthermore,
activation of these pathways is linked to impaired insulin
action, suggesting that they might play a role in oxidative
stress-induced insulin resistance. Because these same sys-
tems are also important in the development of the late dia-
betic complications, these data suggest a unifying hypothesis
of hyperglycemia-induced oxidative stress causing both in-
sulin resistance and late diabetic complications.

D. Obesity, fatty acids, and insulin resistance

Insulin resistance in obesity is evident before the devel-
opment of chronic hyperglycemia (1, 23). Therefore, it is
unlikely that insulin resistance, at the prediabetic stage, re-
sults from oxidative stress triggered by hyperglycemia per se.
However, the strong association of obesity and insulin re-
sistance (282–284) suggests that a major mediator of oxida-
tive stress-induced insulin resistance at the prediabetic stage
might be a circulating factor secreted by adipocytes. In this
regard, several possible candidate molecules have been sug-
gested including TNF-� (285–287), leptin (288, 289), FFA
(290–295), and most recently, resistin (296). However, the
evidence is strongest that FFA are the most likely link be-
tween obesity and insulin resistance (292, 297–299).

Plasma FFA content is increased in many states of insulin
resistance including obesity and type 2 diabetes (291, 293,
300–302). There is an inverse relationship between fasting
plasma FFA concentrations and insulin sensitivity (303).
There is an even stronger relationship between the accumu-
lation of intramyocellular triglyceride and insulin resistance
(304 –312). Although the cause for this overaccumulation
of lipid is unknown, McGarry and Dobbins (298) have
postulated the importance of malonyl-coenzyme A (CoA)
metabolism. Malonyl-CoA, the first committed interme-
diate in fatty acid biosynthesis and an inhibitor of carnitine
palmitoyl transferase 1, plays a major role in regulating
fatty acid synthesis and oxidation (313). Thus, dysregu-
lation of malonyl-CoA production, if it leads to sustained
increases in intracellular concentrations of malonyl-CoA
and FFA, would result in reduced capacity to oxidize fat,
leading to increased tissue stores, and could play a key role
in the pathogenesis of insulin resistance and impaired
�-cell function. Taken together, these data implicate FFA
as a causative link between obesity, insulin resistance, and
development of type 2 diabetes (298, 314, 315).

E. Fatty acids and insulin resistance

Several explanations have been offered to account for how
elevated FFA could result in insulin resistance. The glucose-
fatty acid cycle (Randle hypothesis) was the first to be widely
accepted (290, 316, 317). Randle reasoned that the increased
availability of FFA would cause an increase in the ratios of
mitochondrial acetyl-CoA:CoA and reduced nicotinamide
adenine dinucleotide:nicotinamide adenine dinucleotide�,
resulting in: 1) inactivation of the pyruvate dehydrogenase
complex, 2) reduced glucose oxidation and increased intra-
cellular citrate, 3) inhibition of phosphofructokinase, 4) ac-
cumulation of glucose-6-phosphate, and ultimately 5) inhi-
bition of hexokinase II activity. The net result would be an
accumulation of intracellular glucose and the concomitant
decrease in muscle glucose uptake.

However, in contrast to the Randle hypothesis, which pre-
dicts that increased FFA availability would lead to an in-
crease in im glucose-6-phosphate, recent studies have indi-
cated that the decrease in muscle glycogen synthesis in
healthy subjects caused by fat infusion was preceded by a
reduction in im glucose-6-phosphate levels (318). FFA leads
to a decrease in the intracellular concentration of glucose.
These results provide the basis for implicating the glucose
transport system (as opposed to hexokinase II or other in-
tracellular sites) as the rate-controlling step for fatty acid-
induced insulin resistance (297).

At the molecular level, FFA infusion resulted in decreased
insulin-stimulated IRS-1 tyrosine phosphorylation along with
decreased IRS-1-associated phosphatidylinositol 3-kinase ac-
tivity in muscle biopsy samples (Refs. 318, 319, and reviewed
in Ref. 320). In rats, infusion of FFA was associated with the
activation of PKC� (236), a Ca�-independent isoform of the
PKC family that is selectively expressed in skeletal muscle and
T lymphocytes (321, 322). Thus, one characteristic of FFA-
induced insulin resistance is that FFA or their metabolites (cer-
amides, diacylglycerol, fatty acyl-CoAs) activate PKC�, NF-�B-
activating kinases, p38 MAPK, JNK/SAPK, or other serine/
threonine kinase(s), leading to enhanced serine/threonine
phosphorylation on the IR or its substrates. As discussed above,
increased serine phosphorylation of IRS impairs insulin action.

F. Fatty acids, redox balance, and activation of
stress pathways

In addition to the ability of FFA or their metabolites to
impair insulin action by stimulating inhibitory protein kinase
activity, FFA could impair insulin action by increasing the
level of oxidative stress. Indeed, increased oxidative stress
might provide a mechanistic basis for the observed FFA (or
metabolite)-induced increase in serine kinase activity dis-
cussed above (230, 231).

In support of this idea, evidence in vitro indicates that
elevated FFA have numerous adverse effects on mitochon-
drial function including the uncoupling of oxidative phos-
phorylation (19, 20), and the generation of reactive oxygen
species including �O2

� (315). This latter situation is exacer-
bated because FFA not only induce a state of oxidative stress,
but also impair the endogenous antioxidant defenses by de-
creasing intracellular glutathione (323, 324). As a likely con-
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sequence of their ability to increase ROS formation and de-
plete glutathione, FFA are able to activate NF-�B (324–330).
This latter effect might be linked to FFA-mediated activation
of PKC� (236), which has the unique ability among the PKC
isoforms to activate NF-�B (331). As discussed above, acti-
vation of this stress-sensitive pathway results in the expres-
sion of genes known to be associated with impaired insulin
action along with the complications of diabetes. FFA-
induced activation of NF-�B can be prevented by pretreat-
ment with vitamin E (324) and other antioxidants (332), sug-
gesting that the alteration in cellular redox status is a
contributory component of the proinflammatory effects of
FFA. It should also be noted that FFAs and many of their
derivatives interact directly with transcription factors to reg-
ulate gene expression (333).

In patients with type 2 diabetes, there is a significant in-
verse correlation between fasting plasma FFA concentration
and the ratio of reduced/oxidized glutathione (a major en-
dogenous antioxidant) (219). In healthy subjects, infusion of
FFA (as 10% Intralipid) causes increased oxidative stress as
judged by increased malondialdehyde levels and a decline in
the plasma reduced/oxidized glutathione ratio (219). Mal-
ondialdehyde, a highly toxic by-product generated in part by
lipid oxidation and ROS, is increased in diabetes mellitus
(334). Similarly, infusion of FFA in healthy subjects caused a
time- and dose-dependent increase in plasma thiobarbituric
acid-reactive substance, coincident with an inhibition of
insulin-stimulated glucose disposal (335). In both healthy
individuals and in subjects with type 2 diabetes, restoration
of redox balance by infusing glutathione improves insulin
sensitivity along with �-cell function (225, 335).

Taken together, these studies suggest that activation of the
NF-�B signaling pathway, and perhaps other stress-sensitive
pathways, plays a role in FFA-induced insulin resistance.
Because this same signaling pathway also plays a role in
diabetic complications, these studies suggest a unifying
hypothesis of FFA- and hyperglycemia-induced oxidative
stress causing both insulin resistance and late diabetic com-
plications. Moreover, the induction of insulin resistance by
FFA-induced oxidative stress may serve as an early marker
of late diabetic complications.

V. Oxidative Stress and �-Cell Dysfunction

The �-cell is particularly susceptible to the damages in-
flicted by oxidative stress. Through the concerted efforts of
GLUT2 (the high Km glucose transporter) (336–339), glu-
cokinase (the glucose sensor) (340–343), and glucose metab-
olism, �-cells are responsible for sensing and secreting the
appropriate amount of insulin in response to a glucose stim-
ulus (344). Although this process involves a complex series
of events, mitochondrial metabolism is crucial in linking
stimulus to secretion (344–347). As discussed earlier, mito-
chondria are both free radical generators and their unwitting
targets. Therefore, the ability of ROS and RNS to damage mi-
tochondria and significantly attenuate insulin secretion is not
surprising (348, 349). The following sections discuss the impact
of physiological inducers of oxidative stress including hyper-
glycemia, FFA, and their combination on �-cell function.

Many studies have reported that �-cell dysfunction is the
result of 1) chronic exposure to hyperglycemia, 2) chronic
exposure to FFA, and 3) a combination of chronic hypergly-
cemia and FFA. Furthermore, these effects appear to be de-
pendent upon the oxidative stress induction of the NF-�B
and additional stress-sensitive targets (350–352). There is
some evidence that activation of NF-�B is mostly a proapo-
ptotic event in �-cells (353). There is considerable evidence
that chronic hyperglycemia in patients with type 2 diabetes
contributes to impaired �-cell function (5, 354). However,
evidence for a direct toxic effect of glucose in vitro has been
conflicting. This conflicting evidence is due, in large part, to
the definition of toxicity along with differences, sometimes
subtle, in experimental design. Moreover, recent data sug-
gest that the combined effects of elevations in glucose and
FFA, acting by the generation of ROS, may be particularly
toxic (reviewed in Ref. 355).

A. �-Cell glucose-induced toxicity

In humans with type 2 diabetes, reducing hyperglycemia
with either diet, insulin, sulfonylureas, or pioglitazone re-
sults in improved insulin secretion (reviewed in Ref. 5; also
see Refs. 356 and 357). Conversely, in healthy subjects, glu-
cose infusion reduces insulin release, an effect that requires
3 d of treatment with very high glucose (12.6 mm) (356). In
vivo, �-cell exhaustion and/or toxicity caused by chronic,
elevated glucose levels has been studied in both animal mod-
els of diabetes in which hyperglycemia resulted from genetic
abnormalities (reviewed in Ref. 354; also see Ref. 358) and
from manipulation of normal animals, e.g., glucose infusion,
partial pancreatectomy, or neonatal streptozotocin (re-
viewed in Ref. 354; also see Refs. 358 and 359). In these in vivo
studies, dissociation of the unique effects of hyperglycemia
from those caused by concurrent neurological, endocrino-
logical, and nutritional factors (especially lipids) has been
complicated. Moreover, high glucose in vivo also reduces
hepatic insulin removal, so that insulin, normally measured
in the circulation might have been unchanged, despite de-
creased insulin secretion (356).

In vitro, a deleterious effect of chronic high glucose on
�-cell function is difficult to demonstrate in normal cells from
animals with no genetic susceptibility to diabetes (5, 358–
360). However, six-month culture of either HIT-T15 or �TC-6
cells with elevated glucose did decrease insulin release, in-
sulin mRNA, and binding of insulin mRNA transcription
factors (361, 362). As can be seen from the data in Fig. 12,
chronic culture of HIT-T15 cells in medium containing 11.1
mm glucose in the presence of the antioxidants, NAC, or
aminoguanidine (AG) markedly prevents glucotoxic effects
on insulin gene activity (Ref. 363 and Fig. 12). In this same
study, antioxidants partially prevented glucose-induced de-
creases in insulin mRNA, DNA binding of pancreas/duo-
denum homeobox-1, insulin content, and glucose-stimulated
insulin secretion.

Attempts to demonstrate a direct inhibitory effect of
chronic hyperglycemia on the actual insulin secretory mech-
anism of normal pancreas or in islets have been difficult (5,
359). It is possible that exposure to high glucose alone for
limited periods is only weakly toxic and, with time, could
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stimulate compensatory mechanisms (364). Part of the in-
consistency may also arise from subtle but important differ-
ences in the definition of glucose-induced exhaustion vs. true
toxicity (365). In addition, differences in experimental de-
signs used to examine glucose toxicity can vary in the mech-
anisms they actually measure (5). Thus, 1) the spontaneous
decrease in insulin release from pancreas or islets occurring
after 2- to 3-h glucose stimulation (third-phase secretion) (366)
may reflect, at least in part, the gradual decline of endogenous
potentiating factors; 2) declining release during multiple acute
stimulations (367, 368) is the normal damping of factors causing
first-phase release (5, 369, 370); and 3) culture in high glucose
followed by a washout period and subsequent test stimulus, a
common procedure (5, 359), is affected by priming (memory,
time-dependent potentiation) (5, 369, 370).

Many studies have not established that a reduction in
insulin secretion occurs simply because releasable stored
insulin was depleted by prior exposure to high glucose.
Indeed, “desensitization” in animal models with mild hy-
perglycemia, or islets exposed to glucose, is often character-
ized by an increased sensitivity to low glucose, decreased stored
insulin, and a subsequent decreased response to a glucose chal-
lenge (359, 366). We believe that these data indicate a chronic
hypersensitization/depletion phenomenon, which is to be dis-
tinguished from a pathological impairment of �-cell function.

The results discussed above also emphasize the absolute
requirement of relating islet insulin secretion to the concur-
rent insulin content. However, one caveat in relating insulin

secretion to total insulin content is that all stored insulin is
not equally available for release (reviewed in Ref. 5). Thus,
insulin is stored in spatially distinct compartments within the
�-cell that differ in their availability, with granules proximal
to the plasma membrane being particularly labile. In con-
trast, proinsulin and insulin still in the endoplasmic reticu-
lum and Golgi, and “old” insulin in granules destined for
degradation, are not available for secretion. It is also em-
phasized that the demonstration of a decrease in insulin
mRNA might not reflect overall insulin synthetic activity,
because translational synthesis is often not measured and can
change in a direction opposite to the mRNA.

B. �-Cell lipid-induced toxicity

Similar to the effects of glucose, the effects of lipids on
endocrine �-cells are also complex. Increased FFA concen-
trations enhance insulin secretion both in vitro and in vivo
(reviewed in Ref. 298; also see Ref. 371), and it is speculated
that accumulation of long-chain acyl-CoA esters in the cy-
toplasm is responsible (298, 372). In vitro, long-term exposure
to FFA reportedly inhibits insulin mRNA and synthesis (373,
374) and partially inhibits postculture, glucose-stimulated
insulin release (373, 375). However, examination of the data
showing decreased secretion during a test stimulus can often be
entirely accounted for by the reduced insulin content. Presum-
ably, this was the result of unmeasured positive effects on
secretion during the previous culture period (373, 375).

Increased sensitivity to low glucose after prolonged high
FFA (20, 376–378) and coculture of normal islets with high
FFA and moderate glucose for 1 wk causes increased secre-
tory response during a test stimulus (Ref. 378 and reviewed
in Ref. 314). Thus, culture of normal islets with FFA tends to
decrease insulin mRNA and content but increases �-cell sen-
sitivity to low glucose and has little effect on fractional se-
cretion at high glucose (379, 380). These results suggest that,
in normal tissue, the insulin-synthetic machinery is more
sensitive to down-regulation than the secretory mechanism.
In contrast, in other experiments, prolonged culture of �-cell
preparations with FFA causes decreased mitochondrial
membrane potential, increased UCP leading to the opening
of K�-sensitive ATP channels, and selective impairment of
glucose-, but not K�-, stimulated insulin secretion (381, 382).
Impaired insulin secretion has been associated with an FFA-
induced increase in ROS (20).

In contrast, prolonged culture of �-cell preparations from
animals with a predilection for type 2 diabetes, particularly
those with impaired leptin production or its receptors,
clearly results in consistently demonstrable impaired secre-
tion as well as other deleterious effects on �-cell function
(reviewed in Ref. 383). Therefore, genetic defects may am-
plify the toxic effects of FFA that are not evident with normal
insulin-secreting cells. The probability that long-term FFA
may damage diabetes-prone �-cells by progressively increas-
ing total islet triglyceride deposition is strongly suggested
(298, 314, 372, 383). This, in turn, produces mitochondrial
changes, impaired glucose-induced �-cell proliferation, im-
paired insulin secretion, and �-cell apoptosis, with the latter
possibly mediated by increased islet ceramide (375, 383),
subsequent activation of JNK/SAPK and other pathways,

FIG. 12. Hyperglycemia-induced suppression of insulin gene activity
and inhibitory effects of antioxidants. HIT-T15 cells [a clonal line of
pancreatic islet �-cells (410] were cultured in low glucose as described
previously (411). Beginning at passage 74, cells were split weekly and
continuously cultured in RPMI 1640 medium containing 11.1 mM
glucose in the absence or presence of 500 �M NAC or 10 �M AG. At
passages 106–112, a plasmid containing the human insulin gene
nucleotide sequences �326 to �30 linked to the chloramphenicol
acetyl-transferase reporter gene was transfected into cells chronically
treated with NAC or AG, and chloramphenicol acetyl-transferase
activity was measured. The relative expression of the insulin pro-
moter in cells cultured in low glucose (passages 73–76) was normal-
ized (set to 1) to luciferase activity obtained using pGL3LUC, a plas-
mid containing the pGL3 promoter, which was cotransfected. *, P �
0.01 (compared with high glucose). [Derived from Ref. 363.]
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and increased NO production (Ref. 314 and Fig. 13). Inhib-
itors of NO production block apoptosis in vitro. PPAR�, a
transcription factor that regulates several enzymes cata-
lyzing lipogenesis, may also precipitate lipotoxicity. It is
elevated in islets of diabetic Zucker rats, and glucose ho-
meostasis in these animals can be prevented or ameliorated
with troglitazone, an exogenous ligand of PPAR� (383). Re-
cent studies show that saturated, long-chain fatty acids are
the most toxic (375, 384).

C. �-Cell combined glucose/lipid toxicity

Because type 2 diabetes is characterized by elevations in
both glucose and FFA, it is possible that their combined
presence is required to maximize �-cell toxicity. This possi-
bility is supported by recent studies showing that when
either isolated islets or HIT cells were exposed to chronic
elevated FFA and glucose, there was a clear decrease in both
insulin mRNA and activation of an insulin reporter-gene
construct (385). In these studies, secretion was assessed only
as accumulated insulin in the culture media, and changes in
insulin secretion rate and fractional release were not as-
sessed. In other studies, coculture of islets with high glucose
and palmitate resulted in almost complete impairment of
glucose-stimulated insulin secretion, despite partially sus-
tained stored insulin (20). Data from Poitout, Robertson, and
colleagues (355, 386, 387) have indicated that �-cell lipotox-
icity is an amplifying effect that is manifested only in the
context of concurrent hyperglycemia.

D. Role of oxidative stress in �-cell dysfunction

Oxidative stress has been implicated in �-cell dysfunction
caused by autoimmune attack, actions of cytokines, and al-

loxan. It is also a very important factor in type 2 diabetes,
aging, production of glycation products, and glucose- and
FFA-generated toxicity (reviewed in Refs. 349, 363, and 388–
391). ROS and RNS (�O2

�, H2O2, and NO; Table 1) have all
been implicated, and their negative effects on islet-cell nu-
clear and mitochondrial DNA, as well as GSH reductive
state, have been described (363, 392).

�-Cells are sensitive to ROS and RNS, because they are low
in free-radical quenching (antioxidant) enzymes such as su-
peroxide dismutase, glutathione peroxidase, and catalase
(393), as well as ROS-scavenging proteins such as thiore-
doxin (394). During chronic hyperglycemia, increased ex-
pression of several antioxidant genes and antiapoptotic
genes appears to be involved in the compensatory response
of �-cells, presumably contributing to their ability to survive
under conditions of oxidative stress (350). Overexpression of
the antioxidant enzymes in islets or transgenic mice prevents
many of the deleterious effects noted above (388, 395, 396).
Oxygen stress, generated by acute exposure of �-cells to
H2O2, increases the production of p21 (an inhibitor of cyclin-
dependent kinase), decreases insulin mRNA, cytosolic ATP,
and calcium flux in the cytosol and mitochondria, along with
causing apoptosis (reviewed in Ref. 349). Insulin secretion,
stimulated by glucose or methyl succinate, is inhibited
within 30 min, whereas the response to K� remains normal
(349). These results indicate that mitochondrial events in-
volved in glucose-mediated insulin secretion are particularly
affected by oxidative stress.

Inhibition of glucose oxidation and insulin secretion also
occurs when islets are exposed to lipid peroxidation products
(397). Conversely, antioxidants such as NAC, AG, zinc, and
the spin-trapping agent PBN can protect against �-cell tox-
icity and the generation of glycation end-products and can
inhibit the activation of NF-�B (110, 126, 363, 391, 398–401).
Recently, �-cell function was evaluated in islets after over-
expression of GFAT, the rate-limiting enzyme of hexosamine
biosynthesis (402). Activation of the hexosamine pathway
resulted in significant deterioration of glucose-stimulated
insulin secretion along with other indices of �-cell function,
coincident with an increase in H2O2 (402). These effects were
counteracted by treatment with the antioxidant NAC.

It is intriguing to consider the possibility that a direct
target of ROS in �-cells might be the low-affinity glucose
phosphorylating enzyme glucokinase, the glucose sensor
(341). In intact islets and in partially purified enzyme prep-
arations, glucokinase is inhibited by the diabetogenic agent
alloxan (403). Alloxan-induced glucokinase inactivation is
antagonized by glucose and several thiol-containing com-
pounds (403, 404). Additional mechanistic studies using al-
loxan have revealed that the cysteine residues in the vicinity
of the glucose-binding site of glucokinase are critical for the
enzyme activity, and that oxidation of these residues or the
formation of disulfide bridges (e.g., after alloxan treatment)
results in enzyme inactivation (404–406). Generation of ROS
in HIT-T15 cells transfected with the human glucokinase
gene caused a significant reduction in glucokinase mRNA
and protein expression, along with glucokinase Vmax (max-
imum rate of enzyme-catalyzed reaction) (352). The effects of
ROS were counteracted by the antioxidants NAC and
aminoguanidine.

FIG. 13. Lipotoxic-mediated apoptosis. FFA overaccumulation leads
to increased de novo production of ceramide (314), increased lipid
peroxidation, and oxidative stress (383, 412, 413). Ceramide is an
important signaling molecule that activates stress-sensitive signaling
pathways leading to increased production of NO and eventually ap-
optosis (160, 414–416). NO production can be blocked by the anti-
oxidants AG and nicotinamide (412, 413). [Derived from Ref. 413.]

612 Endocrine Reviews, October 2002, 23(5):599–622 Evans et al. • Oxidative Stress: A Unifying Hypothesis of Diabetes

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/23/5/599/2424180 by guest on 16 August 2022



VI. Conclusions and Implications

The molecular mechanisms whereby oxidative stress
causes diabetic complications are undefined. In a variety of
tissues, hyperglycemia and elevated FFA result in the gen-
eration of ROS and RNS, leading to increased oxidative
stress. In the absence of an appropriate compensatory re-
sponse from the endogenous antioxidant network, the sys-
tem becomes overwhelmed (redox imbalance), leading to the
activation of stress-sensitive signaling pathways, such as
NF-�B, p38 MAPK, JNK/SAPK, PKC, AGE/RAGE, sorbitol,
and others. The consequence is the production of gene prod-
ucts, such as VEGF and others, which cause cellular damage
and are ultimately responsible for the long-term complica-
tions of diabetes. In addition, activation of the same or similar
pathways appears to mediate insulin resistance and im-
paired insulin secretion. It is our view that there appears to
be a common biochemical basis that involves oxidative-
stress-induced activation of stress-sensitive signaling path-
ways. Thus, the use of antioxidants may be very important
in preventing activation of these pathways. Moreover, iden-
tification of the molecular basis for the protection afforded by
a variety of antioxidants against oxidative-induced damage
might lead to the discovery of pharmacological targets for
novel therapies to prevent, reverse, or delay the onset of the
resultant pathologies.
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