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Abstract In recent years, behavioural ecologists have taken to studying oxidative stress in 16	
  

free-ranging organisms because it has been proposed as an important mediator of life-17	
  

history trade-offs. A plethora of methodological approaches to quantify biomarkers 18	
  

associated with oxidative stress exist, each one with its own strengths and weaknesses. The 19	
  

d-ROMs test has emerged as one of the favoured assays in ecological studies because of its 20	
  

reliability,	
   sensitivity to specific perturbations of the organism’s oxidative balance, and 21	
  

medical and ecological relevance. Criticisms have been, however, raised about its 22	
  

specificity for oxidative damage. In this article, I have reviewed basic information about the 23	
  

d-ROMs test, its validation, the methodological mistakes made in the studies that attempted 24	
  

to criticise this assay and the application of this assay to ecological studies of oxidative 25	
  

stress. All the direct and indirect evidence shows that the d-ROMs test is a valuable assay 26	
  

for the quantification of plasma or serum primary (or early) oxidative damage molecules 27	
  

and, possibly, of other biological matrices and provides ecologically relevant information. 28	
  

 29	
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Introduction 32	
  

Oxidative stress is a complex multifaceted biochemical condition of cells, which occurs 33	
  

when there is an increased rate of oxidative molecular damage and oxidation of non-protein 34	
  

and protein thiols that regulate the cell oxidative balance (Sies 1991; Jones 2006; Halliwell 35	
  

and Gutteridge 2007). Although biomedical and toxicological sciences have traditionally 36	
  

centralised research on oxidative stress, in recent years, ecologists have also taken to 37	
  

studying oxidative stress in free-ranging organisms and have integrated principles of 38	
  

oxidative stress into several core evolutionary concepts, such as life-history trade-offs (e.g. 39	
  

survival vs. reproduction), senescence and sexual selection. It is increasingly recognised 40	
  

that the need to manage the oxidative status in an optimal way may be an important 41	
  

mechanism driving the outcome of many life-history trade-offs (Costantini 2008, 2014; 42	
  

Metcalfe and Alonso-Alvarez 2010; Blount et al. 2015; Tobler et al. 2015).  43	
  

There are many methodological approaches for the assessment of different 44	
  

biomarkers of oxidative status, including assays of oxidative damage, enzymatic or non-45	
  

enzymatic antioxidants and repair molecules (Dotan et al. 2004; Halliwell and Gutteridge 46	
  

2007). However, there is no single biochemical metric that fulfils the need to properly 47	
  

quantify the organism oxidative balance (Dotan et al. 2004). It has therefore been 48	
  

repeatedly recommended to couple experimental manipulations with comprehensive 49	
  

metrics of oxidative status. In ecological research,	
   there are also specific restrictions 50	
  

inherent to many research programmes, such as the availability of only small amounts of 51	
  

blood and the requirement of non-terminal sampling. Hence, ecologists have been mostly 52	
  

relying on those biomarkers of oxidative status that can be measured in blood (e.g., plasma, 53	
  

red blood cells). Much work has involved markers of oxidative damage, including end-54	
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products of lipid peroxidation (malondialdehyde), damage to proteins (protein carbonyls) or 55	
  

products of oxidative damage that are generated early in the oxidative cascade (organic 56	
  

hydroperoxides). The d-ROMs test has emerged as one of the favoured assays for the 57	
  

quantification of some aspects of the plasma oxidative status in ecological studies. The d-58	
  

ROMs has enabled to characterise many significant associations between plasma oxidative 59	
  

status and either physiological or life-history traits (Table 1). However, some mistakes have 60	
  

been made in the interpretation of what the d-ROMs actually measures. Moreover, a few 61	
  

criticisms have been raised about the specificity of the d-ROMs. Hence, in this article, I 62	
  

have reviewed basic information about organic hydroperoxides because these are the main 63	
  

molecules measured by the d-ROMs; the technical aspects of the d-ROMs; the validation of 64	
  

this assay; the methodological mistakes made in the studies that attempted to criticise this 65	
  

assay; and the application of this assay to ecological studies of oxidative stress.    66	
  

 67	
  

What are organic hydroperoxides? 68	
  

Organic hydroperoxides derive from the oxidation of biomolecular substrates, such as 69	
  

polyunsaturated fatty acids, cholesterol, proteins and nucleic acids, and are precursors of 70	
  

end-products of lipid peroxidation, such as malondialdehyde, hydroxynonenal and 71	
  

isoprostanes (Halliwell and Gutteridge 2007; Lajtha et al. 2009). Organic hydroperoxides 72	
  

are therefore biomolecules that were damaged by free radicals and, as such, lost their 73	
  

functionality. In plasma of vertebrates, baseline organic hydroperoxides concentrations are 74	
  

usually below 10 µM (e.g., examples on birds and mammals in Miyazawa 1989; Gerardi et 75	
  

al. 2002; Montgomery et al. 2011, 2012).   76	
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An important source of organic hydroperoxides is peroxidation of lipids. Reactive 77	
  

species are capable of abstracting a hydrogen atom from polyunsaturated fatty acids (Fig. 78	
  

1), thus initiating a chain reaction known as lipid peroxidation. During this process, 79	
  

membrane lipids are oxidized yielding lipid organic hydroperoxides as primary products. 80	
  

Cells are equipped with enzymes belonging to the glutathione peroxidase family capable of 81	
  

reducing organic hydroperoxides to less toxic molecules. However, organic hydroperoxides 82	
  

can also accumulate to some extent and participate in reactions that fuel oxidative stress 83	
  

and increase toxicity. For example, the toxicity of organic hydroperoxides is promoted by 84	
  

the presence of metals which catalyse their cleavage (Fenton reaction), leading to the 85	
  

generation of two highly reactive and histolesive pro-oxidants, namely the alkoxyl (R-O•) 86	
  

and alkylperoxyl (R-OO•) radicals (Girotti 1998). Organic hydroperoxides are known to 87	
  

alter cell membrane fluidity and properties and to promote cell necrosis and death (Kagan 88	
  

et al. 2004). A wide range of organic hydroperoxides can also be formed from the reaction 89	
  

of proteins (Fig. 2) or nucleic acids (Fig. 3) with reactive species. For example, amino acids 90	
  

like proline, glutamate or lysine have been found to generate hydroperoxides (Simpson et 91	
  

al. 1992). Also, it has been found that reaction between hydroxyl radical and nucleic acids 92	
  

can generate several DNA hydroperoxides, such as the hydroxy-6-hydroperoxy-5,6-93	
  

dihidrothymidine or the 6-hydroxy-5-hydroperoxide-5,6-dihydro-2'-deoxycytidine (Cadet 94	
  

and Di Mascio 2006; Miyamoto et al. 2007).  95	
  

 96	
  

Assays for measuring organic hydroperoxides 97	
  

There are several methodological approaches for the quantification of organic 98	
  

hydroperoxides in serum and plasma or in other biological matrices. These methods include 99	
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(i) colorimetric assays (e.g., FOX2 assay, d-ROMs assay, LPO assay kit) and flow 100	
  

cytometry (Sirak et al. 1991) for the quantification of total or lipid hydroperoxides and (ii) 101	
  

chromatographic techniques (e.g., gas chromatography-mass spectrometry, Kulmacz et al. 102	
  

1990; high performance liquid chromatography with chemiluminescence detection, Ferretti 103	
  

et al. 2005) for the specific quantification of certain groups of organic hydroperoxides. Of 104	
  

these methods, the d-ROMs assay has been increasingly used because of its high 105	
  

performance in terms of intra- and inter-coefficient of variation (below 10%), recovery rate 106	
  

(e.g., between 92 and 106% in Vassalle et al. 2006 and Pasquini et al. 2008) and linearity of 107	
  

dilution series of plasma samples (e.g., R
2
 ≥ 0.95 in Pasquini et al. 2008). 108	
  

 109	
  

Description of the d-ROMs test  110	
  

The d-ROMs test measures the oxidant ability of a serum or plasma sample towards a 111	
  

particular substance (modified aromatic amine) used as an indicator (chromogen). Organic 112	
  

hydroperoxides are the compounds that mainly contribute to such oxidant ability, hence 113	
  

providing an indirect estimate of organic hydroperoxides (Alberti et al. 2000). The 114	
  

quantification of organic hydroperoxides is indirect because the acidic pH of the buffer 115	
  

used for the reaction favours the release of metal ions like iron (Fe
2+

 and Fe
3+

) and copper 116	
  

(Cu
+
 and Cu

2+
) from circulating proteins. These metals catalyse the cleavage of organic 117	
  

hydroperoxides, leading to the generation of two free radicals, i.e., RO• and ROO•, that 118	
  

oxidize the alkylated amine DEPPD (N,N-diethyl-para-phenylendiamine) contained in the 119	
  

chromogen solution to its red radical cation, the intensity of the resulting colour being 120	
  

related to the amount of organic hydroperoxides present in the sample. The overall amount 121	
  

of metal ions that can trigger the Fenton reaction occurs in excess in plasma or serum (i.e., 122	
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> 10 µM; e.g., Lumeij and de Bruijne 1985; Suominen et al. 1988; Spolders et al. 2010; 123	
  

Kautz et al. 2014) as compared to the amount of organic hydroperoxides, hence it is 124	
  

unlikely that the availability of metal ions might limit the performance of the assay. 125	
  

Moreover, according to the following reactions, both iron and copper ions are reduced back 126	
  

continuously after they were oxidised, avoiding any reduction in their availability: 127	
  

ROOH + Fe
2+

  � RO�  +  OH
-
  +  Fe

3+
 128	
  

ROOH  +  Fe
3+

  �  RO�  +  [Fe(IV)=O]  +  H
+
 129	
  

ROOH  +  Fe
3+

  �  ROO�  +  Fe
2+

  +  H
+
 130	
  

and 131	
  

ROOH  +  Cu
+
  �  RO�  +  OH

-
  +  Cu

2+
 132	
  

DEPPD  +  Cu
2+

  � DEPPD�
+
  +  Cu

+
 133	
  

The results of the d-ROMs test are expressed in arbitrary units called “Carratelli units” 134	
  

(CARR U), where 1 CARR U is equivalent to 0.08 mg of H2O2/100 mL or to 0.024mM 135	
  

H2O2 equivalents. Note that, for practical reasons, the value is expressed as a chemical 136	
  

equivalence and not as a concentration. This is also because as stated in the early study 137	
  

where the d-ROMs assay was described (Alberti et al. 2000), as well as in next studies 138	
  

(Liang et al. 2012), while organic hydroperoxides are the main molecules detected by the d-139	
  

ROMs assay, other primary oxidative damage molecules may also be detected (e.g., organic 140	
  

chloramines that derive from oxidation of protein amine groups; endoperoxides in Liang et 141	
  

al. 2012). According to the Marcus theory (1956), chemical species with a reduction 142	
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potential higher than 0.3 V toward a standard hydrogen electrode should theoretically be 143	
  

able to oxidise the DEPPD, but their contribution might be relevant as long as they occur at 144	
  

a concentration comparable to that of organic hydroperoxides. 145	
  

 Electron paramagnetic resonance (EPR) spectroscopy is the gold standard technique 146	
  

to detect the formation of free radicals in a biological matrix and to identify their nature. In 147	
  

an early EPR investigation of the d-ROMs test (Alberti et al. 2000), it was possible to 148	
  

unambiguously identify the radical cation DEPPD
•+

 as the species responsible for the 149	
  

colour formation and to show that the free radicals originating from the cleavage of organic 150	
  

hydroperoxides did lead to the formation of DEPPD
•+

. This early assessment of the d-151	
  

ROMs test was replicated by another EPR investigation, which supported the conclusion 152	
  

that oxidants like organic hydroperoxides are the main molecules that are quantified by the 153	
  

d-ROMs test (Liang et al. 2012). Liang et al. (2012) also suggested that other oxidative 154	
  

damage molecules like endoperoxides contribute to the d-ROMs values. 155	
  

 It has been argued that ceruloplasmin (glycoprotein produced in the liver that carries 156	
  

copper in blood plasma) may have some interference in the d-ROMs readings due to its 157	
  

ferroxidase activity and to the ability of its Cu
2+

 ions to oxidize the amine DEPPD (e.g., 158	
  

Erel 2005; Harma et al. 2006). Another possibility is that ceruloplasmin can indirectly 159	
  

contribute to the detection of organic hydroperoxides because this protein exerts a 160	
  

ferroxidase activity by converting ferrous to ferric ions and the resulting Cu
+
 ions are in 161	
  

turn amenable to react with hydroperoxides to give alkoxyl radicals in a Fenton-like 162	
  

reaction (Colombini et al. 2016). However, experiments with a ceruloplasmin inhibitor 163	
  

(NaN3) added in excess as compared to the ceruloplasmin concentration suggested that 164	
  

ceruloplasmin only plays a minor role (around 7%) in determining the d-ROMs test 165	
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readings in human sera (Alberti et al. 2000) and even lower in other species (Table 2). 166	
  

Although the amount of sodium azide used by Alberti et al. (2000) was chosen without 167	
  

consideration of the affinity of sodium azide for ceruloplasmin, inhibition of ceruloplasmin 168	
  

with another molecule (the copper chelator bathocuproine disulfonate) confirmed the 169	
  

minimal interference of ceruloplasmin (Liang et al. 2012). If the d-ROMs assay detects 170	
  

only ceruloplasmin as suggested by criticisms, it should be expected to find a very high R
2
, 171	
  

probably higher than 0.90, between d-ROMs values and ceruloplasmin. New recent studies 172	
  

found a weak correlation between the results of the d-ROMs assay and the amount of 173	
  

ceruloplasmin actually present in the samples (R
2 

= 0.0009, Costantini et al. 2014a; R
2 

= 174	
  

0.18 or R
2 

= 0.07 when one outlier outside the 99% confidence interval is excluded, 175	
  

Colombini et al. 2016). Moreover, Colombini et al. (2016) showed that the addition of 176	
  

ceruloplasmin (2.27 or 6.8 µM) to human serum samples caused on average an increase of 177	
  

around 6% of the d-ROMs values, which is in agreement with previous work.  178	
  

In Buonocore et al. (2000) several determinations, adding purified glutathione 179	
  

peroxidase with reduced glutathione in excess to the plasma sample, were performed to 180	
  

prove that the reaction of the d-ROMs test was due to peroxyl and alkoxyl radical products. 181	
  

This procedure was used because glutathione is used by the enzyme glutathione peroxidase 182	
  

to reduce organic hydroperoxides to their corresponding alcohols. In all determinations 183	
  

made, a decrease of more than 90% in the signal was observed, supporting early work by 184	
  

Alberti et al. (2000). Although glutathione is per se a scavenger of free radicals (i.e., it 185	
  

provides its hydrogen atom to radical anions), the amine used by the d-ROMs assay is a 186	
  

radical cation, hence it cannot accept the hydrogen atom from glutathione. Hence, a direct 187	
  

reaction between glutathione and the amine can be excluded. This is further demonstrated 188	
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by a recent study, where experimental decrease of glutathione by administration of 189	
  

sulfoximine was associated with increased d-ROMs values (Costantini et al. 2016; Fig. 4). 190	
  

Although glutathione and d-ROMs were measured in red blood cells and plasma, 191	
  

respectively, note that it is well established that sulfoximine reduces glutathione synthesis 192	
  

in the whole body, including kidney (Griffith and Meister 1979), jejunum, lung, heart, liver 193	
  

and brain (Favilli et al. 1997) and plasma (Ovrebø et al. 1997; Ovrebø and Svardal 2000). 194	
  

Finally, note that Kilk et al. (2014) found that glutathione did not affect the d-ROMs values 195	
  

at normal serum values. 196	
  

 197	
  

Indirect evidence: sensitivity of the d-ROMs assay to pro-oxidant agents 198	
  

A way to test the sensitivity of an assay to perturbations of the organism’s oxidative 199	
  

balance is to manipulate the free radical production of an organism using methods that 200	
  

specifically increase basal production of free radicals, such as exposure to hyperoxia or 201	
  

injection of generators of reactive species or of inhibitors of antioxidants. Several 202	
  

experimental reports have clearly shown that the d-ROMs test is very sensitive to specific 203	
  

manipulations of oxidative stress level. For example, during 5 and 15 minutes of 204	
  

reperfusion (i.e., restoration of the flow of blood to a previously ischemic tissue or organ) 205	
  

of Syrian hamsters, plasma values of d-ROMs increased by 72% and 89%, respectively, as 206	
  

compared to baseline values and declined to baseline after 30 minutes of reperfusion 207	
  

(Bertuglia and Giusti 2003). However, pretreatment of Syrian hamsters with the antioxidant 208	
  

enzyme superoxide dismutase maintained d-ROMs values at normal levels, indirectly 209	
  

showing that most molecules detected by the d-ROMs test come from oxidation of 210	
  

biomolecules induced by free radicals. Similarly, Benedetti et al. (2004) found that the 211	
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repeated exposures of patients to hyperbaric oxygen (i.e., 100% oxygen) led to a significant 212	
  

increase in plasma d-ROMs values, as well as in another biomarker of oxidative damage 213	
  

(thiobarbituric acid reactive substances). In another similar experiment, Nagatomo et al. 214	
  

(2012) found that there were no differences in d-ROMs values in rats exposed to 14.4%, 215	
  

20.9%, and 35.5% oxygen. However, d-ROMs values increased in the rats exposed to 216	
  

39.8% and 62.5% oxygen. d-ROMs values were the highest in the rats exposed to 82.2% 217	
  

oxygen. Morphological changes in the red blood cells induced by oxidative attack from 218	
  

reactive oxygen species were also observed in the rats exposed to 39.8%, 62.5%, and 219	
  

82.2% oxygen (Nagatomo et al. 2012). In another experiment, domestic canaries were 220	
  

injected with DL-buthionine-(S,R)-sulfoximine, a compound that reduces cellular levels of 221	
  

glutathione by inhibiting its synthesis (Griffith and Meister 1979; Bailey 1998). As 222	
  

compared to controls, canaries treated with sulfoximine had a significant decrease of 223	
  

reduced glutathione and a significant increase of d-ROMs values, respectively; in contrast, 224	
  

the activity of ceruloplasmin was not affected by the treatment (Costantini et al. 2016; Fig. 225	
  

4).  226	
  

 227	
  

Further considerations on the d-ROMs assay 228	
  

Among species variation in ceruloplasmin and d-ROMs values also provides indirect 229	
  

support for the specificity of the d-ROMs assay. For example, while humans and pigs have 230	
  

similar activity of ceruloplasmin (Schosinsky et al. 1974; Feng et al. 2007), d-ROMs values 231	
  

in pigs are 2 to 6 times higher than in humans (humans, 325 UC ≈ 7.8 mM H2O2 232	
  

equivalents in Schöttker et al. 2015b; pigs, 558 to 1750 UC ≈ 13.4 to 42.0 mM H2O2 233	
  

equivalents in Brambilla et al. 2002). Similarly, while ceruloplasmin is already active and 234	
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detectable in young individuals at levels similar to those of adults (Lin et al. 2004; Fleming 235	
  

et al. 2009; Wang et al. 2014), d-ROMs values may not be detectable in plasma of young 236	
  

Eurasian kestrel individuals or are lower than those of adults (young kestrels in Costantini 237	
  

et al. 2006; adult kestrels in Casagrande et al. 2011; Vassalle et al. 2006 for an example on 238	
  

humans; Sgorbini et al. 2015 for an example on horses).  239	
  

Although, in general, the patterns of variation of d-ROMs values and ceruloplasmin 240	
  

differ between each other implying low or no correlation between them (see e.g., Assenza 241	
  

et al. 2009; Talukder et al. 2014, 2015), it has to be considered that it is not correct to infer 242	
  

about a potential interference of a given molecule in an assay from a simple correlation. 243	
  

Ceruloplasmin contributes to the regulation of oxidative balance in the organism (Goldstein 244	
  

et al. 1979; Calabrese and Carbonaro 1986; Samokyszyn et al. 1989; Ehrenwald et al. 245	
  

1994), hence it can happen to find or not to find correlations between ceruloplasmin and 246	
  

markers of oxidative damage, including organic hydroperoxides (Bednarek et al. 2004; 247	
  

Maykova et al. 2013; Saravanan and Ponmurugan 2013; Kusuma Kumari and 248	
  

Sankaranarayana 2014).  249	
  

Results obtained with the d-ROMs test are also consistent with studies that 250	
  

quantified organic hydroperoxides using other methods. For example, increased production 251	
  

of organic hydroperoxides (as measured by the d-ROMs) during an immune/inflammatory 252	
  

response is in agreement with other studies that quantified the production of organic 253	
  

hydroperoxides using different methods (e.g., effect of 12-O-tetradecanoylphorbol-13-254	
  

acetate on organic hydroperoxides in Sirak et al. 1991; effect of lipopolysaccharide on 255	
  

organic hydroperoxides in Riedel et al. 2003; effect of multiple sclerosis on organic 256	
  

hydroperoxides in Ferretti et al. 2005). This strong and significant link between organic 257	
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hydroperoxides and immune response is further corroborated by the significant correlations 258	
  

that have been found between d-ROMs values and leucocyte counts or antibody titres (e.g., 259	
  

van de Crommenacker 2011; Casagrande et al. 2012; Schneeberger et al. 2013). Note also 260	
  

that injection of pigeons with Escherichia coli lipopolysaccharide caused inflammation, but 261	
  

did not induce any relevant changes in ceruloplasmin (Dudek et al. 2013). Increased 262	
  

production of organic hydroperoxides was also found in relation to increased levels of 263	
  

stress hormones using either the d-ROMs (Costantini et al. 2008; Haussmann et al. 2012) or 264	
  

other assays (Sato et al. 2010; Balkaya et al. 2011).  265	
  

 Some authors used the d-ROMs assay to estimate production of free radicals (Al-266	
  

Johany et al. 2009; Noguera et al. 2011). Organic hydroperoxides are likely to better reflect 267	
  

the basal free radical production than endproducts of lipid peroxidation (e.g., 268	
  

malondialdehyde). This is because organic hydroperoxides are generated earlier in the 269	
  

oxidative cascade than endproducts. However, organic hydroperoxides are primary 270	
  

oxidative damage molecules and none studies have tested the correlation between organic 271	
  

hydroperoxides and amount of free radicals produced. The correlation between free radical 272	
  

generation and organic hydroperoxides is unlikely to be very strong because there are 273	
  

various mechanisms and molecules that either prevent oxidation of biomolecules or remove 274	
  

organic hydroperoxides from the organism. It is therefore premature to infer about the 275	
  

production of free radicals from the results of the d-ROMs assay. 276	
  

It has also been suggested that the d-ROMs assay is a measure of potential damage 277	
  

(Stier et al. 2015). This sentence implies that the d-ROMs test detects molecules that may 278	
  

potentially cause damage. This may certainly happen because molecules like organic 279	
  

hydroperoxides can be cleaved into free radicals, so fuelling the oxidative cascade. 280	
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However, it is unknown the extent to which this can happen (e.g., peroxidases reduce 281	
  

organic hydroperoxides to their corresponding alcohols before they can be cleaved). It 282	
  

therefore appears more correct to refer to oxidative damage because this is what the main 283	
  

molecules detected by the d-ROMs assay are. Note that, although peroxidases interact with 284	
  

organic hydroperoxides in the organism, it is unlikely that peroxidases cause significant 285	
  

interference with the d-ROMs test because of the low activity of peroxidases in plasma and 286	
  

the weak correlation between peroxidase activity and d-ROMs values (Costantini et al. 287	
  

2011, 2012a). 288	
  

 289	
  

Beyond the blood: application of the d-ROMs to other biological matrices 290	
  

Although the application of the d-ROMs test has been originally assessed for blood, recent 291	
  

studies showed that the d-ROMs test might also be applied to other biological matrices. For 292	
  

example, Castellini et al. (2003) found that d-ROMs values of seminal plasma of rabbits are 293	
  

correlated to those measured in blood plasma. Ito et al. (2009) found that plasma d-ROMs 294	
  

values were positively and significantly correlated (r = 0.50) with urine d-ROMs values. In 295	
  

another study, the d-ROMs test was applied to immune cells. Specifically, bovine 296	
  

peripheral blood mononuclear cells (component of the immune system) had been isolated 297	
  

from the whole blood and were then incubated for 2 and 7 days at different concentrations 298	
  

of mycotoxins to stimulate their activity (Bernabucci et al. 2011). Compared with the 299	
  

control, an increase of intracellular d-ROMs values (and also of malondialdehyde, which is 300	
  

an endproduct of lipid peroxidation) was observed, indicating the high sensitivity of the d-301	
  

ROMs assay to perturbations of the oxidative balance caused by an immune response. 302	
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 Similarly, in vitro induction of oxidative stress in prostate cancer cells resulted in	
  303	
  

the increase of d-ROMs values in the extracellular compartment, and of reactive oxygen 304	
  

species and DNA damage in the intracellular compartment (Tomasetti et al. 2010). 305	
  

 Finally, Criscuolo et al. (2010) found that the d-ROMs test may also be applied to 306	
  

haemolymph of invertebrates. Criscuolo et al. (2010) found that the d-ROMs values were 307	
  

higher in the haemolymph of short-lived male tarantulas (which also had higher superoxide 308	
  

production and lower antioxidant defences) than in the haemolymph of their long-lived 309	
  

females (which also had lower superoxide production and higher antioxidant defences). 310	
  

 311	
  

Does the d-ROMs assay provide ecologically relevant information? 312	
  

Medical and veterinary research showed that the d-ROMs test has a significant diagnostic 313	
  

value of many pathological statuses, in agreement with other biomarkers of oxidative 314	
  

damage, such as the gold standard “isoprostanes” (e.g., correlation between d-ROMs values 315	
  

and isoprostanes = 0.68 in Lubrano et al. 2002). For example, d-ROMs values were found 316	
  

to be significantly associated with mortality in humans independently from established risk 317	
  

factors, including inflammation (Schöttker et al. 2015a).  318	
  

It is now increasingly recognised that the d-ROMs is also a valuable test for the 319	
  

investigation of oxidative stress in ecological studies. Work has, for example, shown that d-320	
  

ROMs values are associated with behavioural or fitness-related traits or reflect potential 321	
  

physiological costs induced by short-term activation of immune response or changes in the 322	
  

hormonal profile (Table 1). For example, experimental increase of plasma d-ROMs values 323	
  

was found to delay egg laying and reduce clutch size in a songbird (Costantini et al. 2016), 324	
  

which are two important fitness-related traits under female control. High plasma d-ROMs 325	
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values were found to be associated with reduced survival perspectives in two seabird 326	
  

species (Costantini et al. 2015; Herborn et al. 2016). Geiger et al. (2012) and Hau et al. 327	
  

(2015) also found that high plasma d-ROMs values were associated with shorter telomeres, 328	
  

which is an emerging marker of disease risk and biological ageing. Finally, a number of 329	
  

studies found that the d-ROMs test may inform about environmental quality (e.g., 330	
  

contamination level in Bonisoli-Alquati et al. 2010; food availability in van de 331	
  

Crommenacker et al. 2011a), adaptation to urbanisation (Lucas and French 2012; 332	
  

Costantini et al. 2014b) or variation in behavioural phenotype (Herborn et al. 2011; 333	
  

Costantini et al. 2012b). 334	
  

 335	
  

Criticisms on the d-ROMs assay are based on methodological inadequacy 336	
  

A few authors raised critics to the d-ROMs assay, claiming that it is not a valid assay for 337	
  

the quantification of plasma oxidative status, organic hydroperoxides in particular. 338	
  

However, these critics have been based on serious methodological inadequacy and, 339	
  

importantly, on lack of respect of the protocols that have previously been validated. 340	
  

Early criticisms about the lack of specificity were based on several mistakes done in 341	
  

the application of the d-ROMs assay (Erel 2005; Harma et al. 2006). For example, Erel 342	
  

(2005) used chelants for the preparation of samples, which interfere with the d-ROMs 343	
  

reaction (Banfi et al. 2006). Chelants sequester iron ions, which are needed for the reaction 344	
  

of the d-ROMs test and this was already explained in the validation study (Alberti et al. 345	
  

2000). Hence, anticoagulants like EDTA or citrate should not be used.   346	
  

Recently, similar critics to those of Harma et al. (2006) were surprisingly raised by 347	
  

Kilk et al. (2014). Again, these critics have been based on methodological inadequacy in 348	
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the application of the d-ROMs assay. First, Kilk et al. (2014) tested the capacity of the d-349	
  

ROMs assay to assess oxidative damage using solutions of hydrogen peroxide. They found 350	
  

that the d-ROMs was able to weakly detect hydrogen peroxide only when it occurred at 351	
  

very high concentrations (≥ 50 µM) that are sometimes found in the plasma of individuals 352	
  

under severe oxidative stress. Hence, the authors concluded that the amount of peroxides in 353	
  

the plasma is a bit above the detection limit of the d-ROMs assay only under conditions of 354	
  

strong oxidative stress. The small capacity of the d-ROMs to measure hydrogen peroxide 355	
  

is, however, not surprising nor is it novel (see Liang et al. 2012) because the d-ROMs 356	
  

mainly measures organic hydroperoxides (e.g., Alberti et al. 2000; Liang et al. 2012; 357	
  

Colombini et al. 2016). The d-ROMs can detect organic hydroperoxides at concentrations 358	
  

well below 10 µM (Fig. 5), which have been found in the plasma of several vertebrates 359	
  

(e.g., Miyazawa 1989; Gerardi et al. 2002; Montgomery et al. 2011, 2012). For example, 360	
  

Gerardi et al. (2002) found a significant positive correlation between d-ROMs values and 361	
  

lipid hydroperoxides measured with the FOX2 assay.  362	
  

Second, Kilk et al. (2014) found that d-ROMs readings of solutions containing 363	
  

ceruloplasmin and of sera decreased by decreasing the incubation temperature from 37ºC 364	
  

(protocol of d-ROMs) to 23ºC and to 4ºC, while those of solutions containing hydrogen 365	
  

peroxide were less dependent on temperature. These results are again unreliable because (i) 366	
  

the d-ROMs assay is poorly sensitive to hydrogen peroxide, (ii) the Fenton reaction is 367	
  

highly dependent on temperature (e.g., Neyens and Baeyens 2003; Lee and Yoon 2004; 368	
  

Hussain et al. 2014) as also shown by the decrease of the readings of pure solutions of 369	
  

cumene hydroperoxide with the decrease of incubation temperature (Table 3), and (iii) the 370	
  

decrease of absorbance of pure solutions of cumene hydroperoxide with temperature is 371	
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similar to that of plasma samples (Table 3; note that the pure solution of organic 372	
  

hydroperoxides has to have an absorbance at 37ºC similar to that of plasma samples in 373	
  

order to avoid “the regression to the mean effect”, i.e., when the change in absorbance is 374	
  

dependent on the initial absorbance), while that of ceruloplasmin shown in Kilk et al. 375	
  

(2014) is not.   376	
  

Third, the authors speculated that thiols like albumin and glutathione might interfere 377	
  

with the assay. However, the amount of either albumin or glutathione that Kilk et al. (2014) 378	
  

added to the serum samples was pharmacological, while, as stressed by the same authors, 379	
  

glutathione did not affect the d-ROMs values at normal serum values.    380	
  

Fourth, given this apparent temperature effect, the authors stated that they carried 381	
  

out the incubation at 23ºC. Although the early assessment of the d-ROMs performance was 382	
  

carried out at room temperature (Alberti et al. 2000), the decrease of Fenton reaction with 383	
  

incubation temperature shown in Table 3 suggests that several of the conclusions made by 384	
  

the authors should be taken cautiously.   385	
  

Fifth, the supposed correlation between d-ROMs values and activity of 386	
  

ceruloplasmin shown in figure 7 is not reliable because (i) it is an artifact of plotting two 387	
  

species having different levels of both d-ROMs values and ceruloplasmin and (ii) more 388	
  

importantly because the values of absorbance of sera reported in figure 7 are not compatible 389	
  

with the normal absorbance values of the assay (see e.g. values of absorbance in Table 2 for 390	
  

a volume of 200 µl within a plate well). 391	
  

 392	
  

Improvements in the application of the d-ROMs assay 393	
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The d-ROMs assay can be performed using either cuvettes or well plates. The use of well 394	
  

plates may face the experimenter with an issue when there is any formation of precipitate 395	
  

on the bottom of the well. To overcome this problem, incubation can be done in tubes and, 396	
  

straightaway the end of incubation, tubes can be centrifuged and the supernatant used for 397	
  

the readings. Another problem may be with the plasma colour when this is very yellow. In 398	
  

this case, it is important to increase the wavelength at which readings are taken (e.g., 505 399	
  

nm or even more), considering that, for example, one peak of absorbance of lutein is at ≈ 400	
  

476 nm. As with the plasma colour, it should also be paid attention to whether plasma 401	
  

samples look red because of haemolysis. Iamele et al. (2002) found that a concentration of 402	
  

haemoglobin above 0.068 mM in human serum may interfere with the d-ROMs 403	
  

measurements.  404	
  

The d-ROMs assay may not be sensitive, especially for young individuals, whose d-405	
  

ROMs values may be low (Costantini et al. 2006). In order to improve the performance of 406	
  

the assay, it can be used more plasma than usual, but carefulness is needed in order to avoid 407	
  

any interference of plasma colour or alterations of the pH of the buffer. 408	
  

Finally, it has been suggested that it might be interesting to measure fatty acids 409	
  

and/or cholesterol in plasma and to express d-ROMs values also per unit of fatty acids 410	
  

(Pérez-Rodríguez et al. 2015). This is because fatty acids and cholesterol are substrates for 411	
  

formation of organic hydroperoxides. Note that caution is needed because d-ROMs values 412	
  

do not only refer to lipid hydroperoxides but also to those formed from oxidation of other 413	
  

substrates and the correlations between d-ROMs values and either fatty acids or cholesterol 414	
  

are often low (e.g., Casagrande et al. 2011; Kotani et al. 2013). It might, however, be 415	
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interesting to assess if, together with uncorrected values, d-ROMs values corrected for the 416	
  

number of substrates that occur in plasma also provide valuable biological information.  417	
  

 418	
  

Conclusions 419	
  

Conversely to many colorimetric assays, the d-ROMs test has been properly assessed using 420	
  

electron paramagnetic resonance. All the direct and indirect evidence shows that the d-421	
  

ROMs test is a valuable assay for the quantification of the plasma or serum oxidative status 422	
  

(higher values indicating higher oxidative damage), due to primary oxidation products of 423	
  

biomolecules (mainly organic hydroperoxides, but also endoperoxides and organic 424	
  

chloramines). Moreover, values of d-ROMs show significant individual repeatability over 425	
  

time (e.g., Costantini et al. 2007; Hau et al. 2015; Herborn et al. 2016). Experimental data 426	
  

also show that this assay is very sensitive to specific pro-oxidant agents and can provide 427	
  

ecologically valuable information, suggesting that this test might serve as a blood-derived 428	
  

biomarker to assess the impact of oxidative damage on health and fitness perspectives in 429	
  

animals. Clearly, as for any other metric of oxidative damage, the d-ROMs test should also 430	
  

be used in combination with other assays in order to better assess the individual oxidative 431	
  

balance. It is recommended that ecologists, interested in pursuing research in oxidative 432	
  

stress ecology, get sufficient basic background in biochemistry before making their own 433	
  

choice about what assay is suitable for their work.  434	
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Table 1 Examples of how changes of d-ROMs values in relation to a number of behavioural 742	
  

traits or stressors have been found across a broad variety of organisms 743	
  

Trait or stressor Taxon Effect Study 

Dominance status 

during the breeding 

season 

Acrocephalus 

sechellensis 

Dominant males had 

higher d-ROMs 

values 

van de 

Crommenacker et al. 

2011b 

Dominance status 

during the breeding 

season 

Mandrillus sphinx High-ranking males 

had higher d-ROMs 

values 

Beaulieu et al. 2014 

Food habits 33 bat species Species with a 

frugivorous diet had 

the lowest d-ROMs 

values, followed by 

omnivorous and 

animalivorous 

species 

Schneeberger et al. 

2014 

Food habits Pygoscelis papua Colonies with the 

highest δ13C and 

δ15N values had the 

highest d-ROMs 

values 

Beaulieu et al. 2015 

Heat stress Taeniopygia guttata Increase of d-ROMs 

values 

Costantini et al. 

2012a 

Immune response Falco tinnunculus Increase of d-ROMs 

values 

Costantini and 

Dell’Omo 2006 

Immune response Carollia 

perspicillata 

Increase of d-ROMs 

values 

Schneeberger et al. 

2013 

Malaria infection Parus major Increase of d-ROMs 

values 

Isaksson et al. 2013 

Solicitation display Hirundo rustica Begging bout 

duration was 

negatively predicted 

by d-ROMs values 

but only after food 

deprivation. 

Boncoraglio et al. 

2012 

Song behaviour Sturnus vulgaris Decrease of song 

rate with increase of 

d-ROMs values 

Casagrande et al. 

2014 

744	
  



	
   36	
  

Table 2 Comparison of absorbance values between samples that were either not treated or 745	
  

treated with sodium azide (inhibitor of ceruloplasmin activity). Affinity of sodium azide for 746	
  

ceruloplasmin (and so its capacity to inhibit ceruloplasmin activity) varies across species, 747	
  

but a concentration of 1 mM of sodium azide in a buffer with a 7.4 pH has been shown to 748	
  

reduce ceruloplasmin activity in both humans and chickens (Musci et al. 1999). The 749	
  

capacity of sodium azide to inhibit ceruloplasmin was also suggested to increase with the 750	
  

decrease of pH (Musci et al. 1999). This is important because the buffer used for the d-751	
  

ROMs assay has a pH of 4.8, hence much lower than that used in Musci et al. (1999). Data 752	
  

on Phalacrocorax aristotelis are from Herborn et al. 2016. Values are expressed as mean ± 753	
  

standard deviation. Coefficient of variation refers to variation in absorbance values between 754	
  

samples that were either not treated or treated with sodium azide. Difference in absorbance 755	
  

value mean between samples that were either not treated or treated with sodium azide is 756	
  

also shown as percentage 757	
  

Species No sodium 

azide 

1 mM sodium 

azide 

Coefficient of 

variation 

Difference 

expressed as % 

Serinus canaria 0.132±0.015 0.135±0.017 3.03±1.75 +3.68 

Sturnus vulgaris 0.158±0.021 0.163±0.013 4.81±1.34 +2.55 

Taeniopygia 

guttata 

0.182±0.053  0.186±0.052 2.20±1.30 +1.88 

Calonectris 

diomedea 

0.110±0.009 0.114±0.009 2.66±2.50 +3.95 

Phalacrocorax 0.183±0.025 0.175±0.019 4.90±2.50 -4.37 
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aristotelis 

 758	
  

759	
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Table 3 Percentage of decrease of absorbance at 24 and 4°C as compared to 37°C, which is 760	
  

the temperature required by the d-ROMs protocol. Note that the among sample variation is 761	
  

to be expected given that in plasma samples there are several groups of organic 762	
  

hydroperoxides that contribute to the reading and these differ in concentration among 763	
  

individuals. Moreover, in plasma samples there are other primary oxidative damage 764	
  

molecules that contribute to the reading (e.g., organic chloramines that derive from 765	
  

oxidation of proteic amine groups; endoperoxides; Alberti et al. 2000; Liang et al. 2012)  766	
  

 767	
  

 768	
  

 % of decrease 

of absorbance 

at 24°C as 

compared to 

37°C 

% of decrease 

of absorbance 

at 4°C as 

compared to 

37°C 

Cumene hydroperoxide 1 39 62 

Cumene hydroperoxide 2 41 61 

Standard 1 46 71 

Standard 2 50 69 

Plasma 1 42 60 

Plasma 2 34 54 

Plasma 3 36 57 

Plasma 4 38 56 

Coefficient of variation (%) 12.9 9.9 

769	
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Figure captions 770	
  

Fig. 1 Scheme illustrating the generation and fate of lipid hydroperoxides in cell 771	
  

membranes. PHGPx = phospholipid glutathione peroxidase; PLA2 = phospholipase A2; 772	
  

LOOH = fatty acid hydroperoxides; GPx = glutathione peroxidase; LOO� = fatty acid 773	
  

peroxyl radical; LO� = fatty acid alcoxyl radical; 
1
O2 = singlet oxygen; HOCl = 774	
  

hypochlorous acid; ONOO
-
 = peroxynitrite. Russell mechanism refers to the reaction 775	
  

between peroxyl radicals which generates singlet oxygen. Reprinted from Miyamoto et al. 776	
  

(2007) with permission from John Wiley and Sons 777	
  

 778	
  

Fig. 2	
  (A) Generation of hydroperoxides in protein backbone mediated by �OH attack. (B) 779	
  

Amino acid hydroperoxides containing hydrogen-α. Valine hydroperoxide (Val-OOH), 780	
  

lysine hydroperoxide (Lys-OOH) and leucine hydroperoxide (Leu-OOH). Reprinted from 781	
  

Miyamoto et al. (2007) with permission from John Wiley and Sons 782	
  

 783	
  

Fig. 3 Structures of thymidine and cytidine hydroperoxides formed by reaction of 784	
  

thymidine and cytidine with �OH, respectively. Reprinted from Miyamoto et al. (2007) 785	
  

with permission from John Wiley and Sons 786	
  

 787	
  

Fig. 4 Pre- and post-manipulation levels of red blood cell reduced glutathione, plasma d-788	
  

ROMs values and plasma ceruloplasmin of canaries in relation to injection of sulfoximine. 789	
  

The experimental treatment was able to decrease red blood cell concentration of reduced 790	
  

glutathione and to increase plasma d-ROMs values, while it did not affect activity of 791	
  

ceruloplasmin.	
  Although glutathione concentration was quantified within red blood cells, it 792	
  

is well established that sulfoximine is a potent inhibitor of glutathione synthesis in many 793	
  

body compartments, plasma included (see text). Means that do not share the same letter are 794	
  

significantly different from each other (Tukey, P < 0.05). Data are shown as mean ± 795	
  

standard error. Data of d-ROMs and reduced glutathione are reprinted from Costantini et al. 796	
  

(2016) with slight modifications with permission from John Wiley and Sons 797	
  

 798	
  

Fig. 5 Dose-response of the d-ROMs test to pure solutions of cumene hydroperoxide. The 799	
  

concentrations of cumene hydroperoxides used in this trial are in the range of circulating 800	
  

organic hydroperoxides that occur in vertebrates. The concentrations of cumene 801	
  

hydroperoxides refer to those of the original samples, i.e., before they are 100 fold diluted 802	
  

when added to the d-ROMs buffer 803	
  

804	
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