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Autism spectrum disorder (ASD) is a type of neurodevelopmental disorder that has been

diagnosed in an increasing number of children around the world. Existing data suggest

that early diagnosis and intervention can improve ASD outcomes. However, the causes

of ASD remain complex and unclear, and there are currently no clinical biomarkers for

autism spectrum disorder. More mechanisms and biomarkers of autism have been found

with the development of advanced technology such as mass spectrometry. Many recent

studies have found a link between ASD and elevated oxidative stress, which may play

a role in its development. ASD is caused by oxidative stress in several ways, including

protein post-translational changes (e.g., carbonylation), abnormal metabolism (e.g., lipid

peroxidation), and toxic buildup [e.g., reactive oxygen species (ROS)]. To detect elevated

oxidative stress in ASD, various biomarkers have been developed and employed. This

article summarizes recent studies about the mechanisms and biomarkers of oxidative

stress. Potential biomarkers identified in this study could be used for early diagnosis and

evaluation of ASD intervention, as well as to inform and target ASD pharmacological or

nutritional treatment interventions.

Keywords: treatment, oxidative stress, early diagnosis, biomarker, autism spectrum disorder

INTRODUCTION

Autism spectrum disorder (ASD) is a type of neurodevelopmental disorder characterized by
impaired social communication and interactions, as well as repetitive behavior and limited interests
(1). Decades of research have shown that the prevalence of ASD has increased dramatically.
According to the Centers for Disease Control and Prevention, one out of every 59 children in the
United States is diagnosed with ASD among 8-year-olds in 2018, with boys being four times more
likely to be diagnosed than girls (2). ASD’s etiology is complex, and it may be due to the interaction
of genetic and environmental factors (3, 4). Its development is also heavily influenced by genetic
factors (5, 6). Pathogenesis is linked to metabolic disorders, gut microbiota, viral and bacterial
infections, chemical influences on the mother’s body during pregnancy, as well as neurological and
immunological factors (3, 7–9).

There are no clinical biomarkers for ASD because the disorder’s etiology and pathogenesis are
unknown (3, 10). ASD is diagnosed based on an autism-specific history and clinical observation
(3, 10, 11). This could lead to a delay in diagnosis. Although early signs of ASD can be observed
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and diagnosed as early as 15–18 months of age, the average age
of diagnosis is about 4.5 years, and it is not even possible to
diagnose ASD before this age (3). Currently, there are no effective
pharmaceutical treatments for ASD’s fundamental symptoms
(12). Early behavioral therapies, on the other hand, have been
found to be beneficial in lowering disability and making a
significant impact on the outcomes for children with ASD,
but they are most effective when started early (13, 14). It has
been suggested that interventions initiated before 3 years of
age may have a stronger favorable impact than those initiated
after the age of five (14). Thus, early diagnosis is essential for
ASD, prompting researchers to look for ASD biomarkers. In
addition to early diagnosis, reliable ASD biomarker groups are
beneficial in clinical practice because they measure the risk of
birth in “baby siblings” of children with ASD (15). It also reflects
pathogenic processes, assesses treatment and intervention results,
and identifies a physiologically homogeneous cohort of ASD
patients (16). Moreover, it reveals unknown causes and offers a
better knowledge of the disease’s underlying pathophysiological
processes (17).

However, ASD is a genetically diverse disorder. More than
1,000 genes have been linked to ASD, but none have been
found to account for more than 1% of cases (6, 18). Meanwhile,
intellectual disability, trouble coordinating movement, sleep
difficulties, seizures, and gastrointestinal (GI) issues are also
common comorbidities associated with ASD (19). Therefore,
identifying biomarkers for ASD has been challenging. Despite
this, the evidence suggests that immunological dysregulation,
inflammation, oxidative stress, mitochondrial dysfunction, and
excitotoxicity are key components in ASD pathogenesis (3, 10,
20, 21). The biomarker related to them have been detected in the
blood and urine, and these abnormalities have also been observed
in the brain of individuals with ASD, indicating that they could be
used to reduce diagnostic heterogeneity and enhance treatment
response prediction. So far, many studies have reported increased
oxidative stress in individuals with ASD, including decreased
enzymatic antioxidants, and increased DNA, lipid, and protein
oxidation products both in the brain and peripheral circulation
(22–28). Increased oxidative stress markers have been found in
peripheral body fluids and have been linked to ASD severity (29).

This article reviews the current state of research on oxidative
stress in ASDs, focusing on the mechanism of oxidative
stress, biological analysis of oxidative stress biomarkers, and
antioxidant-based therapymethods. The literature focused on the
last 10 years and was collected from PubMed, Web of Science,
and Google Scholar.

OXIDATIVE STRESS AND ASD

The concept of oxidative stress was initially introduced in
1985 with the publication of the book “Oxidative Stress” (30).
Reduction–oxidation (redox) reaction is a type of indispensable
reaction in the cellular physiological process of cells, during
which ROS are generated. ROS is typically produced either
intentionally (to kill invading pathogens or as intermediates in
enzymatic reactions, etc.) or accidentally (via electron leakage

from electron transport chains, metabolism of drugs, exposure
to chemicals, pollutants, and radiation, etc.) during normal
physiological processes of cells. The sources of ROS contain
many enzymes. Nicotinamide adenine dinucleotide phosphate
oxidase (NOX) isoforms are major sources for endogenous ROS,
multifarious NOX isoforms are localized to various cellular
membranes and involved in many physiological or pathological
events (31, 32). Myeloperoxidase (MPO) is primarily located in
immune cells and plays an important role in our immune system,
which produces some ROS, particularly hypochlorous acid
(HOCl) to kill invading pathogens (33). NO synthases (NOSs)
are the most important NO source in both physiological and
pathological conditions (34). Interestingly, low concentrations
of NO generated by neuronal NOS or endothelial NOS have
a physiological neuroprotective function and are involved
in signaling pathway, while higher concentrations of NO
synthesized by inducible NOS (iNOS) are neurotoxic (35, 36).
Beside the sources of ROS mentioned above, there are also
many ROS-generating enzymes include succinate dehydrogenase
(SDH) (37), dihydroorotate dehydrogenase (DHOH) (38),
mitochondrial glycerol-1-phosphate dehydrogenase (mGPDH)
(39), cytochrome b5 reductase (40), monoamine oxidases
(MAOs) (41), aconitase (ACO) (42), xanthine oxidoreductase
(XOR) (43), alpha-Ketoglutarate dehydrogenase complex
(KGDHC) (44), and so on. Some of these enzymes were shown
to produce ROS at appreciable rates in studies with either
isolated enzymes or mitochondria (45). Additionally, it should
be noted that ROS is a general term but not some specific
molecule (46–48). It contains a group of molecules that come
from molecular oxygen, such as superoxide (O•−

2 ), hydrogen
peroxide (H2O•

2), hydroxyl radical (OH
•−), and peroxyl radical

(RO•−

2 ), and the chemical reactivity of each ROS molecule is
quite different (46, 47, 49).

ROS are eliminated by the antioxidant defense of cells in
normal physiological processes, and the body is in a state of
physiological balance. This balance, however, will be disrupted
if there is an increase in ROS production or a decrease in cell
antioxidant capacity, resulting in oxidative stress (46, 47). When
there is mild oxidative stress, a low level of ROS stimulates the
cellular defensemechanism to produce a proper response to ROS,
while ROS can also induce cell apoptosis as a signal molecule.
This phenomenon is known as “eustress,” and it is beneficial
to the maintenance of cellular ROS defense and tissue renewal
(48, 50, 51). When cells are subjected to severe oxidative stress,
ROS that is out of balance with antioxidant capacity damage
biomolecules such as proteins, lipids, and DNA, as well as some
biological structures such as bio-membrane structure. This is
known as “distress.”

As the energy factories of cells, mitochondria are the
main sites for the generation of ROS, in which the electron
transport chain (ETC) is a prime source for ROS (38). Both
endogenous and exogenous oxidative stress can cause a deficit
in mitochondrial ETC complexes, resulting in mitochondrial
dysfunction. Dysfunctional mitochondria produce more ROS,
which can further impair mitochondrial function. This is
a vicious cycle in which more severe oxidative stress and
mitochondrial dysfunction occur if ROS is not eliminated

Frontiers in Psychiatry | www.frontiersin.org 2 March 2022 | Volume 13 | Article 813304

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Liu et al. Oxidative Stress in ASD

promptly due to decreased antioxidant capacity. Glutathione
(GSH) has been shown in numerous studies to play an important
role in mitochondrial ROS elimination (24, 26, 52, 53).

The antioxidant capacity of various cellular defense systems is
based on enzymatic antioxidants such as superoxide dismutase
(SOD), catalase (CAT) and glutathione peroxidase (GSH-
Px), and non-enzymatic antioxidants such as ascorbic acid
(vitamins C), uric acid, tocopherol (vitamins E), quinols,
carotenoids, and polyphenols. The interaction between some
common antioxidants and ROS has been shown in Figure 1

(54–65). It is worth noting that some enzymatic antioxidants
have multiple isoforms, and the different isoforms have
different functions, such as SOD (66), GSH-Px (67), etc.
Furthermore, as a complement to defense systems, some
repair systems, such as methionine sulfoxide reductases,
disulfide reductases/isomerases, phospholipases, and DNA repair
enzymes, will repair structures and biomolecules that have
been damaged or modified by residual ROS. As a result, when
cells are subjected to mild oxidative stress, these mechanisms
can effectively protect them from oxidative damage (46–48).
Although there are numerous mechanisms in cells to combat
oxidative stress, numerous studies show that oxidative damage to
biological structures and biomolecules continues to accumulate
in cells in many related diseases, including ASD (46, 47, 68–72).

The human brain is the largest oxygen-consuming organ
in the body. It only accounts for 2% of the body mass but
consumes 20% of the oxygen. It has a high content of oxidizable
polyunsaturated fatty acids as well as redox-active metals (copper
and iron). As a result, the human brain is particularly vulnerable
to oxidative stress (47, 73–75). Children are more vulnerable
than adults to oxidative stress because of their naturally low
glutathione levels from conception to infancy (72). In the brains
of childrenwith ASD, low levels ofmitochondrial glutathione and
mitochondrial dysfunction have been reported (24, 26, 52, 53).
In particular, increased oxidative stress has been observed in
the brains of children with ASD (24). Oxidative stress causes
oxidative damage to lipids, proteins, and DNA in cells. It
makes a variety of reversible and irreversible damages in ASD
which mainly involves various post-translational modifications
of proteins such as 3-nitrotyrosine (3NT) and protein carbonyl
formation, abnormal metabolism such as lipid peroxidation,
and accumulation of toxic such as ROS. The relationship
between oxidative stress and ASD has recently been thoroughly
reviewed (76). Many markers of oxidative stress, such as lipid
peroxide (LOOH) (77), malondialdehyde (MDA) (78), a marker
of oxidative DNA damage 8-hydroxy-2’-deoxyguanosine (8-OH-
dG) (24), protein carbonyl (28, 79), and 3-nitrotyrosine (3-
NT), are elevated in children with ASD. The increased oxidative
stress markers have been observed to be correlated with ASD
severity (29).

Furthermore, several studies have shown that oxidative stress
causes an inflammatory response as an upstream component in
the signaling cascade (80, 81). ASD patients have been shown
to have systemic immunological abnormalities as well as an
inflammatory response (82, 83). In fact, oxidative stress is often
detected alongside inflammation in the brains of people with
ASD, and some studies have demonstrated a link between the two

in specific brain regions associated with ASD (24, 84, 85). Even
though it is difficult to know whether the connection is unique
to specific brain regions or not due to the limitations of the brain
tissue sample, this has revealed more about the role of oxidative
stress in the etiology of ASD. Other studies in peripheral blood
cells have found evidence of inflammation and oxidative stress
in a variety of cell types, including T cells (86, 87), B cells (88),
monocytes (89, 90), neutrophils (90), and lymphocytes (91). In
these studies, in vitro induction experiments were also used to
demonstrate the link between inflammation and oxidative stress
in peripheral cells. Peripheral cells may be useful in studying
systemic neurochemical changes in ASD.

In general, oxidative stress is involved in the pathogenesis of
ASD. As a result of the interaction of genetic and environmental
factors, people with ASD have excessive ROS production,
decreased antioxidant capacity, and mitochondrial dysfunction
(55). All of these physiological abnormalities have the potential to
cause oxidative stress (55, 92, 93). And oxidative stress can cause
epigenetic dysregulation (55, 93), neurodevelopment disorder
(94), neuro-inflammation (95), cerebral injury (55, 92, 95), and
neuro-dysfunction (55, 92, 95), which finally leads to ASD
(94–96). Figure 2 depicts the potential mechanisms of oxidative
stress in the pathogenesis of ASD.

BIOMARKERS OF OXIDATIVE STRESS

The studies of potential oxidative stress biomarkers for ASD in
the past 10 years are shown in Table 1. It focuses on proteins
and metabolites related to oxidative stress in peripheral body
fluids such as blood, urine, and saliva. These potential biomarkers
include enzymatic antioxidants, non-enzymatic antioxidants,
proteins, and lipids damaged by oxidation (28, 29, 97–140). It
is critical to verify whether the changes reported in different
research are consistent as a potential biomarker. Individual
variances must be adapted by effective biomarkers, especially in
the case of disease as heterogeneous. Most of these potential
biomarker changes in ASD patients are consistent without
dissenting reports. Here, we will focus on a few classic oxidative
stress biomarkers related to ASD and introduce them according
to their classification.

Blood-Based Biomarker
GSH, GSSG, and GSH/GSSG
Genetic variations in glutathione-related pathways have been
observed in ASD (141–144) and have been correlated to ASD
behaviors in some studies (145, 146). GSH has been reported as a
biomarker of ASD oxidative stress in numerous studies, as shown
in Table 1. The levels of GSH in the blood of autistic patients
have been reported to be variable. Some studies have found that
GSH levels are elevated when compared to healthy controls, while
other studies have found lower levels (101). However, a recent
meta-analysis found that GSH and total glutathione (tGSH)
levels in the blood are lower in people with ASD compared to
controls (147).

GSH is an important antioxidant in the human body that
protects against oxidative stress. It has the ability to detoxify
cytotoxic molecules. Lower GSH levels were found to be
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FIGURE 1 | The interaction between some common antioxidants and ROS. SOD, superoxide dismutase; CAT, catalase; GPx, glutathione peroxidase; O2·−,

superoxide; ·OH, hydroxyl radical; ONOO−, Peroxynitrite; GSSG, glutathione oxidized; GSH, glutathione; GR, gluathione reductase.

FIGURE 2 | The potential mechanisms of oxidative stress in the brain of ASD patients.

associated with the severity of ASD in a previous study (148).
Toxic metals are one of the environmental factors that contribute
to ASD. They can cause oxidative stress, which can lead to ASD
(4, 149). In this case, it will expend a significant amount of GSH
(150, 151). This may be one of the reasons for the disparities

in the results of different studies. In general, as oxidative stress
increases, it appears that GSH levels will decrease as consumption
exceeds production. However, there is a compensation effect on
the human body. In order to resist the increased oxidative stress,
the production of GSH may be increased (152–154). Therefore,
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the diversity of GSH functions and individual differences are
responsible for the difference in GSH levels in ASD patients.
GSH, on the other hand, is known to be converted into oxidized
glutathione (GSSG) by glutathione peroxidase and reduced back
to GSH by glutathione reductase in the human body. The
increased GSH consumption caused by oxidative stress will
disrupt this dynamic equilibrium of GSH and GSSH (152–154).
Therefore, many studies have detected not only the level of
GSH in the sample but also the GSH/GSSG ratio. Interestingly,
the rising GSH/GSSG ratio is a consistent result in all related
studies (101, 103, 105, 114, 121), indicating that it is a good
indicator of oxidative stress in the human body. This is consistent
with the findings of a meta-analysis of oxidative stress marker
abnormalities in children with ASD (147). In this meta-analysis,
GSSG was found to be increased in autistic children, while
tGSH/GSSG was decreased (147).

Taken together, blood glutathione metabolism markers are
one of the important ASD oxidative stress markers. In different
studies, it usually demonstrated constant and high significant
differences between ASD children and controls (147). Besides,
a postmortem study showed that GSH and GSH/GSSG were
significantly decreased in the brains of ASD patients relative
to controls (24). These glutathione metabolism markers may
show parallel changes between the central and peripheral nervous
systems in ASD.

Homocysteine and Vitamin B6, B9, and B12
Hcy is a non-protein amino acid derived from the methionine
cycle that is required for activated methyl transfer and the trans-
sulfuration pathway (155). Previous research on Hcy levels in
the blood of autistic children has yielded conflicting results (156,
157). Some studies showed a significant decrease (142, 158), while
others found no difference (159, 160). However, in accordance
with two recent meta-analyses (147, 155), some blood studies
have consistently found that increased levels of Hcy were found
in the blood of ASD patients (Table 1) (97, 161).

Hcy is located at the intersection of the methionine
cycle and trans-sulfuration pathway. The methionine cycle is
responsible for the production of the universal methyl donor S-
adenosylmethionine (SAM), which is used in a variety of methyl
transfer reactions. The trans-sulfuration pathway is related to
the synthesis of GSH (155). Changes in Hcy levels may have
an impact on these two metabolic pathways. Impairment of
methionine circulation, abnormal trans-sulfur metabolism (52,
142, 158), and alterations in DNA methylation (162) have been
shown to be associated with the development of ASD (155). The
concentration of SAM in children with ASD was higher than
that in the healthy controls, while SAM/S-adenosylhomocysteine
(SAH) was significantly lower (147).

Various B vitamins such as B6 (pyridoxine), B9 (folic acid),
and B12 (cobalamin) play important roles in the development,
differentiation, and functioning of the central nervous system.
They are involved in the methionine-homocysteine pathway
(163). The levels of vitamin B9 and B12 in the blood of ASD
children were significantly lower than those in the control
group (147, 164, 165). Their deficiency causes a decrease
in homocysteine re-methylation, resulting in an increase in

homocysteine levels (166). A lack of vitamin B12 may result in
DNA hypomethylation, affecting the development of the central
nervous system (167). Vitamin B deficiency can be caused by a
lack of nutrients, poor absorption, or intestinal disorders. The
gut microbiota is essential for digestion because it synthesizes
essential dietary vitamins and cofactors such as vitamin B,
riboflavin, thiamine, and folic acid (168). Folate deficiency and
high Hcy levels are especially harmful to the neurological system
(169, 170) because Hcy has neurotoxic characteristics (155).

Together, Hcy, vitamin B6, B9, and B12may be associated with
the pathophysiology of ASD. Figure 3 depicts the relationship
between vitamins and the metabolism of Hcy. Children with
ASD may have genetic and physiological disorders, poor lifestyle
choices (including dietary habits), and a variety of pathological
conditions, therefore monitoring their levels is important. Hcy
studies are, however, heterogeneous, and more research is
needed (155).

MDA and 4-Hydroxynonenal
Lipid peroxidation is an important part of oxidative stress
and can be explained as a process in which ROS free radicals
attack lipids containing carbon-carbon double bonds, especially
polyunsaturated fatty acids (PUFAs) (171). Lipid peroxides are
the main products in this process.

The phospholipid bilayer is primarily composed of PUFAs.
When exposed to oxidative stress, ROS will constantly attack
membrane lipids until they are depleted. Membrane lipid
peroxidation results in a number of membrane changes,
including increased membrane rigidity, decreased activity
of membrane-bound enzymes, altered activity of membrane
receptors, and altered permeability (172, 173). On the other
hand, some PUFAs such as arachidonic acid (AA) can also be
oxidized to various signaling molecules by specific enzymes like
lipoxygenases (LO) and thus play a role in the regulation of many
important physiological functions (174, 175). These signaling
lipids include diacylglycerol (176–178), inositol phosphates
(179–181), prostaglandins (182–184), and steroid hormones
(185), etc. However, whether lipids are oxidized by enzyme action
or by ROS attack, the process results in a variety of classic
biomarkers of lipid peroxidation such as MDA, 4-HNE, and F2-
isoprostane, etc. A study reported that MDA and 4-HNE levels
were higher in the frontal brain of ASD patients (186). This
suggests that lipid peroxidation occurs in ASD patients’ brains
and may be related to the pathological process of ASD self-
enhancement.

Despite the significant investigation, MDA has only been
recognized as a signaling molecule in a few studies, such as
regulation of islet glucose-stimulated insulin secretion (GSIS)
(187) and gene expression of specificity protein-1 (Sp1) in
hepatic stellate cells (188). MDA is known for its cytotoxicity,
which occurs when it forms adducts with proteins, notably
membrane proteins (189–192). MDA is also involved in DNA
damage and mutation (193, 194), which leads to cell cycle
cessation (195). In several studies of children with ASD, increased
MDA content in the blood has been observed as a typical sign
of lipid peroxidation (23, 119, 128). In one study, however,
MDA levels in the blood of ASD patients did not decrease
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TABLE 1 | The studies of potential oxidative stress biomarkers for ASD in the past 10 years.

References Method Sample size

(ASD/control)

Detail (increased or decreased, compared

with the control group)

Sample type

Meyyazhagan

et al. (97)

ELISA, ESA coulometric

electrode array system

98/98 Increased: serotonin, γ-Aminobutyric acid,

homocysteine

Decreased: ceruloplasmin, transferrin, pyruvate

kinase and hexokinase

Blood

El-Ansary et al.

(98)

Biochemical analyses 13/24 Increased: coenzyme Q10, caspase 7,

melatonin

Decrease: glutathione

Plasma

Hamed et al. (99) ELISA 38/32 Increased: TGFβ2, Heat shock protein 70

Decreased: hematopoietic prostaglandin

D2 synthase

Blood

Hassan et al. (100) Biochemical analyses 73/73 Increased: L-carnitine Blood

Faber et al. (101) Isotope dilution mass

spectrometry (IDMS),

speciated isotope dilution

mass spectrometry

(SIDMS), LC-MS/MS

30/30 Increased: glutathione, concentrations of

oxidized glutathione

Decreased: total/oxidized glutathione ratio

Blood

El-Ansary et al.

(102)

Biochemical analyses 27/27 Increased: 8-Hydroxy-deoxyguanosine

Decreased: 25-Hydroxyvitamin D2

Blood

Howsmon et al.

(103)

Biochemical analyses 83/76 Increased: oxidized glutathione, nitro-tyrosine

Decreased: glutathione, tyrosine

Blood

Meguid et al. (104) LC-MS, quantitative

reverse-transcription PCR

(qRT-PCR)

80/60 Decreased: GCLM, SOD2, NCF2, PRNP, and

PTGS2

Blood

Khemakhem et al.

(105)

ELISA 41/41 Increased: pyruvate, lactate dehydrogenase,

creatine kinase, complex 1, glutathione

S-transferase, coenzyme Q10, caspase 7,

melatonin

Decreased: glutathione

Plasma

El-Ansary et al.

(106)

Biochemical analyses 30/30 Increased: creatine kinase, ectonucleotidase

(ATPase), ectonucleotidase (ADPase), Na+/K+

(ATPase), lactate, glutathione peroxidase,

superoxide dismutase, lipid peroxides

Decreased: inorganic phosphate, ATP,

glutathione, vitamin C (oxidized), vitamin E

Plasma

Signorini et al.

(107)

GC-MS/MS, 61/61 Increased: plasma 10-F4t-NeuroP content

Decreased: 4-F4t-NeuroP levels

Plasma

Feng et al. (28) 2D-Oxyblot, Western blot,

Immunoprecipitation

15/15 Increased: complement component C8 alpha

chain, immunoglobulin kappa chain C

Plasma

Metwally et al.

(108)

ELISA 49/40 Increased: bisphenol A,

8-Hydroxydeoxyguanosine

Serum

El-Ansary (109) Biochemical analyses 20/20 Increased: glutamic, thioredoxin I, thioredoxin

reductase, peroxiredoxin I, peroxiredoxin III

Decreased: glutathione,

glutamate dehydrogenase

Blood

Qasem et al. (110) Biochemical analysis 44/40 Increase: 8-isoprostane, cysteinyl leukotrienes Plasma

Cortelazzo et al.

(111)

LC-MS/MS, Biochemical

analyses

30/30 Increased: triglycerides, total cholesterol,

eosinophil counts, alpha-2-macroglobulin,

alpha-1-antitrypsin, haptoglobin, serum

transferrin, pre-albumin, apolipoprotein J,

4HNE, fibrinogen beta chain, serum albumin,

immunoglobulin alpha-1 chain, immunoglobulin

gamma heavy chains

Plasma

Ciccoli et al. (112) GC / MS 15(the predominant ASDs

phenotype)/15(non-autistic

neurodevelopmental

disorders)/15(healthy

control)

Decreased: β-actin Blood

(Continued)
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TABLE 1 | Continued

References Method Sample size

(ASD/control)

Detail (increased or decreased, compared

with the control group)

Sample type

Ghezzo et al. (29) Biochemical analyses, gas

chromatograph

21/20 Increased: thiobarbituric acid reactive

substances (TBARS), DHA-ω6/ω3 ratio,

1-6-phenyl-1,3,5-hexatriene (DPH),

1-(4-trimethylammoniophenyl)-6-phenyl-1,3,5-

hexatriene (TMA-DPH)

Decreased: Na/K ATPase activity, erythrocyte

membrane fluidity, EPA, and DHA-ω3,

Blood

Gorrindo et al.

(113)

GC / MS 27(ASD and GID)/29(ASD

without GID)/21(GID without

ASD)/10(control)

Increased: F2t-isoprostanes Plasma

Frye et al. (114) High-performance liquid

chromatography,

electrochemical detection

18(ASD with MD)/18(ASD

without MD)/18(control)

Increased: 3-chlorotyrosine

Decreased: free reduced glutathione, free

reduced glutathione/oxidized glutathione ratio

Plasma

El-Ansary and

Al-Ayadhi (115)

ELISA 20/19 Increased: prostaglandin E2, leukotrienes,

isoprostanes

Plasma

Melnyk et al. (116) Electrochemical detection,

Biochemical analyses

68(ASD)/54(CON)/40(ASD

Sibling)

Decreased: methionine, S-adenosylmethionine,

adenosine, 5-methyl-cytosine, oxidized

glutathione, glutathione

Increased (different with sibling but not control):

increase in leukocyte

DNA 8-oxo-deoxyguanosine

Plasma

Essa et al. (117) Biochemical and data

analysis

20/20 Decreased: ceruloplasmin, transferrin Plasma

Lakshmi Priya and

Geetha (118)

SDS-PAGE, Western blot 45/45 Decreased: TBARS, glutathione, vitamin A,

vitamin C, superoxide dismutase

Blood

Essa et al. (119) Biochemical analyses 19/19 Increased: the levels of NO, malondialdehyde,

protein carbonyl, and lactate to pyruvate ratio

Blood

Rose et al. (120) PCR, Biochemical analyses,

Seahorse Extracellular Flux

43/41 Increased: glutathione

Decreased: oxidized glutathione disulfide

Blood

Al-Yafee et al.

(121)

Biochemical analyses 20/20 Increased: thioredoxin, thioredoxin reductase,

peroxiredoxin 1, peroxiredoxin 3

Decreased: reduced glutathione, total

glutathione, GSH/GSSG and activity levels

of GST

Plasma

Adams et al. (122) LC-MS/MS 55/44 Increase: adenosine, uridine

Decrease: S-adenosylmethionine

Plasma

El-Ansary et al.

(123)

Gas chromatograph 26/26 Increased: acetic, valeric, hexanoic, stearidonic

Decreased: propionic, butyric, caprylic,

decanoic, lauric, palmitic, stearic, arachidic,

a-linolenic, eicosapentaenoic,

docosahexaenoic, linoleic, arachidonic,

oleic, elaidic

Plasma

El-Ansary et al.

(124)

Biochemical analyses 25/16 Increased: acetic, valeric, hexanoic, stearidonic

Decreased: propionic, butyric, caprylic,

decanoic, lauric, palmitic, stearic, arachidic,

a-linolenic, eicosapentaenoic,

docosahexaenoic, linoleic, arachidonic,

oleic, elaidic

Plasma

Ali et al. (125) Enzyme immunoassay,

automated random-access

immune-assay system

40/40 Increased: Hcy levels

Decreased: folate, vitamin B12

Serum

AL-ayadhi and

Mostafa (126)

ELISA 42/42 Increased: osteopontin Serum

(Continued)
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TABLE 1 | Continued

References Method Sample size

(ASD/control)

Detail (increased or decreased, compared

with the control group)

Sample type

Khakzad et al.

(127)

High-sensitivity CRP test 39/30 Increased: hs-CRP concentrations Serum

Meguid et al. (128) Biochemical analyses 20/25 Increased: malondialdehyde

Decreased: glutathione, glutathione peroxidase

Blood

Ming et al. (129) PCR 103/0 Significant transmission disequilibrium was

found in the overall transmission of the human

glutathione peroxidase (GPX1) polyalanine

repeat (ALA5, ALA6, and ALA7). The ALA6

allele was under transmitted.

Blood

Osredkar et al.

(130)

ELISA 139/47 Decreased: 8-hydroxydeoxyguanosine Urine

Yui et al. (131) ELISA, SOD Assay Kit 20/11 Increased: hexanoyl-lysine Urine

Puig-Alcaraz et al.

(132)

LC-MS, Biochemical

analyses

35/34 Increased: homocysteine Urine

Ranjbar et al. (133) Biochemical analyses 29/24 Increased: catalase activity

Decreased: total antioxidant concentration,

total thiol molecules

Urine

Kałuzna-

Czaplińska et al.

(134)

GC / MS 34/21 Increased: homocysteine Urine

Kałuzna-

Czaplińska

(135)

GC / MS 35/36 Increased: 2-oxoglutaric acid, isocitric acid,

citric acid, 4-hydroxybenzoic acid,

4-hydroxyphenylacetic acid, hippuric acid,

adipic acid, suberic acid, arabinitol

Decreased: tryptophan

Urine

Damodaran and

Arumugam (136)

UV spectrophotometric,

Biochemical analyses

45/50 Increased: lipid peroxides, lipid hydroperoxides,

protein carbonyl, total peroxides, uric

acid/creatinine, malondialdehyde,

4-hydroxynonenal

Decreased: protein sulfhydryl, non-protein

sulfhydryl, and total sulfhydryl, level of

creatinine excreted

Urine

Youn et al. (2010)

(137)

LC-MS/MS 65/9 Increased: proporphyrins,

pentacarboxyporphyrin, precoproporphyrin,

coproporphyrins, and total porphyrins

Urine

Ngounou Wetie

et al. (138)

Two-dimensional PAGE,

LC-MS/MS, HPLC

6/6 Increased: proto-oncogene FRAT1, Ig alpha-1

chain C region, immunoglobulin heavy chain

constant region alpha-2 subunit, V-type proton

ATPase subunit C 1, Kinesin family member 14,

Integrin alpha 6 subunit, growth hormone

regulated TBC protein 1, parotid secretory

protein, Prolactin-inducible protein precursor,

Mucin-16, Ca binding protein MRP14

Decreased: alpha-amylase, CREB-binding

protein, p532, Transferrin variant,

Protein-L-isoaspartate O-methyltransferase

domain-containing protein 1 isoform 3, Chain A

of Human Pancreatic Alpha-Amylase In

Complex With Myricetin, V-type proton ATPase

subunit C 1, Ig J-chain, Zn alpha2 glycoprotein,

Glutamate-rich protein 6B, Immunoglobulin

heavy chain variable region, Albumin protein,

Sperm activating protein subunit I-Apo

A1-SPAP-subunit I, Zymogen granule protein

16 homolog B precursor, Putative lipocalin

1-like protein 1,cystatin D and plasminogen

Saliva

(Continued)
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TABLE 1 | Continued

References Method Sample size

(ASD/control)

Detail (increased or decreased, compared

with the control group)

Sample type

Anwar et al. (139) LC-MS/MS 38/31 Increased in plasma: Nε-carboxymethyl-lysine,

Nω-carboxymethylarginine, dityrosine

Increased in urine: alpha-aminoadipic

semialdehyde, glutamic semialdehyde, asn,

pro, ser, and val

Renal clearance of carboxymethylarginine,

glucosepane, dityrosine, arg, glu, leu, phe, and

thr were decreased and renal clearance of

N-formylkynurenine and trp were increased in

children with ASD, with respect to

healthy controls.

Plasma and urine

Yenkoyan et al.

(140)

LC-MS/MS, ICP-MS, flow

cytometry

10/10 Increased: 8-hydroxy-2’-deoxyguanosine

Decreased: superoxide dismutase

Blood and urine

FIGURE 3 | The metabolism of Hcy and the relationship between vitamins and this metabolism. Hcy is located at the intersection of the methionine cycle and the

transsulfuration pathway. The methionine cycle is responsible for producing the universal methyl donor SAM, which is used in various methyl transfer reactions. The

transsulfuration pathway is related to the synthesis of GSH. Vitamin B12, Vitamin B6 act as cofactors in the enzymatic reactions in cycle.

significantly (196). In fact, this discrepancy could be due to the
measurement method. Thiobarbituric acid reactive substances
(TBARS) is a well-known MDA measurement method based on
MDA and thiobarbituric acid reaction (TBA) (197). However,

this method is non-specific because many carbonyl compounds
such as some oxidized unsaturated fatty acids have been shown
to react with TBA and interfere with MDA measurement (198).
In addition, according to the biochemical properties of MDA,
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biological MDA will exist in two forms: free MDA and adducted
MDA with proteins, nucleic acids, lipoproteins, and amino
acids (199). Some researchers attempted to detect MDA using
liquid chromatography-mass spectrometry (LC-MS) and gas
chromatography-mass spectrometry (GC-MS), which showed to
be more specific and sensitive than TBARS analysis, as well as
effective for both free and adducted MDA (200, 201). Except in
blood investigations, amino acid adducts of MDA, such as N-
epsilon-(2-propenal) lysine, N-α-acetyl-(epsilon)-(2-propenal)
lysine, N-(2-propenal) serine, and N-(2-propenal) ethanolamine
(202–205) have been found in urine by mass spectrometry.

4-HNE is also a lipid peroxidation end product and one of the
most cytotoxic products. Once produced in cells, its elimination
depends mainly on the action of antioxidants like GSH. It is
intriguing that 4-HNE, as a signaling molecule, can regulate
the expression of many transcription factors while enhancing
the antioxidant mechanism of cells. These transcription factors
include nuclear factor erythroid 2-related factor 2 (Nrf2)
(206, 207), activating protein-1 (AP-1) (208), and peroxisome
proliferator-activated receptors (PPAR) (209, 210), etc. At the
same time, 4-HNE is highly cytotoxic causing protein and DNA
damage (199, 211–213), affecting autophagy (214, 215), and
inducing cell apoptosis (216). Furthermore, high concentrations
of 4-HNE can cause cell necrosis (217). Similar to the biochemical
properties of MDA, biological 4-HNE also exists in two forms,
including free 4-HNE or adducted 4-HNE with proteins, nucleic
acids, lipoproteins, and amino acids (152). Based on the HPLC-
based free 4-HNE measurement method, 4-HNE absorbs (197)
in the UV range (220–223 nm). Other more specific and sensitive
probes that are widely used are aldehyde reaction probes such as
2,4-dinitrophenylhydrazine (DNPH) and 1,3-cyclohexanedione
(CHD) (218). UV spectrophotometry was used in a study to
detect significant increases of 4-HNE in the urine of children
with ASD (136). These methods, like MDA, are non-specific
because they cannot distinguish 4-HNE from other aldehydes.
The early measuring method of adducted 4-HNE, on the other
hand, is an immunoassay, which relies on antibodies specific
for 4-HNE bound to proteins or other biomolecules (219, 220).
Using a Western blot assay, a study found a significantly higher
level of 4-HNE protein adducts (4-HNE PAs) in the plasma
of children with ASD (221). Many specific detection methods
for 4-HNE, including adducted 4-HNE based on LC-MS or
GC-MS, have been developed as a result of the advancement
of mass spectrometry technology, and are now widely used in
the detection of biomarkers of various oxidative stress diseases
(222). Unfortunately, few studies have focused on 4-HNE as a
biomarker in ASD. A study on the brain tissue fromASD patients
showed that cellular stress and apoptosis caused by 4-HNE in the
brain may contribute to the pathogenesis of ASD (223), implying
that 4-HNE is a worthy research direction.

In addition to MDA and 4-HNE, the most prominent markers
of lipid peroxidation, such as isoprostanes, have been established
as biomarkers and have received extensive attention. Multiple
studies have discovered elevated levels of isoprostane in blood
samples from children with ASD, as indicated in Table 1 (65, 68,
70). More study is needed at this time on the types of biomarkers
and application methods that can more correctly identify the
extent of lipid peroxidation in patients.

Urine Based Biomarker
As shown in Table 1, there have been few biomarker studies of
oxidative stress in ASD utilizing urine samples. Despite the fact
that blood has a more complicated composition, urine biomarker
studies have lagged behind those in the blood (224). This could
be related to the fact that urine biomarkers are limited. Gender,
age, collection time, dietary choices, and kidney injury are only
a few of the factors that produce changes in urine components.
Because urine is more unstable than blood, reliable biomarkers
must be revealed before it can be discovered. Furthermore,
several high-abundance proteins in urine, such as uromodulin,
albumin, and immunoglobulin, might obstruct the detection of
low-abundance proteins. As a result, enlarging low abundance
urine proteins or eliminating high abundance urinary proteins
should be considered (225).

Although there are certain limitations to detecting biomarkers
in urine, urinary biomarkers still offer great potential and
advantages. Urine is one of the body’s principal excretory
systems, containing a variety of proteins and metabolites, many
of which are well-described in both normal and pathological
conditions (226). Urine collection is safer, more convenient,
and yields a bigger sample volume when compared to other
peripheral bodily fluids. Because urine generation is linked to
plasma filtration and selective reabsorption, changes in urine
components can signal not only the presence of disorders like
diabetes and kidney disease but also the presence of changes in
blood components.

Interestingly, as indicated in Table 1, oxidative stress
biomarkers have been found in the blood and urine of ASD
patients in several studies (139, 140). These investigations focus
on the antioxidant capacity of blood and urine, as well as enzyme
antioxidant activity and redox reaction intermediates. Hcy levels
in blood and urine have been observed to be higher in children
with ASDs in prior research (125, 134, 227). Hcy levels in urine
and blood of autistic people appear to be the same, implying
that changes in Hcy levels in the urine may reflect changes in
the blood while collecting urine samples is non-invasive, safe,
and easy.

ASD TREATMENT AND OXIDATIVE
STRESS

To learn more about the pathophysiology and diagnostic
biomarkers of ASD, researchers are currently studying
effective drugs and treatments (228). Increased oxidative
stress is a common feature in ASD individuals, despite the
fact that ASD is heterogeneous. Intervening and treating
oxidative stress is one of the most effective techniques for
improving the pathogenetic status of ASD patients. Therefore,
various antioxidants, including sulforaphane (229), resveratrol
(230–233), N-acetylcysteine (NAC) (234, 235), hesperidin (236),
flavonoid (237, 238), leptin (239), minocycline, and doxycycline
(240), selenium supplements (241), docosahexaenoic acid (DHA)
(242), curcumin (243), agmatine (244), and sulindac (245), etc.,
have been reported to be employed in ASD treatment animal
model experiments. In these studies, all of these antioxidants

Frontiers in Psychiatry | www.frontiersin.org 10 March 2022 | Volume 13 | Article 813304

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Liu et al. Oxidative Stress in ASD

have shown positive therapeutic effects, indicating that they
could be useful in the treatment of ASD.

Antioxidant therapy for ASD has only a few clinical
investigations. Sulforaphane (246), resveratrol (247), coenzyme
Q10 (248), NAC (249), omega-3 fatty acids (250), arachidonic
acid, and DHA (251) are some of the antioxidant supplements
used in these studies to treat ASD. All of these antioxidants, with
the exception of resveratrol, are beneficial. Although resveratrol
plays a beneficial role in the treatment of ASD animal model,
its clinical study was still in its infancy. Currently, it has only
one clinical study and the result is negative (252). Interestingly,
a systematic review of treatments based on antioxidants
reported that NAC appears to be the most effective antioxidant
therapy of ASD currently (253). Furthermore, supplementing
micronutrients for redox metabolism has been demonstrated to
be helpful in certain children with autism (254). Treatment of
ASD patients with antioxidant-rich food, on the other hand,
is also a viable option. Several studies have evaluated the
effectiveness of antioxidant-rich foods including broccoli (255),
camel milk (256), and dark chocolate for ASD (257).

Overall, the results of these studies are positive. But as
expected, some of the treatment groups in these clinical studies
showed strong individual differences, reflecting the heterogeneity
of ASD. It is important to note that ROS is a general term,
not a specific molecule. As mentioned above, it contains a set
of molecules derived from molecular oxygen, and the chemical
reactivity of various ROS molecules varies widely as far as
antioxidants are concerned, there are many types of antioxidants,
and their specific antioxidant functions are also different.
Antioxidants always have a goal that can only handle one type
of ROS and not another (46, 47, 49). The causes of oxidative
stress in ASD patients may differ due to genetic differences and
the diversity of antioxidant defenses against oxidative stress.
Using biomarkers to determine the types of antioxidants taken by
each ASD patient and then supplementing them might be more
successful. Antioxidants have been demonstrated to enhance
behavior in persons with ASD in numerous research, however,
these effects are generally transient, and only a few studies have
shown a long-term behavioral reversal in people with ASD (228).
Therefore, effective biomarkers for monitoring the efficacy of
antioxidative therapy in ASD patients should be considered.

Some of the antioxidants mentioned above, such as
sulforaphane, resveratrol, naringenin, curcumin, and
agmatine, work as both antioxidants and Nrf2 activators
(252). Nrf2 is a transcription factor implicated in immunological
dysregulation/inflammation, oxidative stress, and mitochondrial
dysfunction. Nrf2 is generally coupled to Kelch-like ECH-
associated protein 1 (Keap1) in an inactive form, and the
ubiquitin-proteasome system destroys the complex, allowing
cells to maintain a steady low level of Nrf2 (258). The complex
dissociates when subjected to oxidative stress, and Nrf2
translocates to the nucleus. Before binding to specific DNA locus
antioxidant response elements (AREs), Nrf2 will heterodimerize
with Maf or Jun proteins in the nucleus (259, 260). NRF2-ARE
binding can regulate the expression of hundreds of cytoprotective
genes including antioxidant proteins and phase II enzymes (261).
Furthermore, the Nrf2/ARE pathway interacts with the NF-κB

(nuclear factor kappa-light-chain-enhancer of activated B cells)
pathway. The p65 subunit of NF-κB inhibits the Nrf2/ARE
pathway by depriving CREB binding protein (CBP), allowing
HDAC3 to recruit to MafK and interact with Keap1 (262, 263).
Alternatively, free Keap1 can inhibit the NF-κB pathway by
regulating the activity of the inhibitor of nuclear factor-κB
kinase subunit beta (IKK-β) (264). NF-κB is a key player in the
regulation of inflammation (265), as is involved in the release
of pro-inflammatory cytokines such as IL-1, IL-6, IL-12, and
TNF-α (266). Several studies have also shown that Nrf2 can
directly regulate the availability of mitochondrial respiratory
substrates, resulting in mitochondrial depolarization, reduced
ATP levels, and impaired respiratory function. Furthermore,
the aforementioned negative phenomena can be reversed by
activating the Nrf2 pathway (267, 268).

Moreover, when induced with lipopolysaccharide (LPS),
Nrf2-deficient mice have a more pronounced release of ROS,
microglial activation, and neuro-inflammatory response than
normal mice (269). Some studies of BTBRmice (a model of ASD)
indicated that the Nrf2 system plays an important role in the
regulation of neuroinflammation and oxidative stress in the brain
(229, 270). A study in monocytes from people with ASD found a
positive result by regulating the Nrf2 system in an in vitro LPS-
induced inflammatory model (271) and many other studies have
reported the abnormalities of the Nrf2 system in ASD individuals
(272, 273). Therefore, the Nrf2 system is one of the important
ways of antioxidant therapy. A systematic review of treatments
based on the Nrf2 system shows a potentially beneficial result,
but also explains that these treatments still lack sufficient
evidence for their efficacy and safety (252). Better design
and more rigorous research are needed before the treatments
can be used.

LIMITATIONS OF CURRENT STUDIES AND
PROSPECTS

Disease progression, including ASD, is often accompanied
by dramatic changes in the levels of various proteins and
metabolites. Biomarkers can be used to comprehensively
monitor the physiological status of ASD patients during
diagnosis, intervention, and treatment, which can aid in
understanding the condition, judging the treatment strategy,
and monitoring efficacy and prognosis (3, 10). To this
purpose, the efficacy of biomarkers and biological detection
systems must meet stringent requirements. Traditional detection
methods, such as Western blot analysis and enzyme-linked
immunosorbent assay (ELISA), can not detect many markers
at once, making comprehensive control difficult. The sensitivity
of biological detection technology has improved, and more
detection scenarios have been implemented, allowing for
more comprehensive monitoring. Mass spectrometry has seen
tremendous advancements in recent years, particularly in
terms of reproducibility, performance, resolution, precision, and
analytical quality.

Currently, mass spectrometry-based targeted proteomic or
metabolomic approaches can effectively monitor multiple disease
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markers simultaneously (3, 10). Several targeted metabolomic
techniques to oxidative stress markers have been developed
(274) and utilized (275). Methionine, homocysteine, vitamins
B6, B12, B9, and their metabolites have been accurately
measured in several matrices, including breast milk, plasma,
and neonatal mouse brain, using a novel approach (274).
Concomitant vitamin B6, B9, and B12 deficits, as well as
lower levels of methionine, GSH, SAM, and a lower SAM/SAH
ratio, as well as Hcy, SAH, and 5-methyltetrahydrofolate (5-
methyltetrahydrofuran) in children’s urine samples, have all been
linked to autism (275).

At the same time, because the brain is a part of the
central nervous system and is susceptible to oxidative stress,
numerous physiological abnormalities generated by oxidative
stress in the brain would play a role in the development of
autism. For the diagnosis and treatment of ASD, identifying
the oxidative stress that occurs in the peripheral or brain
is beneficial. Brain-derived neurotrophic factor (BDNF) (276),
brain-derived exosomes (277), and other plasma brain-derived
ASD biomarkers, have been discovered in numerous research.
However, though some studies also reported some plasma
biomarkers for brain oxidative damage by analyzing different
kinds of samples including F4-Neuroprostanes and F2-Dihomo-
Isoprostanes (278), biomarkers in peripheral body fluid samples
are still insufficient to identify brain or peripheral oxidative
stress at the moment. Although cerebrospinal fluid (CSF)
samples can detect oxidative stress in the brain, they are
not appropriate for patients with ASD due to the risk of
injury during the sampling process. Because of their ease
of collection, peripheral bodily fluid samples are always the
best option.

Furthermore, little research has been done on peripheral
blood cells, which play an important role in the immune
system. Since a relationship has been demonstrated between
oxidative stress and systemic inflammation (82, 83), peripheral
oxidative stress and inflammation in ASD patients cannot be
ignored. There is a lot of evidence that peripheral immune
cells like T cells and B cells can affect brain neurons
and can contribute to brain inflammation in some neural
diseases (279).

With significant advances in biomedical detection
technology, the limitations and defects of previous studies
will be improved. Otherwise, some significant topics
closely related to oxidative stress of ASD such as brain-
derived factors and peripheral blood cells are worthy
and promising.

CONCLUSION

Many studies have demonstrated that oxidative stress plays a
crucial part in the disease process of ASD because ASD cases
have greater levels of oxidative stress and decreased antioxidant
capability. The active use of biomarkers to monitor ASD patients’
physiological status is helpful for disease diagnosis, intervention,
and treatment. We mainly summarize the most recent research
progress in the field of ASD oxidative stress biomarkers in
this review. Many possible oxidative stress markers have been
discovered in ASD, however, attempts to monitor the oxidative
stress status of children with ASD are still difficult to meet
clinical application standards, and additional study is needed.
At the same time, we present a review of recent studies on
antioxidant interventions. Several clinical investigations have
found significant individual differences in some therapy groups,
indicating that ASD is heterogeneous. With the development
of mass spectrometry technology, mass spectrometry-based
proteomics, and metabolomic methods have gradually become
powerful tools for exploring biomarkers. These methods make
ASD biomarker research easier and help to expand the depth and
breadth of biomarker research.
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