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Abstract

Oxidative stress (OS), defined as disturbances in the pro-/antioxidant balance, is harmful to cells due to the excessive generation

of highly reactive oxygen (ROS) and nitrogen (RNS) species. When the balance is not disturbed, OS has a role in physiological

adaptations and signal transduction. However, an excessive amount of ROS and RNS results in the oxidation of biological

molecules such as lipids, proteins, and DNA. Oxidative stress has been reported in kidney disease, due to both antioxidant

depletions as well as increased ROS production. The kidney is a highly metabolic organ, rich in oxidation reactions in mito-

chondria, which makes it vulnerable to damage caused by OS, and several studies have shown that OS can accelerate kidney

disease progression. Also, in patients at advanced stages of chronic kidney disease (CKD), increased OS is associated with

complications such as hypertension, atherosclerosis, inflammation, and anemia. In this review, we aim to describe OS and its

influence on CKD progression and its complications. We also discuss the potential role of various antioxidants and pharmaco-

logical agents, which may represent potential therapeutic targets to reduce OS in both pediatric and adult CKD patients.
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H2O2 Hydrogen peroxide

HO-1 Heme oxygenase-1

IS Indoxyl sulfate

MPO Myeloperoxidase
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NO Nitric oxide

NOX NADPH oxidase

NQO1 NADPH quinone oxidoreductase

Nrf2 Nuclear factor erythroid 2-related factor 2

O2
•− Superoxide anion

OS Oxidative stress

OxLDL Oxidized low-density lipoproteins

ROS Reactive oxygen species

SDMA Symmetric dimethylarginine

Se Selenium

SOD Superoxide dismutase

XO Xanthine oxidase

XDH Xanthine dehydrogenase

Introduction

Oxidative stress (OS) is defined as a state of imbalance between

excessive oxidant (free) radicals and insufficient degradation of

those radicals by antioxidant systems as an in-house defense

mechanism (Fig. 1). Oxidant compounds such as reactive oxy-

gen species (ROS) and reactive nitrogen species (RNS) are

formed under physiological conditions and are removed by sev-

eral antioxidant defense mechanisms [1, 2]. Reactive species are

not necessarily harmful to the cells. At moderate concentrations,

Reactive oxygen species/reactive nitrogen species act as second

messengers and regulate intracellular signal transduction path-

ways. In case of an imbalance in the prooxidant/antioxidant

equilibrium, OS is created which leads to metabolic

dysregulation and/or oxidation end products of lipids, DNA,

and proteins and/or oxidative damage in cells, tissues, or organs,

caused by ROS/RNS [1, 2]. Ultimately, this results in several

disorders due to the inactivation of cellular molecules [3].

The kidney is a highly energetic organ. This makes it more

vulnerable to damage caused by OS [4, 5]. In turn, OS is asso-

ciated with kidney disease progression [6, 7]. Furthermore, sev-

eral complications of chronic kidney disease (CKD) such as

inflammation and cardiovascular disease (CVD), the major

cause of death in patients with CKD, are also linked to in-

creased levels of OS. The ‘oxidative’ link between CKD and

its complications is achieved through several mechanisms, such

as uremic toxin-induced endothelial nitric oxide synthase

(eNOS) uncoupling [8] and increased nicotinamide adenine

dinucleotide phosphate-oxidases [NADPH oxidases (NOX)]

activity [9, 10], but also antioxidant losses due to dietary restric-

tions, diuretics use, protein energy wasting, and/or decreased

intestinal absorption [11, 12].

In the current review, we will discuss the nature, source,

and consequences of increased OS and decreased antioxida-

tive capacity in CKD.

Sources of increased oxidative stress

Reactive oxygen species and reactive nitrogen speciesrepresent a

class of reactive molecules which are continuously formed by

oxidation reactions in living cells during normal metabolic pro-

cesses by both enzymatic and nonenzymatic reactions. Free, or

Fig. 1 Imbalance between oxidants and antioxidants. To maintain

cellular homeostasis, a balance is necessary between the production and

degradation of reactive oxygen species (ROS). Oxidative stress is a state

of imbalance between excessive oxidant formation and the degradation of

those radicals by antioxidants. Metabolic dysregulation resulting in

severe cell damage, cell death, aging, and disease can be a consequence

of the oxidative stress. On the other hand, an excessive production of

antioxidants (such as glutathione (GSH), superoxide dismutase (SOD),

catalase, ascorbic acid, α-tocopherol, …) is also harmful to the cell.

‘Reductive stress’ causes a defective host defense and an impaired

physiological signaling
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primary, radicals, defined as independent chemical species with

one or more unpaired electrons, are highly reactive in search for

another unpaired electron. Examples are hydroxyl (OH•) and

the less reactive superoxide anion (O2
•−), nitric oxide radicals

(NO•), and nitrogen dioxide radicals (NO2
•). When two un-

paired electrons react with each other to form a covalent bond,

a new nonradical molecule is formed. More often, however,

free radicals attack nonradical molecules resulting in a new

(secondary) radical molecule, initiating as such a chain reac-

tion. This chain reaction of primary and secondary radicals

eventually leads to oxidative damage of several tissues and

organs [13]. Examples of secondary radicals are hydrogen per-

oxide (H2O2), ozone (O3), singlet oxygen (1O2), hypochlorous

acid (HClO), nitrous acid (HNO2), dinitrogen trioxide (N2O3),

peroxynitrite (ONOO−), and lipid peroxides (Fig. 2) [13].

Since ROS are unstable and have a short half-life, it is

difficult to measure the amount of circulating free radicals.

Several oxidation end products are therefore used to assess

the redox state: These are end products of lipid peroxidation,

DNA damage, or the oxidation of proteins and amino acids

[14] (Supplementary Table 1).

Sources of oxidative stress

Endogenous sources

Normal metabolic processes in aerobic conditions constitute a

major source of ROS. In living organisms, ROS are generated

as products of biochemical reactions in the plasma membrane,

cytoplasm, peroxisomes, lysosomes, and on the membranes of

mitochondria and endoplasmic reticulum. The mitochondria,

together with nicotinamide adenine dinucleotide phosphate

(NADPH) oxidase, xanthine oxidase (XO), myeloperoxidase

(MPO), and the eNOS, are the major source of ROS forma-

tion. Other enzyme sources are prostaglandin synthase,

lipoxygenase, and flavoprotein dehydrogenase [3, 15].

Mitochondrial electron-transport chain Along the mitochon-

drial electron-transport chain, electrons are transferred to re-

duce oxygen to water and produce ATP by oxidative phos-

phorylation of the reduced forms of nicotinamide adenine di-

nucleotide (NADH) and flavin adenine dinucleotide

(FADH2). At complexes I and III of the electron-transport

Fig. 2 Mechanisms of oxidative cellular damage and the antioxidant

defense. Overview of the most relevant oxidant and antioxidant

pathways and their interactions. Green arrow: antioxidative reaction;

green line: inhibition of the oxidating reaction by antioxidative

mechanism; red arrow: pro-oxidative reaction. Abbreviations: αTOH,

alpha tocopherol; ADMA, asymmetric dimethylarginine; AGEs, ad-

vanced glycation end products; BH4, (6R)-5,6,7,8-tetrahydro-l-biopterin;

BiliR, bilirubin; biliV, biliverdin; BVR, biliverdin reductase; Cat,

catalase; COX, cyclooxygenase; eNOS, endothelial NO synthase; Δ

eNOS, eNOS uncoupling; Fe2+, iron; GSH/GSSH, glutathione; H2O2,

hydrogen peroxide; HOCL, hypochlorous acid; LOOH, fatty acid chain;

LOO−, lipid peroxyl radical; MPO, myeloperoxidase; MRC, mitochon-

drial respiratory complex; NOX, NADPH oxidase; NO, nitric oxide;

ONOO, peroxynitrite; O2, oxygen; O2
•−, superoxide anion; PX, peroxi-

dase; SOD, superoxide dismutase; TXA, thromboxane; VitC, vitamin C;

XDH, xanthine dehydrogenase; XO, xanthine oxidase
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chain, respectively, NADH dehydrogenase and ubiquinone-

cytochrome bc1, O2
•− is generated due to incomplete reduc-

tions and electrons that leak away from the main path and

directly reduce oxygen molecules to ROS, such as O2
•−,

H2O2, and OH• [15, 16].

NADPH oxidases The family of NADPH oxidases consists of

seven members: five different types of NADPH oxidases

(NOX) and two dual oxidases (DUOX1–2), DUOX1. All five

of the NOX enzymes consist of two heme containing trans-

membrane oxidoreductases that span the membrane six times

as α-helices with cytosolic N- and C-termini. The classic

NADPH oxidase is gp91phox, also called Nox2. NOX cata-

lyzes the transfer of electrons from the cytosol to the extracel-

lular space or within specialized compartments of the cell.

NADH or NADPH, present in the cytosol, is the electron

donor for the 1-electron reduction of oxygen by the NOX

[17, 18]. The different isoforms differ in Nox-binding pro-

teins, both tissue distribution and intracellular localization

and regulation. NOX1 and NOX4 have been shown to be

key players across a broad range of diseases [19]. In both

the kidney and the vasculature, NADPH oxidase 4 (NOX4)

is the most important isoform, located in renal tubules, renal

fibroblasts, glomerular mesangial cells, and podocytes in the

kidney and in the membrane of mainly endothelial cells and

fibroblasts in the vasculature. In normal conditions, NOX

have a low basal activity, but they can be triggered by cyto-

kines, growth factors, hyperlipidemia, and high glucose [20].

The generation of ROS, such as H2O2, by NOXs can trigger

the activation of several other prooxidative enzymes, thus

leading to a vicious cycle of redox dysfunction [21].

Endothelial nitric oxide synthase Different vital functions,

such as neurotransmission and vascular tone, are regulated

by NO. In mammals, three different isoforms of NO synthases

(NOS) can be found: neuronal NOS (nNOS), inducible NOS

(iNOS), and eNOS [22]. L-arginine is metabolized by NOS to

form L-citrulline and NO, with NADPH and oxygen serving

as co-substrates. To work properly, NOS need the pteridine

cofactor tetrahydrobiopterin (BH4) [23]. In blood vessels,

eNOS is the most abundant of the NOS isoforms and the

NO synthesized in the endothelium is an important protective

molecule of the vasculature. Under pathological conditions,

eNOS can produce ROS by itself, which is called ‘eNOS

uncoupling’: Electron transfer within the active site is

uncoupled from L-arginine oxidation and oxygen is reduced

to form O2
•- [23]. Superoxide anion then combines rapidly

with NO to generate peroxynitrite (ONOO−). Several mecha-

nisms can cause eNOS uncoupling: for example, deficiency in

BH4 or in L-arginine and the accumulation of asymmetric

dimethylarginine (ADMA), a naturally occurring L-arginine

analogue and endogenous NOS inhibitor. ROS itself can per-

petuate eNOS uncoupling by oxidation reactions on either

BH4 and protein arginine N-methyltransferase (PRMT type

1) or demethylarginine dimethylaminohydrolase (DDAH),

leading to increasing levels of ADMA.

Myeloperoxidase MPO, a heme-containing peroxidase that is

synthesized during myeloid differentiation, is abundantly stored

in azurophilic granules of leukocytes. Normally, MPO catalyzes

the formation of HClO from the H2O2-mediated oxidation of

halide ions [24]. However, in various diseases, degranulation

leads to the release of MPO into the extracellular space, where

it can oxidize not only halide ions but also other substrates to

mediate tissue damage [25]. Myeloperoxidase has a well-known

role in atherosclerosis. For example, it contributes to oxidative

modification of low density lipoprotein (LDL) by catalyzing lipid

peroxidation [26]. Clinical trials have demonstrated a correlation

of circulatingMPO levels andMPO-derived oxidized molecules

with coronary artery disease (CAD) and clinical events [27, 28].

Xanthine oxidases Xanthine oxidoreductase acts both as a

xanthine dehydrogenase (XDH) and XO, which are both sin-

gle gene products. XDH as well as XO are associated with the

terminal two steps of purine degradation in humans: hypoxan-

thine–xanthine–uric acid. Under physiological conditions,

XDH uses hypoxanthine or xanthine as a substrate and

NAD+ as a cofactor to produce uric acid and NADH.

Nevertheless, under inflammatory conditions, posttranslation-

al modification due to the oxidation of the cysteine residues

converts XDH to XO, which has an increased affinity for

oxygen as a cofactor to finally produce uric acid and O2
•− or

H2O2 [29].

Nonenzymatic, exogenous, and environmental sources

Air and water pollution, cigarette smoke, alcohol, heavy or

transition metals, drugs, industrial solvents, and radiation are

the main environmental causes of OS. Those agents can enter

the body through different pathways and eventually get me-

tabolized into free radicals [30]. Free transition metals like

copper and iron, in the presence of hydroperoxides, are strong

catalysts for oxidation reactions. They can initiate lipid perox-

idation by cleavage of LOOH to lipid alkoxyl radicals. Their

exact role in disease and atherosclerosis remains controversial.

Copper is transported by albumin to the liver where it is in-

corporated in ceruloplasmin for transport to various tissues.

Ceruloplasmin has ferroxidase capacity required for iron in-

corporation into ferritin [31]. It has also been reported to in-

duce and facilitate LDL oxidation by free metals [32, 33].

Antioxidants

The human body has a built-in defense mechanism against

OS: the antioxidants. Antioxidants inhibit several destructive

Pediatr Nephrol



oxidation reactions by being oxidized themselves. This de-

fense system operates through a cascade of blocking the initial

production of free radicals and scavenging oxidants, in which

the oxidants are converted to less toxic compounds and the

secondary production of toxic metabolites is blocked (Fig. 2).

Subsequently, the defense system aims to repair the molecular

injury or enhance the endogenous antioxidant defense system,

which is composed of enzymatic and nonenzymatic

antioxidants.

Enzymatic antioxidants

The enzymatic antioxidants can be divided in two groups: (i)

primary or constitutively acting antioxidant enzymes (super-

oxide dismutase (SOD), catalase, glutathione (GSH) peroxi-

dase, and thioredoxin), that function to maintain the reducing

tone within cells and keep the redox balance stable, and (ii) the

antioxidant response element (ARE)-driven enzymes: phase 2

genes encode for enzymes that directly inactivate oxidants,

increase levels of GSH synthesis and regeneration, and stim-

ulate NADPH synthesis in times of inflammation or stress.

They are regulated by upstream AREs which are first activat-

ed by the transcription factor nuclear factor erythroid 2-related

factor 2 (Nrf2) [34, 35]. Heme oxygenase-1 (HO-1) and

NADPH quinone oxidoreductase (NQO-1) belong to the

ARE-driven enzymes.

Primary enzymatic antioxidants

Superoxide dismutase SOD is a key enzyme in the detoxi-

fication of free radicals in the cell. It converts O2
•− to H2O2

and oxygen, and in turn, catalase or the glutathione perox-

idase system reduces H2O2 to water. Superoxide dismutase

also plays a role in inhibiting the oxidative inactivation of

NO. Mammalian tissues contain three types of SOD:

copper-zinc-containing SOD, manganese-containing

SOD, and the extracellular SOD, which are expressed in

the cytosol, mitochondrial matrix, and extracellular space,

respectively.

Catalases and peroxidases Two enzymes metabolize H2O2

resulting from SOD or generated by, among others, xanthine

oxidase. Catalase (CAT) directly decomposes H2O2 to water

and O2, whereas the peroxidases (PX) use H2O2 to oxidize

another substrate, such as GSH. Mostly, the GSH-PXs coop-

erate with CAT for the decomposition of H2O2 to H2O and

oxidized glutathione (GSSG), which is then reduced by glu-

tathione reductase. GSH-PX requires GSH as a hydrogen do-

nor to decompose H2O2 to water and oxygen and selenium

(Se) as a cofactor to participate in the reaction with peroxides

[15, 36].

Antioxidant response element-driven enzymes

Heme oxygenase-1 HO-1 is an inducible stress-responsive

enzyme responsible for the rate-limiting enzymatic degrada-

tion of heme to free ferrous iron, carbon monoxide (CO), and

biliverdin [37], the latter being rapidly converted by biliverdin

reductase to bilirubin. Each of these enzymatic end products

exerts antioxidative, anti-inflammatory, and anti-apoptotic ef-

fects through different mechanisms [38, 39]. Being an early

stress-responsive protein, HO-1 can be induced by a variety of

agents that cause OS. The protective properties of HO-1 have

been extensively studied in in vitro and animal models of

atherosclerosis, ischemia-reperfusion injury, and acute kidney

injury [40–42]. The activity of HO-1 is influenced by genetic

factors. A (GT)n dinucleotide repeat polymorphism in the

promoter region of HO-1 has been extensively studied and

shorter (GT)n repeats have been found to result in a higher

HO-1 expression and activity.

Nonenzymatic antioxidants

The nonenzymatic antioxidants, or low molecular weight an-

tioxidants, are found in the plasma, extracellular fluids, intra-

cellular fluids, lipoproteins, and membranes. Besides GSH,

this group contains several dietary antioxidants as well as

compounds synthesized in the body, which can be further

divided in two subgroups: the water-soluble antioxidants and

the lipid-soluble antioxidants.

Glutathione

The major soluble nonenzymatic antioxidant is GSH, which is

dependent on the glutathione peroxidase activity. It is highly

abundant in all cell compartments and it is endogenously syn-

thesized throughout the body. This antioxidant protects cellu-

lar macromolecules, such as proteins and membrane lipids,

against ROS. The detoxification of H2O2 and lipid peroxides

is one of its actions. Because of the free thiol group, it can

donate an electron to the radicals to make them harmless. The

donation causes the oxidation of the antioxidant itself, which

turns it into glutathione disulfide (GSSG). In turn, the latter is

reduced back to GSH by the enzyme glutathione reductase,

which uses NAD(P)H oxidase as the electron donor [43]. To

properly maintain the oxidative balance in the cell, it is nec-

essary for the cell to contain high levels of GSH and low levels

of GSSG.

Dietary antioxidants and compounds synthesized in the body

(i) Water-soluble antioxidants

Water-soluble antioxidants mainly react with oxidants in

the cytosol and plasma. Again, in this group, a distinction
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can be made between dietary antioxidants, which include

ascorbic acid and polyphenols and endogenous antioxidants,

which include albumin and bilirubin [15, 44, 45].

(1) Water-soluble dietary antioxidants

Ascorbic acid Ascorbic acid, or vitamin C, is a reducing agent

with both intracellular and extracellular antioxidant capacities

[15] . Ascorbic acid is subsequent ly oxidized to

semidehydroascorbic acid and dehydroascorbic acid. Both

semidehydroascorbic acid and dehydroascorbic acid can be

reduced to ascorbic acid by three different pathways as well

as by GSH [46].

Polyphenols—flavonoids The most abundant dietary anti-

oxidants are the plant-derived polyphenols such as cocoa

flavonols and resveratrol. Fruits, vegetables, and choco-

late are some of their sources. The most studied group is

the flavonoids, responsible for the colors of flowers,

leaves, and fruits. The chemical structure of flavonoids

contains two aromatic rings, which are bound to each

other by three carbon atoms to form an oxygenated het-

erocycle. Several studies showed that a polyphenolic-rich

diet reduces the risk for chronic diseases [47]. Since the

phenolic groups are excellent hydrogen donors, they trap

radicals and interrupt oxidation chain reactions in the cell.

By donating a hydrogen, the phenolic group forms a sta-

ble phenoxyl radical, which is stabilized by a resonance

effect [47]. Recently, beneficial effects of cocoa flavonols

on endothelial dysfunction and blood pressure have been

demonstrated [48].

(2) Water-soluble endogenous antioxidants

Albumin and bilirubin Human serum albumin, synthesized in

the liver, is an abundant protein present in the plasma. It has

several functions, which goes from transporting metals, fatty

acids, and drugs in the blood to the regulation of osmotic

pressure and the distribution of fluids between different com-

partments. Since albumin can bind many types of molecules,

it has a good antioxidant capacity. For example, albumin binds

metal ions, especially copper and iron, to prevent the forma-

tion of hydroxyl radicals by the Fenton reaction. On the other

hand, albumin can also bind circulating bilirubin with a high

affinity. This albumin-bilirubin complex is found to be an

inhibitor of lipid peroxidation, and it was shown that bound

bilirubin protects α-tocopherol from damage mediated by

peroxyl radicals. Albumin also contains the largest source of

extracellular thiols, since it has a reduced cysteine residue.

Such a thiol source makes it possible to scavenge hydroxyl

radicals and HOCl [49].

(ii) Lipid-soluble antioxidants

Lipid-soluble antioxidants are mainly located in the plasma

membranes and lipoproteins and protect cell membranes from

lipid peroxidation. This group contains (among others) α-to-

copherol, β-carotene, and coenzyme Q10.

α-Tocopherol The lipid-soluble vitamin E mainly refers to α-

tocopherol, which is the most active form of eight different

tocopherols. It acts as a defense against oxidant-induced mem-

brane injury. Once α-tocopherol reacts with an oxidant, espe-

cially peroxyl radicals, it converts to α-tocopherol free

radicals (α-TO•), which are relatively nonreactive. These radi-

cals, in turn, can react with other free radicals to form a nonre-

active radical product. The remainingα-tocopherol free radicals

need ascorbic acid to reduce them back to α-tocopherol [15].

(iii) Trace elements zinc and selenium

Both zinc and selenium are essential trace elements in-

volved in several biochemical processes in the human body.

Zinc is an important cofactor of SOD, as discussed earlier, and

it is also required for the upregulation of the zinc-finger pro-

tein A20, which inhibits inflammatory pathways through the

inhibition of TNFα and IL1β [50]. Zinc deficiency was

shown to increase OS and induce cyclooxygenase-2 (COX-

2) and E-selectin gene expression, as well as monocyte adhe-

sion in cultured endothelial cells, suggesting a key role in

inflammatory diseases such as atherosclerosis [50, 51].

Selenium mainly functions as an antioxidant in the form of

the selenoproteins. At least 30 selenoproteins have been iden-

tified, including GSH-PX, selenoprotein P, thioredoxin reduc-

tase, and selenophosphate synthetase [52]. Girelli et al. also

found an association between Se levels and CVD [53].

Oxidative stress in the progression of kidney
disease (Table 1)

The contribution of OS to the progression of kidney disease

and subsequent renal function loss has been extensively stud-

ied [6, 45]. ROS play an important role in the physiological

regulation of kidney function which consequently makes the

kidney especially vulnerable to redox imbalances and oxida-

tive stress. Formation of ROS or changes in ROS production

can occur both in the renal cortex and medulla, with a broad

range in effects, going from alteration in renal blood flow over

sodium/fluid retention to inflammation and fibrotic changes

and onset of proteinuria [89].

There is plenty of evidence for increasing levels of OS

markers with deteriorating renal function, beginning from ear-

ly CKD stages [11] in both adults and children. Like in adults,

data from children and young adults with CKD show
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increasing concentrations of OSmarkers such as mitochondri-

al superoxide and oxidized LDL [90–92], homocysteine [93],

as well as a deficiency of SOD andGSH [91, 92] together with

disease progression. Also, several uremic toxins, associated

with increased OS in CKD, increase with worsening renal

function, such as the retention solute IS [94], F2-isoprostanes,

MDA, and ADMA [95, 96]. However, these findings do not

imply necessarily a causal role for OS in renal function loss

[11]. Some end products of OS-induced lipid peroxidation

have been shown to be more than just oxidation markers in

CKD: Malondialdehyde is the product of polyunsaturated fat-

ty acid peroxidation. It has been shown to induce dysfunction-

al high-density lipoproteins (HDL) molecules [97] and con-

tribute to increased cardiovascular morbidity [98]. There are

several, albeit mainly preclinical, studies showingmechanistic

evidence for a causative role for increased OS in CKD pro-

gression. Themost elaborated is undoubtedly the role of OS in

diabetic nephropathy. In this specific context, increased OS

has been shown to be due to multiple mechanisms including

mitochondrial dysfunction, increased NOX activity, eNOS

uncoupling, and deficiencies in antioxidant defense mecha-

nisms, both enzymatic and nonenzymatic, for which we refer

to extensive reviews by several groups [54, 56].

In structural kidney disease with normal renal function,

such as in proximal tubular cell dysfunction, evidence for

increased renal OS with an adequate antioxidant response

has been reported, as shown by a study in CLC5-deficient

mice, a well-established model of Dent’s disease [99]. In the

context of progressive kidney disease and CKD however,

findings suggest at least the interplay of many different

Table 1 Evidence of disturbed oxidative/antioxidative balance in CKD, CKD progression, and CKD-CVD in humans

Mechanism of increased

oxidative stress or decreased

antioxidative capacity

Evidence for its disturbance

in CKD

Impact on renal disease (I) and

evidence from interventional

studies (E)

Impact on CVD in CKD (I) and

evidence from interventional

studies (E)

Mitochondrial respiration * Increased mitochondrial ROS

generation [54, 55]

* Mitochondrial dysfunction [56, 57]

(I) * Influence on cyst growth inADPKD [58]

* MiRNAs and renal fibrosis [59]

(E) RAAS blockade (eGFR, Alb) [60, 61]

(I) No data available

(E) No data available

NAPDH oxidases Increased NOX4 activity caused by

uremic toxins [9, 62], zinc deficiency

[63], and RAAS

(I) * RAAS [64]

* Zinc deficiency [63]

(E) NOX Inhibitor GKT137831 (Alb) [19]

(I) * RAAS [65]

* Uremic toxins IS, AGEs

[66, 67]

(E) No data available

eNOS eNOS uncoupling caused by uremic

toxins [68], ADMA [69, 70]

(I) No data available

(E) No data available

(I) ADMA mediated increased

endothelial dysfunction and

CVD [70]

(E) No data available

Myeloperoxidase Positive correlation between

8-iso-PGF2α levels with serum

MPO levels [71]

(I) No data available

(E) No data available

(I) MPO and CVD in CKD [72]

(E) No data available

Xanthine oxidases Increased XO activity in CKD [73] (I) No data available

(E) XO Inhibitors and renal function

(eGFR) [74]

(I) XO and CVD in CKD [73]

(E) No data available

Lipid peroxidation IV iron-induced OS [75] (I) No data available

(E) No data available

(I) * Iron-induced OS and early

atherogenesis [75]

* Ceruloplasmin and CVD

events [76]

(E) No data available

SOD, peroxidases, GSH * Decreased SOD [11]

* GSH depletion [77]

* Selenium deficiency [78]

(I) No data available

(E) Selenium supplementation (eGFR)

[52, 79]

(I) No data available

(E) No data available

Heme oxygenase-1 No data available (I) HO-1 (GT)n repeat polymorphism and

renal function in ADPKD, TX, IgA

nephropathy [80]

(E) No data available

(I) HO-1 (GT)n repeat

polymorphism and CVD [81]

(E) No data available

Nonenzymatic antioxidants * Hypoalbuminemia [82]

* Deficiency in trace elements:

* Selenium deficiency [78]

* Zinc deficiency [63]

(I) No data available

(E) Zinc supplementation (Alb) [83, 84]

(I) * Hypoalbuminemia and

increased CVD events [85]

* Hypovitaminosis C [86]

(E) * Tocopherol

supplementation and CVD

events [87]

* Cocoa flavonol and

endothelial dysfunction in

ESRD [88]
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oxidizing mechanisms, but also decreased antioxidant defense

capacities such as the deficiency of SOD, a role for zinc defi-

ciency [55] as well as a decreased activity of the ARE driven

enzymes such as HO-1 [115].

In the following section, we summarize briefly what is

known for specific oxidative and antioxidative mechanisms

in the context of CKD (See also Table 1) in both adults and

children. Unfortunately, data in children, especially in

predialysis context, are limited.

Mitochondrial dysfunction

In CKD, increased mitochondrial ROS generation and mito-

chondrial dysfunction are frequently reported. Especially in di-

abetic nephropathy, mitochondrial dysfunction has been well

explored with findings on both morphological as well as func-

tional disturbances in the renal mitochondria [56]. But also in

nondiabetic CKD patients, disturbed regulatory MiRNAs such

as MiR21 have been reported in CKD patients and an impaired

complex IVactivity has been reported [57, 59]. Recent evidence

also found a role for mitochondrial dysfunction in nondiabetic

CKD,more specifically, autosomal dominant polycystic kidney

disease, which is further discussed in the accompanying review

by Andries et al. in this issue [58, 100].

NADPH oxidases

NOX is induced by different mechanisms. Both in vitro and

animal models showed increased NOX4 activity caused by

the presence of the uremic toxin indoxyl sulfate (IS), leading

to increasing ROS levels [62, 101, 102], and this was also

confirmed in CKD patients [66]. Angiotensin II is an early

key contributor in hypertension and kidney disease progres-

sion by the generation of ROS through NOX [65]. Chronic

angiotensin II receptor blockade (ATII-R) also improved vas-

cular resistance and decreased OS. ATII-R blockers are con-

sidered renoprotective against OS not only by decreasing

NOX expression but also by improving eNOS and SOD ex-

pression and/or activity [64, 103]. Another cause of NOX-

mediated ROS generation in the kidney appears to be zinc

deficiency, as shown by several groups [63] and discussed in

more detail below.

eNOS

In the kidney, eNOS uncoupling was shown to be a major

contributor to OS and subsequent renal damage, mediated

by different mechanisms: ADMA as well as other uremic

toxins have been shown to result in eNOS uncoupling [68,

69]. ADMA is considered a uremic toxin since ADMA levels

have been shown to increase in CKD, due to accumulation as

well as increased generation by a disturbed PRMT/DDAH

activity balance [70, 104]. Recent studies in overweight

children showed a significant negative association between

plasma nitrosative stress and estimated glomerular filtration

rate (eGFR) [105]. In proinflammatory conditions, higher

amounts of peroxynitrite can be formed and this can further

inhibit eNOS activity. The reduced NO production in the kid-

ney vasculature could result in an imbalance toward higher

vasoconstriction and consequent reduction of GFR. In addi-

tion, intercellular adhesion molecule-1 (ICAM-1) was signif-

icantly increased in obese children and correlated with

markers of renal function such as eGFR. Therefore, endothe-

lial dysfunction might be an early step in both cardiovascular

disease and renal dysfunction in young people [106].

Myeloperoxidase

Myeloperoxidase has also a well-described role in the devel-

opment and progression of kidney disease [107]. Recent stud-

ies about the link between MPO and renal dysfunction in

prepubertal obese children, for example, have shown a posi-

tive correlation between 8-iso-PGF2α levels with blood

lipids, insulin resistance, and serum MPO levels, with an in-

verse correlation between both urine 8-isoprostane levels and

serum MPO levels and the total antioxidant status. An associ-

ation between MPO levels and eGFR levels was found as

well: Levels of eGFR were significantly increased across

tertiles of MPO [71]. This could be explained by the occur-

rence of glomerular hyperfiltration, initiated by the presence

of obesity, which is known to result in glomerular damage and

proteinuria.

Xanthine oxidase

In CKD patients, increased XO activity has been shown [73].

If there is a role for XO and/or hyperuricemia on CKD pro-

gression remains contradictory. One recent study byKohagura

et al., in 137 patients with hypertension and hyperuricemia

who started treatment with XO inhibitors, showed a, albeit

modest, protective effect on renal function in hypertensive

patients [74].

Superoxide dismutase, catalase, peroxidase,
and the GSH antioxidant system

Superoxide dismutasis a key enzyme in the detoxification of

free radicals in the cell, and all three isoforms have a high

expression in the kidneys [108]. In CKD, an impaired SOD

activity has been repeatedly reported [11]. The GSH antioxi-

dant system has been reported as one of the first mechanisms

to be disturbed in chronic renal failure [53, 77]. This can also

be partially attributed to a Se deficiency [53, 79]. Se deficien-

cy has been reported in CKD and dialysis patients in whole

blood and plasma as compared with healthy subjects. This

was found at all stages of CKD and dialysis [109]. It has been
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associated with increased OS and mortality, albeit mainly

from infectious diseases [110, 111]. The exact mechanism

between CKD and selenium deficiency is not well known

but could also be due to dietary restrictions [78].

ARE-driven enzymes: heme oxygenase-1

Only little data is available regarding the role of HO-1 in CKD

patients [80, 112].

Clinical studies confirmed a beneficial effect of the short

HO-1 GTn repeat genotype on cardiovascular outcomes, acute

kidney injury as well as outcome of kidney transplantation

[113, 114]. In a mouse model of 5/6th nephrectomized mice,

Kim et al. found an important deficiency of the Nrf2/ARE-

driven enzyme activity despite an increased ROS generation

[115]. Induction of HO-1 consequently protected the kidney

from ongoing damage [116].

Nonenzymatic antioxidants

Water-soluble antioxidants have generally been reported to be

deficient in the context of CKD: CKD patients display

hypovitaminosis C which is in their context probably due to

dietary restrictions and the use of diuretics [117].

Hypoalbuminemia is a frequently seen feature in CKD pa-

tients and can contribute to a decreased antioxidative defense

mechanism [85]. Zinc deficiency is repeatedly reported in

CKD patients, in adults [118, 119] as well as in children

[120, 121].

In contrast to the generally demonstrated normal serum

levels of α-tocopherol reported in the CKD population [122,

123], only one group demonstrated lower levels of vitamin E

as compared to the general population [11].

Evidence from (pre)clinical studies

Additional evidence can be extrapolated from studies restor-

ing the OS imbalance of kidney disease. Indeed, some inter-

ventional studies in humans suggest improvement of renal

injury or creatinine clearance with the correction of the OS

imbalance [79, 124–127].

As also mentioned before, the renin-angiotensin-

aldosterone system (RAAS) blockade is a widely used ap-

proach in proteinuric nephropathy and acts through the reduc-

tion of renal OS [60, 61, 64, 103].

A recent meta-analysis of the effect of antioxidant supplemen-

tation strategies on renal outcome in diabetic kidney disease

points toward the beneficial effects with the use of both vitamin

E and zinc supplementation on early signs of renal damage.

Indeed, zinc supplementation has been shown to significantly

decrease renal injury as measured by pathologic changes in an-

imal studies [128] and urinary albumin excretion in both animal

and human studies [83, 129]. Unfortunately, these clinical trials

mainly include small studies with short-term follow-up. There

remains a lack of evidence on hard endpoints such as evolution to

ESRD [84]. Another study focusing on renal outcome, per-

formed in patients with type 2 diabetes mellitus and stage 4

CKD, is the BEACON trial, which studied bardoxolone methyl,

a Nrf2-inducing agent [130]. The trial design was based upon the

findings of the BEAM trial in type 2 diabetes mellitus patients

with CKD (eGFR between 20 and 45 ml/min/1.73 m2), which

had shown to improve renal function as measured by an increase

of the estimated GFR [131]. This trial, however, was terminated

early because of safety concerns, due to an increase in cardiovas-

cular events notably heart failure, nonfatal myocardial infarction,

nonfatal stroke, and death from cardiovascular causes in the

treatment group [132]. The exact mechanism linking

bardoxolone methyl to these cardiovascular events remains un-

clear. However, the authors suggested that an increase in preload

due to volume expansion and an increase in afterload (as

reflected by increased blood pressure), coupled with an increase

in heart rate, constitute a potentially potent combination of factors

that are likely to precipitate heart failure in an at-risk population

[132]. This was shown to occur through the modulation of the

endothelin pathway, promoting acute sodium and volume [133].

Another explanation for the cardiovascular events resulting from

bardoxolone methyl has been provided by Van Laecke et al.

They consider the well-known side effect of hypomagnesemia

and its association with the risk to develop heart failure with

preserved ejection fraction as a potential culprit

[134]. Nevertheless, it seems counterintuitive to find cardiovas-

cular events resulting from a HO-1-inducing agent, and it must

be acknowledged that bardoxolone methyl is an inducer of Nrf2,

a transcription factor that leads to the induction of many path-

ways and enzymes other than HO-1. Thus, proatherogenic path-

ways, such as CD36 expression, may be induced as well.

Of note, other antioxidant therapies could also lead to ad-

verse side effects, such as the concern of accumulation of

tissue oxalate or gastrointestinal discomforts with high intake

of vitamin C. In a meta-analysis of 2012, however, serious

adverse events appeared not to be significantly increased

[135]. Since mainly small-sized studies have been conducted,

however, appropriately powered studies are needed to reliably

assess the effects and side effects of antioxidant therapy in

people with CKD.

NOX4/1 inhibitors are currently being investigated in diabetic

nephropathy. Animal studies showed promising results in differ-

ent diabetic mice models [19]. The oral Nox1/Nox4 inhibitor

(GKT137831) has been evaluated in a phase 2 study assessing

a 12-week period of treatment with oral GKT137831 adminis-

tered in addition to standard of care for patients with type 2

diabetes and albuminuria (https://clinicaltrials.gov/ct2/show/

NCT02010242) [19]. Despite promising results in different

mouse models of diabetic nephropathy, there was no significant

reduction in albuminuria, which was the primary efficacy

endpoint of the study. Short treatment periods in advanced
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stages of the disease, the effect of stabilization of disease by

pretreatment with blockers of the RAAS, and/or a role for other

NOXs in human kidney disease might account for the lack of

effect on albuminuria in this study.

AST-120, an oral absorbent used particularly to decrease ure-

mic toxins such as IS [124], has been commonly used in Japan to

slow deterioration of renal function in patients with CKD. Sato et

al. studied in a retrospective analysis of 278 patients, diagnosed

with CKD stages III–V, the effect of AST-120 on the need to start

dialysis during 5 years. One hundred twenty-eight patients re-

ceived AST-120 (6 g/day), while the remaining 150 patients did

not. The prevalence of dialysis induction, mortality, and cardio-

vascular events in patients treated with AST-120 was significant-

ly lower after 3 and 5 years compared with the prevalence ob-

served in the untreated patients, suggesting that long-term treat-

ment with AST-120may improve the prognosis of CKD patients

in the predialysis stage [124, 125].

In a small study, Se supplementation has also been shown

to improve renal function, as measured by creatinine clearance

in 13 stable CKD patients [79].

Other promising, preliminary results on antioxidant therapies

include studies with tempol [126, 127, 136], conducted in animal

studies: Tempol is a new promising antioxidative nitroxidework-

ing as a SOD mimetic. A renoprotective effect of tempol in

animal models of hypertension and kidney failure has been re-

ported. The drug not only ameliorated blood pressure through the

regulation of NAD(P)H oxidases but also prevented the devel-

opment of glomerulosclerosis, proteinuria, and the associated

loss of renal function [126, 127]. This was confirmed in a 5/6th

nephrectomized mouse model where tempol supplementation

attenuated OS, inflammation, fibrosis, and deterioration of rem-

nant kidney function [136].

Oxidative stress in CKD-mediated
cardiovascular disease

Chronic kidney disease is characterized by a high burden of

CVD [137]. Recent data indicate that the impact of renal in-

sufficiency on CVD not only begins with minor renal dys-

function but also appears already at a younger age as com-

pared to the general population [138]. A recent study by

Groothoff et al. demonstrated a high burden of CVD in young

adults followed with ESRD from childhood onwards [139].

Moreover, it has been demonstrated that the risk of developing

CVD in children and young adults with advanced CKD and

ESRD is 30 times greater than that of age-matched controls

[140]. Therefore, adolescents and young adults with CKD

should also be considered at high risk for the development

of CVD.

OS has been considered the link between inflammation and

CVD in CKD [141]: Several findings in uremic patients point

to an imbalance favoring the prooxidative state. Increased

ROS activate proinflammatory pathways and eNOS

uncoupling initiates endothelial dysfunction, which, in turn,

form the first step toward arterial hypertension, arteriosclero-

sis, and/or heart failure on the one and accelerated atheroscle-

rosis on the other hand [7]. It is generally recognized that both

chronic inflammation and oxidative stress play reinforcing

key roles in the initiation, propagation, and development of

atherosclerosis. In contrast to the data on CKD progression,

data on the role of OS in CVD focused not only on surrogate

outcomes but also on cardiovascular events and mortality.

Interestingly, this does not account only for the CKD but also,

at least in part, for the general population with preserved kid-

ney function [27, 142, 143]. Of note, conventional treatments

of CVD, including HMGCoA reductase inhibitors (statins),

angiotensin-converting enzyme (ACE) inhibitors, and AT1-

receptor blockers, are all reported to reduce OS in vasculature

thereby improving endothelial function and slowing down

CVD progression [144, 145]. However, the use of these drugs

is unfortunately not always possible in the CKD population

due to side effects or contraindications such as deterioration of

renal function and hyperkalemia.

Endothelial dysfunction and arterial hypertension

Undoubtedly, eNOS uncoupling and disturbed NO availability

are the major contributors to the increase in cardiovascular dis-

ease through the induction of endothelial dysfunction, character-

ized by decreased vasorelaxation and endothelial cell activation

[7]. Several mechanisms have been described: ADMA has been

shown to be associatedwith endothelial dysfunction and vascular

disease in CKD [142, 146, 147], but other uremic toxins as well

as increased OS itself can cause eNOS uncoupling [148].

Nicotinamide adenine dinucleotide phosphate oxidases are key

players as well: Uremic toxins such as IS, homocysteine, and

advanced glycation end products (AGEs) increase NOX4 ex-

pression and activity, leading to increased levels of OS markers,

and endothelial dysfunction in CKD patients [66, 67, 96, 101].

Angiotensin II additionally plays a central role in the pathophys-

iology of arterial hypertension, as discussed above, through the

activation of NOX [65].

In pediatric patients, dysfunctional HDL, which de-

velops at a very early stage in the disease and progresses

together with renal function decline, promotes endothelial

dysfunction, impairs endothelial repair, and reduces cho-

lesterol efflux [149–151]. Interestingly, elevated amounts

of SDMA—but not ADMA—are found in CKD HDL,

which indicates that SDMA modifies HDL in order to

induce dysfunctional HDL [149]. High density lipoprotein

dysfunction is also related to the presence of hyperten-

sion, which is one of the most common sequelae of child-

hood CKD [152]. Indeed, endothelial dysfunction is pres-

ent in children and young adults with early stage CKD, as

reported based on their brachial artery flow-mediated
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dilatation [153], which is lower in CKD patients com-

pared to controls [154, 155]. As in adult patients, there

is a link between hypertension and left ventricular hyper-

trophy in pediatric patients [90, 156–158].

MyeloperoxidaseMPO also plays a key role in hyper-

tension and subclinical cardiovascular disease in children,

as shown by Correia-Costa et al.: MPO levels associated

with increasing levels of 24-h and nighttime blood pres-

sure, together with the loss of dipping pattern. The same

study found an independent association between MPO

levels and pulse wave velocity (PWV, marker for endo-

thelial dysfunction), which reinforces the hypothesis that

MPO is linked with both vascular stiffness and atherogen-

esis [71].

Arteriosclerosis, arterial stiffness, and left ventricular
hypertrophy

Arteriosclerosis is considered a hallmark feature of CKD-

related arterial disease and is characterized by progressive

concentric media hyperplasia, vascular smooth muscle cell

hypertrophy, increased collagen formation, wall thicken-

ing, and subsequent calcification [159]. This results in ar-

terial stiffness which translates in increased pulse wave

velocity following the cardiac systolic contraction of the

heart. The clinical consequences are increased pulse pres-

sure (arterial hypertension), microvascular end-organ dam-

age, impaired diastolic perfusion of the vascular beds, car-

diac remodeling (left ventricular hypertrophy), and subse-

quent risk of malignant arrhythmias [160]. Endothelial

dysfunction, inflammation, diabetes, (accelerated) aging,

disorders in calcium/phosphorus, and many other condi-

tions contribute to the arteriosclerosis process in CKD

[161]. To assess arterial stiffness, carotid-femoral pulse

wave velocity is measured [162]. Arterial stiffness and

medial vascular calcification are already present in up to

35% of patients with early CKD stages (KDIGO G3–4),

and this process already starts in children [163]. A role of

oxidative stress in the occurrence of arteriosclerosis and

arterial stiffness in CKD has also been reported [164].

Several uremic toxins such as AGEs, IS, and p-cresyl sul-

fate and eNOS uncoupling have been shown to induce

arterial stiffness through increased oxidative stress

[165–169]. In a small study, supplementation of L-

arginine was shown to be a safe, well-tolerated, and effec-

tive way of improving endothelial dysfunction in patients

with CKD [169].

Atherosclerosis

There is a well-known role for OS in atherosclerosis [13].

Several mechanisms and markers of OS have been reported

as independent predictors of cardiovascular events.

Myeloperoxidase was one of the first enzymes that has

been shown to play a causal role in atherosclerosis in both

the general as CKD population [26, 27, 72]. Hyperuricemia

and XO are linked to both hypertension and atherosclerosis

[73, 170]. Increased XO activity was found as an independent

predictor of CVD in CKD patients, regardless of uric acid

levels [73]. Treatment with allopurinol was associated with

improvement of cardiovascular outcomes in a clinical study

of 2032 allopurinol-exposed patients and 2032 matched non-

exposed patients showing a positive effect of XO inhibition on

cardiovascular events [171]. But also nonenzymatic mecha-

nisms are associated with an increased risk for CVD.

Specifically interesting in the context of kidney disease is

iron, which can induce the generation of reactive radicals in

the presence of peroxides and contribute to lipid peroxidation

reactions [172]. Anemia is a common problem among both

adults and children with CKD [173]. Intravenous iron supple-

mentation is therefore commonly performed as part of the

anemia management both in adult CKD patients [174] and

in pediatric CKD patients [175, 176]. It has been shown that

iron supplementation induces endothelial dysfunction and

generates ROS in CKD patients and accelerating early athero-

genesis [75].

Recently, increased ceruloplasmin levels in CKD patients

were found to be independently associated with increased risk

of long-term adverse cardiovascular events [76]. Several anti-

oxidative losses in CKD have also been associated with in-

creased CVD: Hypoalbuminemia, oxidized thiols [85], and

hypovitaminosis C have been reported to contribute to cardio-

vascular morbidity and mortality [86].

Atherosclerosis is a process that also starts very early in

children and young adults with CKD, especially in the ones

with one or more risk factors like hypertension, diabetes, hy-

perlipidemia, and renal disease [92, 177]. In these children,

atherosclerosis will continue to progress during life. Carotid

intima media layer thickening in predialysis pediatric CKD

patients has been reported in several studies [91, 155, 177]

and, indeed, significantly correlates with lipid abnormalities

and increased oxidative stress in pediatric CKD, which both

are risk factors for the development of atherosclerosis [92,

155]. Unlike in adults, no data of possible specific OS-

related mechanisms, responsible for atherosclerosis, are found

in children and young adults with CKD.

Evidence from interventional studies

Antioxidant supplementation studies have mainly been con-

ducted in hemodialysis (HD) patients, which hampers to as-

sess its efficiency on CKD progression. A reduction in com-

posite cardiovascular events and myocardial infarction has

been described in the SPACE study in HD patients with prev-

alent cardiovascular disease, in whom supplementation with

800 IU/day vitamin E reduced composite cardiovascular
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disease endpoints and myocardial infarction [87]. Cocoa fla-

vonol supplementation (CFs) showed promising results in

ESRD patients: Rassaf et al. found a sustained attenuation of

endothelial dysfunction after the ingestion of CFs (900 mg/

day). Moreover, CFs mitigated HD-induced vascular dysfunc-

tion and decreased diastolic blood pressure, suggesting ame-

lioration of microvascular function [88]. Similar effects were

found by studying polyphenols derived from concentrated red

grape juice by Castilla et al. in ESRD patients [178] showing a

reduction in oxLDL levels and plasmaNOX4 activity. Finally,

preliminary findings on zinc supplementation in the context of

diabetes also point toward cardioprotective effects in mouse

models [84]. These findings certainly underscore indirectly

the relevance of the deficient antioxidative capacity in CKD

on CVD development.

Conclusion

This review highlights the pivotal role of OS in CKD on both

the acceleration of GFR decline and the development of CVD.

Many pathophysiological mechanisms, both endogenous and

exogenous, lead to (i) increased activity of oxidative enzymes

such as NOX, MPO, and XO; (ii) the dysregulation of crucial

enzymes leading to mitochondrial dysfunction; and (iii) the

phenomenon of eNOS uncoupling or the accumulation of sec-

ondary radicals and transition metals, in CKD. In addition,

crucial antioxidative mechanisms have been shown to be im-

paired in adults as well as in children. These disturbances

already start in the early phase of CKD, and interventions

may help attenuate their deleterious long-term impact. In view

of the pleiotropy of disturbed mechanisms, a broad approach

will be most probably required. Ongoing research will help

clarify the main driving mechanisms underlying the increased

OS, their localization, and an integrative approach of both

transcriptional and signaling pathways within the context of

CKD. Many promising approaches are currently investigated.

Especially in the field of pediatric medicine, dietary interven-

tions and endogenous antioxidant supplementation should be

considered as attractive beneficial approaches given their low

burden of accompanying side effects.
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