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Non-alcoholic fatty liver disease (NAFLD) is a challenging disease caused by multiple

factors, which may partly explain why it remains still orphan of an adequate therapeutic

strategy. Herein we focus on the interplay between oxidative stress (OS) and the

other causal pathogenetic factors. Different reactive oxygen species (ROS) generators

contribute to NAFLD inflammatory and fibrotic progression, which is quite strictly linked

to the lipotoxic liver injury from fatty acids and/or a wide variety of their biologically

active metabolites in the context of either a two-hit or a (more recent) multiple parallel

hits theory. An antioxidant defense system is usually able to protect hepatic cells from

damaging effects caused by ROS, including those produced into the gastrointestinal

tract, i.e., by-products generated by usual cellular metabolic processes, normal or

dysbiotic microbiota, and/or diet through an enhanced gut–liver axis. Oxidative stress

originating from the imbalance between ROS generation and antioxidant defenses is

under the influence of individual genetic and epigenetic factors as well. Healthy diet

and physical activity have been shown to be effective on NAFLD also with antioxidant

mechanisms, but compliance to these lifestyles is very low. Among several considered

antioxidants, vitamin E has been particularly studied; however, data are still contradictory.

Some studies with natural polyphenols proposed for NAFLD prevention and treatment

are encouraging. Probiotics, prebiotics, diet, or fecal microbiota transplantation represent

new therapeutic approaches targeting the gut microbiota dysbiosis. In the near future,

precision medicine taking into consideration genetic or environmental epigenetic risk

factors will likely assist in further selecting the treatment that could work best for a

specific patient.

Keywords: non-alcoholic fatty liver disease, oxidative stress, antioxidants, obstructive sleep apnea syndrome, gut

microbiota, obesity, metabolic syndrome

INTRODUCTION

The term non-alcoholic fatty liver disease (NAFLD) was originally coined by Ludwig et al. (1). It
indicated a hepatopathy similar to that of alcohol abuse without alcohol consumption history, and
it is now reputed as the hepatic component of metabolic syndrome (2, 3). It affects approximately
a quarter of the population, mostly obese, and has no approved drug therapy. Although NAFLD
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is generally benign, ∼20–30% of patients develop liver
inflammation, fibrosis/cirrhosis (non-alcoholic steatohepatitis,
NASH), and, in some cases, hepatocellular carcinoma
(4, 5). Moreover, patients with NAFLD are at higher risk of
cardiovascular diseases. Because of the lack of valid therapies
and of the obesity pandemic, NAFLD is one of rapidly growing
indications for liver transplantation (6).

Most NAFLD patients are obese and present a mild
systemic inflammation, which hampers insulin signaling [insulin
resistance (IR)], playing a relevant role in the pathomechanism of
liver damage (7, 8). Recently, in consideration of this association,
an international group of experts highlighted the poor coherence
of the term non-alcoholic fatty liver disease and proposed
that of metabolic (dysfunction)–associated fatty liver disease (9).
The reason why some patients with simple steatosis show a
progression to more severe hepatic injury, whereas others do
not, was in part simplified by the so-called “two-hit” model,
founded on IR, and the deposits of relatively inert triglycerides
(TGs) within the liver as initial damage. This first event was
thought to be due to a “second hit” generated by oxidative
stress (OS) or depletion of ATP (10) with the activation of an
inflammatory cytokine cascade contributing to the development
of NASH necroinflammation and fibrosis (10–12).

However, it has been found that hepatic lipid accumulation in
NAFLD occurs mostly as relatively inert TGs droplets, and this
is nowadays regarded as a protective rather than a deleterious
mechanism, by impeding the storage of free fatty acids (FFAs),
which are the actual harmful agents in this hepatopathy. Most
recent evidences underline that inflammation may even precede
fat accumulation, which would become only a response (12,
13). As schematically shown in Figure 1, hepatic FFAs originate
from lipolysis in adipose tissue and dietary lipids. Moreover,
particularly in conditions of IR, they may also be synthesized
de novo (so-called de novo lipogenesis) from carbohydrates in
the liver and be deposited as TG droplets (hepatic steatosis),
or exported contributing to the very low-density lipoprotein
pool (14).

The previous “two-hit theory” has therefore led the way to
the “multiple parallel hits theory” (12), with the contribution of
a number of “multiple parallel (and not sequential)” offenders
acting with different combinations, at times synergistically, to
generate NAFLD. These offenders include, in addition to IR (3)
and OS, hormones secreted from the adipose tissue, intestinal
dysbiosis, increased intestinal permeability, and also exposure
to environmental agents such as endocrine disruptors (15) and
particulate matter (PM) (16, 17) interacting among themselves in
individuals predisposed by genetic and epigenetic factors.

Genes that modulate hepatic fat accumulation and retinol
metabolism [i.e., transmembrane 6 superfamily member 2
(TM6SF2), variants of patatin-like phospholipase domain
which contain protein 3 (PNPLA3), membrane-bound O-
acyltransferase domain containing 7 (MBOAT7), hydroxysteroid
17β-dehydrogenase (HSD17B13), and glucokinase regulator
(GCKR)] (9) and the deregulation of microRNAs are known to
influence NAFLD development and progression (18).

In addition, also genetic variants involved in OS regulation
play an important role in NAFLD pathogenesis. These genes

include SOD2 gene, coding for the manganese-dependent
superoxide dismutase (MnSOD); UCP3, coding for the
uncoupling protein 3, a mitochondrial transporter that enhances
the proton leak of mitochondrial inner membrane and unhooks
the oxidative phosphorylation; uncoupling protein 2 (UCP2),
regulating oxidative metabolism and mitochondrial lipid efflux;
and MARC1 (A165T), which codes for the mitochondrial
amidoxime reducing component 1, a protein involved in the
neutralization of reactive oxygen species (ROS) (19, 20).

The NAFLD story is even more complex than this, as it may
start even before conception and pregnancy. Epigenetic changes,
comprising microRNA features, may cause fetal reprogramming
during the pregnancy of an obese mother and transgenerational
transmission of the susceptibility to NAFLD in childhood and
progression to NASH across the lifetime. Moreover, improving
obese mothers’ diet reduces fetal hypoxemia and counteracts
metabolic pathways able to generate OS, liver injury precursors,
and lipotoxicity in non-human primates (21–23).

On the basis of the most recent literature, herein we will
focus especially on OS because the understanding of a main
role for OS in NAFLD development and progression can have
important preventive and therapeutic implications for possible
novel treatments.

OXIDATIVE STRESS AND ITS ROLE IN
NAFLD PATHOLOGY

OS is caused by a discrepancy between ROS generation and
antioxidant defenses, which lead to DNA and tissue damage
(24, 25). It may occur both for the increasing production of pro-
oxidant products and the dysfunction of the antioxidant system.

Although it is essential to tissue repair, it may conceal
also negative features implying the development and/or
exacerbation of several systemic diseases and conditions [e.g.,
mental/neurological diseases (26, 27), inflammatory bowel
diseases (28), cardiovascular disease (29), and cancer (30)].
Starting from these premises, one can therefore easily predict
that OS represents an important mediator triggering low-grade
inflammation also in metabolic syndrome and in the progression
of NAFLD into NASH (31–35).

ROS, in fact, appear tightly involved in those processes that
lead to hepatic fibrosis (36). Multiple interlaced pro-oxidative
triggers operate together with the mitochondrial dysfunction as
a likely common denominator of OS (37). In NASH, there are
more evidences ofmitochondrial DNA and protein abnormalities
being responsible for the increase of OS (38, 39). A decreased
oxidative capacity of the electron transport chain (ETC) and
mutations in complex II could also lead to a condition of
“electron leakage” (40), meaning that the electron normal flow
could be interrupted, binding with oxygen to produce superoxide
or hydrogen peroxide. Moreover, the levels of glutathione (GSH)
peroxidase, MnSOD, and catalase seem to be low in NASH, so
that the capability of the mitochondria to reduce ROS levels
is reduced. In NASH patients, an increased activity of CYP2E1
(41) has been also observed, an important microsomal source
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FIGURE 1 | Simplified flow of pathogenetic events in non-alcoholic fatty liver disease. The figure shows the crosstalk between systems and metabolisms in the

pathogenetic events leading to fatty liver and its progression to NASH. In the upper part (yellow lane), one can note that hepatic FFAs derive from lipolysis in adipose

tissue, dietary lipids, and DNL from COH in the liver. These FFAs may either be stored in the liver as TG droplets (hepatic steatosis) or be exported as VLDL to adipose

tissue. FFA overload may concur in the hepatic IR (vertical light azur lane), which interplays with the JNK, PKC system where the activation of JNK1 may impair insulin

signaling via serine phosphorylation of IRS1. The UPR/ER stress is a source of ROS and of lipotoxic species and plays a link between the OX stress and IR. Upon

disruption of mitochondria-associated membranes (MAM) integrity, miscommunication directly or indirectly disrupts Ca2+ homeostasis and increases ERS (brown box)

and OS, leading to defective insulin secretion and accelerated lipid droplet formation in hepatocytes. Inflammatory mediators (adipokines, cytokines) in large part

arrange the progression from NAFLD to NASH (red boxes) in case of shortage of endogenous antioxidant molecules. These mediators are variously triggered by

oxidative hepatic environment [ROS, lipid peroxidation] and bacterial overgrowth (pink boxes) after the infraction of the gut barrier (gut leakage) by bacterial Eth and

enhanced intestinal permeability, which allows lipopolysaccharides (a) to activate PRR–LRs—NLRs–DAMPS—PAMPS and (b) to concur with ROS/PUFA in the

inhibition of the mitochondrial respiratory chain. Lipotoxic lipid species lead to hepatic stress and subsequent release of extracellular vesicles, cytokines, chemokines,

and DAMPs from hepatocytes. This results in enrolment of bone marrow immune cells. As shown in the lower part of the figure, liver-resident stellate/KCs are

activated by several triggers (mainly ROS, gut microbiota), resulting in the release of chemokine (C-C motif) ligand 2 (CCL2) and other proinflammatory cytokines (i.e.,

TNF-α, IL-1, and IL-6). The oxidative hepatic environment also stimulates transcription programs (STAT-1 and STAT-3) promoting T-cell recruitment and hepatic

disease progression. Overall, the scenario ultimately leads to the recruitment of bone marrow–derived monocytes and neutrophils that further contribute to the

inflammatory response and a rebound ROS production. A number of genetic variants are implicated in NAFLD development, and progression is shown. BPA,

bisphenol A; CYP, cytochrome; COH, carbohydrates; DAMPS, damage-associated molecular patterns; DNL, de novo lipogenesis; EDC, endocrine-disrupting

chemicals; ETC, electron transport chain; Eth, ethanol; FFA, free fatty acids; FIAF, fasting-induced adipose factor; HNE, hydroxynonenal; IKKB, inhibitor of nuclear

factor κB kinase subunit β; IL, interleukin; IRS, insulin receptor substrate; JNK, c-Jun N-terminal kinase; LPL, lipoprotein lipase; LPS, lipopolysaccharide; LRs, lectin

receptors; MAM, mitochondria-associated membrane; MDA, malondialdehyde; mRNA, microRNA; MTTP, microsomal triglyceride transfer protein; NAFLD,

non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; NLRs, NOD-like receptors; NF-κB, nuclear factor κ-light-chain enhancer of activated B cells;

NTC non-electron transport chain; PAMPs, pathogen-associated molecular patterns; PKC, protein kinase; PNPLA3, patatin-like phospholipase domain-containing

protein 3; PRR, pattern recognition receptor; PPAR, peroxisome proliferator-activated receptor; PUFA, polyunsaturated fatty acids; ROS, reactive oxygen species; TG,

triglyceride; TNF, tumor necrosis factor; UPR, unfolded protein response; VLDL, very low-density lipoprotein; <, decrease; >, increase.

of OS, especially together with C47T polymorphisms of SOD2
(encoding MnSOD) (41–45).

In the development of NASH, OS probably occurs not only
due to the saturation of the antioxidant machinery secondary
to the increased pro-oxidant species production and its direct

insult. In the liver, actually, these conditions trigger lipid
peroxidation by specific polyunsaturated fatty acids (PUFAs),
along with the formation of highly reactive aldehyde products
[e.g., malondialdehyde (MDA) and 4-hydroxy-2-non-enal (4-
HNE)]. Overall, these events appear involved in the diffusion of
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ROS and reactive nitrogen species (RNS) into the extracellular
space, perpetuating intracellular and tissue damage. Moreover,
hepatic OS may result from gut microbiota (GM)–related
inflammation and the disturbance in the normal functions of
endoplasmic reticulum [so-called ER stress (ERS)] (see below)
[(37, 46); Figure 1].

IMPLICATION OF THE OXIDATIVE STRESS
IN HEPATIC INJURY

ROS/RNS (i.e., hydrogen peroxide, superoxide anion radical,
peroxynitrite, and hydroxyl radical), and not lipid peroxidation
byproducts, are the responsible for cytokine elevations (47)
such as tumor necrosis factor α (TNF-α), transforming growth
factor β, interleukin 8 (IL-8), and Fas ligand. The sum of
these events results in NAFLD development (25). The oxidative
hepatic environment in obesity furthermore promotes the signal
transduction and activation of transcription programs (STAT-1
and STAT-3) that promote T-cell recruitment and liver damage
with disease progression up to its malignant transformation
[(48); Figure 1].

OS and Hepatic Injury: Possible
Implications in NAFLD Progression
Hepatocyte damage involves a cascade of events leading
to NAFLD progression into NASH and cirrhosis: damage-
associated molecular patterns, discharged from damaged
hepatocytes, lead to the release of chemokines and cytokines
from Kupffer cells (KCs) and the recruitment of monocyte-
derived macrophages. ROS directly and indirectly contribute to
stellate cell activation and to chronic inflammatory response with
up-regulation of proinflammatory cytokines (TNF-α, IL-6, and
IL-1), apoptosis, and development of hepatic fibrosis [(49–51);
Figure 1].

In conditions of progressive NAFLD, OS can also result from
increased ROS generation due to impairment of mitochondria
caused by an overload of FFAs and an increase of their
metabolism, lipotoxicity, and hypoxia, as well as ROS production
through NADPH-oxidase isoforms associated to ligand–receptor
link or by activated inflammatory cells (49).

Evidences suggest that lipotoxicity mediated by FFAs (52)
may induce disruption of ER homeostasis, known as “unfolded
protein response,” an intracellular signaling activated by the
accumulation of unfolded/misfolded proteins. Thanks to it, ER
can communicate the folding status of its proteins to the rest
of the cell, particularly to the nucleus, and so activate genes
transcription. As a result, the ERS, a term that includes also
several other mechanisms conducing to ROS generation, occurs
(37), and this leads to

• increased endoplasmic reticulum oxidoreduction-1 (ERO-1)
activity, the enzyme that catalyzes disulfide bond formation
(53) with H2O2 production;

• upregulation of CCAAT/enhancer-binding protein
homologous protein (Chop), a proapoptotic mechanism (54);

• calcium leakage from ER, which increases its flow through
mitochondrial membranes leading to proapoptotic
mitochondrial membrane permeabilization (55);

• GSH depletion (56), altering GSH–oxidized glutathione
balance, which is essential to redox homeostasis; and

• inhibition of nuclear factor, erythroid 2–related factor 2, a
factor encoding for antioxidant proteins (57).

The cross talk between ERS and ROS (Figure 1) appears relevant
in the pathogenesis of NAFLD (58). Mitochondria-associated
membranes (MAMs) represent a physical junction between ER
and mitochondria, allowing Ca2+, lipids, and ROS exchange.
Because normal communication between mitochondria and ER
depends on MAM structural and functional integrity, lack of
calcium homeostasis may lead to ERS and OS increase, defective
insulin secretion, and accelerated lipid droplet formation in
hepatocytes. The steps involve apoB misfolding, impaired
lipoprotein secretion, and lipogenesis stimulation. On these
bases, protecting the ER via the administration of antioxidants or
activation of peroxisome proliferator-activated receptor (PPAR)
has been suggested as promising avenues against hepatic steatosis
(59, 60).

Studies in rodents show the existence of a link between
ERS and regulation of hepatic iron metabolism both in ASH
and NASH models mainly due to the capacity of ferrous
iron to catalyze the production of hydroxyl radical (OH−)
from H2O2, deriving by peroxisomal β-oxidation (52, 61, 62).
Interestingly, iron deficiency too may reduce the cell antioxidant
capability by inhibiting heme oxygenase-1 by Bach1 (63). Beyond
doubt, it is not always simple to study the progression of a
disease, especially in humans in vivo, and establish if a certain
factor is exactly the cause or the effect of NASH. Moreover, a
disagreement often happens between animal models and clinical
studies due to several factors such as gut microflora differences
and patient inclusion criteria/ethnicity–related predisposition,
respectively (37).

In order to assess the redox state in NAFLD/NASH, some
markers of OS and antioxidants have been studied in NAFLD and
NASH models, both clinical and experimental. OS biomarkers
include nitric oxide, lipid damage products (lipid peroxides,
thiobarbituric acid reactive substances/MDA), hydroperoxides,
8-isoprostane, 4-HNE, DNA oxidation product [CYP2E1 and
8-hydroxydeoxyguanosine (8-OH-dG)], and protein oxidation
products (nitrotyrosine, protein carbonyl). All these had
increased activities in most NAFLD/NASH clinical models
evaluated. On the contrary, antioxidant markers (superoxide
dismutase, catalase, glutathione peroxidase, reduced glutathione)
measured in rodent models showed decreased activities mainly in
NASH (64).

GUT MICROBIOTA AND INTESTINE
PERMEABILITY AS A CAUSE OF
OXIDATIVE STRESS

Gut Microbiota as a Source of ROS
Human commensal microbiota (Figure 1) generates
physiological ROS levels in intestinal human epithelial
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cells. Basically, aerobic cell systems are exposed to oxygen
free radicals (65, 66), and their damaging role relies on their
concentrations. When the levels of ROS exceed antioxidant
defenses, harmful effects on cells may occur, conducing to
uncontrolled proliferation, inflammation, and/or apoptosis
(67, 68). This is what happens also in obesity and its related
hepatometabolic comorbidities, includingNAFLDprogression to
NASH (see below). ROS can also operate as secondmessengers in
intracellular signaling stimulated by proinflammatory cytokines
and growth factors and by the quick and reversible oxidative
inactivation of proteins having thiol groups sensitive to oxidants
(69). In inflammation and obesity, ROS generation is probably
strictly related with activation of nuclear factor κ-light-chain
enhancer of activated B cells (NF-κB) and degradation of NF-κB
inhibitor (IκB), making NF-κB more transcriptionally active
(70–72). As shown in Figure 1, a quantitative or qualitative (in
term of dysbiosis) bacterial alteration (small intestine bacterial
overgrowth) is also concatenated with OS through the inhibition
of mitochondrial respiratory chain.

Interaction Between Gut Microbiota, OS,
and Intestinal Permeability in NAFLD
Gut mucosal barrier separates, functionally and physically,
the luminal content from the underlying compartment that,
in addition to gut epithelia, includes immune, vascular, and
structural elements in the lamina propria. The intestinal mucosa
is constantly exposed to oxidants and carcinogens taken in
from diet and/or bacteria, whose chronic exposure may cause
production of free radicals leading to redox imbalance and
subsequent DNA damage, disturbing the intestinal metabolic
equilibrium (73).

GM plays an important role in different processes (metabolic,
nutritional, physiological, and immunological) involved
in maintaining a healthy status (69, 74). Its qualitative
and quantitative composition differs in the distinct parts
of gastrointestinal (GI) tract because of the influences by
different conditions [e.g., age, dietary habits, ethnicity, delivery
mode, exposure to therapies, pathogens, and contact with
several environmental stimuli (75–78)]. Perturbation of GM
composition, called “dysbiosis,” has been recognized in diseases
associated not only with the GI tract [e.g., inflammatory
bowel disease (79)] but also with systemic conditions such
as obesity, diabetes mellitus, autism, depression, and NAFLD
(80). While a quite clear causal role of a specific GM has been
demonstrated in murine models of NAFLD (e.g., unhealthy diet
dependent shift from Bacteroidetes to Firmicutes), recognition
of a corresponding human microbiome signature is more
difficult. In fact, it may be hindered by the components of
associated metabolic syndrome and several other confounding
factors. Anyway, Gram-negative harmful bacteria release
lipopolysaccharide (LPS), lipoteichoic acid, flagellin, lipoprotein,
or other toxins recognized by the pattern recognition receptors
(PRRs) expressed on the surface of innate immune system
cells. Similarly, structurally conserved motifs present on the
surface of different types of pathogens (pathogen-associated

molecular patterns) are recognized and bound by PRRs, inducing
mitochondrial ROS production and nuclear gene expression.

PRR classes sensitive to the microbiota’s factors are Toll-like
receptor (TLR), Rig-1-like receptor, Nod-like receptor, and C-
type lectin receptor. They induce the NF-κB pathway activation
and enhance the inflammatory response when proinflammatory
cytokines and antibacterial factors are released (81, 82).
Differently, small formylated peptides produced and released by
commensal bacteria are recognized by another kind of receptor,
known as formylated peptide receptors. These are G-proteins
linked to surface receptors of neutrophils and macrophages,
stimulating ROS synthesis in phagocytes and epithelial cells
(83). In particular, their activation stimulates superoxide anion
production by NADPH oxidase 1, increasing ROS levels in cell
cytoplasm that lead to an inflammatory response and increase of
cell OS (84). As a consequence of cell stress, mitochondrial and
bacterial DNA may be integrated in the nuclear genome causing
the alteration of cellular gene expression.

Intestinal mucosa permeability has an important role in
modulating how GM can influence also other parts of the body.
An alteration of its barrier function consents to the GM and its
endotoxins to cross the intestinal epithelium and the endothelial
barrier (85) traveling into systemic circulation and reaching
different target organs (75, 86).

There are many evidences according to which gut bacteria
are involved in the pathogenesis of liver injury induced by
alcohol, and gut leakiness promotes proinflammatory bacterial
products reaching the liver, thus initiating the proinflammatory
cascade that causes alcoholic steatohepatitis (ASH). Alcohol
impairs intestinal epithelial cell permeability in vitro through a
mechanism mediated by OS (87), supporting therefore the idea
that OS may be the main cause of alcohol-induced intestinal
leakage (88, 89).

In NAFLD, with a quite similar mechanism, endogenous
ethanol produced by some microbial species [e.g., Escherichia
genus members of the Proteobacteria phylum induced by high-
fat diet; (90)] is able to induce the formation of ROS by HSC
cells and impair intestinal integrity. The latter allows LPS to
reach hepatic TLRs activating and further enhancing oxidative,
inflammatory, and fibrogenetic mechanisms (75, 90, 91, 91–94).

GM seems to mediate the progression from simple steatosis
to NASH. In particular, increased Gram-negative bacteria expose
KCs to an elevated amount of LPS and upregulation of PRRs
(37). It has been hypothesized that the endocytosis of LPS by KC
could induce upregulation of cytokine receptors, especially the
TNF-α receptor, which seems to be also involved in the increased
ROS production (95). Activated KCs have a role in IR, fibrosis
development, and inflammation amplification.

Also, the association between obstructive sleep apnea
syndrome (OSAS) and NASH severity seems to correlate
with endotoxemia increase and gut barrier function alteration,
conducing to increased hepatic susceptibility to endotoxemia
mediated by TLR-4 (96). An alarming 60% OSAS incidence
has been reported in pediatric NAFLD (97, 98). This disorder
of breathing during sleep has been associated with fatty acid
accumulation in the liver and inflammation caused by frequent
nocturnal hypoxia (NH), IR, OS, and adipokine dysregulation
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(99). Growing experimental evidences link the alternation of NH
with normoxia (so-called chronic intermittent hypoxia) caused
by OSAS to NAFLD development and progression (49, 100). A
study that compared healthy controls and NAFLD patients (some
of which with OSA/NH), identified NH as a possible source of OS
in NAFLD. OSA/NH is common in pediatric patients with liver
biopsy-proven NAFLD and is associated with more advanced
liver injury and histological disease (97, 98). Intermittent hypoxia
conduces to tissue hypoxia and can lead to OS, mitochondrial
malfunction, inflammation, and sympathetic nervous system
hyperactivation. As a consequence, intermittent hypoxia causes
IR, impairment of hepatic lipid metabolism pathways (84), and
hepatic steatosis and fibrosis, each of which is involved into
NAFLD development and/or progression [(101); Figure 2].

THERAPEUTIC STRATEGIES

Non-enzymatic Anti-oxidants Defenses
Antioxidants are substances that inhibit the oxidation of
any biomolecule (102), neutralizing the harmful effects of
oxidation caused by free radicals, maintaining therefore the redox
homeostasis. Antioxidants are either synthesized endogenously
(e.g., GSH, superoxide dismutase) or taken from the diet.
Anthocyanins, lycopene, coenzyme Q10, flavonoids, β-carotene,
lipoic acid, selenium, lutein, catechins, and vitamins A, C, and
E are among the many substances normally present in foods
that possess a high antioxidant activity. As reported in the
table, they can be also classified in two large groups on the
basis of the presence/absence of their enzymatic action [(103–
114); Table 1].

Despite the above premises, antioxidants as potential
pharmacological agents have hitherto not appeared extremely
effective in vivo as either a preventive or therapeutic tool in
NAFLD (31, 117–122). Studies that have investigated the role
of vitamin E as a treatment of NASH confirm that it acts
against pathogenic mechanisms conducting to liver damage and
NASH, thanks to its antioxidant and anti-inflammatory activity
(123–126). The antioxidant power of vitamin E is due to the
hydroxyl group in the tocochromanol ring, which neutralizes
free radicals and ROS by donating hydrogen. The major forms
of tocopherol and tocotrienol are α, β-, γ-, and δ-, with the
antioxidant activity of the δ-isoform being weaker than the
others, the vitamin E isoforms are also involved in many other
activities (Table 2). Among the vitamin E isoforms, the α-
tocopherol, has other different properties independently from
its antioxidant ability: it can inhibit the activity of protein
kinase C, reducing the proliferation of different cell types
(vascular smooth muscle cells, mesangial cells, neutrophils,
monocytes/macrophages, fibroblast, and various cancer cell
lines) and the 5-lipoxygenase pathway, inhibiting the release of
proinflammatory cytokine IL-1β.

Clinical Trials of Vitamin E for NAFLD:
Vitamin E in the Clinics
Available data are still conflicting. The largest trials with
vitamin E in NAFLD are the PIVENS (Pioglitazone vs. Vitamin
E vs. Placebo for the Treatment of Non-diabetic Patients

with Non-alcoholic Steatohepatitis) (127) and the TONIC
(Treatment of Non-alcoholic Fatty Liver Disease in Children)
(121) trials. The first showed that both drugs tested in adults
ameliorated steatosis, lobular inflammation, and hepatocellular
ballooning, but did not ameliorate fibrosis. Vitamin E but not
pioglitazone induced a clinical improvement in NASH. The
TONIC trial, which evaluated therapeutic intervention with
vitamin E vs. metformin in children with NAFLD, showed
that both improved hepatocellular ballooning and the NAFLD
activity score (NAS), but neither vitamin E nor metformin
decreased alanine aminotransferase (ALT) values or hepatic
steatosis, inflammation, or fibrosis in NASH. The reasons of
these disappointing results depend on the need of better patient
selection and protocols. Interestingly, a most recent systematic
review and meta-analysis (1,317 patients from 15 randomized
controlled trials) concluded that vitamin E improves biochemical
and histological outcomes in adults and pediatric patients, with
a significant negative association between transaminases levels
and vitamin E dosage—more satisfactorily ranging between 400
and 800 IU. However, while adults receiving vitamin E improved
significantly transaminases, fibrosis, and NAS both at early and
late follow-up, children showedmore significant changes at long-
term follow-up, which could partly explain the negative results
obtained by certain short-term studies (128). Some still unsolved
safety concerns should be considered as well. Vitamin E, in
fact, has been suspected to have a dichotomous suppressive
and promoting activity with respect to tumorigenesis [e.g., co-
cancerogenic in prostate cancer; (25, 129)] possibly explainable
by still poorly studied host gene–supplement interactions (130).
In our opinion, further carefully designed studies are still
necessary for substantiating this view and supporting optimum
procedures in terms of both efficacy and safety profiles.

Results from multiple regression models showed a significant
negative association between ALT, AST levels, and vitamin E
dosage—more favorably between 400 and 800 IU.

A quite large number of other nutraceutical antioxidants that
seem to improve NASH throughmore than one pathway (Table 2
and Figure 3) include but are not limited to the following:

- Curcumin (37, 103), with effects on different amino acids, bile
acids, tricarboxylic acid cycle, and GM (131, 132), although
only few human clinical trials are available (132–134).

- PUFAs of omega-3 series (PUFA omega-3), which may act as
an antioxidant, have a role in modulating OS improving the
defense capacity against an increased oxidative burden (135,
136).

Thanks to them, the cellular metabolism switch from lipogenesis
and triacylglycerol accumulation to fatty acid oxidation thus
plays a role in decreasing fatty liver. Furthermore, they have
anti-inflammatory activity and enhance insulin sensitivity (103).
Clinical trials evaluating the efficacy of n-3 PUFA (including
docosahexaenoic acid and eicosapentaenoic acid) on systemic
OS in NAFLD and NASH have shown controversial results.
While n-3 PUFA supplementation appears useful in NAFLD
early stages (137), unfortunately, total (enzymatic and non-
enzymatic) antioxidant capacity is not enough to attenuate
the hepatic damage (35). Interestingly, dietary antioxidant
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FIGURE 2 | Association between obstructive sleep apnea and the development and evolution of non-alcoholic fatty liver disease. Intermittent hypoxia leads to tissue

hypoxia, OS, mitochondrial dysfunction, inflammation, and overactivation of the sympathetic nervous system (SNS). Generated reactive O2 species (ROS) may amplify

liver injury by activating hypoxia-inducible factor 1, a transcriptional activator and master regulator of O2 homeostasis during hypoxia, and by up-regulating nuclear

factor κ-light-chain enhancer of activated B cells (NF-κB), with subsequent downstream induction of inflammatory pathways. As a consequence, this involves insulin

resistance, dysfunction of key steps in hepatic lipid metabolism, atherosclerosis, and hepatic steatosis and fibrosis, each of which is pertinent to the development

and/or progression of non-alcoholic fatty liver disease (NAFLD) (98–101).

intake is significantly lesser in NASH patients than in healthy
controls (138).

- Among polyphenols, blueberry leaf polyphenols appear to
have a positive effect on hepatic mitochondrial dysfunction
and redox homeostasis, whereas bergamot polyphenolic
formulation seems to improve IR, hepatocellular ballooning,
inflammation, and fibrosis (115, 116).

Probiotics and Prebiotics: Other Tools
Improving Defenses Against OS
Improving defenses against OS through modulation of the GM
composition and functionality offers a promising means of
managing or treating metabolic disorders (74).

Probiotics are living microorganisms with beneficial health
activity on the host. For example, they are able to improve GM
composition and reduce LPS serum amount and liver TLR4,
delaying liver disease progression (81, 98, 99). Lactobacilli and
bifidobacteria are the most commonly used, usually present in
dietary supplements or fermented foods such as yogurt and
cultured milk (100). Changing the resident GM composition and
the gut lumen, they create an anti-inflammatory environment,
obtaining decreased proinflammatory bacterial products and
gut barrier integrity improvement. Lactobacillus rhamnosus
GG (LGG) is the subject of numerous studies (139–144);
it has different beneficial effects on the intestinal function

through dysbiotic microbiota normalization (100, 144, 145) and
reducing intestinal OS (146). A recent meta-analysis found
a beneficial effect of probiotics also on hepatic antioxidative
capacity as mirrored by the increase of SOD and GSH-PX
activities and decrease of MDA content (147). A daily LGG
treatment in alcohol-fed rats significantly improves severity of
ASH and gut leakiness induced by alcohol, decreases intestinal
and liver OS markers and inflammation, and normalizes the
gut barrier task, avoiding to trigger liver disease (148). GM
regulates also the powerful antioxidant glutathione and amino
acid metabolism (144). It is not surprising therefore that
fecal microbiota transplantation (FMT) from control donors
in steatotic rats has been found to have beneficial effects
in terms of decrease of portal hypertension through insulin
sensitivity improvement mediated by the endothelial nitric oxide
synthase signaling pathway, a pathway clearly involved in the
antioxidant mechanisms (149). A pilot study of FMT in NASH is
currently undergoing to evaluate whether restoration of healthful
GM through FMT from lean donors (FMT-L) ameliorates
NASH (150).

Similarly, “prebiotics” are fermentable carbohydrates that
selectively modulate microbiota composition and/or activity,
resulting in a beneficial effect for the host (146). Finally, also
synbiotics (i.e., a combination of prebiotics and probiotics) have
shown a positive effect on GM and have been proposed as a
support for the treatment of NAFLD (151).
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Summing up, the modulation of quality and diversity of every
single human microbiota appears therefore an appealing tool
in the management of intestinal ROS, OS, inflammation, and

TABLE 1 | Antioxidants with and without enzymatic action.

Enzymatic

antioxidants

Non-enzymatic antioxidants

Superoxide dismutase

(SOD)

Low-molecular-weight compounds

Glutathione, thioredoxin, lactoferrin

Endogenous substances

Lipoic acid, melatonin, albumin, bilirubin, uric acid,

polyunsaturated fatty acids omega 3

Catalase (CAT) Flavonoid polyphenols

Silymarin (104, 105)

Blueberry leaf, bergamot polyphenols (115, 116)

Stilbenes

Resveratrol (106, 107)

Glutathione peroxidase Herbs

Erchen decoction, danshen, berberine (108)

Carotenoids

β-Carotene, astaxanthin, lycopene, β-

cryptoxanthin, lutein, fucoxanthin, crocetin

(109, 110)

Paraoxonase 1 (PON 1) Phenolic compounds

Açai (111)

Vitamins

Ascorbic acid (vitamin C), α-tocopherol [vitamin E,

vitamin A, vitamin D (112–114)]

some metabolic anomalies caused by dysbiosis (152). Moreover,
it is suggested that changes in GM occurring upon prebiotic
consumptionmay be due to gut bacterial functions improvement.
In other words, products generated by Lactobacillus and
metabolites derived by microbiota, such as antioxidants and fatty
acids, could be employed for target medicine in the management
of liver disease including NAFLD (146).

OTHER THERAPEUTIC STRATEGIES

Drugs
Ursodeoxycholic acid (UDCA) remains one of the most studied
drugs: in addition to exerting a possible therapeutic effect on
NAFLD by modulating autophagy and apoptosis dysregulation,
UDCA appears to have also antioxidant properties (153).

TABLE 2 | Activities influenced by vitamin E isoforms.

I. Regulation of the inflammatory response

II. Gene expression

III. Membrane-bound enzymes

IV. Cellular signaling

V. Cell proliferation

VI. Regulation of several enzymes involved in signal transduction:

Protein kinase C (PKC), protein phosphate 2A (PP2A), 5-lipoxygenase,

cyclooxygenase 2 (COX-2), and monocyte chemoattractant protein 1 (MCP-1)

VII. Regulation of several factors in the mitogen-activated protein kinase (MAPK)

signal transduction pathway

FIGURE 3 | Multiple targets of nutraceuticals for the treatment of non-alcoholic fatty liver disease. FA, fatty acids; NAFLD, non-alcoholic fatty liver disease; NASH,

non-alcoholic steatohepatitis. Adapted and modified by Del Ben et al. (103).
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A number of other drugs that have been tested for
their influence on hepatic steatosis have still uncertain/elusive
molecular mechanisms. There are several innovative agents
currently undergoing phases II and III clinical trials with different
targets (154).

Obeticholic acid, a semisynthetic bile acid analog, is an agonist
of the farnesoid X receptor, which has anti-inflammatory and
antioxidant activities (155).

Silymarin, a botanical product extracted from milk thistle,
because of its antioxidant properties appears to improve NAFLD
hypertransaminasemia and reduce liver disease progression in
NASH, but at present, available results are inconclusive (156).

Cannabidiol, a chemical without psychotropic effects, has
antioxidant and anti-inflammatory properties by acting on the
endocannabinoid system. After stimulation of the G-protein–
coupled receptors and their endogenous lipid ligands, it interferes
with progression toward NASH (26, 157).

Physical Activity
Physical activity (PA) acts favorably in NAFLD primarily by
reducing intrahepatic fat content with β-oxidation of fatty acids
and lipogenesis regulation, enhancing the expression and activity
of PPAR-γ, insulin sensitivity, and hepatoprotective autophagy,
reducing hepatocyte apoptosis, and inflammation of the liver by
decreasing the proinflammatory mediators. PA, moreover, has
several beneficial effects on NAFLD also with the improvement
of several antioxidants activity [e.g., catalase, SOD, glutathione
peroxidase and reductase, glutathione-S-transferase, thioredoxin
reductases, NADH cytochrome B5 reductase, and NAD(P)H
quinone acceptor oxidoreductase], leading to decreased ROS
production and proinflammatory cytokines (158).

CONCLUDING REMARKS

Our review exhibits that OS not counteracted by intact
antioxidant defense system plays an important role in
NAFLD/NASH with a number of other casual factors. Excessive
FFA β-oxidation due to increased FFA fueling leads to excessive
ROS formation, which, in turn, downregulates ETC, and non-
ETC systems, affect insulin sensitivity, hepatic lipid metabolism,
and inflammatory responses by interacting with innate immune
signaling (159).

Gut dysbiosis may induce further signaling processes, which
engage the epithelium and immune/inflammatory cells. In these

conditions, GM may take advantage of the increased intestinal
permeability and/or impairment of epithelial tight junctions.
This results in an enhancement of the gut–liver axis with bacteria
and endotoxin transit through the intestinal and endothelial
vascular wall, ending up into hepatic and other systemic diseases
as well.

The above scenario would suggest a therapeutic role of
antioxidants in patients with fatty liver disease, but this
approach has not been entirely translated yet in human
(160), as most studies still derive from murine models with
substantial differences in genetic background and in the digestive
system; the need to perform more human studies appear
evident (161).

Vitamin E has shown promising data but without significant
benefit in fibrosis improvement (162). Several natural
polyphenols and n-3 PUFA supplementation provided with
a number of antioxidant, antiobesity, and anti-inflammatory
effects could have potential in NAFLD prevention and treatment
by acting on its multifactorial pathogenetic components, but also
here data either to support or refuse their use are insufficient
(115, 116).

In addition to healthy diet (e.g., a Mediterranean diet seems
to reduce OS), probiotics, prebiotics, and fecal transplantation
appear to be emerging strategies to modulate microbiota quality
and diversity, in order to prevent and/or avoid gut damage.
Avoidance of exposure to endocrine disruptors (15) and to
ambient PM (16, 17) also appears strategic to add benefices
to NAFLD.

Last but not least, the accurate assessment of NAFLD-
associated genetic/epigenetic risk factors of diseases and
likelihood of disease progression is going to aid to target
individualized appropriate treatments (163).
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