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Oxidative stress occurs in diabetes, various cancers, liver diseases, stroke, rheumatoid

arthritis, chronic inflammation, and other degenerative diseases related to the nervous

system. The free radicals have deleterious effect on various organs of the body. This

is due to lipid peroxidation and irreversible protein modification that leads to cellular

apoptosis or programmed cell death. During recent years, there is a rise in the oral

diseases related to oxidative stress. Oxidative stress in oral disease is related to other

systemic diseases in the body such as periodontitis, cardiovascular, pancreatic, gastric,

and liver diseases. In the present review, we discuss the various pathways that mediate

oxidative cellular damage. Numerous pathways mediate oxidative cellular damage and

these include caspase pathway, PERK/NRF2 pathway, NADPH oxidase 4 pathways

and JNK/mitogen-activated protein (MAP) kinase pathway. We also discuss the role of

inflammatory markers, lipid peroxidation, and role of oxygen species linked to oxidative

stress. Knowledge of different pathways, role of inflammatory markers, and importance of

low-density lipoprotein, fibrinogen, creatinine, nitric oxide, nitrates, and highly sensitive

C-reactive proteins may be helpful in understanding the pathogenesis and plan better

treatment for oral diseases which involve oxidative stress.

Keywords: oral, disease, oxidative stress, pathways, free radicals, inflammation

OXIDATIVE STRESS AND RELATED DISEASES IN THE BODY

Oxidative stress occurs as a state of disturbance between free radical produced and the capability of
antioxidant system to counteract such (Pisoschi and Pop, 2015). Free radicals are also classified as
reactive oxygen species (ROS) or reactive nitrogen species (RNS) and both possess unpaired valence
electrons. ROS can be further classified into oxygen centered radicals (superoxide anion, hydroxyl
radicals, alkoxyl radicals, and peroxyl radicals) and oxygen centered non-radicals (hydrogen
peroxide and singlet oxygen), while RNS consists of nitric oxide, nitric dioxide and peroxynitrite
(El-Bahr, 2013). ROS are naturally occurring oxidants involved in numerous cellular biochemical
events that are essential to life but at the same time capable of causing harmful oxidative stress
when overproduced (McCord, 2000). Free radicals cause damage to all essential biocompounds
such as DNA, proteins, and membrane lipids, thereby causing cause cell death. These free
radicals are countered by inherent antioxidant system that exists in two major groups: enzymatic
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(glutathione peroxidase, myeloperoxidase, superoxide dismutase,
and catalase) and non-enzymatic (minerals, vitamins,
polyphenols, and thiols; Gilgun-Sherki et al., 2001; Pisoschi
and Pop, 2015).

Oxidative stress forms the basis of cancer, diabetes,
rheumatoid arthritis, non-alcoholic fatty liver disease, chronic
inflammation, stroke, aging, and numerous neurodegenerative
diseases (Fridovich, 1999; Fang et al., 2002; Gentric et al.,
2015; Pisoschi and Pop, 2015). Different epidemiological and
clinical studies showed evidence of important role of oxidative
stress and impairment of antioxidant defense systems in the
pathogenesis, neoangiogenesis, and dissemination of local
or distant cancers, such as cancers of the ovary and prostate
(Oh et al., 2016; Saed et al., 2017). In any cancer, oxidative
stress induced by hypoxia, was reported to promote oncogenic
protein (MUC4) degradation via autophagy, enhancing the
survival of cancer cells in the pancreas (Joshi et al., 2016).
In Parkinson’s disease, oxidative stress and aggregation of
protein are the key pathogenic processes, where aggregation
of α-synuclein results in aberrant free radical production and
neuronal death (Deas et al., 2016). Similarly in Alzheimer’s
disease, amyloid-β inserts into the membrane systems to begin
the oxidative stress during the disease progression in the
brain (Swomley and Butterfield, 2015). In addition, increased
oxidative stress and reduced superoxide dismutase levels were
observed in human peripheral blood mononuclear cells which
were obtained from patients with mild cognitive impairment
(Mota et al., 2015).

OXIDATIVE STRESS RELATED TO ORAL
DISEASES

Oral diseases such as periodontitis, dental caries, cancer in
the oral cavity, HIV/AIDS, diseases involving mucosal and
salivary glands, orofacial pain, and clefts, affect the oral
health and hygiene (Jin et al., 2016). Global Burden of
Disease 2015 study showed individuals with untreated oral
conditions to increase from 2.5 billion in the year 1990
to 3.5 billion in 2015, with a 64% increase in disability-
adjusted life year (Kassebaum et al., 2017). In addition,
the direct and indirect treatment expenses due to dental
diseases worldwide, were approximately US$442 billion in 2010
(Listl et al., 2015).

Among all oral diseases, the periodontal disease (comprising
gingivitis and periodontitis), accounted for 3.5 million years
lived with disability, US$54 billion/year in lost productivity
and a major portion of the US$442 billion/year cost for oral
diseases (Tonetti et al., 2017). Oxidative stress was involved
in the progression of periodontitis, a chronic inflammatory
disease of the periodontal tissue, caused by disturbance in the
regulation of the host inflammatory in response to bacterial
infection (Kataoka et al., 2016; Kanzaki et al., 2017). In
chronic periodontitis, there was lower serum total antioxidant
level and salivary capacity when compared to the control
individuals (Ahmadi-Motamayel et al., 2017). Biomarkers of lipid
peroxidation (one of the oxidative stress-mediated pathways)

such as 8-isoprostane and malondialdehyde (MDA) were
high in patients affected by chronic periondontitis (Akalin
et al., 2007; Matthews et al., 2007; Pradeep et al., 2013). In
addition, assessment of blood and gingival tissues of chronic
periodontitis patients also revealed mitochondrial DNA deletion
(5 kbp; Canakci et al., 2006). Gingival blood analysis of
periodontitis patients also marked high level of 7-8-dihydro-
8-ossiguanina (8-oxoG), a pre-mutagen base that results from
ROS-mediated DNA damage (Takane et al., 2002; Krol,
2004). Similarly, higher level of 8-isoprostane concentration
(an alternative approach to estimate lipid peroxidation) in
the crevicular fluid of gingiva was detected in chronic
periodontitis patients compared to those with gingivitis and
healthy individuals (Pradeep et al., 2013). Serum reactive
oxygen metabolite levels in periodontitis patients positively
correlated to antibody levels with regard to bacteria such as
Porphyromonas gingivalis, Prevotella intermedia, and Eikenella
corrodens (Tamaki et al., 2014). Following scaling and root
planning after systemic antioxidant lycopene administration,
there was decrease in the oxidative stress and improvement
in clinical parameters, which was maintained up to 4 months
after discontinuation of antioxidant treatment (Ambati et al.,
2017).

The pathogenesis of chronic inflammatory disease like oral
lichen planus (OLP) is not well-understood (Tvarijonaviciute
et al., 2017). Various studies showed that oxidative stress
is involved in the pathogenesis of OLP. Significantly
higher salivary ROS, lipid peroxidation, nitric oxide, and
nitrite levels were found in OLP patients compared to the
control subjects (Batu et al., 2016; Mehdipour et al., 2017;
Tvarijonaviciute et al., 2017). The total antioxidant activity
was significantly decreased in OLP patients with increased
level of salivary malondialdehyde (MDA) compared to the
healthy control group suggesting the possible role of the
oxidants to orchestrate the disease via lipid peroxidation-
mediated pathway (Lopez-Jornet et al., 2014; Shiva and Arab,
2016).

Oxidative stress was also correlated with oral cancer, as
increased lipid peroxidation and reduced antioxidants was
reported in patients suffering from stage II, III, and IV oral cancer
(Manoharan et al., 2005). In addition to these findings, nitric
oxide-mediated DNA damage was reported in patients with oral
leukoplakia. Samples of oral epithelium taken from these patients
recorded high levels of 8-nitroguanine and 8-oxoG (Ma et al.,
2006).

OXIDATIVE STRESS MEDIATE CELLULAR
DAMAGE

The deleterious effects of ROS in the event of oxidative stress are
through lipid peroxidation and irreversible protein modification
that leads to cellular apoptosis or programmed cell death (Ferrari,
2000). Numerous pathways mediate oxidative cellular damage
and these include as caspase pathway, PERK/NRF2 pathway,
NADPH oxidase 4 pathway and JNK/mitogen-activated protein
(MAP) kinase pathway.
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PATHWAYS THAT MEDIATE OXIDATIVE
CELLULAR DAMAGE

Caspase Pathway
Caspases are a family of cysteine protease enzymes that carry
out programmed cell death and inflammation. During apoptosis,
caspases are activated to ensure that programmed cell death
occurs with less damage to nearby tissues and also to ensure
the degradation of components of the cell in a well-controlled
manner (Rathore et al., 2015). Functionally, the caspases are
classified into two major groups in apoptosis: Initiator caspases
such as caspase-8 and -9, activate downstream caspases known
as the executioner. These include caspase-3, -6, and -7 which
are responsible for the breakdown of the cellular proteins
(Creagh and Martin, 2001). In chronic periodontitis, caspase-3
concentration was significantly increased in gingival crevicular
fluid and serum, and significantly correlated to the probing
depth, gingival index, and clinical attachment level, thereby
indicating apoptosis plays an important role in the destruction
of periodontium tissues in chronic periodontitis (Pradeep et al.,
2016).

There are two major caspase-associated apoptotic pathways
related to oxidative damage (1) mitochondrial mediated
pathways, and (2) the death receptor mediated pathway. In cells,
caspases exist as zymogens (pro-caspases) which are activated
only in the presence of appropriate stimulus such as the insult of
oxidative stress (Slee et al., 1999). During activation, the caspases
undergo proteolytic cleaving to dimerize into an active enzyme
(Alnemri et al., 1996). In the mitochondria-mediated apoptotic
pathway, hydrogen peroxide (H2O2) releases cytochrome C
which binds to the apoptotic protease activating-factor 1 (Apaf-1)
to initiate caspase-9 activation (Madesh and Hajnoczky, 2001;
Andoh et al., 2002). ROS-mediated oxidative modification
of caspase-9 at C403 residue promotes the interaction of
caspase-9 with Apaf-1 via disulfide bonding that results in the
apoptosome formation which leads to activation of caspase-9
(Zuo et al., 2009). The executioner, caspase-3 is speculated to
be the converging point in both mitochondria-dependent and
independent pathways in oxidative stress-driven apoptosis (Ueda
et al., 2002; Kanthasamy et al., 2003). H2O2 activation of caspase-
3 lead to activation of PKC delta and this contributes to the
nuclear DNA breakdown and apoptotic cell death (Carvour et al.,
2008).

In death receptor-mediated apoptotic pathway, caspase-8
channels apoptosis following oxidative stress (Baumgartner et al.,
2007). Death receptors (also known as death-domain receptors)
can promote the cleavage of pro-caspase-8 with appropriate
stimulation (Boldin et al., 1996). Then, caspase-8 activates
downstream executioner caspases (caspase-3; Jiang and Wang,
2004) or cleaves a pro-apoptotic protein known as Bid, which
once activated translocates to the mitochondria and causes the
release of cytochrome C, followed by fragmentation of DNA
and apoptosis (Li et al., 1998). Interestingly, numerous studies
reported crosstalk between caspase-8 and caspase-9 (Figure 1;
Basu et al., 2006; Mareninova et al., 2006). Using pancreatic
acinar cells, Baumgartner et al. (2007) showed reported partial
inhibition of caspase-8 activation by caspase-9 and vice versa

during H2O2-mediated apoptosis. The same study also reported
the involvement of lysosomal proteins such as cathedpsin D and
E (aspartyl proteases from lysosomes) in activation of caspase-8.

NADPH Oxidase 4 (NOX4) Pathway
NADPH oxidases (NOX) are enzymes that are known to catalyze
the electron transfer from NADPH to molecular oxygen, to
generate ROS as a microcode in immune response (DeLeo and
Quinn, 1996). NOX protein family consists of NOX1, -2, -3,
and -4 (Sahoo et al., 2016). The NOX4 isoform is expressed
everywhere in the body, including heart, neuron, kidney, liver,
and endothelial cells (Byrne et al., 2003; Vallet et al., 2005; Ray
et al., 2011; Babelova et al., 2012; Crosas-Molist et al., 2014).
NOX4 predominantly generates H2O2 in mitochondria where it
is usually localized (Ago et al., 2008; Nisimoto et al., 2014; Sanders
et al., 2015).

Recent research highlighted the mechanistic effects of NOX4
in oxidative stress (Vendrov et al., 2015; Theccanat et al., 2016).
Unlike other isoforms of NOX, the NOX4 do not require
cytosolic regulatory subunits in order to be activated. Instead,
the enzyme is regulated by transcription factors which include
E2F (Zhang et al., 2008), AP-1/Smad3 complex (Bai et al., 2014),
retinoblastoma protein kinase (by regulating the activity of E2F),
G-protein coupled receptor kinase 2 (Theccanat et al., 2016),
and also via epigenetic regulation through increased association
of histone H4K16 (Sanders et al., 2015). Enhanced NOX4
expression/activity and mitochondrial localization positively
correlates to ROS production in mitochondria (Vendrov et al.,
2015). Increasedmitochondrial ROS leads tomitochondrial DNA
damage, oxidation of mitochondrial proteins, and eventually
apoptotic cell death (Madamanchi and Runge, 2013). This
overproduced ROS is also likely to enter cytoplasm and activate
numerous pro-apoptotic proteins such as caspase-9 and -3
(Tariq et al., 2013), caspase-1 (Moon et al., 2016). Excess ROS
also causes a pro-inflammatory shift in the gene expression
through nuclear factor-kappa-β activation (NF-κβ; Ungvari et al.,
2007). Significant increased NOX4 levels was observed following
inflammatory or hypoxic stimulation in periodontal ligament
cells, which was accompanied by up-regulation of ROS and
catalase levels (Figure 2; Golz et al., 2014). However, prolonged
exposure to both stimuli leads to a decreased in catalase level
suggesting the collapse of the antioxidative mechanism favoring
oxidative stress and inflammatory response as observed in
periodontitis (Golz et al., 2014).

NRF2—Antioxidant Response Element
Signaling Pathway
The nuclear factor erythroid 2 (NFE2)-related factor (NRF2),
a basic leucine zipper (bZIP) protein from the cap “n” collar
(CNC) subfamily, protects against oxidative stress. NFE2 regulate
the expression of antioxidant and detoxification proteins (Gold
et al., 2012). NRF2 plays an important role in numerous diseases
such as rheumatoid arthritis, atherosclerosis, oral cancer, and
chronic periodontitis (Kim et al., 2010; Huang et al., 2013;
Sima et al., 2016). NRF2 plays a role as a positive regulator of
human Antioxidant Response Elements (AREs; Venugopal and
Jaiswal, 1996). NRF2 was reported to regulate the expression
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FIGURE 1 | A schematic depiction of how caspase-associated pathways leads to oxidative damage via mitochondrial- and death receptor-mediated cellular

apoptosis. In mitochondrial-mediated apoptosis, generation of ROS causes the release of cytochrome C from mitochondria, which via a cascade of cellular actions

activates caspase-9 and then caspase-3 that eventually channels cell death. In death receptor-mediated apoptosis, oxidative stress-driven death ligands activates

caspase-8, which then activates a pro-apoptotic protein known as Bid, which once activated travels to mitochondria to facilitate mitochondria-mediated apoptotic

pathway. Death receptor-activated caspase-8 also activates caspase-3 to induce cell death.

of numerous antioxidant enzymes, which include glutathione
peroxidase, glutathione S-transferase, catalase, and superoxide
dismutase (Niture et al., 2014).

The NRF2 activation was reported to involve a protein
known as Kelch-like erythroid cell-derived protein with CNC
homology-associated protein 1 (Keap 1) by Itoh et al. (1999).
The same study reported that under basal condition, Keap
1 anchored to cytoplasm act as a suppressor of NRF2 by
physically binding to NRF2 and prevent the translocation
of NRF2 to the nucleus to activate ARE-containing gene
promotor regions (Itoh et al., 1999). Under this condition,
NRF2 is rapidly degraded by proteasomes (Kobayashi et al.,
2004) through polyubiquitination via Keap1/Cul3 ubiquitin
ligase (Wakabayashi et al., 2003). Keap1/NRF2 complex “senses”
the oxidative stress directly via reactive cysteine residues in
Keap1 (Dinkova-Kostova et al., 2004) and NRF2 (Huang
et al., 2002). NRF2 is activated by protein kinase C, MAP
kinase and phosphatidylinositol-3 kinase (Yu et al., 1999; Kang
et al., 2002; Numazawa et al., 2003). Following the “oxidant
sensing,” NRF2 is phosphorylated at serine40 to be released
from Keap1 (Huang et al., 2002) and translocates to the
nucleus where there is formation of a heterodimer with Maf

and binds to AREs of numerous antioxidant gene promoter
regions to begin their transcription (Figure 3; Itoh et al.,
1997).

The critical role of NRF2 in protection against oxidative
stress was shown through myriad studies (Chan et al., 2001;
Talalay et al., 2003; Motohashi and Yamamoto, 2004). A recent
study reported significant down-regulation of NRF2 pathway in
patients with severe chronic periodontitis (Sima et al., 2016).
NRF2 over-expression significantly improved anti-oxidative
levels, increased cell proliferation, and inhibited periodontal
ligament stem cell apoptosis (Liu et al., 2017).

Role of Different Inflammatory Markers
Inflammation and oxidative stress were found to be
associated with numerous chronic diseases such as
diabetes, cardiovascular disease (CVD), hypertension,
alcoholic liver diseases, neurodegenerative diseases, cancer,
and aging (Biswas and de Faria, 2007; Cachofeiro et al.,
2008; Ambade and Mandrekar, 2012; Tucker et al.,
2015). The accepted hypothesis is that inflammation can
trigger oxidative stress and the oxidation also can induce
inflammation.
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FIGURE 2 | A simplified representation on the role of NOX4 in cellular pathway toward ROS-induced oxidative stress. Activity of NOX4 is regulated through regulation

of the enzyme’s expression by various transcription factors, protein kinase, cellular receptor, and epigenetic regulator. Enhanced NOX4 expression or activity in

mitochondria leads to increased ROS production that subsequently causes mitochondrial damage and cell death. Excess ROS also likely to travel toward cytoplasm

and activate numerous pro-apoptotic proteins and also activate nuclear factor kappa beta to trigger a pro-inflammatory state of the cell.

Inflammation is the protective response of our biological
system toward harmful exogenous and endogenous stimuli
(Ferrero-Miliani et al., 2007). Inflammation is also an inherent
immune response employed to safeguard our health. However,
unregulated or exaggerated prolonged inflammation can cause
tissue damage and chronic diseases. During the onset of
inflammation, transcription factors such as activating protein-1
(AP-1) and NF-κβ induce pro-inflammatory gene expressions,
which increases production of ROS while inducing oxidative
stress (Tabas and Glass, 2013). Certain ROS such as H2O2

can enhance the pro-inflammatory gene expression (Flohe
et al., 1997) through activation of numerous cellular pathways.
Oxidative stress activates NOD-like receptor protein 3 (NRLP3)
inflammasome (Shimada et al., 2012) which are responsible for
maturation of pro-inflammatory proteins such as interleukin
(IL)-18 and IL-1β (Schroder and Tschopp, 2010). The expression
of pro-IL-1β was upregulated in human oral squamous cell
carcinoma tumors and it increased the proliferation of dysplasia
oral cells, stimulated oncogenic cytokines, and promoted the
severity of oral squamous cell carcinoma (Lee et al., 2015).

Role of Oxygen Species Signal Assembly
of the NLRP3 Inflammasome
The inflammasome is a part of the innate immune system and
it responds to microbes or cellular stress through regulation of
caspase-1 activation and induction of inflammation (Lamkanfi
and Dixit, 2009). Among the numerous NLR inflammasome
complexes such as NLRP1, -P2, -P3, -P6, -P12, and -C4
(Correa et al., 2012; Allen et al., 2013; Chen, 2014), the
NLRP3 inflammasome influences the chronic inflammation and
maturation of pro-inflammatory IL-1β and IL-18 (Davis et al.,
2011). The expression of NLRP3 was significantly higher in
patients with chronic periodontitis and generalized aggressive
periodontitis, which were mainly distributed in inflammatory
cells (Xue et al., 2015; Ran et al., 2017). P. gingivalis infection
increased loss of alveolar bone, production of IL-1β, IL-6,
IL-18, gingival gene expression of pro-IL-18 and pro-IL-1β,
and activity of caspase-1 in peritoneal macrophages of wild-
type mice, unlike in NLRP3-deficient mice. This suggests
that P. gingivalis activate innate immune cells through the
NLRP3 inflammasome in periodontal disease (Yamaguchi et al.,
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FIGURE 3 | A schematic diagram showing the mechanism of NRF2 in protection against oxidative stress. Under normal condition, a protein called Keap1 suppresses

the activity of NRF2 by physically binding to NRF2 and at the same time anchored to cytoplasm. Following a period of inactivity, NRF2 is degraded by proteasomes.

During oxidative stress, oxidants will be sensed by the Keap1/NRF2 complex via reactive cysteine residues in Keap1. Upon oxidant sensing, NRF2 undergoes

phosphorylation at serine40 releasing Keap1 from the complex. This is followed by the translocation of NRF2 to nucleus where the protein forms a heterodimer with

small transcription factor Maf and binds to antioxidant response enzyme (ARE) of numerous antioxidant gene promoter regions to initiate their transcription in

response to oxidative stress.

2017). Similarly, Fusobacterium nucleatum infection involving
the gingival epithelial cells, leads to NLRP3 inflammasome-
dependent secretion of IL-1β (Bui et al., 2016). Activation of
NLRP3 causes the activation of caspase-1 which is integral for
the maturation of IL-18 and IL-1β into active cytokines and also
the initiation of pryoptosis (Lamkanfi, 2011; Zhao et al., 2016).

Improper regulation of inflammasome could lead to the
imbalance in between pro- and anti-inflammatory cytokines and
result in inflammation and pryoptosis. NLRP3 inflammasome
was reported to be activated by a host of molecules such as
excess ROS, glucose, ATP, ceramides, sphingosine, crystals of
cholesterol, uric acid, and oxidized LDL (Duewell et al., 2010;
Jiang et al., 2012; Luheshi et al., 2012; Bandyopadhyay et al.,
2013; Fukumoto et al., 2013). The exact underlying molecular
mechanisms that regulate the assembly and activation of NLRP3
were not fully elucidated. However, recent studies reported the

ROS signaling to activate NLRP3 inflammasome (Fukumoto
et al., 2013; Heid et al., 2013).

The cellular source of ROS in influencing the activation
of NLRP3 inflammasome arises from the byproduct of
mitochondrial oxidative phosphorylation, NOX, xanthine
oxidase, cyclooxygenase, and lipooxygenase (Habu et al., 1990;
Lacy et al., 1998; Andrew and Mayer, 1999; Paravicini and
Touyz, 2008; Sorbara and Girardin, 2011; Heid et al., 2013).
For mitochondrial-ROS dependent NRLP3 inflammasome
activation, numerous molecules such as saturated fatty acid
palmitate (Wen et al., 2011), liposome (Zhong et al., 2013),
and mitochondrial cardiolipin (Iyer et al., 2013) were reported
to be involved. NOX acts as a mediator in various molecules
associated activation of NRLP3 complex. For an instance, excess
of extracellular ATP binding to P2X7 receptors in mammals
leads to rapid accumulation of ROS that eventually activate
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NRLP3 inflammasome (Riteau et al., 2012). The origin of ROS
caused by excess ATP is reported to be NOX-derived (Cruz et al.,
2007). Akin to ATP, alum, particulated metals and uric acid
crystals were also shown to activate NLRP3 inflammasome via
NOX-driven ROS generation (Martinon, 2010).

Lipid Peroxidation as a Result of Infection
Lipid peroxidation (LPO) is the oxidative deterioration of lipids
caused by ROS. LPO is a chain reaction that mostly affects
polyunsaturated fatty acids due to the presence of methylene
bridges (-CH2-) that possess reactive hydrogen atoms (Halliwell
and Gutteridge, 1984). The chain reaction consists of three major
steps including initiation, propagation and termination. For an
in-depth information on the mechanism of LPO, we would
suggest the readers to refer to review written by Repetto et al.
(2012). The end-products of LPO are aldehyde, ethane, pentane,
2,3-transconjugated diens, isoprostains, and chlesteroloxides
(Ustinova and Riabinin, 2003).

LPO has been implicated in numerous non-communicable
diseases and aging-related disorders such as cataract, rheumatoid
arthritis, atherosclerosis, and neurodegenerative diseases (Niki
et al., 2005). In addition to these ailments, LPO was linked to
infections such as influenza virus (Mileva et al., 2000; Kumar
et al., 2003), acute and chronic fascioliasis (Kaya et al., 2007)
and Helicobacter pylori infection (Davi et al., 2005). In addition,
LPO as shown by salivary MDA level, was significantly increased
in patients suffering from chronic periodontitis, OLP, oral
leukoplakia, and oral squamous cell carcinoma (Baltacioglu et al.,
2014; Malik et al., 2014; Metgud and Bajaj, 2014; Shirzad et al.,
2014; Trivedi et al., 2015).

Role of Polyphenols
Polyphenols are naturally occurring compounds that are found
in vegetables, fruits, beverages, herbs and spices. Examples of
polyphenols include isoflavones, flavanols, flavones, phenolic
acids, resveratrol, tannins, curcumin, anthovyanidins, and
lignans (Tanigawa et al., 2007). In plants, polyphenols provide
front line of protection from pathogens and ultraviolet light
(Pandey and Rizvi, 2009).

Recent advances in research focusing on the anti-
inflammatory and antioxidant effects of the polyphenols
have shed light on the mechanisms of the phenolic compounds
in scavenging free radicals, regulation of cytokine activities,
and the maintenance of antioxidant enzyme system. Phenolic
compounds scavenge free radicals through donation of an
electron or hydrogen atom to various reactive oxygen, chlorine
and nitrogen species (Tsao and Li, 2012). Phenolic compounds
also directly inhibit Fe3+ reduction and thus generate reactive
OH· (Perron and Brumaghim, 2009). These free radical
scavenging and metal chelating effects of phenolic compounds
interrupts the propagation stage of the LPO. Dietary phenolic
compounds are able to restore inherent antioxidant enzymatic
activities such as the superoxide dismutase, glutathione
peroxidase, catalase, and glutathione reductase. Phenolic
compounds control the expression of these enzymes through
regulation of transcription factor NRF2 activities which in turn
influences the ARE-mediated expression of the mentioned

enzymes (Kohle and Bock, 2006). Flavanols, isoflavones, and
flavones were reported to regulate the transcriptional activities of
NRF2 (Zhang et al., 2003; Kohle and Bock, 2006).

In addition to antioxidant effects, dietary phenolic
compounds were also shown to possess protective effects
on inflammation through modulation of NLRP3 inflammasome.
Recently, Hori et al. (2013) showed that green propolis rich
in cinnamic acids inhibited inflammasome mediated secretion
of IL-1β and activation of caspase-1. In separate studies,
flavonoids such as procyanidin B2 and apigenin inhibited
inflammasome-mediated secretion of IL-1β in LPS-induced
human macrophages (Zhang et al., 2014; Martinez-Micaelo et al.,
2015). Dietary phenolic compounds also reduced inflammation
by attenuating pro-inflammatory cytokine-induced activation
of NF-κβ by acting as AhR agonist regulator. By doing such,
phenolic compounds modulate AhR-mediated signaling
pathways that are involved in the activation of NF-κβ (Kohle and
Bock, 2006; Vogel et al., 2014).

HOW ORAL INFECTIONS ARE LINKED TO
OTHER DISEASES

Oral health is an important aspect of overall well-being of an
organism. Numerous systemic conditions and diseases have oral
origins (Beck et al., 1996; Li et al., 2000). At oral cavity, saliva act
as the first line of defense against free radicals (Amerongen and
Veerman, 2002; Battino et al., 2002) through antioxidants such
as catalase, superoxide dismutase, and glutathione peroxidase
(Battino et al., 2002). In the event of an infection, increased
generation of free radicals outnumber antioxidants to initiate
oxidative stress.

Periodontitis and Circulating Oxidants
Geerts et al. (2002) assessed the level of endotoxins in blood (pro-
inflammatory factors) following mastication in patients with
periodontitis. Endotoxin level was significantly higher following
mastication in patients with severe periodontitis, thereby
suggesting the possible detrimental effect of the oral disease
on systemic health (Geerts et al., 2002). Myriad of clinical and
pre-clinical findings were reported periodontal inflammation-
generated ROS to diffuse into bloodstream, and gradually
affecting other organs (Sobaniec and Sobaniec-Lotowska, 2000;
Tomofuji et al., 2007; Baltacioglu et al., 2014). In addition to
oxidants, the level of circulatory antioxidants were reported to be
lower in periodontitis patients (Baltacioglu et al., 2006; Konopka
et al., 2007).

Smoking is regarded as one of the most significant risk factors
for the development of periodontitis. Smoking can also increase
oxidative stress. Smoking may affect the alveola and tooth loss
may be a feature. Smoking is perhaps the only modifiable cause
which can check periodontitis.

Cardiovascular Disease
Numerous cross-sectional studies and systematic reviews
highlighted oral diseases, particularly periodontitis which
could be a risk factor for development of atherosclerotic CVD
(Ahn et al., 2016; Bengtsson et al., 2016; Berlin-Broner et al.,

Frontiers in Physiology | www.frontiersin.org 7 September 2017 | Volume 8 | Article 693

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Kumar et al. Oxidative Stress in Oral Diseases

2016; Gomes et al., 2016; Hansen et al., 2016; Khatri et al.,
2016; Zeng et al., 2016; Beukers et al., 2017; Natarajan and
Midhun, 2017). A cross-sectional analytical study showed
an association between periodontitis and dental parameters
(gingival recession, pocket depth, clinical attachment level,
and bleeding on probing) with the severity of coronary artery
obstruction being measured by angiography (Ketabi et al.,
2016). Similarly, periodontitis was associated with increased
thickness of carotid intima-media and arterial stiffness, which
are indicators of subclinical atherosclerosis and predicts CVD
risk (Houcken et al., 2016; Wu et al., 2016). However, studies
also showed lack of significant association between periodontal
variables and obstruction of coronary vessels (Zanella et al.,
2016). The risk of a myocardial infarction for the first time and
peripheral arterial disease was significantly increased in patients
with periodontitis (Ryden et al., 2016; Calapkorur et al., 2017).
The link between periodontal disease and CVD with respect
of detailed clinical findings in the patient was summarized in
Table 1. The role of different microorganisms, involvement
of ROS, different mechanisms involved, inflammatory
markers, and the development of CVD was also represented in
Figure 4.

The main mechanisms linking oral diseases to CVD involve
actions of oral bacteria on the blood vessels, and systemic
inflammation (Kholy et al., 2015). Bacterial (T. denticola,

FIGURE 4 | Schematic diagram to show how oral disease may be linked to

cardiovascular disease.

TABLE 1 | Association between periodontal disease and cardiovascular diseases.

Participants Sample size Findings References

Adults with aged >40 years in Korea. 1,343 Periodontitis was associated with subclinical

atherosclerosis and peripheral arterial disease.

Ahn et al., 2016

Adults with aged 60–96 years in Sweden. 499 Significant association between periodontitis and

carotid calcification.

Bengtsson et al., 2016

Participants in the baltimore longitudinal study of aging. 278 Periodontal disease, endodontic burden, number of

teeth and oral inflammatory burden were associated

with incident cardiovascular events.

Gomes et al., 2016

Periodontitis patients in Denmark 100,694 Periodontitis patients were at higher risk of myocardial

infarction, ischemic stroke, cardiovascular death, major

adverse cardiovascular events, and all-cause mortality.

Hansen et al., 2016

Dental patients in University of Amsterdam. 109 Periodontitis is associated with increased arterial

stiffness.

Houcken et al., 2016

Coronary artery obstruction patients in Isfahan, Iran. 82 Positive correlation between variables gingival

recession, pocket depth, clinical attachment level,

decayed, missing, decayed-missing-filled, bleeding on

probing, and degree of coronary artery obstruction.

Ketabi et al., 2016

Adults with aged 35–65 years in Bhopal, India. 40 Periodontitis patients was associated with higher carotid

intima-media thickness and diastolic blood pressure.

Khatri et al., 2016

Adults with mean age 46 years, mean BMI 21.1 kg/m2

in Bangladesh.

917 Mean attachment loss was associated with increased

carotid intima-media thickness.

Wu et al., 2016

Patients that underwent coronary angiography. 195 No significant associations were found between

periodontal variables and vessel obstruction. Tooth loss

was found to be a risk indicator for coronary heart

disease.

Zanella et al., 2016

Meta-analysis of 15 observational studies 17,330 Presence of periodontal disease was associated with

carotid atherosclerosis.

Zeng et al., 2016

Dental patients aged >35 years in Netherlands. 60,174 Periodontitis showed significant association with

atherosclerosis.

Beukers et al., 2017

Patients referred from the Department of Cardiovascular

Surgery to Department of Periodontology.

60 Periodontitis raised the odds ratio for having peripheral

arterial disease.

Calapkorur et al., 2017

Adults with aged 20–40 years in India. 60 Severe generalized periodontitis was associated with

subclinical atherosclerosis

Natarajan and Midhun, 2017
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P. gingivalis, F. nucleatum, and T. forsythia) genomic DNA
were detected in visceras such as aorta, heart, kidney, lung,
and liver in mice induced with periodontitis suggesting that
oral bacteria were able to gain entry into the blood stream
from inflamed gingival thereby producing low-level transient
bacteremia (Chukkapalli et al., 2017). Various periodontal
bacteria were identified in atherosclerotic plaques and were
deemed possible contributors to the disease. Different bacterial
co-occurrences were detected in the plaques of subgingiva and
plaque of atherosclerosis patients, including T. forsythia, T.
denticol, P. gingivalis and P. nigrescens (Mahalakshmi et al.,
2017). The bacteria in the atherosclerotic plaques created
biofilms that stimulated the innate immune system reactant
Toll-like receptor 2. This contributed to chronic inflammation
and continued the immune system activation (Allen et al.,
2016). Study also showed positive correlation between the
periodontal bacteria levels and CVD risk associated mediators
(low-density lipoprotein, fibrinogen, creatinine, and highly
sensitive C-reactive proteins) levels in subjects with periodontitis
and atherosclerosis (Bozoglan et al., 2017).

The local production and accumulation of inflammatory
mediators in severe generalized periodontitis can cause systemic
inflammation and endothelial dysfunction (Tonetti, 2009).
P. gingivalis oral infection in mice, induced alterations in
systemic cytokine production, i.e., up-regulation of matrix
metalloproteinase 3, intercellular adhesion molecule 1, insulin-
like growth factor binding protein 2, chemokine (C-X-C motif)
ligand 7 and the down-regulation of interleukin-17, L-selectin,
and tumor necrosis factor-α (Miyauchi et al., 2012). Similarly in
patients with coronary heart disease, periodontitis was associated
with increased systemic inflammation (elevated IFN-γ, IL-10,
and TNF-α levels; Kampits et al., 2016).

Recent studies indicated that periodontal treatment
attenuated pro-artherosclerotic factors. Following periodontal
treatment, white blood cells, low-density lipoprotein, platelet,
fibrinogen, creatinine, and highly sensitive C-reactive proteins
levels were significantly reduced and high-density lipoprotein
levels significantly increased in patients with periodontitis
and atherosclerosis, as well as in patients diagnosed with
periodontitis alone (Bozoglan et al., 2017). Similarly, systemic
markers of atherosclerosis: adrenomedullin and chemokine
(C-C motif) ligand 28 levels changed significantly in the
periodontitis and atherosclerotic patients, compared to the non-
artherosclerotic periodontitis patients following non-surgical
periodontal treatment. Decrease in serum neopterin induced
by periodontal treatment contributed to the increased arterial
elasticity in periodontitis patients (Ren et al., 2015). The results
of these studies suggests that removal and reduction of these
periodontal bacteria in subgingival plaque may be an important
prophylactic measure to periodontitis and atherosclerosis
(Mahalakshmi et al., 2017).

Liver Diseases
Using rat model of periodontitis (lipopolysaccharide/protease-
induced), Tomofuji et al. (2008) reported oxidative DNA damage
in the liver of experimental rats. Supporting the notion, another
rat model of periodontitis, that is the ligature-induced model

showed a decrease in the liver antioxidant, glutathione and
increase in circulating level of hexanoyl-lysine suggesting a
possible link between periodontitis-generated oxidants and liver
damage (Tomofuji et al., 2008). In humans, limited literature has
related periodontitis and liver diseases (Furuta et al., 2010; Han
et al., 2016).

Pancreatic Disease
A recently published meta-analysis associated periodontitis with
pancreatic cancer. The study estimated the relative risk for
periodontitis and pancreatic cancer to be 1.74 (95%Cl, 1.41–2.15)
based on findings from three continents (Maisonneuve et al.,
2017). Despite a large number of studies associating periodontitis
and pancreatic, however, the underlying mechanism of the
disease is poorly understood.

Gastric Disorders
H. pylori (bacteria implicated in gastritis and peptic ulcers)
has been shown to be harbored by periodontal pockets
in periodontitis patients (Soory, 2010). In parallel to this
finding, periodontitis patients showed presence of H. pylori in
subgingival biofilm (Riggio and Lennon, 1999; Gebara et al.,
2004). Gastric carcinoma has been correlated with H. pylori
infection-mediated ROS production, DNA damage along other
endogenous and exogenous factors (Farinati et al., 2008). In
a study investigating the effects of outer membrane vesicles
of H. pylori in human gastric epithelial cells, oxidative stress-
associated genomic damage with glutathione was noticed
(Chitcholtan et al., 2008). In a separate study, H. pylori elicited
mitochondrial damage in gastric epithelial cells, causing oxidative
burst and mitochondrial-ROS mediated apoptosis (Calvino-
Fernandez et al., 2008).

Alzheimer’s Disease
Studies have suggested significant association between
periodontitis and Alzheimer’s disease, which may be mediated
through effects on systemic inflammation (Ide et al., 2016; Leira
et al., 2017). The risk of developing dementia were higher for
periodontitis patients aged 65 and older, compared to healthy
individuals (Shin et al., 2016; Lee et al., 2017). Alzheimer’s
patients showed high serum IL-6 levels while periodontitis
patients had high serum TNF-α levels (Cestari et al., 2016).
The association between these cytokine levels in periodontitis
and Alzheimer’s patients suggests their implication in the
overlapping mechanisms between periodontitis and Alzheimer’s
disease (Cestari et al., 2016). In addition, patients with severe
periodontitis had higher blood Aβ1−42 levels and higher Aβ42/40
ratio (Gil-Montoya et al., 2017).

SUMMARY AND PERSPECTIVE

Oxidative stress causes damage to various organs in the human
body. Proper understanding of oxidative stress and its pathways,
free radicals and inflammatory markers related to oral diseases
are important for effective treatment. Future drug targets may
be planned according to the different pathways involved in
inflammation and oxidative process.
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