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Parkinson’s disease (PD) occurs in approximately 1% of the population over 65 years of age and has become increasingly more
common with advances in age. The number of individuals older than 60 years has been increasing in modern societies, as well
as life expectancy in developing countries; therefore, PD may pose an impact on the economic, social, and health structures of
these countries. Oxidative stress is highlighted as an important factor in the genesis of PD, involving several enzymes and
signaling molecules in the underlying mechanisms of the disease. This review presents updated data on the involvement of

oxidative stress in the disease, as well as the use of antioxidant supplements in its therapy.

1. Introduction

Parkinson’s disease (PD) is considered cosmopolitan and
makes no distinction between social classes or between races,
affecting both men and women, especially in the age range
between 55 and 65 years, but it tends to occur with greater
frequency in men [1, 2].

It is estimated that this disorder affects approximately 1%
of the world population older than 65 years, representing up
to 2/3 of all patients with movement disorders throughout
the world [3]. PD has become increasingly more common
with advances in age, reaching proportions of 2.6% of the
population over 85 years old.

According to Silberman et al. [4], the number of individuals
older than 60 years has been increasing, as has life expectancy
in developing countries. Thus, along with health issues associ-
ated with an aging population, PD also imposes a significant
impact on the economic, social, and health structures of these

countries [5]. Therefore, a greater knowledge about the disease
and an improvement of the planning of public health to mini-
mize its impact in the future are necessary. Moreover, it is esti-
mated that by 2020, approximately 40 million people
worldwide will develop motor disorders secondary to PD [2, 6].

2. The Involvement of Oxidative Stress in PD

Oxidative stress is the result of many metabolic processes
essential to the body. On the other hand, it can exert a toxic
and deleterious role in the body [7-8].

Oxidative changes are highlighted as an important factor
in the genesis of Parkinson’s disease (Figure 1), with the
activation of glial cells being the main source of oxidative
stress [9]. Some key enzymes are involved in the genesis of oxi-
dative species derived from oxygen and nitrogen, namely,
reduced nicotinamide adenine dinucleotide phosphate oxidase
(NADPH), inducible nitric oxide synthase (iNOS), and
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FiGURE 1: Sources of oxidative stress in Parkinson’s disease.

astrocytic myeloperoxidase (MPO) [10-16], as well as inflam-
matory factors, such as tumor necrosis factor alpha (TNF-«)
[17] and cyclooxygenase-2 (COX-2) [9].

During the pathogenesis of PD, the production of
oxygen-reactive species damages the substantia nigra
through lipid peroxidation, protein oxidation, and DNA oxi-
dation. This phenomenon seems to be induced mainly by
changes in iron content of the brain, mitochondrial dysfunc-
tion, monoamine oxidase (MAO) activation, or even by
changes in the antioxidant defense system [18-23].

Additional redox pathways involved in PD are androgen
receptor-induced neurodegeneration [24], production of
oxidatively modified forms of a-synuclein and increased a-
synuclein aggregation [25, 26], degradation of antioxidant
enzyme quinone oxidoreductase 1 (NQO1) [27], reduction
of the deglycase activity of protein DJ-1 [28], activation of
gene LRRK2 [29], and tetrahydrobiopterin (BH4) and
tyrosine hydroxylase (TH) metabolism impairment [30].

Other evidence of oxidative stress involvement in PD was
given by Colamartino et al. [31], who demonstrated that L-
dihydroxyphenylalanine (L-DOPA) therapy decreases markers
of lipid and protein peroxidation and increases total levels of
reduced glutathione (GSH). In addition, L-DOPA and carbi-
dopa can reduce damage to DNA and micronuclei induced
by hydrogen peroxide (H,0,) in vitro.

Indeed, increased levels of oxidative stress markers are
already found in blood from PD patients [32-34] and animal
models of the disease [35].

In this sense, Farias et al. [36], investigating the peripheral
biomarkers of reactive oxygen species (ROS) and reactive
nitrogen species (RNS) in PD patients, found increased lipid
hydroperoxides (LOOH), malondialdehyde (MDA) levels,
and superoxide dismutase (SOD) activity, alongside decreased
catalase (CAT) activity. Furthermore, these authors suggest
that MDA may be a PD biomarker, while LOOH and SOD
would be associated with late PD features.

To study oxidative changes in this neurodegenerative dis-
ease, an experimental mouse model of the disease is often used,

in which damage to the dopaminergic neurons of the substan-
tia nigra pars compacta is induced by the administration of 1-
methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which
promotes activation of microglial cells [9]. The peripheral
administration of this neurotoxin promotes important gliosis,
accompanied by increased activation of iNOS in the substantia
nigra, as well as of NADPH oxidase and MPO.

Furthermore, protein oxidation has already been identi-
fied as a marker of oxidative damage in postmortem brain
tissue from PD patients [37].

Abraham et al. [38] evaluated the possibility of oxidative
damage to red blood cells of PD patients by evaluating the
activity of antioxidant enzymes, verifying that the activities
of SOD, CAT, glutathione peroxidase (GSH-Px), and
glucose-6-phosphate dehydrogenase (G6PD) were signifi-
cantly lower in PD patients. Consequently, these authors sug-
gested the involvement of oxidative stress as a risk factor for
the disease and pointed out its importance in the underlying
mechanisms of neurodegeneration in PD.

Venkateshappa et al. [39] evaluated the redox state of the
substantia nigra and caudate nucleus during physiological
aging in the human brain by assessing the expression of glial
fibrillary acidic protein (GFAP) and activity of mitochondrial
complex 1. The authors observed a significant increase in
protein oxidation, loss of mitochondrial complex 1 activity,
and increase in astrocytic proliferation in the substantia nigra
compared to the caudate nucleus as age increased. These
changes in the substantia nigra were attributed to a signifi-
cant decrease in the antioxidant function represented by
SOD, GSH-Px, and GSH, and a decreasing trend of GSH
and CAT with age. However, these parameters showed no
significant differences in the caudate nucleus. These results
led the authors to suggest that the substantia nigra suffers
extensive oxidative damage, loss of antioxidants and mito-
chondrial function, and increased expression of GFAP dur-
ing physiological aging, changes that could make it more
vulnerable to neurotoxic environments, thereby contributing
to selective degeneration during the evolution of PD.
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FI1GURE 2: Mechanisms of free radical involvement in Parkinson’s disease.

The oxidative imbalance involved in PD neurodegenera-
tive processes seems to be a multifactorial phenomenon trig-
gered by factors such as the aging of the brain, genetic
predisposition, mitochondrial dysfunction, production of
free radicals, and environmental toxins [15, 35, 40-41].
Nevertheless, some mechanisms are of key importance for
the development of PD (Figure 2).

2.1. Iron and Iron-Dependent Free Radical Production. Iron
also plays an important role in the oxidative changes of Par-
kinson’s disease, as it is present in various regions of the
brain, noteworthy in dopaminergic neurons of the substantia
nigra [42-44]. Iron accumulation associated with neurome-
lanine can represent one of the causes of increased free
radicals in the substantia nigra and consequently lead to
oxidative stress and neurodegeneration [42, 45].

Being rich in this metal, dopaminergic neurons are very
susceptible to Fenton’s or Haber-Weiss™ reactions, which
convert H,O, to hydroxyl radicals, powerful oxidizing
agents. Therefore, the presence of large quantities of ferrous
ions (Fe®") in the substantia nigra promotes high oxidative
stress, DNA damage, and cell death by autophagy [46]. Addi-
tionally, under the action of SOD, free radical superoxide
(0,”) undergoes dismutation to H,0,, which, in the
presence of high concentrations of iron, produces hydroxyl
radicals (OH®) through Fenton’s reaction.

In this context, Hochstrasser et al. [47] and Olivieri et al.
[48] studied the role of ceruloplasmin in this disease, an
extracellular ferroxidase that oxidizes iron from its toxic fer-
rous form to the nontoxic ferric form. Analyzing the cerebro-
spinal fluid of patients with PD, Olivieri et al. found higher
levels of ceruloplasmin oxidation in these patients than in

controls or in subjects with other neurodegenerative diseases.
Similarly, ceruloplasmin-deficient mice showed accumula-
tion of iron in the central nervous system and increased lipid
peroxidation [49], and ceruloplasmin deficiency due to cop-
per dyshomeostasis is reported in PD patients [50]. Treat-
ment with another iron chelator, lactoferrin, also offered
protection against oxidative stress in MPTP-induced PD
mice [51].

Moreover, iron can lead to the formation of Lewy bodies
through the aggregation of a-synuclein [52-57]. Alpha-
synuclein is an abundant protein in presynaptic terminals
and is responsible for the formation of Lewy bodies—mainly
by its iron-dependent binding to cytochrome ¢ and mito-
chondrial damage—via regulation of mitochondrial complex
1, increasing susceptibility of the substantia nigra to free rad-
icals in PD [58-63]. Bayir et al. [61] and Rostovtseva et al.
[64] investigated the biochemical mechanism of action of
a-synuclein and showed that this protein can bind to anionic
lipids (such as cardiolipin), exerting peroxidase function
while protecting nigral neurons against damage by H,O,
and consequently preventing apoptosis. Shahnawaz et al.
[65] suggest that detection of a-synuclein by protein misfold-
ing cyclic amplification in cerebrospinal fluid may provide an
efficient biochemical test for the diagnosis of PD.

Reinforcing the importance of iron in the underlying
neuropathogenic changes of PD, the use of iron chelators in
models of nigral neurodegeneration induced by proteasome
inhibitors showed a decreased loss of dopaminergic neurons
as well as a decreased a-synuclein aggregation and a
consequential reduced formation of Lewy bodies [54, 66].

In addition, the toxic effects of oxidative stress seem to be
boosted by environment-present substances, such as herbicide



paraquat (1,1'-dimethyl-4,4'-bipiridina  dichloride), fre-
quently used in agriculture, which operates in synergism with
iron when absorbed by the organism. As a consequence of
paraquat poisoning, the increase in free radical production in
several areas of the body, including the substantia nigra, peters
out the antioxidant capacity of SOD and CAT, and promotes
cell death [20, 67].

2.2. Mitochondrial Dysfunction. Mitochondrial dysfunction
is commonly associated with neurodegenerative diseases. In
PD, genetic mutations associated with the mitochondria
and the action of toxic agents, such as rotenone and MPTP,
lead to failures in the electron transport chain and the conse-
quent increase in oxidative stress, accumulation of intracellu-
lar Ca®', glutamate excitotoxicity, and decrease in energy
production, culminating in neuronal damage and death
[68-69].

Deficiency of complex 1 (NADH-ubiquinone oxidore-
ductase), a macrocomplex in the electron transport chain
encoded by mitochondrial DNA, seems to be one of the
causes of oxidative stress increase and bioenergetic deficiency
in PD [70-72]. However, the mechanisms by which it occurs
in PD are not fully elucidated. Nevertheless, it is known that
the oxidation of cysteine residues by iron culminates in
mitochondrial dysfunction in experimental models of the
disease [73].

Studies that verify the toxic effects of rotenone on com-
plex 1 demonstrate that its partial inhibition is related to
increased levels of superoxide radicals. In addition, oxidative
stress potentiates the deregulation of intracellular Ca®*
induced by the accumulation of glutamate, leading to cell
death by necrosis. Moreover, the accumulation of intracellu-
lar glutamate increases the demand for ATP, diminishing
mitochondrial respiratory capacity and causing a failure in
the electron transport chain [68, 74-75].

Alternatively, the decrease in the activity of complex 1
may be related to mechanisms of intracellular self-oxidation
due to mitochondrial abnormalities or failures in complex 1
assembly [60, 76].

Indeed, the association between mitochondrial dysfunc-
tion and oxidative stress seems perfectly relevant in PD, since
mitochondrial heat-shock proteins, such as mortalin, mito-
chondrial heat-shock protein 70 (mtHsp70), and glucose-
regulated protein 75 (GRP75), were found to be significantly
increased in patients with the disease [77-79].

2.3. Oxidative Stress-Mediated Gene Expression. Some
authors attribute the regulation of PD genes to oxidative
stress. Among them, the DJ-1 gene appears to be a prepon-
derant factor for the development of PD. When active, the
gene decreases the expression of oxidative stress markers
and prevents neurological damage. The opposite occurs
when this gene is inactivated or mutated: markers of stress
increase, as well as the predisposition to disease [80-88].
Such a mechanism seems to be related to residues of cysteine
inherent to the DJ-1 gene [89]. In addition, this gene induces
the synthesis of glutathione and inhibits the toxicity of a-
synuclein [28, 90].
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Steckley et al. [91], Qi et al. [92], and Feng et al. [93]
attributed the regulation of oxidative stress and, conse-
quently, neuronal apoptosis to the gene PUMA, one of the
genes of the Bcl-2 family. This gene is responsible for the
permeability of the mitochondrial membrane.

Activation of the LRRK2 gene may also be responsible for
increased oxidative stress and neuronal loss in PD [29].

As suggested by Chen et al. [94] and Haskew-Layton et al.
[95], the negative regulation of genes related to antioxidant
defenses via stimulation of nuclear factor erythroid 2 (NF-
E2) is positively correlated with the destruction of astrocytes.
The same happens with PTEN-induced putative kinase 1
(PINK1), a gene that inhibits mitochondrial dysfunction
and is positively related to neuroprotection [96].

According to Cook et al. [97], mutations in the parkin
gene and the abnormal accumulation of a-synuclein proteins
in certain dopaminergic neurons are closely related to PD
and oxidative stress. In this sense, Basso et al. [98], by inhibit-
ing transglutaminase, observed a reduction in markers of oxi-
dative stress and a decrease in neuronal death, features of PD.

2.4. Role of Nitric Oxide (NO). Some studies suggest that NO
plays an important role as a mediator of the neurotoxicity
associated with mitochondrial damage in several neurologi-
cal disorders, such as PD [99]. Under pathological condi-
tions, the expression of iNOS and NADPH oxidase activity
occurs in microglia, leading to high production of NO and
0O,"". These two free radicals react to produce peroxynitrite
radicals (ONOQ), a highly reactive molecule that can cause
damage to dopaminergic neurons.

Evidencing the importance of NO synthesis and its
byproducts in the physiopathology of PD, nitration of tyro-
sine residues is a known marker of oxidative stress in patients
with Parkinson’s disease and is induced by ONOO™ [100-
101]. In this context, Sue et al. [102] studied the effects of
ethyl pyruvate (EP), a known scavenger of reactive oxygen
species, in mice treated with MPTP, demonstrating that EP
mitigates iNOS expression in the substantia nigra, reducing
oxidative damage.

Similarly, Yeung et al. [103] demonstrated that aldose
reductase deficiency, a tyrosine hydroxylase cofactor
involved in dopamine synthesis, can induce oxidative stress
by increasing NO and nitrite (NO,’), causing the loss of
dopaminergic neurons and autophagic abnormalities in
animals with PD.

Notwithstanding, iNOS knockout mice are more resis-
tant to the neurodegenerative effects of MPTP than wild-
type mice [10]. The same effect is observed in animals treated
with specific inhibitors of neuronal nitric oxide synthase
(nNOS), such as 7-nitroindazole [14].

Conversely, Rathnayake et al. [17] identified that low
serum NO metabolites (nitrites and nitrates (NOx)) are asso-
ciated with cognitive impairment in PD patients, proposing
NOx as a marker of early-stage PD.

Indeed, the dopaminergic neurotoxin MPTP is associated
with the induction of iNOS in the substantia nigra, leading to
the formation of ONOO™ [52, 104], and the administration of
MPTP in rats induces considerable gliosis in the substantia
nigra, as well as a significant positive regulation over iNOS
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[105]. Moreover, in iNOS gene-deficient rats, the neurode-
generative effects of MPTP administration were less promi-
nent, suggesting the inhibition of iNOS as a potential target
for drugs in the treatment of PD [105]. Additionally, the
use of nitric oxide synthase (NOS) inhibitors prevents dyski-
nesia in Parkinson’s disease, at least in part via inhibition of
glial cell activation and iNOS expression, showing the role
of NO in the pathogenesis of PD [106]. Moreover, astrocytes
express high levels of MPO, which produce hypochlorous
acid (HOCI) from the reaction of H,0, and chloride ions
(CI'), causing additional oxidative damage. The presence of
HOCI can increase the amount of OH", as HOCI can also
react with O,”". Myeloperoxidase also catalyzes the conver-
sion of nitrite from its nonreactive form (NO,’) to its free
radical form (NO,"), enhancing protein damage [9].

This was also evidenced in the experimental model of
neurodegeneration proposed by Ebadi and Sharma [107], in
which the activation of iNOS, the synthesis of NO, and the
generation of peroxynitrite were associated with nigrostriatal
dopaminergic neurodegeneration and that animals that over-
expressed the genes metallothioneins 1 and 2 showed greater
protection against damage caused by oxidative stress due to
iNOS activation.

2.5. Role of MAO, MPO, and NADPH Oxidase. In addition to
the free radical-generating processes already mentioned, the
reactions catalyzed by MAO are also potential free radical
generators and are related to the decrease in intrinsic antiox-
idant defenses [108-109].

At the intracellular level, dopamine is degraded both by
MAO and by autooxidation [110-111]. The metabolism of
dopamine leads to the formation of dihydroxyphenylacetic
acid (DOPAC) and H,0, [112]. The autooxidation of intra-
cellular dopamine produces H,O, and dopamine-quinone,
which participate in nucleophilic reactions associated with
sulthydryl groups, leading to further reduction of GSH-Px
activity [113].

Dopamine-quinone is also capable of inhibiting the func-
tion of the dopamine transporter within synaptosomes by
inhibiting the enzyme tyrosine hydroxylase, resulting in
incomplete ATP synthesis [114-116]. The ratio between
GSH and oxidized glutathione (GSSG) is decreased during
synaptosome degeneration, thus propitiating the formation
of even more free radicals [117-118]. Furthermore, the
decrease in the GSH/GSSG ratio can impair free radical scav-
enging by GSH, as a reflection of constant oxidation of the
GSH molecule and consequent depletion of cellular GSH
[119]. In studies with cells in culture, GSH depletion has been
related to the toxicity of dopamine and H,0, [120].

In addition to dopamine metabolism, MAO can metabo-
lize MPTP by the action of MAO-B. MPTP is oxidized to
dihydropyridine (MPDP") and converted to N-methyl-4-
phenylpyridine (MPP") by autooxidation, binding to dopa-
mine transporter proteins. Subsequently, it is retaken by
dopaminergic nigral neurons [121]. Once in the cytosol,
MPP" promotes the inhibition of complex 1, as well as the
production of free radicals (through the activation of
NADPH oxidase, microglial iNOS, and astroglial myeloper-
oxidase) and the production of proinflammatory cytokines,

such as TNF-« and interleukin-18 (IL-1f3). These phenom-
ena contribute to the death of dopaminergic neurons in
experimental models of PD [12-13, 122].

Likewise, MPO is an important component of the PD
puzzle. In postmortem mesencephalic analysis of PD patients,
Choi et al. [13] observed significantly higher levels of MPO
than in controls. In the same study, using the MPTP model
of PD, they found high levels of 3-chlorotyrosine, a marker
of MPO protein damage. These authors also demonstrated
that MPO-deficient mice are resistant to MPTP neurotoxic-
ity. In parallel, Maki et al. [16] also demonstrated that
MPO plays an important role in oxidative damage to a-synu-
clein. Moreover, the prooxidant effect of MPTP in animal
models of PD was minimized using paroxetine (an antide-
pressant drug), which promoted the reduction of astroglial
MPO expression, production of ROS through NADPH oxi-
dase, and the expression of proinflammatory cytokines,
decreasing the loss of dopaminergic neurons and improving
motor functions. These effects suggest the role of oxidative
stress in the pathogenesis of PD, and therefore, the use of
drugs designed to decrease the neurodegenerative effects
caused by free radicals displays great potential for the
treatment of the disease [123].

Furthermore, the role of NADPH oxidase in oxidative
damage in PD was demonstrated through the treatment of
PD-induced mice with a nonselective agonist of cannabinoid
receptor. This treatment promoted suppression of O, pro-
duction by NADPH oxidase in the microglia, and oxidative
damage to nucleic acid and protein levels were reduced
[124]. The damage to nucleic acid was evaluated by the dos-
age of 8-hydroxy-2-deoxyguanosine (8-OHdG), a marker of
oxidative damage to the DNA. Likewise, 8-OHdG was
elevated in the cerebrospinal fluid of patients with PD in
comparison to control subjects [32].

3. Antioxidant Approaches to PD

Considering all factors related to oxidative stress overstimu-
lation in the underlying mechanisms of PD, numerous stud-
ies have suggested the potential beneficial effects of
antioxidant supplementation in PD treatment, and several
approaches have been attempted so far, from traditional anti-
oxidant schemes, such as vitamin E, C, and $-carotene sup-
plementation, to more innovative and bold approaches,
such as the use of nanoparticles to deliver antioxidant mole-
cules, among several others.

Indeed, several studies show that brains from PD patients
present low levels of endogenous antioxidants, such as gluta-
thione and coenzyme Q,, (CoQ;,) [125], increased oxidation
of dopamine [115], and high levels of iron [126], suggesting
that oxidative stress plays a crucial role in the pathology of
PD. Considering the greater iron content of some areas of
the brain [127], low levels of GSH are expected [128], as well
as increased lipid peroxidation [129] and oxidation of nucleic
acids [130].

In addition, Campolo et al. [131] suggest that the reduc-
tion of the total antioxidant capacity observed in the PD
prodromal, and when associated with olfactory loss and



cardiovascular dysautonomia, may represent a useful
biomarker for an early and integrative PD diagnosis.

In this sense, antioxidants can provide a significant
advance in the therapeutic treatment of PD, as it is believed
that Parkinson’s neurodegeneration is linked to dietary
habits and that nutritional deficiency of antioxidant com-
pounds, such as folic acid [132], vitamins (A, C, E, and nia-
cin), and selenium, increases the risk of subjects developing
PD [133-134]. Thus, the therapeutic approach for the treat-
ment of PD must include the modulation of oxidative stress
using antioxidants, which, at least partially, may be provided
by an adequate diet.

Several antioxidant molecules have been used both in
experimental and clinical studies of PD and will be catego-
rized and presented henceforth by its source or chemical class
when appropriate.

3.1. Endogenous Molecules

3.1.1. Melatonin. A natural antioxidant capable of reducing
cellular oxidative stress, melatonin protects mitochondrial
functions in vitro. Low levels of melatonin were found in
PD patients [135]. Zampol and Barros [136] prompted a
study indicating that melatonin administration to cultured
cells reversed a-synuclein damage to mitochondria. Addi-
tionally, Patki and Lau [137] investigated whether melatonin
could reverse neurobehavioral deficits and mitochondrial
disorders in an experimental model of PD, suggesting that,
in the long term, melatonin protects not only mitochondria
but also neurons in an animal model of chronic PD. Due to
this factor, melatonin can potentially be effective in slowing
the progression of idiopathic Parkinson’s disease and reduc-
ing oxidative stress and respiratory chain inhibition in other
mitochondrial diseases. In a similar study, Paul et al. [138]
identified that the administration of melatonin protects
against behavioral deficits and loss of nigral dopamine and
reduces oxidative stress by eliminating OH® radicals and
boosting the activity of antioxidant enzymes in an animal
model of PD. Similar results were observed by Li et al.
[139] and Rasheed et al. [140]. Curiously, despite promoting
the reversion of several rotenone- [141] and 6-OHDA-
induced damage in rats [142], melatonin supplementation
to animals was unable to improve locomotor activity. In
addition, administration of melatonin to humans promoted
reduction of COX-2 activity, nitrites and nitrates, and lipid
peroxides that correlated with clinical improvement of PD
patients [143]. Nevertheless, the association of melatonin
with L-DOPA significantly decreased the side effects of L-
DOPA therapy in mice [144]. A particular aspect of melato-
nin administration in PD lies on its effect on the occurrence
of sleep disorders, a common finding in PD patients. In this
regard, melatonin treatment promoted sleep improvement
in animal studies [145-146], while its effect on clinical trials
is controversial [147-149]. Notwithstanding, one meta-
analysis study suggests melatonin therapy as highly indicated
for the treatment of sleep disorders in PD patients [150].

3.1.2. Coenzyme Q. Another important antioxidant system is
represented by CoQ,,, a mitochondrial electron carrier that

Oxidative Medicine and Cellular Longevity

also acts in the prevention of oxidative damage [151-152].
It also acts as a cofactor and activator of proteins of mito-
chondrial coupling [153]. However, the mechanisms by
which CoQ,, protects dopaminergic neurons against degen-
eration are still not well understood, although it is known
that the reduction of CoQ,, levels in PD patients induces
changes in ATP synthesis and damage to the mitochondrial
membrane [125]. In this sense, oral administration of
CoQ,, in animal models and in patients with PD caused a
continuous decrease in mitochondrial dysfunction [154-
155], loss of dopamine and dopaminergic axons [156], pro-
tection of dopaminergic neurons against excitotoxin-
induced neurodegeneration in PD [157-158], and partial
improvement of motor performance [159]. However, a clin-
ical trial conducted with 600 patients showed no evidence
of benefit for CoQ,, supplementation [160], a result
supported by a recent meta-analysis [161].

3.1.3. Urate. High levels of urate have been associated with a
lower risk for PD [162], and changes in urate levels can pre-
dict the development of PD in animal models of the disease
[163]. Coolen et al. [164], in a study with daily oral supple-
mentation of 5000mg of ATP in humans, identified that
there was an increase in uric acid. In parallel, Andreadou
et al. [165] detected the presence of reduced serum levels of
this antioxidant molecule in patients with PD and suggested
the potential use of this molecule in the therapy of the dis-
ease. Indeed, feeding a 1% uric acid diet to rats reversed PD
symptoms [166], effects that may be related to NF-E2-
related factor 2 (Nrf2) bound to the antioxidant response ele-
ment (Nrf2-ARE) pathway [167]. Moreover, administration
of inosine, a urate precursor, was safe and promoted
improvement of PD symptoms in humans [168].

3.1.4. B-Nicotinamide Adenine Dinucleotide (NAD). NAD is
known to decrease in PD [169]. To investigate whether
NAD replenishment is beneficial in a 6-OHDA-induced
mouse model of PD, Shan et al. [170] injected NAD in the
striatum, resulting in less motor deficits and dopaminergic
neuronal damage to the animals.

3.1.5. Kynurenic Acid (KA). KA and quinolinic acid (QA) are
metabolites of tryptophan degradation and have important
neurological activities. KA/QA ratio changes are associated
with neurological disorders, such as PD. KA administration
prevented QA-induced brain damage in an ex vivo rat model
of PD, preventing changes in Nrf2 levels, oxidative damage,
and mitochondrial dysfunction [171].

3.1.6. L-Carnitine. Reactive gliosis and neuroinflammation
are features of PD and might result from fatty acid oxidation.
In this sense, L-carnitine inhibited lipopolysaccharide-
induced oxidative stress in microglial cells, reversing the
effects of detrimental neuroinflammation in vitro [172].

3.1.7. Glutamine. Glutamine has a positive role in reducing
oxidative stress damage and suppressing MPTP-induced
cytotoxicity in cultured PC12 cells. Moreover, glutamine
restores SOD, GSH-Px, and lipid peroxidation markers to
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basal levels in those cells, probably through inhibition of the
PI3K/Akt signaling pathway [173].

3.1.8. n-3 Polyunsaturated Fatty Acids. Omega-3-polyunsat-
urated fatty acids (n-3 PUFA) have been widely associated
with beneficial effects over different neurodegenerative dis-
eases, such as PD. Hernando et al. [174] tested the effects of
docosahexanoic acid (DHA) and its hydroxylated derivative,
DHAH, in a 6-OHDA-induced animal model of PD,
showing a positive effect on Nrf2 pathway regulation in the
treated group due to the potential antioxidant effect of these
compounds.

3.1.9. Sulfur-Containing Antioxidants. Among the endoge-
nous antioxidant molecules, some can easily promote a
reducing environment within the cytoplasm, due to the par-
ticular aspects of the interaction between the intracellular
environment and sulfur-hydrogen bonds that are present in
these molecules. This provide these molecules with special
antioxidant properties; thus, they are discussed as a separate
group, alongside with N-acetylcysteine, an exogenous
molecule, yet an important precursor of endogenous GSH
synthesis.

(1) Lipoic Acid (LA). Lipoic acid is another potent antioxi-
dant that promotes the removal of free radicals and increases
antioxidant defenses, boosting the levels of GSH, a-tocoph-
erol, and ascorbic acid. LA can promote the reduction and
prevention of oxidative stress, either in its oxidized form
(LA) or in its reduced form, dihydrolipoic acid (DHLA).
Due to this ability to prevent neuronal damage caused by
ROS in the nervous system, LA supplementation has been
suggested for the therapy of neurodegenerative diseases,
including PD [175-177]. Bilska et al. [178] demonstrated
that LA administration enhances the antioxidant defense sys-
tem, slows the progression of neuronal degeneration, and
improves the regeneration of injured tissues. This may be
due to the increase in both GSH levels and activity of GSH-
Px and glutathione-S-transferase (GST). Likewise, Zhou
et al. [179] demonstrated that administration of alpha lipoa-
mide, a neutral amide derivative of alpha-lipoic acid, restored
the number of dopaminergic neurons in the midbrain and
recovered mitochondrial function in an animal model of
PD. Zhou and Cheng [180], in a 6-hydroxydopamine- (6-
OHDA-) induced model of PD, demonstrated that LA allevi-
ated 6-OHDA-induced cell injury, possibly by inhibiting
autophagy mediated by the AMPK/mTOR pathway. These
neuroprotective effects of lipoic acid were also observed for
a combination of carnosine-alpha-lipoic acid in a model of
early-stage PD [181]. Moreover, Zhang et al. [182] demon-
strated that LA alleviates L-DOPA-induced dyskinesia in
rats, and similar results were presented by Abdin and Sarhan
[183], who found normalization of catalepsy score and
apparent preservation of striatal integrity in rotenone-
induced PD in rats.

(2) Reduced Glutathione. Among the endogenous antioxi-
dant systems, the main antioxidant system seems to be the
redox system of GSH, which protects cells against oxidative

stress through three different pathways: direct scavenging of
reactive oxygen species, transition metal chelation, and anti-
oxidant cofactors (GSH is required for GSH-Px activity). The
essential elements of these systems are GSH-Px, which
reduces hydrogen peroxide or lipid peroxide, and GST,
which combines electrons to GSH and some ATPase and,
therefore, may reduce GSSG or GSH conjugates [184-185].
According to Yamamoto et al. [186], the inhibition of protea-
somes induces GSH synthesis to protect nerve cells from oxi-
dative damage. On the other hand, the decrease in
glutathione levels results in oxidative stress and mitochon-
drial dysfunction, regarded as triggering factors in PD neuro-
degeneration [187]. It is also believed that a reduced
GSH/GSSG ratio can increase ROS and RNS production
[118] through the opening of GSH redox state-dependent
transition pores of mitochondrial permeability [188]. Fur-
thermore, high levels of ROS and RNS may also impair the
operation of complex 1 by oxidation of significant residues
within the complex and consequent reduction of glutathione
reductase (GR) activity, an enzyme responsible for the reduc-
tion of GSSG [189-190]. Despite the inability of GSH to cross
the blood-brain barrier [191], Sechi et al. [192] administered
GSH intravenously to untreated PD patients and found sig-
nificant improvement for all subjects. Alternatively, glutathi-
one analogs were also employed. Yamamoto et al. [193]
tested YM737—a GSH analog—in a rat model of PD, with
better results than GSH itself. Wassef et al. [194], who per-
formed studies in transgenic Drosophila melanogaster flies
overexpressing a-synuclein and methionine sulfoxide reduc-
tase (MSRA), observed that dietary supplementation with S-
methyl-L-cysteine was able to prevent or alleviate the symp-
toms of PD since it participates in the antioxidant mecha-
nism of MSRA, inducing an increase in enzyme activity.
Another study demonstrated that supplementation with
water containing the GSH precursor N-acetyl-L-cysteine
(NAC) in mice that express human a-synuclein promotes a
decrease in a-synuclein in the brain and protects, at least par-
tially, the decrease in dopamine concentrations, characteris-
tics that were associated with the reduction in nuclear
factor kappa B (NF-«B) [195].

(3) Hydrogen Sulfide. Hydrogen sulfide is a gaseous neuro-
transmitter with neuroprotective effects. Sarukhani et al.
[196] investigated its activity in an acute 6-OHDA animal
model of PA and concluded that hydrogen sulfide produces
a significant antiparkinsonism effect, protecting against 6-
OHDA neurotoxicity, as it reduces malondialdehyde
overproduction.

(4) N-Acetylcysteine. Known as an antioxidant and a GSH
synthesis precursor for a long time, NAC was studied in
two independent studies with similar results. Virel et al.
[197], working with human mesenchymal cells, and
Bonilla-Porras et al. [198], working with mice, demonstrated
that 6-OHDA treatment caused GSH depletion that was not
reversed by NAC cotreatment, despite the fact that this treat-
ment improved antioxidant levels in both studies. According
to the authors, this highlights the importance of GSH on
brain metabolism. Moreover, Coles et al. [199] treated PD



patients with repeated oral doses of NAC, but no changes in
oxidative stress markers were observed, despite increased
levels of antioxidant markers of PD patients in comparison
with healthy controls.

3.2. Vitamins. The beneficial effects of antioxidant vitamins
in PD were evaluated in a series of studies that assessed die-
tary vitamin intake using structured questionnaires. Indeed,
Miyake et al. [200] evaluated the relation between the intake
of antioxidant vitamins present in vegetables and fruit and
the risk of patients developing PD in Japan, observing that
a greater consumption of vitamin E and f3-carotene is associ-
ated with a reduction in the risk of PD in this population.
Moreover, Rijk et al. [201], studying 5342 individuals from
the Rotterdam Study, suggested that high dietary intake of
vitamin E may protect against the occurrence of PD. Similar
results were found by Zhang et al. [202], Etminan et al. [203],
and Schirinzi et al. [204]. Nevertheless, other authors failed to
prove the beneficial effects of dietary antioxidant vitamin
intake [133, 205-208], suggesting that the vitamin amount
provided by the diet is insufficient [209]. Indeed, a recent
cohort study conducted by Hughes et al. [210] investigated
the intake of vitamins C and E and carotenoids on the risk
of PD development and concluded that there are still no
results that support the hypothesis that ingestion, alone or a
combination of these antioxidant substances, decreases the
risk of developing PD. Notwithstanding, in an experimental
study, vitamin A and S-carotene dose-dependently destabi-
lized preformed a-synuclein filaments [211], and the treat-
ment of PD patients with a-tocopherol and ascorbic acid
delays disease progression [212]. Moreover, research using
6-aminolevulinic acid in an experimental model of PD dem-
onstrated the neuroprotective action of vitamin E through
behavioral and histochemical evidence [213]. Zhu [132] sug-
gests that in addition to vitamin C, other antioxidants are
important in the diet for the reduction of the risk of PD, such
as vitamins B6 and B12, S-adenosyl-L-methionine (SAME),
and folic acid, based on the regulation of catechol-O-
methyltransferase (COMT), an enzyme that acts in catechol-
amine degradation.

3.3. Phenols and Polyphenols

3.3.1. Tyrosol. A simple phenol present in extra virgin oil, tyr-
osol, was demonstrated to delay a-synuclein aggregation in a
Caenorhabditis elegans model of PD. Additionally, tyrosol
treatment reduced ROS levels and promoted the expression
of specific chaperones and antioxidant enzymes [214].

3.3.2. Tricetin. Extracted from Ginkgo biloba, tricetin was
demonstrated to confer neuroprotection against 6-OHDA-
induced oxidative stress in a C. elegans model of PD. More-
over, it also induced the protein expression of Nrf2 and its
transcriptional activation, resulting in the upregulated
expression of heme oxidase-1 [215].

3.3.3. Chrysin. Chrysin is a natural flavonoid found in bee
propolis, honey, and several plants and was investigated in
both the 6-OHDA [216] and the MPTP [217] models of
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PD, reversing neurochemical deficits, behavioral abnormali-
ties, and oxidative stress in those animals.

3.3.4. Acteoside. Acteoside is a flavonoid reported to have
antioxidant and neuroprotective effects. Li et al. [218] inves-
tigated its effect in a 6-OHDA zebrafish model of PD, dem-
onstrating its ability to reduce neural damage and even
prevent neural damage. In addition, pretreatment with
acteoside could upregulate antioxidant enzymes by activating
the Nrf2 signaling pathway.

3.3.5. Pinostrobin. Another flavonoid with antioxidant
effects, pinostrobin was also used in the MPTP zebrafish
model of PD with similar results as acteoside, as it signifi-
cantly enhances Nrf2 expression and upregulates heme
oxygenase-1 (HO-1) expression [219].

3.3.6. Curcumin. Like other flavonoids, curcumin is reported
to have antioxidant and neuroprotective properties. Indeed,
its use in both Drosophila melanogaster and 6-OHDA-
induced PD in rat models resulted in improved locomotive
abilities, less severe neurodegeneration, and decreased oxida-
tive stress markers [220-221]. Similar results were found
with demethoxycurcumin, a curcumin derivative [222].

3.3.7. Hesperidin. Hesperidin was reported to reduce the iron
content in the heads of D. melanogaster and to restore dopa-
mine levels and cholinergic activity, as well as to reduce Fe-
induced mortality, oxidative stress, and mitochondrial
dysfunction in this model of PD [223].

3.3.8. Naringenin. A citrus fruit flavanone, naringenin was
employed in two independent studies using the MPTP-
induced PD model in mice, leading to an overall reversion
of PD-induced features, such as a-synuclein aggregation, as
well as to lower oxidative stress levels and increased antioxi-
dant parameters [224-225].

3.3.9. Resveratrol. Resveratrol is a very promising polyphe-
nol, showing inhibition of a-synuclein aggregation in PD-
induced mice [226], increased lifespan of MPTP-treated D.
melanogaster [227], and protection for PC12 cells from rote-
none oxidative damage, an effect partially mediated through
the activation of the SIR/Aktl signaling pathway [228]. In
all three studies, oxidative stress was decreased in the
resveratrol-treated groups, whereas antioxidant status was
increased.

3.3.10. Genistein. Wu et al. [229] investigated the effects of
genistein against the rotenone-induced PD model in human
SH-SY5Y cells, which express a mutant form of a-synuclein.
The authors demonstrated that genistein was able to prevent
mitochondrial oxidative damage caused by rotenone to those
cells. Further investigation led the authors to conclude that
genistein can reduce oxidative stress damage and cell apopto-
sis, activating estrogen receptors and NF-E2L2 channels.

3.3.11. Rosmarinic Acid. Qu et al. [230] demonstrated that
rosmarinic acid protected against iron-induced a-synuclein
aggregation by upregulating HO-1 and inhibiting a-synu-
clein expression.
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3.3.12. Salidroside. Wu et al. [231] administered salidroside
to 6-OHDA-induced PD rats and demonstrated neuropro-
tection against oxidative stress, an effect probably related to
the regulation of the Wn/f-catenin signaling pathway.

3.3.13. Anacardic Acids. Anacardic acids are alkyl phenols
mainly present in cashew nuts and were used to treat
rotenone-induced PD in rats. Among several of the beneficial
effects, the authors demonstrated that the use of anacardic
acids prevented motor impairment and lipoperoxidation
induced by rotenone, in part due to a modulatory action on
mitochondria and SOD gene expression [232].

3.4. Terpenes

3.4.1. Thymol. Thymol is a dietary monoterpene and was
tested to prevent neurotoxicity and neurodegeneration in
rotenone-challenged rats. Rotenone-induced neurodegener-
ation is a well-established PD model with oxidative stress
involvement that mimics the features of PD in humans. Thy-
mol treatment significantly reduced dopaminergic neural
loss and oxidative stress, resulting in clinical improvement
to the animals and preservation of antioxidant defenses, as
well as attenuation of inflammatory mediators [233].

3.4.2. Astragaloside IV. A triterpene extracted from the roots
of Astragalus membranaceus, an herb known as Huang Qi
that has been used for more than 5000 years in China, pos-
sesses anti-inflammatory and antioxidant properties in neu-
rogenerative diseases and was employed to prevent damage
caused by MPTP in rats and lipopolysaccharide-induced
damage to BV2 microglial cells with promising results [234].

3.4.3. Carvacrol. It is a phenolic monoterpenoid that is found
primarily in the essential oil from oregano. Haddadi et al.
[235] treated 6-OHDA-induced PD in rats with carvacrol,
showing that a dose of 25 mg promoted significant memory
deficit improvement in the animals.

3.4.4. B-Amirin. This pentacyclic triterpenoid compound is
found in several medicinal plants and promotes excellent
antioxidant activity, significantly reducing ROS in a C. ele-
gans model of PD. Moreover, -amirin treatment also
exerted a protective effect on dopaminergic neurons, reduc-
ing cell damage and a-synuclein aggregation [236].

3.4.5. Asiatic Acid (AA). A triterpenoid used for the treat-
ment of depression, asiatic acid is known for its antioxidant
properties. AA was tested in three different PD models: PD
transgenic Drosophila flies, where it caused significant
improvement in climbing ability and prolonged the lifespa-
n—effects attributed to AA antioxidant properties;
rotenone-induced damage in SH-SY5Y cells, where it pro-
tected mitochondria from oxidative stress and apoptosis;
and in an isolated mitochondria model, where AA promoted
membrane integrity and ATP production against the decline
in membrane potential induced by a-synuclein. Considering
that maintaining mitochondrial integrity is essential in PD,
the authors suggested AA as an excellent candidate for PD
prevention and therapy [237].

3.4.6. Geraniol. An acyclic monoterpene found in the essen-
tial oils of several aromatic plants, geraniol was used to pre-
vent rotenone-induced mitochondrial damage in SK-N-SH
cells, ameliorating intracellular redox status, preserving
membrane potential, and reducing the expression of a-synu-
clein, features that corroborate enhanced cell viability [238].

3.5. Plant Extracts. Beyond using purified antioxidant mole-
cules, several studies have considered the use of crude plant
extracts to treat PD-like symptoms and the consequent mor-
phological and biochemical modifications induced in PD
models, mainly due to the synergistic effect of the antioxidant
molecule content of such extracts. Some of these studies are
summarized below.

3.5.1. Grape Skin. Moderate red wine consumption is consid-
ered to confer several health benefits, including protection
against neurological diseases. These health benefits are sug-
gested to come from resveratrol, a compound from grape
skin that displays anti-PD effects [226-228]. Notwithstand-
ing, Wu et al. [239] investigated the effects of grape skin
extract (GSE) left from red wine production on a Drosophila
model of PD, resulting in preservation of mitochondrial mor-
phology and improvement of indirect flight muscle function,
as well as in prolonged lifespan of the flies. Notably, the
authors suggested that these effects of GSE are not accounted
for by resveratrol alone.

3.5.2. Centella asiatica. It is a well-known medicinal plant
native to southern Asia, Australia, and some Pacific Islands
commonly used against circulatory dysfunction in Chinese
traditional medicine. Teerapattarakan et al. [240] used a C.
asiatica extract to treat rotenone-induced PD in rats and
showed significant improvement in the travelled distance of
treated rats, alongside a higher number of dopaminergic
neurons in the substantia nigra and striatum, decreased
MDA, and increased SOD and catalase expression.

3.5.3. Dendropanax morbifenus. This plant is an endemic
species of South Korea that is extensively used in traditional
medicine to treat several clinical complications. Park et al.
[241] successfully used D. morbifenus leaf extracts to prevent
behavioral deficits and dopaminergic neuron loss in the
MPTP-induced PD mouse model. Chromatographic profil-
ing of the extract identified chlorogenic acid as its major
constituent, a well-known antioxidant agent.

3.5.4. Azadirachta indica. Similar to D. morbifenus, A. indica
is a medicinal plant used for more than 2,000 years in India
and displays anti-PD properties. Curiously, it is called “aris-
htha” in Sanskrit, which means “the eliminator of pain.”
Indeed, treatment with A. indica extract to 6-OHDA-
induced PD rats promoted improved motor behavior and
reversed several biochemical modifications induced by 6-
OHDA, such as the suppression of inflammatory factors,
antioxidant enzymes, and iNOS expression [242].

3.5.5. Zizyphus spinachristi. Known as “Christ’s thorn
jujube,” Zizyphus spinachristi is an evergreen tree native to
northern and tropical Africa and Southern and Western
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Asia. Fruits and leaves from the tree have been used in
Ancient Egypt as food and medicine. Singh et al. [243] inves-
tigated the beneficial effects of Z. spinachristi fruit extract
against MPTP-induced neurotoxicity in SH-SY5Y cells, dem-
onstrating its ability to reverse cell damage and oxidative
stress, effects accounting for its potent antioxidant
properties.

3.5.6. Apium graveolens L. Apium graveolens L. is used in
Chinese traditional medicine and is routinely prescribed for
the treatment of gout, diabetes, and hypertension. Chon-
pathompikunlert et al. [244] tested the effect of the methano-
lic extract of the whole plant on the MPTP model of PD in
rats and demonstrated significant improvement in behav-
ioral performance and oxidative stress parameters, as well
as an increased number of dopaminergic neurons.

3.5.7. Ginkgo biloba. Another potent antioxidant tested was
the extract rich in flavonoids and terpenes obtained from
leaves of Ginkgo biloba, which promoted effective protection
to the neurons of animals exposed to MPTP in an experi-
mental model of PD [245-246].

3.5.8. Aspidosperma pyrifolium Mart. Aspidosperma species
are commonly used in folk medicine in Brazil, especially to
treat malaria, and there are several ongoing studies in this
regard. Among them, A. pyrifolium Mart. aqueous extract
was tested against 6-OHDA-induced PD in rats, where the
treated groups showed decreased PD features, including less
lipid peroxidation and increased levels of dopamine, suggest-
ing a potential for this extract in PD treatment [247].

3.5.9. Olea europaea L. Leaf extract from this ordinary olive
tree has shown antioxidant and neuroprotective effects,
which led Sarbishegi et al. [248] to investigate its effect
against a rotenone-induced model of PD in rats, resulting
in significant improvement of oxidative markers and block-
age of depletion of tyrosine hydroxylase-positive neurons
caused by rotenone exposure.

3.5.10. Bacopa monnieri. This plant is used in Ayurvedic
medicine for the treatment of neurological disorders and dis-
plays high levels of antioxidant molecules. Tested against the
MPTP-induced PD model in mice, the ethanolic extract of B.
monnieri treatment promoted several anti-PD effects, includ-
ing modulation of oxidative stress and nigrostriatal dopami-
nergic neuroprotection [249].

3.5.11. Hibiscus asper. The methanolic extract of the leaves of
Hibiscus asper was used in an experimental model of PD in
rats and proved to be neuroprotective, as it provided a signif-
icant increase in the activity of antioxidant enzymes (SOD,
CAT, and GSH-Px) and decreased lipid peroxidation in the
brain [250].

3.5.12. Blackberries. The ethanolic extract of blackberries was
used in both in vitro and in vivo models of PD and demon-
strated dose-dependent neuroprotective effects through anti-
apoptotic and antioxidant effects [251].
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3.5.13. Eplingiella fruticosa. Eplingiella fruticosa is a Brazilian
aromatic plant used for pain treatment in Brazilian folk med-
icine, which has demonstrated potent antioxidant and anti-
inflammatory properties. Beserra-Filho et al. [252] tested
the essential oil obtained from E. fruticosa leaves against a
reserpine-induced PD model in mice and demonstrated
important anti-PD effects, such as modulation of oxidative
stress, delayed onset of catalepsy, and protection against
dopaminergic depletion in the striatum.

3.5.14. Red Ginseng. Ginseng treatment of rotenone-induced
PD in rats promoted marked improvement of locomotor
activity, suppression of -amyloid deposition, and inhibition
of the NF-«B inflammatory pathway and oxidative stress
mediators, and significantly increased tyrosine hydroxylase
activity [253]. Moreover, Angelica sinensis extract, popularly
known as “female ginseng,” also prevented the occurrence of
PD-like symptoms in a C. elegans model of the disease [254].

3.5.15. Seaweeds. Using the 6-OHDA-induced PD model in
SH-SY5Y human neuroblastoma cells, several studies dem-
onstrated promising anti-PD effects of seaweed extracts, such
as brown seaweeds Bifurcaria bifurcata [255], Ecklonia cava
[256], and Sargassum hemiphyllum [257], as well as the red
seaweed Chondrus crispus, which was tested on the C. elegans
model of PD [258].

3.6. Other Plant-Derived Molecules

3.6.1. Diosgenin. This natural steroid saponin extracted from
the tubers of Dioscorea wild yam was used to prevent the
alterations caused in the lipopolysaccharide- (LPS-) induced
PD model in rats, resulting in a significant reduction in oxi-
dative stress markers and inactivation of the Toll-like recep-
tor (TLR)/NF-«B inflammatory pathway [259].

3.6.2. Thymoquinone. Extracted from the seeds of Nigella
sativa, a plant popularly known as black cumin, thymoqui-
none is a bicyclic benzenoid ketone. It was employed by
Ardah et al. [260] to prevent MPTP-induced PD in mice.
Treatment with thymoquinone restored antioxidant
enzymes, prevented lipid peroxidation, and attenuated the
expression of proinflammatory cytokines.

3.6.3. Sulforaphane. It is an organic isothiocyanate extracted
from many cruciferous vegetables, such as cabbages and
broccolis. Bao et al. [261] investigated its effect on MPTP-
induced damage in PC12 cells, reporting its ability to reduce
Nrf2, HO-1, and nicotinamide quinine oxidoreductase, con-
cluding that sulforaphane protected the cells via activation of
the Nrf2-antioxidant responsive element pathway.

3.6.4. Crocin. Crocin, a saffron-active component, exhibited
protective effects against malathion-induced PD in rats by
reducing oxidative stress and anti-inflammatory effects and
improving motor deficits and neurobehavioral impairments
[262].

3.6.5. Spermidine. Spermidine is an antioxidant polyamine
and was tested against rotenone-induced PD in rats,
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reversing neuroinflammation and restoring striatal neuro-
chemistry, as well as oxidative stress markers [263].

3.6.6. Gastrodin. It is the glucoside of gastrodigenin and has
been isolated from the orchid Gastrodia elata. Haddadi
et al. [264], using the 6-OHDA model of PD in rats, demon-
strated catalepsy prevention and motor coordination in
lesioned rats. Moreover, gastrodin suppressed MPO activity,
lipid peroxidation, and NO synthesis induced by 6-OHDA
and increased total antioxidant capacity in the substantia
nigra pars compacta of these rats.

3.7. Drugs

3.7.1. Paroxetine. Using a mouse experimental model, Chung
etal. [123] studied the effects of the antioxidant paroxetine in
mice that received MPTP, demonstrating that this antide-
pressant drug protects nigrostriatal dopaminergic neurons
from oxidative damage induced by the neurotoxin. Addition-
ally, the authors also verified that paroxetine inhibited micro-
glial activation and, therefore, the expression of iNOS and
TNF-q; inhibited the activation of astroglia and hence the
production of MPO; and promoted attenuation of the pro-
duction of oxidizing agents via NADPH oxidase. Collectively,
oxidative stress reduction has enabled the increase of dopa-
mine levels in the nucleus striatum and the improvement of
the motor performance of these animals.

3.7.2. Pramipexole. Pramipexole is a novel dopamine agonist
that also inhibits oxidative stress and mitochondrial apopto-
sis. Wang et al. [265] used pramipexole transdermal patches
(PPX) against MPTP-induced PD in mice, showing that PPX
improved dyskinesia in PD-induced mice and restored the
activity of antioxidant enzymes alongside MDA reduction.
Another similar study demonstrated that PPX activates Akt
kinase and, therefore, is related to SPHK1 activation, which
is crucial for neurite extension in neurons and directed cell
movement [266].

3.7.3. Simvastatin. Regularly employed to reduce cholesterol
levels, this hydroxy-methyl-glutaryl-coenzyme A reductase
inhibitor was tested against the 6-OHDA model of PD both
in SH-SY5Y cells and mice, causing a reduction in oxidative
markers, reversion of apoptosis, and inhibition of the
mitogen-activated protein kinase (MAPK) pathway and
NF-«B activation in SH-SY5Y cells. Simvastatin treatment
in mice decreased limb asymmetry and apomorphine-
induced rotations in PD mice [267].

3.7.4. Methylene Blue. Clinically used for a relatively long
time, methylene blue is known for its neuroprotective and
antioxidant properties. Focusing on the induction of neuro-
trophic factors, Bhurtel et al. [268] studied its effects against
MPTP-induced PD in both in vivo and in vitro models of
the disease. According to the authors, methylene blue treat-
ment significantly reduced the loss of dopaminergic neurons,
depletion of dopamine, and glial cell activation through the
activation of brain-derived neurotrophic factor (BDNF).

3.7.5. Ebselen. MPTP was also used in a study performed in
the primate model of PD to observe the action of ebselen,

11

an antioxidant with actions similar to glutathione peroxidase.
It was demonstrated that ebselen could prevent both the loss
of neurons and the onset of clinical symptoms of the disease
in this experimental model [269].

3.7.6. Geranylgeranylacetone. This synthetic drug used to
treat gastric ulcers was associated with glial cell-derived neu-
rotrophic factor against the MPTP-induced PD model in
mice. Treated animals displayed significant recovery in their
swim, pole, and traction scores, as well as reduced neuronal
apoptosis in the substantia nigra and oxidative stress markers
[270].

3.7.7. Lactoferrin. It is a non-heme iron-binding glycoprotein
belonging to the transferrin family and was tested against the
MPTP model of PD in mice. Beneficial effects on both the
central and peripheral systems were observed, including a
reduction in oxidative stress and neuronal apoptosis [51].

3.7.8. Apocynin. This well-known NADPH oxidase inhibitor
was used by Hou et al. [271] to treat mice induced to PD by
pesticide exposure (paraquat and maneb), causing significant
improvement of mouse learning and memory deficits, effects
associated with the inhibition of signal transducers and
activators of transcription 1 (STAT1) and NF-«xB pathways.

3.7.9. Norfluoxetine. Norfluoxetine is an active metabolite of
the antidepressant fluoxetine that inhibits serotonin uptake.
Treatment with norfluoxetine inhibited NADPH oxidase
activation and nitrate production in microglial cell cultures
and mitigated microglial cell activation and microglial-
derived ROS production in the MPTP model of PD in mice
[272].

3.7.10. Phenothiazine. It was formerly used as an insecticide
and as a drug to treat infections with parasitic worms (anthel-
minthic) in livestock and humans and is the mother drug of
modern antipsychotic drugs. Tapias et al. [273] used it
against the rotenone-induced PD model in rats and rat mid-
brain cell cultures, demonstrating a significant reduction in
protein thiol oxidation, mitochondrial dysfunction, axonal
impairment, oxidative stress, and inflammatory response as
a result of phenothiazine treatment.

3.7.11. Hydralazine. A potent Nrf2 activator, hydralazine was
used by Guo et al. [274] against the MPTP-induced PD
model in SH-SY5Y cells and mice, resulting in significant
translocation of Nrf2, as well as upregulation of the expres-
sion of its downstream antioxidant genes. These effects
resulted in substantial improvements in oxidative stress,
behavioral disorders, and the loss of dopaminergic neurons
in the substantia nigra and striatum of treated mice and cells,
effects attributed to Nrf2 pathway activation.

3.8. Other Synthetic Molecules

3.8.1. Montelukast (MK). A cysteinyl leukotriene receptor
antagonist, MK later exhibited remarkable neuroprotective
activity in various neurodegenerative disorders. In the
rotenone-induced PD animal model, MK exhibited neuro-
protective effects through the attenuation of microglial cell
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activation, oxidative stress inhibition, and p38 MAPK
expression [275].

3.8.2. DDO-7263. A novel Nrf2-ARE activator, DDO-7263
was tested against MPTP-induced PD in mice, improving
behavioral abnormalities induced by MPTP and significantly
attenuating chemically induced dopaminergic neuron loss of
tyrosine hydroxylase in the substantia nigra and striatum. In
addition, DDO-7263 inhibited the secretion of inflammatory
factors and protected PC12 neurons from H,O,-induced
oxidative damage [276].

3.8.3. KMS99220. A synthetic morpholine-containing chal-
cone, KMS99220 confers neuroprotection due to its high bind-
ing affinity to the Nrf2 inhibitory protein Keap-1 and increased
nuclear translocation of Nrf2 and gene expression of the anti-
oxidant enzymes. It is reported to reduce a-synuclein aggre-
gates in GFP-a-syn AS53T-overexpressing cells, and in
MPTP-treated mice, oral administration of KMS99220 pre-
vented degeneration of the nigral dopaminergic neurons,
induced the Nrf2 target genes, and effectively prevented the
associated motor deficits [277].

3.8.4. M40403. A SOD-mimetic compound, it was employed
with positive results in cellular and fly models of PD to
reverse PD symptoms in PINK1 and Parkin phenotypes,
which are known to be associated with early-onset forms of
PD [278].

3.9. Use of Nanoparticles to Deliver Antioxidants. Another
interesting method of antioxidant treatment in PD consists
of delivering antioxidant molecules through nanoparticles
that can direct antioxidant effects towards specific sites of
the cell or that display specific scavenging activities.

3.9.1. Ceria Nanoparticles. Ceria nanoparticles effectively scav-
enge ROS, present catalase- and SOD-mimetic activities, and
readily penetrate the cellular membrane and scavenge intracel-
lular ROS in the cytosol. Moreover, triphenylphosphonium-
conjugated ceria nanoparticles can scavenge mitochondrial
ROS after their delivery to mitochondria. Extracellular ROS
can also be scavenged through 300 nm sized ceria nanoparticle
clusters that are not subject to cellular uptake. Kwon et al.
[279] used ceria nanoparticles to treat PD-like symptoms in
the MPTP model of PD in mice, reporting inhibition of lipid
peroxidation and protection of tyrosine hydroxylase in the
striatum of treated mice.

3.9.2. Chitosan Nanoparticles. Raj et al. [280] used chitosan
nanoparticles to deliver the PD drug pramipexole by the
intranasal route to rotenone-induced PD rats, reporting
enhanced antioxidant status and increased dopamine levels
in treated animals.

3.9.3. Nanoemulsions. Nanoemulsions were also tested to
deliver selegine (also known as L-deprenyl, a medication that
is used in the treatment of PD), displaying high antioxidant
properties that, along with the anti-PD effects of selegine,
conferred significant protection to treated rats [281].
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4. Final Remarks

The use of antioxidants as adjuvant PD therapy has been
debated because the results of the efficacy of antioxidant
substances are not yet fully clarified in human studies. Never-
theless, although there is no clarity regarding the efficacy of
antioxidant use in PD patients, Agim and Cannon [282] point
out that dietary components may act as protective factors in
PD, as demonstrated in both in vivo and in vitro studies.

Indeed, as presented in the numerous reports cited in this
review, in vitro studies and animal models provide vast and
strong evidence for the benefits of antioxidant supplementa-
tion to treat PD and set a solid ground for its use in human
studies.

Among the several antioxidant approaches reported,
antioxidants derived from plants have presented remarkable
results, especially those with high flavonoid content, such as
purple and red fruits and seaweeds.

In this sense, Joseph et al. [283] believe that antioxidant-
rich foods may benefit neurons during neuronal aging,
reversing or delaying free radical action, which are normally
produced by dopaminergic neurons of the substantia nigra of
the brain.

Nevertheless, it is worth noting that free radicals exert
several beneficial roles in mammalian cells, such as ATP pro-
duction, phagocytosis, and cell signaling [82], and the indis-
criminate use of antioxidants might be harmful.

In conclusion, oxidative stress plays a crucial role in the
pathogenesis of Parkinson’s disease, either by external factors
or individual intrinsic factors. Nevertheless, the effects of oxi-
dative stress and other factors related to the disease have not
been fully elucidated thus far, and further studies are still nec-
essary in the search for the formulation of new drugs and for
more efficient use of existing drugs. However, the potential
benefit of antioxidant supplements as an adjuvant therapy
for Parkinson’s disease is unquestionable and is aimed at
improving patient quality of life.
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