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The blood-brain barrier (BBB), as a crucial gate of brain-blood molecular exchange, is involved in the pathogenesis of multiple
neurological diseases. Oxidative stress is caused by an imbalance between the production of reactive oxygen species (ROS) and
the scavenger system. Since oxidative stress plays a significant role in the production and maintenance of the BBB, the
cerebrovascular system is especially vulnerable to it. The pathways that initiate BBB dysfunction include, but are not limited to,
mitochondrial dysfunction, excitotoxicity, iron metabolism, cytokines, pyroptosis, and necroptosis, all converging on the
generation of ROS. Interestingly, ROS also provide common triggers that directly regulate BBB damage, parameters including
tight junction (TJ) modifications, transporters, matrix metalloproteinase (MMP) activation, inflammatory responses, and
autophagy. We will discuss the role of oxidative stress-mediated BBB disruption in neurological diseases, such as hemorrhagic
stroke, ischemic stroke (IS), Alzheimer’s disease (AD), Parkinson’s disease (PD), traumatic brain injury (TBI), amyotrophic
lateral sclerosis (ALS), and cerebral small vessel disease (CSVD). This review will also discuss the latest clinical evidence of
potential biomarkers and antioxidant drugs towards oxidative stress in neurological diseases. A deeper understanding of how
oxidative stress damages BBB may open up more therapeutic options for the treatment of neurological diseases.

1. Introduction

BBB is a highly complex and dynamic structure composed
mainly of brain microvascular endothelial cells (BMVECs),
astrocytes, pericytes, and basement membrane, which plays
a causative role in regulating central nervous system (CNS)
homeostasis [1]. The BBB is selectively permeable to certain
substances thereby preventing toxins and other macromol-
ecules in the blood from reaching the brain. A variety of
pathological factors can cause the destruction of the BBB,
including oxidative stress, neuroinflammation, immune
cells, and various pathogens [2, 3]. These pathological fac-
tors interact with each other, induce MMP activation,
reduce tight connections between cerebrovascular endothe-
lial cells, and degrade basement membranes all culminating
to an increase in BBB permeability paving way for large

molecules and harmful substances to reach brain tissue
causing damage [4, 5].

Oxidative stress refers to a pathological state that pro-
duces a variety of toxic effects on cells due to the excessive
accumulation of ROS and their related metabolites [6]. Accu-
mulating evidence strongly suggests that ROS are the core
factor of acute brain injury and also participate in the tissue
repair in the long-lasting neurological recover time. After
several minutes to several hours of cerebral ischemia or
reperfusion, ROS were produced in large quantities, and they
continued to rise within a few days until they gradually
returned to normal around 20 days [7]. Further studies show
that ROS produced by ischemia can activate hypoxia-
inducible factor-1 (HIF) and downstream pathways, such as
the Notch pathway, Wnt pathway, and hypoxia-induced
growth factor changes, which are closely related to neural
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stem cell differentiation and migration in the long-lasting
neurological recover time [8, 9]. Therefore, oxidative stress
is extremely important in neurological diseases.

Increasing evidence shows that oxidative stress plays an
essential role in the induction of BBB changes [10, 11].
ROS-related pathways that trigger BBB dysfunction include
excitotoxicity, mitochondrial dysfunction, giant cell/micro-
glial activation, extracellular transport, TJ modification, and
MMP activation. This review will focus on the effects of
oxidative stress-mediated BBB disruption in various neuro-
logical diseases with the goal of exposing novel therapeutic
targets that can be exploited to treat neurological diseases
in the future.

2. Molecular Mechanisms Involved in the
Initiation of Oxidative Stress

At present, accumulating experimental and clinical evidence
shows that oxidative stress plays a causative role in neurolog-
ical diseases. The main primary mechanisms leading to the
triggering of oxidative stress involve the formation of ROS
and mitochondrial dysfunction, and the secondary mecha-
nisms include excitotoxicity, iron metabolism, cytokines,
pyroptosis, and necroptosis (Figure 1).

2.1. Formation of ROS. ROS are active substances produced
when oxidative stress is imbalanced. Several important
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Figure 1: Schematic diagram of common pathological mechanisms that trigger oxidative stress. Primary mechanisms: (A) Formation of ROS.
They are the main biomarkers of oxidative stress. A variety of enzymes including superoxide anion (O2-), hydrogen peroxide (H2O2), nitric
oxide (NO), and glutathione peroxidase (GPx) all belong to a group of molecules called ROS. (B) Mitochondrial dysfunction. ROS are mainly
derived from oxidative phosphorylation (OXPHOS) occurring in the mitochondria. Secondary mechanisms: (C) Excitotoxicity. This occurs
mainly through the excessive release of glutamate and the influx of Ca2+ to cause calcium overload in neurons, leading to the production of
ROS. (D) Iron metabolism. When the amount of iron exceeds the cell’s detoxification systems, the iron content increases, especially the
ferrous (Fe2+) content, and will promote the conversion of H2O2 to IOH through the Fenton reaction leading to an amplification of
oxidative stress. (E) Cytokines. Inflammatory cells can release harmful compounds or cytokines, exacerbating oxidative stress. (F)
Pyroptosis. ROS generation triggers the NLRP3 inflammasome to induce cell pyrolysis. (G) Necroptosis. The accumulation of intracellular
ROS can cause necroptosis. In turn, TNF-induced necroptosis could also lead to ROS generation. Abbreviations: TCA cycle: tricarboxylic
acid cycle; NLRP3: NLR pyrin domain-containing 3; RIP3: receptor-interacting protein 3; MLKL: mixed lineage kinase domain-like
pseudokinase.
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molecules are involved in neurological diseases including
nicotinamide adenine dinucleotide (NADPH), nitric oxide
synthase (NOS), xanthine oxidase (XO), glutathione peroxi-
dase (GPx), and catalase (CAT). Examples of ROS include
superoxide (O2

∙-), hydrogen peroxide (H2O2), peroxynitrite
(ONOO-), nitric oxide (NO), and hydroxyl radicals (∙OH).
All of these are unstable molecules that destroy cellular lipids
and proteins, thereby activating intracellular ROS production
[12]. Excessive amounts of ROS generation may be a critical
factor contributing to oxidative stress in the pathogenesis of
neurological diseases [13].

After excessive stimulation, NADPH and the electron
transport chain will cause excessive production of ROS.
NADPH is used as an electron donor to transfer electrons
through the cell membrane, reducing molecular oxygen
(O2) to ROS [14]. NOX1 (NADPH oxidase 1) and NOX2
are the main sources of ROS in the pathophysiology of
neurological diseases such as stroke [15], AD [16], and PD
[17]. Thus, NOX-mediated oxidative stress has been identi-
fied as a primary contributor to BBB damage in neurological
diseases [18, 19].

NOS is divided into inducible (iNOS), endothelial
(eNOS), and neuronal (nNOS) [20]. NOS has four groups
with redox-active structures, which can transfer electrons to
O2, and single electrons reduce O2 to O2

-, convert normal
NOS into ROS ion-producing enzymes, and promote ROS
production. Sustained oxidative stress results in NOS-
mediated uncoupling of O2. O2

- is produced at the expense
of NO. NO production from iNOS enzyme activation is a
major factor in oxidative stress response. NO can dramati-
cally affect the host’s defense ability against various patho-
gens, but excessive production of NO may be detrimental
and can cause neurological diseases [21, 22]. NOS activation
leads to an increase in NO production [23]. NO and ONOO-

may increase the permeability of the BBB by affecting TJ
proteins or via the cyclic guanosine monophosphate-
(cGMP-) protein kinase G (PKG) pathway [24, 25].

XO can activate xanthine dehydrogenase (XDH) through
proteolysis to produce ROS during brain ischemia/reperfusion
(I/R) [26, 27]. Although XDH mainly functions to produce
hypoxanthine and xanthine to produce urate under normoxic
conditions, XO promotes ROS production to induce brain
damage under hypoxic conditions. Therefore, inhibition of
XO has great advantages in reducing ROS production and
protecting mitochondria from oxidative damage.

2.2. Mitochondrial Dysfunction. Mitochondria were identi-
fied as the center of the “free radical theory of aging,” because
they are not only the major source of ROS but also the major
generators of energy in cells [28]. ROS are mainly derived
from OXPHOS occurring in the mitochondria. Indeed,
mitochondria producing ATP require cells to consume
approximately 85% of O2. Mitochondrial complex IV uses
electrons derived from FADH2 or NADH to reduce O2 to
H2O in the respiratory chain. The electron transport chain
(ETC) activity will inevitably produce O2

- [29]. The mito-
chondria are not only the major site of intracellular ROS
production but are also the main target organelle of ROS-
induced injury. The slower electron transfer of the mito-

chondrial respiratory chain results in increased ROS produc-
tion and serious damage to the antioxidant system [30]. In
addition, mitochondria are susceptible to nitrosation induced
by ONOO- and NO·[31]. The latter can deleteriously alter the
activities of enzymes such as Cyt-C oxidase and NAD dehy-
drogenase [32]. Furthermore, ROS-mediated ETC complex I,
II, and III Fe-S center failure and the tricarboxylic acid cycle
aconite lead to mitochondrial uncoupling [33]. The effects
of reactive species on mitochondria and their metabolic
processes ultimately lead to elevated levels of ROS, result-
ing in oxidation of DNA, mitochondrial proteins, and
lipids [34, 35].

2.3. Mechanisms Responsible for ROS-Mediated Oxidative
Secondary Damage

2.3.1. Excitotoxicity. Excitotoxicity refers to an abundance of
excitatory amino acids (such as glutamic acid or excitatory
toxins), which can lead to pathological responses through
increased ROS and amino acid production. Glutamate is
the core molecule in many neurological diseases [36–38]. It
mainly promotes ROS generation in two ways. On the one
hand, excessive release of glutamic acid leads to excessive
activation of NMDARs and increased Ca2+ influx, resulting
in calcium overload in neurons and disturbances in intra-
cellular Ca2+ homeostasis that can lead to free radical pro-
duction through multiple pathways. On the other hand,
glutamate uncouples oxidative phosphorylation leading to
increased Na+ influx, enhances the activity of Na+ and K+-
ATPase on the membrane, and consumes a large amount of
energy, which in turn enhances mitochondrial respiratory
function and promotes ROS production [39]. There is evi-
dence that ROS are also involved in non-NMDA receptor-
mediated glutamate neurotoxicity. Free radicals can inhibit
glutamine synthetase, promote the release of glutamic acid,
and inhibit glutamate reuptake. This leads to high concentra-
tions of glutamic acid in the extracellular fluid exacerbating
excitotoxicity [40]. That is, glutamate excitatory neurotoxic-
ity is accompanied by ROS production, and ROS can intensify
the excitotoxicity of glutamate through multiple pathways.
In addition to inducing oxidative stress, excitotoxicity can
aggravate BBB disruption by disrupting astrocyte function
[41]. NO pathways can lead to mitochondrial disorders and
increased BBB permeability following excitotoxicity [42, 43].

2.3.2. Iron metabolism. As an essential trace element of the
human body, iron can be used as a catalyst in ROS produc-
tion [44]. High iron levels in pathologically relevant brain
regions and iron-mediated oxidative stress are the main fac-
tors involved in various neurological diseases [45–47]. When
the amount of iron exceeds the cell’s detoxification systems,
the iron content, especially Fe2+, increases and facilitates
the conversion of H2O2 to IOH through the Fenton reaction.
This promotes a preferable conversion rate in the Haber-
Weiss cycle, resulting in the amplification of oxidative stress
[48]. Ferritin, an iron storage protein, can act as a scavenger
and a donor of free iron, a source of ∙OH-. After the BBB is
destroyed, the accumulated ferritin and free iron in brain
capillary endothelial cells enter the penumbra together with
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plasma ferritin. Iron-dependent oxidative stress in the
penumbra can cause nervous system deterioration [49]. The
imbalance of iron leads to the accumulation of free iron
and the overload of iron in the brain, thus increasing ROS
production. In this respect, excessive iron content in the
brain has been reported in Huntington’s disease (HD), PD,
and AD [50, 51].

2.3.3. Cytokines. Inflammation is an interaction between the
immune system and damaged tissues, which restores homeo-
stasis through complex signaling pathways [52]. Inflamma-
tory cells such as macrophages and neutrophils, immune
factors, and chemokines can release harmful compounds or
cytokines, thereby exacerbating oxidative stress to metaboli-
cally impair neurons, thus playing a critical role in neurolog-
ical diseases. The signs of an inflammatory response include
leukocyte infiltration and astrocyte and microglial activation
[53]. After an injury, neutrophils, as a part of the inflamma-
tory response, are recruited to the BBB [54]. In the process
of inflammation, activated neutrophils are the main source
of ROS, and enzymes such as NOX can catalyze ROS pro-
duction [55]. The resulting ROS may negatively affect the
integrity of the BBB through TJ protein modification or
expression of inflammatory mediators [56]. Microglial phe-
notypes are also important for redox stability. After a cerebral
infarction, NOX and NOS enzymes are activated, resulting in
a sharp rise in ROS and RNS levels [57]. Under these condi-
tions, ROS and RNS act as second messengers capable of
regulating gene expression by inhibiting target phosphatases
or inducing target kinases [58, 59]. Among these targets,
nuclear factor-kappa B (NF-κB) in activated B cells is partic-
ularly sensitive to ROS and is essential for the acquisition of
the proinflammatory M1 polarization.

2.3.4. Pyroptosis. Pyroptosis is a highly specific type of
inflammatory programmed cell death different from necrosis
or apoptosis, which was discovered recently. Accumulating
research unveiled that pyroptosis plays a magnificent role
in neurological diseases. Astrocytes induce the activation
and proliferation of microglia, producing a large number of
inflammatory mediators in the CNS. These inflammatory
mediators can activate endothelial cells to produce a variety
of tissue factors, increase excitatory amino acid toxicity,
and promote the release of NO and ROS, thereby destroying
intracellular lipids, proteins, and nucleic acids and triggering
a variety of inflammatory cell signaling pathways, such as
NF-κB and signal transducers and activators of transcription
3 (STAT3). These factors could induce caspase-1-independent
pyroptosis downstream of noncanonical NLRP3 inflamma-
some activators, expand a cascade of inflammatory response,
and aggravate neurological diseases [60, 61]. Studies have
shown that ROS generation after cerebral I/R injury can
destroy phagocytic cells and promote their rupture. The
rupture may also trigger the NLRP3 inflammasome, and
the rupture of lysosomes may damage cell integrity and acti-
vate the NLRP3 inflammasome signaling pathway to induce
cell pyrolysis [62]. In addition, ROS are also an important
factor in the regulation of NLRP3 inflammasome activation
in TBI [63, 64]. They could be detected in neurons, astro-

cytes, and microglia in an injured brain, which contribute
to inducing inflammatory response and neuronal death, as
well as aggravating the neurological outcome [65, 66].

2.3.5. Necroptosis. Programmed necrosis (necroptosis) is a
newly identified mechanism of regulated cell death combin-
ing features of both apoptosis and necrosis, which can be
activated by several stimuli including oxidative stress, infec-
tion, inflammation, and activation of toll-like and cell death
receptors [67–69]. Necroptosis has crucial functions in devel-
opment and tissue homeostasis, yet emerging evidence has
implicated this pathway in the development of several path-
ological conditions including various neurological diseases
[70–72]. The accumulation of intracellular ROS can modify
proteins, glucose, lipids, and nucleic acids in cells and tissues
to cause dysfunction and cell death [73]. In turn, necroptosis
could be activated by activating important metabolic enzymes
including glycogen phosphorylase, glutamate ammonia ligase,
and glutamate dehydrogenase 1; RIP3/RIP-like protein kinase
3 (RIPK3)/MLKL regulates tumor necrosis factor- (TNF-)
induced ROS production [74]. Therefore, the participation of
oxidative stress induced necroptosis as a common mediator
of various neuronal demise. Pharmacological inhibition of
necroptosis prevents mitochondrial dysfunction, oxidative
injury, energetic failure, and dopaminergic neuronal loss in
PD models [75]. Further studies demonstrated that upon
TNF-induced necroptosis, the necrosome complex can trans-
locate to the mitochondria and activate the pyruvate dehydro-
genase and upregulate glycolysis and aerobic respiration
leading to ROS generation [76].

3. Pathogenesis of Oxidative Stress-Mediated
BBB Disruption

The BBB is a heterogeneous structure of the vasculature
which is more susceptible to oxidative stress and neurovascu-
lar uncoupling damage in a specific region. Oxidative stress
plays a pivotal role in the changes in the BBB. Oxidative
stress can damage a variety of cells such as BMVECs, peri-
cytes, and astrocytes, destroying the BBB. To some extent,
as a result of vicious circles generated at molecular levels, it
is difficult to separate or clearly indicate the cause and the
effect of oxidative stress on BBB. A detailed description of
the various pathological mechanisms of oxidative stress-
mediated BBB disruption has been provided in the schematic
illustration (Figure 2).

3.1. Tight Junctions. Tight junctions act as molecular gate-
keepers of the paracellular space by mainly blocking water-
soluble molecules, ions, blood-borne toxins, drugs, and patho-
gens from permeating the BBB channels [77]. The TJ chain of
the brain endothelium consists of intact membrane proteins
(claudins, obliteratin, and connecting adhesion molecules
(jams)) [78], which are involved in intercellular contacts and
interaction with cytosolic scaffolds ZO protein and actin cyto-
skeleton [79] and related proteins, including VE-cadherin
[80], protein kinase [81], small GTPase [82], and heterotri-
meric G protein [83]. Several lines of evidence indicate that
TJ proteins are critical for the maintenance of BBB integrity.
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Pericytes and astrocytes associate with endothelial cells to
mediate the formation of TJs essential to the function of the
BBB. It has been reported that pericytes induce the synthesis
of TJ proteins such as occludin, claudin-1, ZO-1, and ZO-2
by releasing proangiogenic protein factors, suggesting that
the interaction between pericytes and endothelial cells can
maintain the integrity of BBB [84]. Another type of cell that
interacts with pericytes is astrocytes. Astrocytes regulate the
integrity of TJs through signaling pathways such as WNT
[85]. In vitro studies indicate that astrocytes can regulate TJ
tightness and polarized distribution of transporters at the
endothelial level [86]. Therefore, any changes in these proteins
will affect the permeability of the BBB.

Occludin is the main structural protein of the TJs, and its
expression level can represent the structural state of the BBB;

for example, lower levels of occludin can signify BBB damage
[87]. Experimental data showed that the expression and post-
translational modification (phosphorylation) of occludin are
tightly regulated, and its levels of expression reflect changes
in BBB permeability [88]. Claudin protein may act as a regu-
latory target of the BBB and can alter the selective opening of
tight junctions. The production of ROS can regulate the
expression of claudin-5, increase the leakage of solute, and
affect the BBB integrity [89–91]. Similarly, AMP-activated
protein kinase (AMPK) activation was shown to reduce the
expression of occludin and improve the functions of the
BBB impaired by LPS through suppression of NADPH
oxidase-derived ROS in mice [92]. The JAM subtype regu-
lates cell bypass permeability of the BBB, especially in
immune cells (i.e., neutrophils and monocytes/macrophages)
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Figure 2: Schematic illustration of the main pathological mechanisms of oxidative stress-mediated BBB disruption. BBB is a highly complex
and dynamic structure composed mainly of BMVECs, astrocytes, pericytes, and basement membrane. Oxidative stress can damage a variety
of cells, such as BMVECs, astrocytes, and pericytes, and structures such as tight junctions (TJs) and basement membranes leading to the
destruction of the BBB. (A) Many soluble carrier (SLC) transporters expressed in BMVECs allow substances such as peptides, amino
acids, and glucose to selectively cross the BBB. ATP-binding cassette (ABC) transporters work by releasing toxic substances and drugs
into the blood preventing them from entering the brain. (B) ROS can directly or indirectly promote MMP protein expression and can
cause an increase in inflammatory factor levels, leading to BBB leakage possibly through degradation of TJ proteins and basement
membrane proteins. (C) Tight junctions include TJ-related proteins such as occludin, claudin-5, and ZO-1. (D) Oxidative stress causes
BBB disruption through induced lysosomal dysfunction, autophagy of the hippocampus, pericytes, and astrocytes, which may be involved
in activating the AKT/mTOR signaling pathway. Abbreviations: IL-6: interleukin-6; MCP-1: monocyte chemoattractant protein-1;
VCAM-1: vascular cell adhesion molecule-1; ZO: zonula occludens.
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[93]. Malfunctioning of BMVECs of the BBB can be directly
caused by the absence of JAM proteins in the TJs [94]. In
addition to claudin and occludin, ROS can also change the
permeability of the BBB by affecting the distribution of ZO
protein. Exposure to hydrogen peroxide led to the redistribu-
tion of ZO-1 from the TJS to the cytosol, resulting in
decreased transepithelial electric resistance (TEER) and
increased BBB permeability [95]. That is, the expression,
phosphorylation, and distribution of TJ proteins are impor-
tant factors affecting BBB permeability. Therefore, any
change of these parameters caused by ROS may compromise
the integrity of the BBB. Increasing evidence suggests that
there is a correlation between BBB disruption, oxidative
stress, alteration of TJ complexes, and the progression of
various neurological diseases [96, 97].

3.2. Transporters. Transporters, an important component of
maintaining the strength of the BBB, can protect the CNS
from exposure to circulating chemicals by regulating the
exchange between the CNS and blood and controlling the
ability of many endogenous and exogenous substances
through pores [98]. These transporters mainly include ABC
and SLC transporters. Among these, ABC transporters are
the most important involved in limiting the permeability of
several toxins and therapeutic agents [99]. In particular,
ABCB1 (P-gp), ABCC (MRPs), and ABCG2 (BCRP) as
exogenous efflux pumps driven by ATP participate in the
extrusion of drugs from cells, thus limiting the delivery of
small-molecule drugs to the brain [100]. Oxidative stress-
induced signaling pathways that affect the expression of
ABC transporters may be essential regulators in the patho-
genesis and treatment of CNS diseases. After detoxification
by binding to molecules like glutathione (GSH), glucuronic
acid, and sulfate, toxic compounds can then be extruded
by ABC transporters.

As discussed above, ROS participate in cytotoxicity and
play a pivotal role in the signal transduction of multiple tran-
scription factors, such as HIF-1, NF-κB, and nuclear factor
E2-related factor 2 (Nrf2) [101]. In turn, these transcription
factors could regulate the expression of ABC transporters.
NF-κB activation is associated with the overexpression of
P-gp in the brain caused by epilepsy [102]. Nrf2 is a cell sen-
sor of oxidative stress. It was found that with the activation
of oxidative stress, the expression levels of Nrf2 and the
activity of P-gp, Mrp2, and Bcrp increased in the BBB
[103]. Strikingly, reactive astrocytes display an increased
expression of P-gp and Mrp1 in multiple sclerosis (MS)
lesions [104].

Compared with ABC transporters, SLC transporters act
as the “metabolic gate” of cells and mediate the transport of
various necessary metabolites and nutrients, including glu-
cose, neurotransmitters, inorganic/metal ions, and amino
acids [105]. Of the known SLC transporters that transport
drugs across the BBB, the most common target transporters
are members of the SLC21A/SLCO family, which includes
organic anion transporters (human and rodent Oatps).
OATP/Oatp is the prototype transporter of 3-hydroxy-3-
methylglutaryl coenzyme A (HMG-CoA) reductase inhibi-
tors (i.e., statins), which has antioxidant and neuroprotective

functions that could be of great advantage in neurological
diseases [106, 107].

In addition to ABC and SLC transporters, ROS can also
change BBB permeability by modulating AMPK. AMPK
has been reliably confirmed to target transporters, including
glucose transporter types 1 and 4 (i.e., GLUT-1 and GLUT-
4), K+, and Cl- channels in the epithelium [108, 109] and
Na-K-Cl (NKCC2) cotransporters [110]. AMPK is also
known to be involved in critical cell stress signaling responses
in the BBB [111]. The interaction between pericytes and
astrocytes is essential for maintaining BBB integrity and
AMPK protein kinase activity and influencing the expression
of glucose transporters GLUT-1 and GLUT-4 and glucose
uptake [112].

3.3. Matrix Metalloproteinases. Zinc-containing proteolytic
matrix metalloproteinases (MMPs) can degrade the extracel-
lular matrix and the epithelial basement membrane thus
affecting the integrity of the BBB [113]. Endothelial cells,
basement membranes, and TJs are essential for the normal
functioning of the BBB. In turn, any disruptive changes in
the BBB can compromise its integrity leading to neurological
disease progression [114]. It has been suggested that inhibit-
ing MMPs prevents the digestion of basement membrane
proteins and TJs thus preventing BBB compromise [115].
Therefore, MMP activity is the key mediator of BBB perme-
ability [116, 117]. ROS directly downregulate TJs and indi-
rectly activate MMPs that promote the opening of the BBB
[118, 119]. Oxidative stress-induced activation of MMPs
and aquaporin leads to the loosening of the perivascular units
and vasculature, promotes vascular or cellular fluid edema,
enhances BBB leakage, and leads to neuroinflammatory pro-
gression [120–122]. The structural changes of pericytes and
astrocytes increase the permeability of BBB, which leads to
the entry of microbial pathogens into the brain, the accumu-
lation of neurotoxic substances, and the induction of oxida-
tive stress [123]. In addition, oxidative stress can activate
the secretion of MMP-9 and other factors by pericytes and
astrocytes, degrade the basement membrane, change the
expression and distribution of TJ proteins, and aggravate
the damage of BBB [124].

3.4. Inflammation. Excessive oxidative damage occurs when
inflammatory cells release large amounts of ROS at the
inflammatory site. Beyond that, increased intracellular ROS
levels accelerate the proinflammatory response. ROS activate
a variety of redox-sensitive transcription factors and are
involved in the inflammatory response, leading to BBB dam-
age. NF-κB, as a major regulator of the inflammatory
response, is mainly activated in a redox-dependent manner.
Activation of NF-κB by ROS can increase intercellular adhe-
sion molecule-1 (ICAM-1) and VCAM-1 expression [125].
The activation of the Ca2+ signaling pathway by ICAM-1
can lead to changes in the cytoskeleton in BMVECs, leading
to BBB damage [126]. Macrophage/microglial activation
appears to be an early stage of injury, and before BBB break-
down, inhibition of its activation prevents BBB dysfunction
[127]. Activated macrophages/microglia can induce the
expression of cytokines (i.e., TNF-α and Egr-1), leading to
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BBB destruction [128, 129]. Release of IL-1β in astrocytes
leads to immune cell recruitment, BBB destruction, edema,
and loss of neurons [130]. MCP-1 from astrocytes and
microglia can attract microglia to sites of injury and stimulate
monocyte migration through the BBB [131]. Crosstalk among
BMVECs, pericytes, and astrocytes occurs through soluble fac-
tors, including cytokines [132]. Oxidative stress leads to the
death of pericytes and further destruction of BBB. Pericytes
can mediate inflammatory cascades and white matter damage
and eventually increase nerve damage [133]. TGF-β, IL-6, glial
cell line-derived neurotrophic factor, and basic fibroblast
growth factor released by astrocytes can change the barrier
characteristics of BMVECs. In contrast, leukemia inhibitory
factors released by BMVECs can induce astroglial differentia-
tion, further aggravating BBB injury [134].

3.5. Autophagy. Autophagy is a cellular degradation pathway
that transports damaged, denatured, or senescent proteins
and damaged organelles to the lysosome for digestion and
degradation. Therefore, under physiological and pathological
conditions, the autophagy pathway can be critical for neuro-
nal homeostasis and can play the role of a local housekeeper
[135]. Some recent findings suggested that oxidative stress
caused BBB disorders through induced lysosomal dysfunc-
tion, autophagy activation in the hippocampus, pericytes,
and astrocytes [136–138]. In in vivo and in vitro subarach-
noid hemorrhage (SAH) models, mTOR inhibition has a
potent protective effect on neuronal damage after SAH by
reducing excessive mitochondrial fission [139]. Studies have
found that oxidative stress induces damage to the frontal cor-
tex and hippocampal neurons. The mechanism for this dam-
age may involve the activation of the AKT/mTOR signaling
pathway to regulate autophagy and inhibit neuronal apopto-
sis [140]. Studies have found that in astrocytes exposed to
H2O2, 2-(2-benzofuranyl)-2-imidazoline (2-BFI) can exert
cytoprotective effects by enhancing lysosomal stability under
conditions of oxidative stress [141]. A study indicated that
autophagy was activated during starvation and protected
the endothelial barrier integrity by scavenging ROS and inhi-
biting the redistribution of claudin-5 [89]. A novel mecha-
nism of autophagy disturbance secondary to nitrosative
stress-induced tyrosine nitration of transient receptor poten-
tial M2 (TRPM2) during pericyte injury both in vitro and
in vivo has been revealed [142]. A prolonged oxidative stress
in astrocytes inhibits LC3 lipidation and impairs autophago-
some formation and autophagic flux, despite concomitant
activation of several proautophagic signals [143]. ROS can
induce autophagy under conditions of oxidative stress, and
autophagy can reduce the damage caused by oxidative stress.
Therefore, both ROS and autophagy can jointly maintain the
stability of the intracellular environment and the structural
and functional integrity of brain cells and the BBB [144, 145].

4. Oxidative Stress-Mediated BBB Disruption in
Neurological Diseases

Recent researches have suggested that oxidative stress-
mediated BBB disruption is an important process in various

neurological diseases, including IS, hemorrhagic stroke,
TBI, AD, PD, ALS, and CSVD (Table 1).

4.1. Ischemic Stroke. Ischemic stroke is a destructive cerebro-
vascular disease that has become the leading cause of long-
term disability and the fourth leading cause of death world-
wide [173]. Oxidative stress plays a critical role in I/R-
induced brain injury [174, 175]. Various mechanisms in the
body can trigger oxidative stress, including mitochondrial
dysfunction, excitatory toxins, and glutamate release, and
defects in the antioxidant system, and enzymes and phago-
cytes can activate oxidative stress [176, 177]. Mitochondria
are both important intracellular organelles for energy metab-
olism organelles, the main intracellular source of ROS [178],
and important targets for I/R injury [179, 180]. During
cerebral ischemia, inflammatory factors, oxidative stress,
and calcium overload stimulate the mitochondria, causing
them to produce large amounts of ROS, thereby initiating
the mitochondrial necrosis program and causing cell death.
In addition, macrophages, endothelial cells, and other
immune cells produce large amounts of ROS during the cere-
bral ischemia phase [181], which in turn induce the expression
of NF-κB, NOS, and proinflammatory factors, triggering the
upregulation of vascular endothelial cell adhesion molecules
and causing BBB permeability.

The occurrence of ischemic stroke and subsequent reper-
fusion reduces the integrity of the BBB and increases cell per-
meability, causing brain edema [182]. Inflammatory factors
can directly damage neurons by permeating the compro-
mised BBB, aggravating I/R injury [183]. Importantly, I/R
injury involves changes in endothelial barrier function and
recruitment of immune cells, both of which are conducive
to oxidative stress and the BBB disruption. Using experimen-
tal models of cerebral ischemia, abundant evidence indicates
that molecules such as NOX, NOS, or GPx can reduce oxida-
tive stress and protect the BBB and brain from I/R injury
[184, 185]. Recent research showed that stanniocalcin-1
attenuates I/R injury by reducing oxidative stress and BBB
permeability [186]. Dihydrocapsaicin downregulated ROS,
NOX2, NOX4, NF-κB, and MMP-9 levels to reduce oxidative
stress and increase TJ protein expression, thereby protecting
the BBB and brain from I/R injury [147].

4.2. Hemorrhagic Stroke. When compared with ischemic
stroke, hemorrhagic stroke is more detrimental, with higher
mortality and morbidity [187]. The pathophysiological pro-
cesses of cerebral injury after intracranial hemorrhage
(ICH) can be divided into primary mechanical injury and
secondary brain injury, involving oxidative stress, BBB dis-
ruption, excitotoxicity, neuroinflammation, and neuronal
apoptosis [188, 189]. Increasing evidence suggests that oxida-
tive stress plays a role in the pathological process of ICH and
in the important stages of the pathophysiological response to
ICH [190]. Multiple pathways can induce ROS production
after ICH, the two main pathways. First, blood cell break-
down products such as hemoglobin, ionized iron, and throm-
bin can induce free radical generation [191]. Increased
extracellular iron levels during ischemia can lead to excessive
activation of glutamate receptors, thereby promoting iron
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Table 1: Oxidative stress-mediated BBB disruption in neurological diseases.

Diseases Model
Targets

Pathways Mechanisms RefOxidative
stress

BBB

IS

MCAO, rat
MDA, GSH,
and NADPH

ZO-1 and occludin REK
Oxidative stress and tight

junctions
[146]

MCAO, rat

NOX2,
NOX4, ROS,
MDA, GPx,
and NO

Occludin, MMP-9, Nrf2,
and Nqo1

MAPK
MMP, oxidative stress, and
inflammatory response

[147]

OGD/R, BMVECs ROS ZO-1 and claudin-5 PI3K/Akt/Nrf2 Oxidative stress [148]

MCAO, rat; OGD/R,
primary cortical

neurons

NO, MDA,
and ROS

IL-6 and TNF-α NF-κB
Neuroinflammation and

oxidative stress
[149]

MCAO, rat; OGD/R,
BMVECs

ROS ZO-1 mTOR
Cell autophagy and
oxidative stress

[150]

Hemorrhagic
stroke

Autologous blood
injection, rat

ROS
ATP, Bcl-2, Bax, caspase-3,

and caspase-9

DJ-
1/Akt/IKK/NF-

κB

Apoptosis, oxidative stress,
and inflammatory response

[151]

Collagenase injection,
rat

ROS, GSH-px,
and SOD

ZO-1 and occludin MAPK Oxidative stress [152]

LPS-activated,
microglia

ROS, NOX2,
and NOX4

CD86, Arg1, CD206, IL-1α,
IL-1β, TNF-α, and FeSO4

Not mentioned
Oxidative stress,

inflammatory response,
and iron metabolism

[153]

Autologous blood
injection, rat; OxyHb,
primary rat cortical

neurons

ROS, NOX1,
and NOX2

TNF-α, MMP-9, NQO1,
Bcl-2, Bax, caspase-3, CD14,

CD68, γ-H2AX, and
XRCC1

HO-1

Oxidative stress, apoptosis,
inflammation,

mitochondria injury, and
DNA damage

[154]

TBI

Free fall brain trauma,
rat

ROS, SOD,
and 4-HNE

MMP-9, ZO-1, and
occludin

JNK
MMP inhibition and

oxidative stress
[155]

A cryogenic injury,
mice; biaxial stretch SI,

BMVECs
ROS

GFAP, IL-6, IL-β, and
ICAM-1

Nrf2/HO-1
and NF-κB

Oxidative stress and
inflammatory response

[156]

Controlled cortical,
mice

SOD, CAT,
and GSH

TNF-α, NLRP3, caspase-1,
IL-1β, and IL-6

AMPK and
Nrf2

Oxidative stress,
inflammation, and

apoptosis
[157]

Controlled cortical,
mice

SOD, GPx,
and MDA

NQO1 and Bax Nrf2-ARE
Oxidative stress and

apoptosis
[158]

AD

Neuronal damage,
neurons

ROS, 4HNE,
H2O2, SOD,
MDA, and

GPx4

MMP Nrf2/HO-1
MMP inhibition and

oxidative stress
[159]

H2O2-induced N2a,
SH-SY5Y cells

ROS Fe2+ and Fe3+ Nrf2/HO-1
Iron metabolism and

oxidative stress
[160]

Injection of D-
galactose and Aβ25-
35-ibotenic acid, rats

SOD, MDA,
and GSH-Px

5-HT, methionine,
glutamine, and tryptophan

AMPK-SIRT
Oxidative stress and energy

metabolism
[161]

H2O2-induced, PC12
cells

ROS Caspase-3, MMP
ASK1-

JNK/MAPK
MMP inhibition, apoptosis,

and oxidative stress
[162]

Aβ-induced, rats and
SH-SY5Y cells

ROS TXNIP Not mentioned Oxidative stress [163]

PD
People, blood ROS P-gp Not mentioned Oxidative stress [164]

H2O2-induced, rat and
PC12 cells

SOD and
catalase

Caspase-3 and Hsp-70 Nrf2/HO-1
Oxidative stress and

apoptosis
[165]
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uptake in neurons and subsequent excessive production of
membrane peroxides [192]. Experimental results show that
deposition of free iron can trigger oxidative stress, leading
to nerve damage, cytotoxicity, and poor outcomes after
thrombolytic therapy following an acute stroke [193, 194].
In addition, the use of nonspecific ROS scavengers and
NADPH oxidase inhibitors can reduce ROS production and
neurotoxicity, improve cerebral vascular function, and
reduced cerebral amyloid angiopathy-related microhemor-
rhages [153, 195]. Also, infiltration of macrophages, excessive
microglial activation, and neutrophils releasing large
amounts of ROS, NO, and the activation of a series of cas-
cades mediate direct and indirect neuronal damage and pro-
mote neuronal apoptosis, astrocyte necrosis, and cerebral
edema after ICH [196, 197]. These overlapping mechanisms
interact to cause BBB disruption, loss of neurons, and glial
hyperplasia leading to permanent neurological deficits [198,
199]. Therefore, ROS and BBB play a key role in brain injury
after a hemorrhagic stroke.

ROS can trigger multiple interconnected molecular and
cellular pathways involved in BBB disruption after ICH.
Studies in animal models have shown that ROS can also
upregulate MMP-9 expression, degrade TJ proteins, and acti-
vate microglia, leading to BBB disruption following ICH
[200, 201]. There is also emerging evidence that ROS are
maintained at a stable level via a stable ROS production

balance and a balance of mitochondrial oxidative phosphor-
ylation and antioxidant mechanisms [202]. A recent study
showed that the overexpression of E3 ubiquitin ligase ring
finger protein 34 in mice exacerbates ICH-induced neuro-
logical deficits and brain injury, hematoma volume, and
BBB disruption by facilitating mitochondrial dysfunction-
mediated oxidative stress [203]. More importantly, the pres-
ence of multiple inflammatory mediators such as IL-6 and
lipopolysaccharides has been noted after ICH. These can
induce the production of ROS, activate microglia and astro-
cytes, and disrupt the BBB causing brain edema [204, 205].
Thus, oxidative stress and BBB disruption are also pivotal
in the underlying pathological process of ICH.

4.3. Traumatic Brain Injury (TBI). TBI is the main cause of
mortality and morbidity in children and young adults
[206, 207], and it is currently estimated to be the third largest
cause of global disease burden [208, 209]. Accumulating
evidence strongly suggests that oxidative stress is a major
threat in the development of TBI [210]. Besides, it has been
reported that biomarkers of oxidative stress accumulate in
patients with TBI [211].

ROS production may lead to lipid peroxidation, protein
crosslinking, DNA breakage, mitochondrial electron trans-
port chain damage, and disruption of the structure and func-
tion of brain cells [212]. Lipid peroxidation, a sequence of

Table 1: Continued.

Diseases Model
Targets

Pathways Mechanisms RefOxidative
stress

BBB

6-OHDA-treated, mice
DA, ROS, and

SOD
IL-1β and TNF-α

PI3K/AKT and
IKK/IκBα/NF-

κB

Neuronal inflammation
and oxidative stress

[166]

6-OHDA-induced,
mice and SH-SY5Y

cells
ROS and GSH Caspase-3, Bax, and Bcl-2 Nrf2/HO-1

Oxidative stress and
apoptosis

[167]

MPTP-induced, mice
and PC12 cells

ROS
Mitochondrial membrane
potential and caspase-3

ROS/JNK
Oxidative stress and

apoptosis
[168]

ALS

hSOD1-linked,
Drosophila and NSC-

34 cells

GSH and
GCLC

HSP70 Nrf2/STAT3 Oxidative stress [169]

SOD1 mutation,
B6SJL-Tg 1Gur/J mice

COX, LDH,
thiol groups,
and lipid
dienes

Cav-1, respiratory capacity
rate, and cholesterol

Not mentioned
Mitochondrial

bioenergetics and oxidative
stress

[170]

CSVD

Spontaneously
hypertensive, rat

SOD, GSH,
MDA, and

CAT

IL-6, TNF-α, IL-1β, Bcl-2,
caspase-3, and VEGF

STAT3/VEGF
Oxidative stress and

inflammatory response
[171]

Spontaneously
hypertensive, rat

SOD, GSH,
MDA, and

CAT

TNF-α, IL-6, IL-1β, MCP-1,
and COX-2

Not mentioned
Oxidative stress and

inflammatory response
[172]

Abbreviations: OGD/R: oxygen-glucose deprivation/reperfusion; MCAO: middle cerebral artery occlusion; OxyHb: Oxygen hemoglobin; SI: stretch injury; SH-
SY5Y: human neuroblastoma cells; 4HNE: 4-hydroxynonenal; DA: dopamine; GCLC: glutamate-cysteine ligase catalytic; Bcl-2: B cell lymphoma-2; Bax: Bcl-2-
associated X protein; Arg1: arginase 1; XRCC1: X-ray repair crosscomplementing gene 1; GFAP: glial fibrillary acidic protein; NQO1: NAD(P)H:quinone
oxidoreductase; 5-HT: 5-hydroxytryptamine; TXNIP: thioredoxin-interacting protein; VEGF: vascular endothelial growth factor; Hsp-70: heat shock protein
70; Cav-1: caveolin-1; COX-2: cyclooxygenase-2; JNK: c-Jun N-terminal kinase; MAPK: mitogen-activated protein kinase; HO-1: heme oxygenase-1; SIRT:
sirtuin; ASK1: apoptosis signal-regulating kinase 1; PKC: protein kinase C.
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oxidative stress in TBI, also triggers the formation of alde-
hyde byproducts including propenal (acrolein) and 4-HNE
from neurotoxic reactions. These byproducts aggravate the
production of ROS/RNS, mitochondrial dysfunction, and
BBB dysfunction and permeability. Finally, aldehyde bypro-
duct accumulation will lead to intracellular Ca2+ overload
leading to the activation of proteolytic degradation of neuro-
nal cytoskeletal proteins [213, 214]. NOX is the main source
of ROS after TBI [215]. A recent study has confirmed that the
deletion of NOX4 decreases the severity of TBI [216]. The
absence of NOX2 can reduce the expression of M1-like
markers in microglia/macrophages which initiate damage
of the cerebral cortex [217]. Studies have indicated that
ICAM-1 can increase markers of oxidative stress, promote
microglial transformation into the activated phenotype, pro-
mote BBB permeability, and increase the neuropathological
index [218]. Increasing exposure of endothelial cells to ROS
can increase the function of contraction and adhesion mole-
cules, resulting in functional impairment of the BBB [219].
Impairment of pericyte-endothelium crosstalk results in
BBB disruption following TBI [10].

In TBI, MMPs, ROS, and inflammatory cytokines includ-
ing TNF-α, IL-1β, and TGF-β are activated [220]. ROS pro-
mote blood vessel and cellular edema through oxidative
stress-induced MMP activation and aquaporin release and
increase the BBB permeability, leading to the progression of
neuroinflammation [122]. Ultimately, similar to the destruc-
tion of the BBB in TBI, circulating neutrophils, macrophages,
and lymphocytes are recruited to the injured sites to further
exacerbate the inflammatory response. In the early stage of
TBI, the brain parenchyma upregulates the expression of leu-
kocyte adhesion molecules on brain endothelial cells [221].
Leukocytes can further damage theBBBby secreting cytokines
and chemokines, promotingROSgeneration, andhydrolyzing
proteases, in addition to other mechanisms [222].

4.4. Alzheimer’s Disease (AD). AD is a multifactorial neuro-
logical disease, characterized by the formation, aggregation,
and accumulation of amyloid-beta (Aβ). As mentioned
above, oxidative stress can cause BBB dysfunction through
neurotoxicity, mitochondrial dysfunction, heavy metal depo-
sition, etc. In turn, the BBB can also trigger oxidative stress
and neuroinflammation, enhance the activity of secretases,
and finally promote the generation of Aβ. With gradual accu-
mulation of Aβ in the brain and the presence of oxidative
stress, BBB dysfunction may become a vicious circle, leading
to cognitive impairment and dementia.

Studies have shown that Aβ-induced oxidative imbalance
is related to elevated levels of byproducts of protein oxida-
tion, lipid peroxidation, and DNA/RNA oxidation levels
[223–225]. Also, oxidative stress is a crucial determinant of
Aβ accumulation, triggering mitochondrial dysfunction and
apoptosis [226, 227]. Studies have shown that damaged mito-
chondria can produce ROS and other active substances,
which can lead to abnormal phosphorylation of tau protein
[228–230]. The latest progress in the study of the gene
expression profile of an AD brain shows that the production
of brain insulin and insulin signal transduction are signifi-
cantly impaired, indicating that an AD brain shows the char-

acteristics of a diabetic brain; that is, brain insulin depletion
can lead to the initiation of mitochondrial dysfunction and
increase oxidative stress and the sensitivity to brain insulin
[231].

In a recent study, the mouse microglial cell line BV2 was
used to establish the H2O2-mediated oxidative stress injury
model of cells, which led to MMP-9 degradation, apoptosis,
and BBB destruction [232]. The expression of nNOS was
increased in astrocytes around β-amyloid plaques in humans
[233]. Other teams also reported increased expression of
eNOS and iNOS in the neurofibrils, suggesting that the
production of NO and peroxynitrite by reactive astrocytes
plays a critical role in the pathogenesis of AD [234, 235].
Since oxidative stress/nitration stress and NO production
by active astrocytes and microglia in neurofibrillary tangles
are markers of AD, even in the early stages, targeting ROS
production as a therapy could be potentially important for
curbing disease progression.

4.5. Parkinson’s Disease (PD). PD is characterized by selective
damage of dense dopaminergic (DA) neurons in the sub-
stantia nigra and the loss of DA levels in the striatum nigra
in the brain [236]. Accumulating evidence strongly suggests
that ROS are crucial determinants leading to the loss of DA
neurons in a PD brain, low GSH, mitochondrial dysfunc-
tion, neuroinflammation, and disorders of metal metabo-
lism [237]. In addition, there are several polyunsaturated
fatty acids in the brain that can undergo lipid peroxidation
under conditions of oxidative stress releasing toxic prod-
ucts [238]. Similarly, evidence of elevated ROS levels in
the brains of PD patients includes the occurrence of lipid,
protein, and DNA oxidation as documented in numerous
studies [239, 240].

Although most of the DA released at the end of the syn-
apse is reabsorbed by DA neurons, astrocytes may reabsorb
some dopamine. Astrocytes play an active and key role in
the development of PD, and they mediate the survival
and function of neurons [241]. A recent study has indi-
cated that dopamine-induced activation of the pentose
phosphate pathway in astrocytes reduces oxidative stress
and exerts a neuroprotective role in PD [242]. Oxidative-
or ROS-induced molecules, such as α-synuclein, neurome-
lanin, and active MMP-3, from damaged substantia nigra
dopaminergic neurons trigger microglial activation. The
active form of MMP-3 is increased in response to oxidative
stress in dopaminergic cells. MMP-3 leads to the activation
of microglia, thus producing RNS and ROS [243]. It was
found that MMP-3 induced by oxidative stress can also result
in BBB degradation and neutrophil infiltration, further
resulting in neuroinflammation [244].

4.6. Amyotrophic Lateral Sclerosis (ALS). ALS is one of the
most devastating neurological diseases. Autopsy and labora-
tory studies in ALS have shown that oxidative stress plays a
critical role in motor neuron degeneration and astrocyte dys-
function [245, 246]. Increased oxidative stress biomarkers in
cerebrospinal fluid, plasma, and urine indicated abnormal
oxidative stress outside of the CNS [247]. Recent studies sug-
gest that oxidative stress is part of the neuroinflammatory
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response and may be triggered by a combination of mito-
chondrial dysfunction and pathophysiological activation of
astrocytes and microglia in G93A-SOD1 rats and mice
[248]. Considerable experimental evidence suggests that
ROS generation in motor neurons in response to excitotoxic
activation can induce oxidative damage of glutamate trans-
port in surrounding astrocytes, leading to excitatory stress
expansion and, thereby, triggering the development of ALS
[249, 250]. The end of the stellate cells lining the BBB is rich
in two proteins, aquaporin 4 (AQP4) and inward rectifying
potassium channels (Kir) [251]. Both channels are important
for maintaining a functional BBB astrocyte lining. Studies
have found that the ability of astrocytes to maintain water
and potassium homeostasis is hindered in the ALS model.
The imbalance in homeostasis affects the BBB, disrupts the
microenvironment of neurons, and causes neuronal dysfunc-
tion and death [252]. A recent study has indicated that the
pivotal mechanism that promotes the pathogenesis of ALS,
which involves the Ets-2 transcription factor of the Bts-xL
gene, protects glial cells from oxidative stress [253].

4.7. Cerebral Small Vessel Disease (CSVD). CSVD refers to a
variety of clinical manifestations such as hypertension, acute
stroke, and cognitive dysfunction caused by pathological
changes in the cerebral microcirculation (including small
blood vessels or microvessels) [254, 255]. The pathogenesis
of cerebral microangiopathies involved endothelial dysfunc-
tion, BBB disruption, oxidative stress, amyloid deposition,
and decreased blood perfusion [256, 257].

Among these mechanisms, BBB disruption and oxidative
stress are considered to be important pathophysiological
mechanisms of CSVD [258, 259]. BBB injury, as an early
feature of CSVD, involves vascular endothelial dysfunction,
TJ destruction, and degradation of the extracellular matrix
[260]. Increased BBB permeability plays a critical role in
normal aging, dementia, white matter, lacunar infarction,
and CSVD. Aging and hypertension have a synergistic effect
on aggravating BBB injury, which will eventually promote
oxidative stress in brain tissues [261]. For example, the
expression of NO was increased compromising areas of the
BBB. Peripheral cytopathy leads to disruption of the BBB
and microvascular disruption as well. The mechanism lead-
ing to this disruption may be related to the end of astrocytes
detached from the brain microvessels, the leakage of plasma
proteins, and the decreased expression of endothelium adhe-
sion connexin [262]. In addition to endothelial cell injury, the
decrease in pericyte coverage in aged hypertension mice
further reduces the integrity of the BBB [263]. Ischemic
injury induces increased expression of MMPs, which impairs
BBB integrity by changing the structure of TJ proteins and
pericyte damage [264, 265]. A study found that white matter
damage, cognitive damage, brain atrophy, TJ protein expres-
sion, and microglial proliferation were downregulated in a
mouse model of persistent cerebral hypoperfusion. These
indicated that impaired BBB plays a role in the pathogenesis
of CSVD [266].

Excessive ROS are generated during tissue injury, trigger-
ing neuron edema and release of excitatory transmitters,
which activate excitatory toxic cascades leading to the activa-

tion of inflammatory cells, exacerbating focal neurovascular
injury [267]. Endothelial dysfunction may be caused by oxi-
dative stress and inflammation. Conditions such as hyperten-
sion, diabetes, hypercysteineemia, smoking, and infection
produce large amounts of ROS [268, 269]. In hypercholester-
olemic apolipoprotein E gene-knockout mice, NOX2 knock-
out can block the production of ROS and damage of the
cerebral vasodilation [270]. Similarly, the absence of NOX2
can prevent obesity-induced cerebral small blood vessel dys-
function [271]. The cerebrovascular network is one of the
main goals of the process of local oxidative stress. Local oxi-
dative stress can trigger damage to the vasculature and
changes in BBB and blood flow and can promote changes
in neurodegeneration in brain tissues [272]. A recent study
indicated that salvianolic acid B ameliorated oxidative stress
and neurocyte apoptosis, attenuated BBB disruption, and
restored cognitive deficits and angiogenesis in a rat model
of CSVD via the STAT3/VEGF signaling pathway [171]. Oxi-
dative stress is involved in disrupting microvascular integrity,
loss of integrin, and leakage of plasma proteins, which collec-
tively destroy the integrity of the BBB [273].

5. ROS Can Affect the Integrity of the BBB via
Mechanisms Interconnecting Multiple
Organ Systems

In addition to the main factors described earlier that ROS can
cause BBB disruption, recent studies also show that ROS can
affect the BBB via mechanisms interconnecting multiple
organ systems (Figure 3).

5.1. Microflora Gut-Brain Axis. With the recognition of a
two-way communication system between the gut and brain,
there is evidence that the “microbiota gut-brain axis” plays
a major role in neurological diseases [274, 275]. The micro-
flora gut-brain axis is considered a two-way neuroendocrine
system and plays a pivotal role in oxidative stress response.
Dietary ingestion of antioxidants, such as probiotics [276],
prebiotics, and polyphenol [277], can influence gut microbiota
composition, thereby contributing to the integrity of the BBB.
Megasphaera massiliensisMRx0029 has antioxidant effects on
differentiated SH-SY5Y neuroblastoma cells [275]. Chronic
stress-induced gut dysfunction exacerbates intestinal hyper-
permeability and disruption of TJ proteins such as ZO-1,
occludin, and claudin-1 in a rotenone-induced mouse model
of PD [278]. Alpha-synuclein (α-syn) deposition and related
neurodegeneration in the intestinal nervous system can
increase intestinal permeability, local inflammation, and oxi-
dative stress, causing constipation in patients with PD. It is
believed that chronic low-grade inflammation in the gut is
the trigger factor for BBB leakage, activation of immune cells,
and CNS inflammation [279].

5.2. Myocardial I/R Injury. Circulatory damage due to acute
myocardial infarction and reperfusion injury can also inter-
fere with systemic blood flow [280, 281]. Therefore, when
myocardial I/R injury occurs, several important organs,
including the brain, are also affected [282, 283]. Importantly,
myocardial I/R injury may lead to the onset of oxidative

11Oxidative Medicine and Cellular Longevity



stress in the brain, BBB dysfunction, mitochondrial swelling,
brain cell apoptosis, and brain death [284]. Recent studies
have also confirmed that myocardial I/R injury causes BBB
decomposition, increased oxidative stress, and mitochondrial
disruption [285]. In addition to myocardial I/R injury,
neurological abnormalities after cardiac surgery are very
common. Neurological complications after cardiac surgery
are one of the most serious complications [286]. Glial cell
injury with the two CSF markers (S-100B and GFAP)
increased respectively by 35% and 25%, and IL-6 and IL-8
increased by 3.5 and 12 times, respectively, in 10 patients
who underwent aortic valve replacement, indicating that car-
diac surgery with cardiopulmonary bypass can lead to brain
inflammation, glial cell damage, and BBB disruption [287].

5.3. Hypertension. Hypertension carries the highest risk for
cardiovascular and cerebrovascular diseases [288, 289].
Damage to target organs, such as the heart, brain, kidney,

and peripheral blood vessels, caused by uncontrolled hyper-
tension affects the structure and function of these important
organs [290]. In recent years, numerous studies have shown
that hypertension is the most important cerebrovascular risk
factor [291, 292]. The main mechanisms involved in
hypertension-induced organ damage include endothelial cell
activation, platelet activation, renin-angiotensin system acti-
vation, and oxidative stress. Endothelial dysfunction occur-
ring under conditions of uncontrolled hypertension may be
a potential underlying factor leading to vascular inflamma-
tion and BBB destruction [293].

Ang II-mediated proinflammatory effect is now widely
recognized as a key mechanism for promoting excitatory
hypertension in sensory nerves, and growing evidence sup-
ports that microglia are the key cellular targets that mediate
the proinflammatory effect of central Ang II [294, 295].
Besides, recent studies also support that this mechanism con-
tributes to the destruction of the BBB in hypertensive states
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Myocardial I/R injury

IL-8
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Micro�ora gut-brain axis
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Figure 3: Schematic illustration of how ROS can affect the BBB via mechanisms interconnecting multiple organ systems. (A) Microflora gut-
brain axis. Probiotics and pathogens can affect the composition of the intestinal flora and, thus, affect the integrity of BBB. (B) Myocardial I/R
injury. It causes oxidative stress in the brain through mitochondrial dysfunction and inflammation, leading to BBB dysfunction. (C)
Hypertension. Endothelial dysfunction, microglial activation, Ang II-mediated pathways, and the subfornical organ-paraventricular
nucleus of the hypothalamus-rostral ventrolateral medulla pathway (SFO-PVN-RVLM pathway) may contribute to ROS production
leading to the destruction of the BBB during hypertension. (D) Diabetes. Increased mitochondrial oxidative stress can be caused by
hyperglycemia. This induces peripheral blood cell loss and is a prerequisite for BBB destruction.
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[296]. Ang II-mediated ROS production in the SFO-PVN-
RVLM pathway is also considered to be a key factor in the
sympathetic excitability of hypertension [297]. In this sense,
in addition to the release of various proinflammatory cyto-
kines, activated microglia also produce and release ROS
[298]. Besides, studies have shown that hypertension can
aggravate cerebrovascular oxidative stress caused by mild
craniocerebral injury through the protective effect of the
mitochondrial-targeted antioxidant peptide SS-31 [299].
Renovascular hypertension also significantly increases brain
AT1R and oxidative stress in the brain and plasma [300].

5.4. Diabetes. Recent evidence has demonstrated that diabe-
tes is a potential cause of neuropsychiatric disorders such
as stroke [301], cerebral microangiopathy [302], diabetes-
related cognitive decline [303], and BBB disruption [304].
Diabetes-related cognitive decline is characterized by
impaired cognitive function and neurochemical and struc-
tural abnormalities, mainly involving neuronal damage
caused by glucose-driven oxidative stress [305, 306]. In diabe-
tes, increased mitochondrial oxidative stress is a mechanism
for hyperglycemia-induced pericyte loss as a prerequisite caus-
ing BBB disruption [307]. It was shown that decreased GSH
and SOD and elevated HNE in tissues of the early brain of
diabetic mice, as well as a decreased number of late pericytes,
led to BBB disruption [308]. Studies have shown that
neurons and glial cells in different brain regions (such as
the hypothalamus, lateral amygdala, and cerebral cortex) of

diabetic rats promote the expression of iNOS, IKK, IKB,
and NF-κB, while also inhibiting the expression of microglial
CD11b and astrocyte GFAP [309]. Glycosylation of methyl-
glyoxal with amino acids can generate superoxide radical
anions [310]. Therefore, methylglyoxal damage to proteins
can be mediated by oxidative stress generated by ROS, which
may cause protein carbonyl formation [311]. Increased
methylglyoxal and decreased GSH in diabetes lead to
increased BBB permeability and increased I/R damage in
the brain of mice [312].

6. Clinical Approaches towards Oxidative
Stress in Neurological Diseases

Numerous studies have been conducted on various antioxi-
dant agents. We here discuss the latest clinical evidence of
potential biomarkers (Table 2) in neurological diseases such
as noncoding RNAs (ncRNAs), exosomes, C1q and tumor
necrosis factor-related protein 9 (CTRP9), uric acid, and F2-
isoprostanes, and antioxidant drugs (Table 3) have been
extensively investigated, such as edaravone, N-acetylcysteine
(NAC), minocycline, metformin, fingolimod, idebenone, and
dimethyl fumarate (DMF). They may provide more strategies
for the treatment of neurological diseases.

6.1. Potential Biomarkers. ncRNAs are a class of functional
RNAs that regulate gene expression in a posttranscriptional
manner. ncRNAs, including microRNAs, long noncoding

Table 2: Potential biomarkers towards oxidative stress in neurological diseases.

Biomarkers Diseases Sources Methods Ref

NcRNAs

miR-27b AIS Rat striatum and PC12 cells qRT-PCR [313]

miR-210 IS Ischemic penumbra regions of the right cerebral cortex qRT-PCR [314]

miR-186 AD Hippocampal neuronal cells qRT-PCR [315]

lncRNA SOX21-AS1 AD Hippocampal neuronal cells qRT-PCR [316]

Exosomes

α-SYN and DJ-1 PD CSF and plasma Differential centrifugation [319]

CTRP9 Stroke Plasma ELISA [320]

Uric acid AIS Serum Bayer technician [322]

F2-isoprostanes AIS and AD Plasma, serum, urine, saliva, and cerebrospinal fluid GC-MS, LC-MS, and HPLC [325, 326]

Table 3: Antioxidant drugs towards oxidative stress in neurological diseases.

Antioxidant drugs Targets Clinical use Ref

Edaravone ROS, MDA, SOD, Nrf2/HO-1, GFAP, and TJs AIS and ALS [327, 328]

N-Acetylcysteine
Nrf2/HO-1, GSH, SOD, MDA, TAS, vitamin A,

vitamin C, and vitamin E
PD, ALS, AD, and TBI [334, 351–354]

Minocycline
GSH, MDA, NO, iNOS, eNOS, DPPH, MMP-9,

MAP2, GFAP, CD11b, and Iba1
IS and AIS [355–357]

Metformin
ROS, SOD, MDA, GSH, CAT, 8-iso-PGF2α, glutathione,
glutamate, catalase, Nrf2/HO-1, and AMPK/mTOR

TBI, AD, and acute stroke [339, 340, 342]

Fingolimod NO, iNOS, cNOS, tNOS, SOD, MDA, GSH, and GSH-Px RRMS and stroke [358–360]

Idebenone MDA, NO, GSH, and CAT AD and HD [361–363]

Dimethyl fumarate SOD, MDA, GSH, GPx, NADPH, GFAP, Iba1, and Nrf2/HO-1 RRMS and stroke [364, 365]
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RNAs (lncRNAs), and circular RNAs (circRNAs), can be
used as diagnostic biomarkers and are emerging as novel
therapeutic targets for neurological diseases. The study by
Xu and colleagues showed that the inhibition of miR-27b
could alleviate brain injury and upregulate the expression of
Nrf2, Hmox1, SOD1, and Nqo1 after ICH via the Nrf2/ARE
pathway [313]. Knockdown of miR-210 attenuated neuronal
death and the antioxidant stress response effects of vagus
nerve stimulation in the cortex following transient MCAO
[314]. Recently, a study has defined the potential role of
miR-186 as an inhibitor of AD development by downregula-
tion of IL2 through the suppression of the JAK-STAT signal-
ing pathway [315]. lncRNA SOX21-AS1 acted on oxidative
stress-induced neuronal injury in AD mice via the Wnt
signaling pathway by targeting FZD3/5 and may be a novel
biomarker for enhanced AD treatment [316]. Accumulating
evidence suggests that secreted exosomes may serve as vehi-
cles for the transport of a wide range of proteins and immune
markers, thereby potentially initiating or exacerbating patho-
genic processes by fusing with recipient cells, including neu-
rons [317, 318]. Since oxidative stress and mitochondrial
dysfunction influence the underlying mechanisms of mis-
folded α-syn aggregation [319], biomarkers such as DJ-1
(oxidative stress sensor) and α-syn have the potential as
clinical tools for early and accurate diagnosis of PD.

CTRP9 is a novel cytoprotective cytokine with antioxi-
dant effects, which is highly expressed in brain tissue. It has
been reported that high concentration of CTRP9 can reduce
the risk of cerebral infarction and is an independent protec-
tive factor for cerebral infarction [320]. Uric acid is a potent
water-soluble antioxidant that targets free radicals caused by
oxidative damage, including hydroxyl radicals and superox-
ide [321]. In a prospective study involving 881 consecutive
patients, uric acid levels were inversely associated with the
extent of neurological deficits on admission and the final
infarct volume on CT/MRI scans [322]. F2-isoprostanes
(F2-isoP) are widely considered accurate and reliable bio-
markers of oxidative damage that can be measured in plasma,
serum, urine, saliva, and cerebrospinal fluid [323]. F2-isoP
are measured in nanomolar units and are accurately analyzed
using analytical platforms such as high-performance liquid
chromatography (HPLC), gas chromatography-mass spec-
trometry (GC-MS), and light chromatography-mass spec-
trometry (LC-MS). F2-isoP have been studied among
individuals with various neurological conditions such as
acute ischemic stroke (AIS) and PD [324]. Elevated hyper-
acute plasma F2-isoP concentrations independently predict
the occurrence of infarct growth and infarct growth volume
in patients with AIS [325]. Measuring plasma F2-isoP might
be helpful in the acute setting to stratify patients with AIS for
relative severity of ischemic injury and expected progression.

6.2. Antioxidant Drugs. Edaravone, a new antioxidant and
hydroxyl radical scavenger, is the novel scavenger for clinical
use, mainly for nervous system diseases [327, 328]. In vitro
and in vivo data of edaravone suggests that it may possess
broad free radical scavenging activity and protect neurons,
glia, and vascular endothelial cells against oxidative stress
[329]. It was found that the neuroprotective effect of edara-

vone on hippocampal oxidative stress and cognitive impair-
ment may be related to the enhancement of the antioxidant
defense system through activation of the ERK/Nrf2/HO-1
signaling pathway [330]. Similarly, edaravone has been
shown to exert a neuroprotective effect through its ability to
suppress astrocyte activation and markedly decrease MDA
levels and increase SOD levels in stroke events [331]. Edara-
vone was also found to ameliorate such an oxidative damage
by t-PA with protecting outer layers of BBB (in vivo) and
tight junctions (in vitro) [332].

NAC, a well-known antioxidant, is a prescription prod-
uct for treating cystic fibrosis and acetaminophen overdose
and is also widely available as a dietary supplement. It was
found that the antioxidant defense mechanisms of NAC
mainly include directly scavenging free radicals and enhanc-
ing the activation of Nrf2 [333]. Long-term oral administra-
tion of NAC in patients with PD substantially increased the
levels of GSH and thus inhibits oxidative stress [334]. Brain
cortex GSH, total antioxidant status (TAS), vitamin A, vita-
min C, and vitamin E values were improved by NAC treat-
ments in TBI-induced rats [335].

Minocycline is a semisynthetic derivative of the tetracy-
cline group of antibiotics that is capable of crossing the
BBB, which exerts the neuroprotective effect by anti-
inflammatory and antioxidative stress. Patients with AIS
who received oral minocycline combined with tPA had a
significantly better thrombolytic effect by inhibiting the
activity of MMP-9 [336]. Minocycline can downregulate
the expression of iNOS and upregulate the expression of
eNOS in vascular dementia, which restrains oxidative stress
to protect neural function [337]. The present study showed
that minocycline treatment can activate astrocytes and
microglia, attenuate oxidative stress, increase GSH levels,
decrease the content of MDA and nitrite, and reduce neu-
ronal degeneration [338].

Other common drugs for the treatment of type 2 diabe-
tes, such as metformin, a biguanide drug, may also benefit
TBI, AD, and stroke patients [339–341]. Metformin can
improve the neurological function and oxidative stress status
of acute stroke patients with type 2 diabetes, and its mecha-
nism may be related to the AMPK/mTOR signaling pathway
and oxidative stress [342]. Pretreatment with metformin
could activate Nrf2 antioxidant pathways and enhance the
level of glutathione and catalase activities through induction
of AMPK after transient global cerebral ischemia [343]. It has
been reported that metformin plays a neuroprotective role
by inhibiting the level of MDA and 8-iso-prostaglandin
F2α (8-iso-PGF2α) induced by ICH [344].

In addition to the main antioxidants mentioned above,
fingolimod, idebenone, and DMF have a better clinical value
in neurological diseases. Fingolimod is an oral sphingosine-
1-phosphate receptor analog used to treat relapsing-
remitting MS (RRMS). The neuroprotective effect of flavo-
noids against focal cerebral I/R injury in rats may be associ-
ated with the decreased production of oxidative stress targets
including NO, tNOS, iNOS, and cNOS [345]. Idebenone is a
short-chain benzoquinone that is structurally related to
coenzyme Q10 (ubiquinone) and is a potent antioxidant
and electron carrier [346]. It was approved in Japan in
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1986 for the treatment of AD and other cognitive disorders
[347]. Pretreatment with idebenone on pilocarpine could
induce changes in MDA, GSH, NO, and CAT content in
rat hippocampus tissue [348]. DMF is the first line of
disease-modifying therapies for patients who have got
RRMS. Its antioxidant mechanism has been confirmed to
attenuate ROS overproduction, promote Nrf2/HO-1 path-
way activation, increase reactivity of astrocytes and microg-
lia, increase the content of SOD and GSH, and decrease
MDA level for the treatment of MS or other demyelinating
diseases [349, 350]. Future studies should include more
RCTs to confirm the clinical efficacy of these treatments.

7. Conclusion

In summary, substantial evidence exists that implicates the
role of oxidative stress and BBB disruption in the pathogen-
esis of neurological diseases. A variety of pathological factors
can cause BBB compromise, mainly increasing BBB perme-
ability. Also, direct insults on endothelial cells and the BBB
can affect other components of the neurovascular unit,
namely, peripheral cells, astrocytes, and basement mem-
brane, further aggravating BBB damage and dysfunction. In
neurological diseases, disruption of the integrity of the BBB
is usually the first pathological change that occurs before
clinical symptoms appear. The tight connection, inflamma-
tion, and degradation of MMP caused by oxidative stress are
often accompanied by the opening of the BBB, which eventu-
ally leads to neuronal dysfunction, neuroinflammation, and
neurodegeneration. Studying the relevance of oxidative stress
to the development and outcome of neurological diseases
and protecting the BBB in the early stages of diseases will help
limit disease progression and improve clinical prognosis.
Future research could be directed to examine the importance
of redox imbalances in the pathogenesis of neurological dis-
eases to reveal chelating agents that can be used to curb the
progression of neurological diseases.
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