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Abstract

Reactive oxidative species (ROS) toxicity remains an undisputed cause and link between Alzheimer’s disease (AD)

and Type-2 Diabetes Mellitus (T2DM). Patients with both AD and T2DM have damaged, oxidized DNA, RNA, protein

and lipid products that can be used as possible disease progression markers. Although the oxidative stress has

been anticipated as a main cause in promoting both AD and T2DM, multiple pathways could be involved in ROS

production. The focus of this review is to summarize the mechanisms involved in ROS production and their

possible association with AD and T2DM pathogenesis and progression. We have also highlighted the role of current

treatments that can be linked with reduced oxidative stress and damage in AD and T2DM.

Keywords: Alzheimer’s disease, Type-2 diabetes mellitus, Oxidative stress, ROS production, Antioxidant treatments,

Anti-diabetic drugs

Background

A set of chemical processes through which living bodies

sustain their lives called as metabolism. This includes diges-

tion of food, transport into the body cells and excretion of

waste materials through well-conserved intermediary me-

tabolism. The metabolic pathways are the bio-chemical

processes involving DNA replication, transcription and

translation by enzyme catalysed reaction through which

food or other chemicals from the body transformed into

different chemicals and produce energy for various life

functions [1]. In the living organism’s body cells and tissues

are always gone through the assembly, and disassembly

processes in a regular manner involving several metabolic

pathways. Disturbs in metabolic process by any external or

internal factors may result in metabolic disorder followed

by many types of life-threatening diseases. The understand-

ing of the cellular and molecular mechanism for incurable

diseases like Alzheimer’s disease (AD) and Type-2 Diabetes

Mellitus (T2DM) has been progressing rapidly, which also

enhances the therapeutic approaches [2].

It has been noteworthy that the advancement in diagnos-

tic and therapeutic approaches improved the disease man-

agement. However, pathophysiology of many diseases is still

under way. AD and T2DM, the two-utmost communal

overwhelming diseases caused by neurological and insulin

function disorder, have become a major public health con-

cern worldwide [3, 4], and needed to be address effectively.

A large-scale clinico-epidemiological data indicates that

both T2DM and AD are most common age-associated dis-

eases around the globe. People withT2DM are prone to risk

of AD. The first strong evidence regarding the correlation

between AD and T2DM was reported in Rotterdam cohort

study [3–5]. A number of clinical, epidemiological,

biological, molecular and genetic data supports a patho-

physiological link between T2DM and AD, including

obesity, impaired glucose, cholesterol metabolism, and

hypertension [6–8]. Presence of these symptoms altogether

known as metabolic syndrome (MetS) and could signify a

pathological connection between impaired metabolism and

several neurological disorders [9, 10]. Uncontrolled in-

creased blood glucose is a major cause of T2DM, which is

associated with injury of insulin-producing pancreatic β-

cells or by insulin sensitivity in adipose or muscle tissues

[11, 12]. Both T2DM and AD induce disease severity based

on same path-physiological mechanisms, including
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mitochondrial damage and formation of advanced glycation

products (AGEs). Both mitochondrial damage and AGEs

are influenced by induced oxidative stress, which not only

impair mtDNA and RNA but also affect protein and lipids

[13, 14]. Several studies found induced levels of DNA,

RNA, protein and lipid oxidative products in T2DM and

AD like 8-hydroxyguanosine, 8-hydroxydeoxyguanosine,

protein carbonyls and nitrotyrosine; and lipid peroxidation

markers, for example, 4-hydroxynonenal, F2-isoprostanes,

and malondialdehyde [15–21].

Oxidative stress has been proposed to play a signifi-

cant role in T2DM and AD progression. The present re-

view highlights the complex mechanism involved in the

production of reactive oxygen species (ROS), induced

oxidative stress, and their impact on T2DM and AD

progression. Moreover, we also highlight the possible

treatments to cope with the bad effects of oxidative

stress in T2DM and AD.

ROS production and oxidative damage

ROS in living organisms was first described in 1954 [22,

23]. In 1969, theory of oxygen toxicity was expressed in aer-

obic organisms after the discovery of superoxide dismutase

(SOD) by McCord and Fridovich. ROS production can be

associated with age-related diseases, their developmental

processes and cell singling pathways [24, 25]. Oxidative rad-

icals have very short lifespan and react rapidly with other

molecules [26]. Presence of transition metals, especially Fe

and Cu can help to clarify and explain oxidative damage to

living cells [27]. Important oxidants in the living organism

includes ROS, reactive nitrogen species (RNS) and sulphur-

centred radicals. Although not all of them are radicals but

in many cases, these non-radicals can produce radical spe-

cies by reacting cellular compounds and damaging them by

oxidation [28]. The ROS can be classified into two groups;

radicals and non-radicals. The radicals contain superoxide

(O.
2
−), alkoxyl (RO.), peroxyl (ROO.), hydroxyl (OH.), hydro-

peroxyl (HO.
2) and nitric oxide (NO.). The non-radicals in-

clude hydrogen peroxide (H2O2), organic peroxides

(ROOH), aldehydes (HCOR), hydrochlorous acid (HOCL),

peroxynitrite (ONOOH/ ONOO−), ozone (O3) and singlet

oxygen (1O2) [29, 30].

ROS and RNS can be generated through exogenous and

endogenous sources [28]. Exogenous sources may include

UV radiations (direct oxidation of cellular components)

[31, 32], ultrasound, drugs (like narcotics, anaesthetizes,

adreamicine, nitroglycerine and belomycinem) [33], food

(containing oxidants such as transition metals, aldehydes,

fatty acids and peroxides) [34], γ- radiations [35], pollutants,

xenobiotics and toxic chemicals (alcohol, phosphine, mus-

tard gas) [36, 37]. The endogenous sources may include

neutrophils, cytokines and other components of white

blood cells [38, 39], direct ROS producing enzymes such as

NO synthase, indirect ROS producing enzymes such as the

xanthin oxidase, mitochondrial, metals and side effects of

various diseases [40, 41]. These molecules ultimately target

the macromolecules like proteins, lipids and nucleotides

that result in genome instability and impaired organ func-

tions [30–34]. These molecules are critical for neuronal

and pancreatic beta cell stability and functions [42–44].

ROS readily attacks and generates a variety of variety DNA

lesions. These lesions could result in DNA base transver-

sions (e.g. G:C to T:A) [35–37]. More than 200 clinical dis-

orders have been associated with early initiation of ROS.

These disorders may include T2DM, AD, cardiovascular

damage, inflammation, intestinal tract disease, eye diseases,

brain degenerative impairments, aging, hemochromatosis,

thalassemia, and Wilson disease [45, 46].

In living organisms, Oxidants and antioxidants play a

significant role in regulating free radical balance within

the body produced during active metabolism. A dis-

turbed endogenous antioxidant system favors shift to-

wards more pro-oxidants production called as “oxidative

stress.” If it shifts towards more production of antioxi-

dants or reducing power termed as “reductive stress”

[25, 30, 47–49]. As induced oxidative stress impairs nat-

ural defense by unbalancing the oxidants and de-oxidant

ratio, balancing oxidative stress is an emerging therapy

in various diseases. Figure 1 explains the detailed mech-

anism involved in the ROS generation in mitochondria.

ROS as cellular defence
ROS generally maintains the normal physiological func-

tions and cellular defense of the body. Many living organ-

isms survive below a specific homeostatic set point [24].

Although ROS production is beneficial for cellular mech-

anism, their excessive quantities are always toxic and lead

to oxidative damage of many biological functions [25, 50].

To reduce its toxicity, mammalian cells have evolved

defense mechanisms, including different DNA base exci-

sions and strand repair enzymes [51, 52]. In this way, liv-

ing organisms have not only adapted themselves to

develop self-protective mechanisms for ROS but also able

to use it constructively [24, 53]. Intracellular low level of

ROS may act as signaling molecules in many physiological

processes, including redox homeostasis and cellular signal

transduction [54]. The divergent effects of ROS on many

cellular processes suggest that ROS is not merely detri-

mental by-products, but also generated purposefully to

mediate a variety of signaling pathways.

Oxidative stress in T2DM

DM is a metabolic disorder categorized into two main

groups: Type I (Insulin dependent) that is due to

immune-mediated beta-cells destruction and lead to insu-

lin deficiency, and Type 2 (Non-Insulin dependent) that is

due to insulin secretion defects and resulted in insulin re-

sistance [55]. Prolonged period of high blood-glucose
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levels generally linked to both macro and micro vascular

complications like CVDs, strokes, peripheral vascular dis-

eases, neuropathy, retinopathy and nephropathy [56–58].

In addition to elevated blood-glucose levels, other factors

include high-cholesterol level (hyperlipidemia) and oxida-

tive stress leading to high risk of complications [59]. Ac-

cording to epidemiological studies, diabetic mortalities

can be explained by an increase in vascular diseases that

could be a cause of oxidative damage [60]. Current re-

search reported that apo-lipoprotein component of LDL

instead of lipid alone could be a cause of oxidative damage

in DM [60].

Production of free radicals and their high levels in dia-

betic patients could be non-enzymatic (i.e. glycated pro-

teins, glucose oxidation and increased lipid peroxidation)

or enzymatic (over/under-expressed levels of enzymes like

catalase (CAT), superoxide dismutase (SOD) and glutathi-

one peroxidise (GSH–Px)). These abnormalities may lead

to damage of enzymes, cellular machinery and increased

insulin resistance due to oxidative stress [61, 62]. Recent

studies have provided a clear evidence that the main

source of ROS/ RNS production in T2DM is mitochondria

[63–65]. Abnormal mitochondrial functions and excessive

ROS/RNS production play a primary role in onset T2DM

and its complications. These studies also support the pos-

sibility for mitochondrial-targeted antioxidant’s therapy of

T2DM complications [66].

During cellular metabolism, insulin reacts with it re-

ceptors that lead to activation of Akt and translocation

of GLUT4 to cell membrane. Impaired oxidative phos-

phorylation, reduced NADH oxidoreductase and citrate

synthase activities resulted in insulin resistance [6, 67].

This insulin resistance could be the result from either

impaired fatty acid acetyl-CoA oxidation or from subse-

quent accumulation of intracellular lipid and diacylglyc-

erol with consequent activation of protein kinase C and

ROS production. This impaired fatty acid oxidation re-

sulted in activation of serine kinases followed by phos-

phorylation of insulin receptor substrates and interfering

insulin signal transduction [68].

Multiple studies have observed the presence of oxidative

markers like F2-isoprostane and nitrotyrosine in urine,

plasma and tissue levels of diabetic patients [69, 70]. ROS

and NOS production in DM can be promoted by both en-

zymatic and non-enzymatic sources. Main enzymatic

sources may be endothelial and vascular smooth muscle

cells, NADPH oxidase, xanthine oxidase, cyclooxygenase

and uncoupled NOS whereas, non-enzymatic sources in-

clude mitochondrial respiratory chain, AGES, glucose aut-

oxidation process and activated polyol pathway [71].

ROS production has become a fundamental part in the

T2DM pathogenesis and severity [72]. During the normal

glucose oxidation process, the final product is NADH and

pyruvate. NADH can reduce pyruvate to lactate or

donates its reducing equivalents to electron transport

chain. On the other hand, in mitochondrial pyruvate en-

ters into Krebs’s cycle, get oxidised and produce CO2,

H2O, NADH and FADH2 [73]. In glucose autoxidation,

glucose forms radical and converted to reactive ketoalde-

hydes and superoxide, consequently, produced hydroxyl

radical in presence of transition metals via H2O2 [74, 75].

Superoxide can also form peroxynitrite radicals by react-

ing with nitric oxide [76, 77]. Hyperglycemia induced

superoxide formation in the mitochondrial electron trans-

port chain by driving the inner mitochondrial membrane

potential upward through the generation of excessive elec-

tron donors in the Krebs’s cycle [78]. This situation re-

sulted in hyperpolarization of mitochondrial membrane

potential and increase in ATP/ADP ratio followed by an

inhibition of complex-III and electron accumulation at co-

enzyme Q. Consequently; this situation accelerates free

radical formation by partial reduction of O2 and reduces

ATP synthesis [79, 80].

Superoxide presence decreases glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) activity by 66% and

resulted in PARP activation and NAD+ depletion [81]. In

hyperglycemia, glucose conversion to the polyalcohol

sorbitol and fructose via the polyol pathway reduces NAD
+ to NADH. Sorbitol oxidation through NAD+ escort to

increased cytosolic NADH: NAD+ ratio and inhibit the

GAPDH activity, and consequently, increased production

of triose phosphate [80]. Increased triose phosphate in-

duced formation of methylglyoxal and diacylglycerol

(DAG), PKC and PARP activation [82, 83]. Hyperglycemia

also increases hexosamine pathway flux because of in-

creased bio-availability of nutrients and enhances

fructose-6-phosphate levels by inhibiting GAPDH by ROS

[84, 85]. The outcome of the hexosamine pathway is

UDP-N-acetyl glucosamine that triggers many transcrip-

tion factors and pathways, and lead to microvascular com-

plications of T2DM [86, 87].

Overproduction of superoxidase radicals is countered

by superoxide dismutase’s (SODs) and by uncoupling

proteins (UCPs). In hyperglycemia, over expression of

UCPs reduce mitochondrial hyperpolarization and ROS

formation, and block the glucose induced cell death.

Superoxide radical generation was enhanced in patients

with diabetic endothelial cells that promote oxidative

stress toxicity [88, 89]. A study by Nishikawa et al. ob-

served the excessive generation of pyruvate via acceler-

ated glycolysis and production of superoxides radicals at

the Complex-II level under hyperglycemia [79, 90]. Al-

though glucose is least reactive reducing sugar, it may

lead to Amadori product through Schiff base formation

by reacting free amino acids. These Aamdori products

accumulate on proteins and start the production of

AGEs [79, 91] that in turn increase ROS production

through binding to RAGE (receptors of AGEs) and
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resulted in the NF-kB induction and NADPH oxidase

formation [92, 93]. NADPH oxidase is major source of

O2
−. Levels of NADPH and O2

− were increased in vascular

specimens in diabetic patients [71, 94] and [95]. Binding

of AGEs to their receptor RAGE enhanced cytokines

and adhesion molecule’s production [96, 97]. This bind-

ing also has an abnormal effect on matrix metallopro-

teinases (MMPs) and transforming growth factor (TGF)

[98, 99]. Hyperglycemia also promotes ROS generation

by lipid peroxidation of low-density lipoprotein (LDL)

[100, 101]. Peroxyl radicals produce hydroperoxides by

removing one hydrogen from lipids and propagate fur-

ther [76]. ROS production also induces cellular stress-

sensitive pathways like NF-kB, JNK/ SAPK, P38 MAPK

that leads to cellular damage, and late complications in

T2DM [102]. Figure 2 summarizes the mechanism

involved in progression of T2DM under high oxidative

stress conditions.

Oxidative stress in AD

Clinically AD is characterized by sinister onset, slowly

progressive and sporadic disorder, with episodic mem-

ory; instrumental signs include aphasia, apraxia, and ag-

nosia, together with general cognitive symptoms, such as

impaired judgment, decision-making, and orientation

[103]. There are two opinions about the onset of aging.

One view is that, it is genetically programmed develop-

mental processes, like the cell senescence, the neuro-

endocrine and immunological changes. Another opinion

presents that, it is caused by accumulation of somatic

mutations and oxidative stress randomly at any time

[104]. The crucial events occur during aging progression

Fig. 1 ROS production in mitochondria. Mitochondria is the primary source for ROS production. There are nine different types of enzymes that have the

capacity to generate ROS. Among them, some are present on outer mitochondrial membrane (OMM) i.e. Cytochrome b5 reductase and monoamine

oxidases (MAO) and while other found in inner membrane, i.e. dihydroorotate dehydrogenase (DHOH), dehydrogenase of α-glycerophosphate (α-GDH),

succinate dehydrogenase (SDH), aconitase, α-ketoglutarate dehydrogenase complex (KGDHC), Complex-I and Complex-III. MAO, DHOH and α-GDH

produces H2O2 via direct or indirect biochemical reactions, while cytochrome b5, Complex-I and complex-III produce superoxides. Complex-I produced

superoxides in presence of NADH and require tightly bounded ubiquinone. Rotenone can block electron transport by inhibiting ubiquinone and produce

ROS, and requires a high degree of redox reduction on the rotenone binding site. The second process involved in ROS production from Complex-I has

been known as ‘reverse electron transfer (RET)’. In RET, electrons are transferred against the flow of redox potentials of electron carriers (i.e. from reduced

co-enzyme Q to NAD+ not to oxygen). Complex-III can produce a lot of superoxides during Q-cycle (a multifarious reaction system involved oxidation of

coenzyme Q while, cytochrome c acts as electron carrier/acceptor) that rapidly generate H2O2 by dismutation. Antimycin can inhibit the quinone reducing

site and lead to accumulation of unstable semiquinone and stimulate superoxide production. In the same way KCN and oligomycin can inhibit electron

transfer in complex-IV and V respectively, leading to ROS production. SDH is thought to produce ROS via its FAD, while aconitase generate hydroxyl radical

by releasing Fe2+. PDHC and KGDHC can produce both superoxides as well as hydrogen peroxide. After generation, superoxide can react with many

available molecules or free radicals to form different types of free radicals who can accelerate the cellular damage. To cop superoxide, manganese

superoxide dismutase (MnSOD) can convert superoxide to hydrogen peroxide that can be additional converted to water and oxygen by the action of

several enzymes like catalase (CAT) or glutathione peroxidase (GPX). For further details, see the text
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or their onsets are telomere erosion, oxidative stress and

cell senescence. Aged cell phenotype showed futile ROS

regulation on mitochondrial super-complexes that

causes ROS signalling changes [105]. The neuronal cells

are highly sensitive and susceptible to oxidative stress as

a result of its high intake of oxygen, lipid content and

scantiness of antioxidant enzymes as compared to nor-

mal other body tissues [106]. It has been shown that

with the passage of time and advance age, ratios of ROS

production and antioxidant activities (superoxide dis-

mutase and catalase or glutathione peroxidase enzymes)

are disturbed and oxidative damage of macromolecules

and their product’s build-up in the brain [107–109].

One of the hallmarks of AD is the accumulation of

amyloid beta (Aβ) peptide mostly in mitochondria and it

has been shown that Aβ peptide itself can generate ROS

in the presence of metal ions such as Fe2+ and Cu2+

[110]. In mouse models and autopsy analysis of AD pa-

tients, mitochondrial dysfunction leads to increased ROS

or increased ROS production lead to mitochondrial dys-

function, which in turn enhances Aβ peptide aggrega-

tion. Importantly, these elevated markers for oxidative

stress precede Aβ deposition and neurofibrillary tangles,

suggesting that oxidative stress is an early event involved

in AD pathogenesis. Abnormal production of proteins

and mtDNA mutation may be due to defective or defi-

cient base excision repair (BER) enzymes and its associ-

ated pathways [111–114].

Several hypotheses described oxidative stress as a main

culprit in AD pathophysiology [115, 116]. The nervous

system is rich source of unsaturated fatty acids and iron.

Both these high lipid and iron contents become the tar-

gets for oxidative damage in nervous system. In AD

pathology, decline in synaptic activities, defects and low

energy metabolism with comparatively increased amount

of ROS, reduced antioxidants enzymes levels like Cu/

Zn-SOD, glutathione (GSH) and catalase in frontal and

temporal cortex, and presence of Aβ and NFTs together

lead to mitochondrial dysfunctions and neuronal cell

death. There are many mechanisms responsible for oxi-

dative stress, like sugar modifications, peroxidation of

lipids, oxidation of protein DNA/RNA and production

of free radicals by Aβ itself. These molecules are critical

for neuronal stability and functions [42–44]. In AD pa-

tients, the free-radical production is intimately associ-

ated with unique sources of AD pathology. The Aβ

(formed by proteolysis of a transmembrane glycoprotein

Aβ precursor protein (β-APP)) component of senile pla-

ques is main source of free radical production once it

formed outside the neurons via metal-catalysed oxida-

tion of APP [117, 118]. Metals, especially iron plays a

significant role in free radical production in AD. In-

creased iron contents have been found in Aβ and NFTs

deposits that catalyses hydrogen peroxide (H2O2) and

form hydroxyl radicals by Fenton reaction. Aβ is also

able to boost up the metal ions (such as iron, aluminium

Fig. 2 Oxidative stress production and damage in T2DM. Hyperglycemia is considered as major contributor in ROS production and

associated- damage in T2DM. Induced glucose concentrations may have led to glucose autoxidation, impaired mitochondrial

bioenergetics and over production of ROS. Induced oxidative stress in T2DM can impair a couple of transcription factors and pathways

like P13K, JAK/STAT, JNK, p-38, ERK/MAPK and CDC42 that resulted in insulin resistance. The other glycolytic intermediates can have

led to microvascular complications and endothelial dysfunctions and prone to several diabetic complications
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and copper) capacity to generate free radicals. Aβ has

been shown to produce (H2O2) and releasing thiobabitu-

ric acid reactive substances (TBARS) mainly associated

with hydroxyl radicals (OH) via metal ion reduction. Aβ

also induce neurodegeneration by targeting microglial

NADPH oxidase however, mechanism behind this de-

struction is poorly understood [119].

AGEs that are present in the senile plaques also produce

free radicals by chemical oxidation and degradation, by

binding to their receptors (RAGE) or interacting with

microglia that surrounds the senile plaques. It results in

respiratory blast and production of superoxides and NO

[120, 121]. The membranes from the brain are composed of

proteins and phospholipids. Presence of aluminium in NFTs

stimulates iron-induced lipid peroxidation of oxidisable

polyunsaturated fatty acids (PUFAs) that contain weak

double bond hydrogen atoms. These PUFAs (like arachi-

donic acid, docosahexaenoic acid) resulted in multiple alde-

hydes like acrolein and 4-hydroxy-2-nonenal (HNE). HNE

accumulation was shown in NFTs may cause tau phosphor-

ylation, damage or kill primary hippocampus neurons, gene

induction, crosslinking of cytoskeletal proteins, cytotoxicity

and inhibition of cyclins D1 and D2. HNE also disrupts the

binding of histones to DNA and increases chances of DNA

oxidation in AD brain [122]. F2-isoprostanes a lipid reliable

peroxidation marker is also produced from non-enzymatic

peroxidation of arachidonic acid [123].

The oxidation of amino acids like lysine, arginine, pro-

line and histidine via peroxynitrite generates protein car-

bonyls and nitrile that were increased in AD [124, 125].

Increased levels of protein carbonyls may decrease ATP

availability in synaptic terminals and disrupt the cyto-

skeletal protein assembly [125]. The protein oxidation

via nitric oxide produce ONOO radical and nitro-

tyrosine that are important non-invasive marker for

protein oxidation in AD [125, 126]. The other protein’s

oxidation such as ubiquitin, methionine and cysteine is

associated with NFTs and the number of tangles has in-

verse relation with soluble proteins. [127].

The oxidation of DNA and RNA especially mtDNA in

AD results in hydroxylated base’s products, DNA-protein

crosslinking, strand breakage and impairment of DNA re-

pair system. The levels of 8OHdG were high in AD when

compared to the age-matched controls [128, 129]. RNA

oxidation is a primary target in AD as RNA is less secure

than DNA due to single stranded and specific proteins like

histones. The non-coding RNAs are also involved in synap-

sis, neuronal specification and differentiation, and regula-

tion of dendritic spine development. So their damage due

to oxidative stress contributes in development of neurode-

generative diseases specially AD [130, 131]. Nunamara et

al., extensively reviewed the RNA oxidation in neurodegen-

erative diseases and discussed the biological significance

and cellular mechanism against RNA oxidation [132].

As mitochondria are concerned with a regulatory role in

cells through apoptosis, their dysfunction due to oxidative

stress may lead a disruption of cellular functions [133,

134]. Apoptosis activates caspases via proteins like BAD,

BOX and results in morphological and biochemical

changes leading to cell death whereas anti-apoptotic pro-

tein BCL-2 over expression may reduce Aβ-induced tox-

icity in AD via inhibiting p38, MAPK and NFkB pro-

apoptotic activation [135–137]. Aβ presence also de-

creased the mitochondrial respiratory chain complexes ac-

tivity, while the activity of ATP synthase α-chain reduced

with accumulation of NFTs [129, 138, 139]. Figure 3

highlighted the important pathways involved in damage

created by oxidative stress in AD.

The effect of oxidative stress on both T2DM and AD

remained to define. Intervention to excessive ROS pro-

duction through scavenging free radicals and increasing

antioxidant defence mechanisms are extensively antici-

pated as anti-aging therapy and also managing AD and

T2DM. However, positive and conclusive results have not

been achieved even with the association of supplementa-

tion and pharmacological or natural compounds. It is pos-

sible that few antioxidants may become useless or even

harmful sooner or later. Supporting evidence has been ob-

tained from the previous research, which indicates the sig-

nificant role of oxidative stress in the development of

neuronal injury in the diabetic brain and the beneficial ef-

fects of antioxidants. We must take into account, that re-

search studies also reported on the failure of antioxidant’s

therapies for T2DM. In contrast, the ongoing large clinical

trials will also shed additional light on the clinical merit of

antioxidant supplementation [66, 140]. These studies sug-

gest that the clearly linking products i.e. deregulated ROS

production and oxidative stress in both disorders may lead

to common therapy.

Conclusions
The multi-factorial and inexorable phenomenon of disease

complexity of both T2DM and AD leads to gradual reduc-

tion of resistance towards oxidative stress, and metabolic

disorders that are the major hallmarks of both illnesses.

Genetic studies have improved our understanding of path-

ways that lead to both disorders that highlighting possible

interventional targets. Association between AD and

T2DM suggests that drug givens to AD patients would be

more effective as given to DM [6, 114, 141, 142]. There-

fore, targeting T2DM might be more constructive for

treating AD. It is also suggested that drugs which used to

treat T2DM may affect AD progression ether directly in

the brain, provided they pass the blood-brain barrier or in-

directly, by modification of systemic blood-glucose con-

centrations, insulin, inflammatory markers and AGEs.

Hence, recent research mostly focuses on treating AD

through anti-diabetic drugs that have a direct effect on the
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brain tissue since brain insulin resistance is often associ-

ated with AD [143]. Preclinical and postmortem neuro-

pathological studies have identified significant effect of

normal insulin signaling in proper functioning through

the brain. These findings have given way for investigating

novel therapeutic agents for common AD and T2DM

pathways [6].

Epidemiological research data has substantiated a strong

linkage between T2DM and AD whereas the exact mech-

anism behind this enhanced risk yet to be discovered.

Both AD and T2DM have a high incidence rate at ad-

vanced age. Several recent researches reported communal

pathological causes between T2DM and AD and there-

fore, common preventive and therapeutic agents might be

effective for both types of disease. The oxidative stress has

a transitional part in the AD development. More research

is requisite for explore explosive rate in T2DM in the

younger generation. Unfortunately, observations made for

T2DM and AD drugs seemed to be working in vertebrate

and invertebrate models of T2DM, but appears to fail dur-

ing clinical trials except intranasal insulin therapy. Consid-

ering present review, enzyme inhibition is also answering

and promising strategy against both types of disease. How-

ever, its role in patho-physiology and therapeutics is still

needed to explore fully. In conclusion, shared pathogen-

esis and curative agents make possible to manage life style

pattern and use of new therapeutic agents.

Future perspectives

A better understanding of oxidative stress production

and coping in the AD and T2DM might offer some

novel targets for therapy. It is further to point out

that whether oxidative stress is the eventual basis of

pathogenesis; anti-oxidant therapy gets the reward for

ultimate treatment. The strategy should be designed

in aims of specifically targeting free radical produc-

tion and oxidative stress that limit its production and

progression in the body but how is it possible?

Natural products, which are extensively studied to

control different diseases by hindering or suppressing

ROS production, might be a good choice. Further

work is required for better understanding the role of

oxidative stress in AD and T2DM progression hence

new techniques are compulsory against these

Fig. 3 Production and mechanism of oxidative stress in AD. Brain consumes more oxygen than the whole body, and is a rich source of fatty acids and

metals that are more susceptible to oxidative damage in AD. Two main hallmarks of AD i.e. Aβ plaques and hyper-phosphorylated tau neurofibrillary

tangles (T-NFTs) are involved in production as well as promotion of oxidative damage. Any abnormal increase in ROS due to presence of Aβ and NFTs

promote mitochondrial DNA/ RNA damage that resulted in mitochondrial dysfunction and membrane damage. Other damages associated with

oxidative stress in AD are autoxidation of glucose that resulted in production of AGES and alternatively induce Aβ- toxicity. As oxidative stress, itself

induce Aβ and NFTs formation, the result is induced apoptosis, neuronal death and impaired synapsis
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substances. Poor knowledge of basic mechanisms in-

volved in aging process, which might interfere to pre-

vent or delay age-related pathologies, like T2DM,

cardiovascular disorders, neurodegenerative disorders,

and cancer. More investigations are clearly needed to

clarify the discrepancy in the role of ROS and anti-

oxidant enzymes in aging process and age-related dis-

eases and to understand the precise role of free

radicals play in that processes.
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