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ABSTRACT This paper presents the experimental characterization of different rectifier circuits using

indium–gallium–zinc-oxide thin-film transistor technologies either at NFC or a high frequency range

(13.56 MHz) of RFID. These circuits include a single ended rectifier, its differential counterpart, a

bridge rectifier, and a cross-coupled full wave rectifier. Diodes were implemented with transistors using

conventional processing steps, without requiring short channel devices (L=15µm). Hence, there is no

need for either extra masks or processing steps unlike the Schottky diode-based implementation. These

circuits were fabricated on a PEN substrate with an annealing temperature not exceeding 180 ◦C. This

paper finds a direct application in flexible low-cost RFID tags since they enable integration of the required

electronics to implement tags with the same fabrication steps.

INDEX TERMS a-IGZO TFT, rectifiers, flexible electronics, RFID tags.

I. INTRODUCTION

RFIDs are playing a vital role in many applications span-

ning from item level tracking in warehouse, supply chain to

security [1]. In near field communication range (< 1m) high

frequency (HF) passive RFID tags can become even more

attractive in tremendous applications if they can be imple-

mented on flexible substrates with low cost. Indium-Gallium-

Zinc-Oxide Thin-Film Transistors technology (IGZO TFT)

is a perfect choice to implement HF passive RFID tags

due to unique technology advantages, such as, compati-

bility with low-cost and low-temperature fabrication tech-

niques [2], [3]. Moreover, robust operation under mechanical

stress can be achieved by using thin flexible substrates

and considering neutral strain point principles for stack

design [4].

A typical RFID or NFC system with a passive tag is

shown in Fig. 1. Passive tags do not require on-chip power

supply. When the reader sends a signal to the tag, the

printed antenna in the tag receives the RF signal. In order

to receive maximum power, a proper matching network is

needed. This RF energy will be converted into DC with the

help of a rectifier circuit, where this DC voltage acts as

the supply for the digital circuits in the tag. Based on the

data driven by this digital circuit the modulation element

(a simple TFT) together with antenna sends the data to the

reader for identity verification. It can be noticed that the

rectifier is one of the important functional blocks in this

passive tag.

Many works have been reported on rectifiers implemen-

tation with organic and oxide TFT technology [5]–[12]. The

cross-coupled rectifier output amplitude is compromised at

13.56MHz due to inferior mobility of organic TFTs [5].

Though lower frequency of operation is noticed from [6],

cross-coupled designs with oxide TFTs [7], [8] have shown

superior performance at this frequency. In fact, the fullwave

and halfwave rectifier reported in [9] and [10] are able to
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FIGURE 1. Typical RFID communication block diagram.

meet UHF range with schottky diodes. While [9] reports

rectifier on glass, the rectifier reported in [10] is on flexible

substrate. Coming to the schottky diode based implementa-

tion, the processing steps and masks are different from the

conventional TFT fabrication process, which increases the

fabrication cost.

It should be noted that when the complete RFID tag

is being implemented with same processing steps without

increasing the number of masks, low fabrication cost can

be attained, which is the main requirement of many real

world applications that need RFIDs. It is also worth to note

that all reported works with oxide TFTs [7], [8] are lim-

ited to high temperatures (≥ 300
◦C) and rigid substrates,

whereas, real-world applications mostly demand electron-

ics on flexible substrates. In addition, [11], [12] report

interesting works on RFID tags using organic p-type TFTs

on foil. Here, the complete system and the rectifiers are

operated at a supply voltage ≥ 18V whereas, low power

IOT system demands low supply voltages. As a route to

overcome these limitations, the present work reports and

compares, for the first time ever, rectifiers with differ-

ent architectures based on a low-temperature flexible oxide

TFT process, able to achieve 13.56MHz operating fre-

quency with only <6V supply voltage. The process is

fully compatible with polyethylene naphthalate (PEN) sub-

strates and makes use of large-sized transistors (L=15µm),

fully compliant with current large area electronics fabrication

tools. Note that the adoption of miniaturized devices (e.g.,

L=2µm), besides imposing many challenges to conven-

tional lithographic tools, can bring undesirable short-channel

effects [13].

II. DEVICE AND CIRCUIT FABRICATION

A 60 nm thick Mo gate electrode is sputtered on a

125µm thick PEN substrate. Then, a 180 nm thick multi-

layer/multicomponent dielectric is cosputtered without inten-

tional substrate heating, using SiO2 and Ta2O5 targets,

followed by dry etching process in SF6 atmosphere; A

20 nm thick semiconductor layer is then deposited with-

out intentional substrate heating, using ceramic IGZO target

(In:Ga:Zn atomic ratio of 2:1:2) and Ar+O2 atmosphere and

patterned by liftoff. Source and drain electrodes are sput-

tered with 60 nm thick Mo. Gate, dielectric and source/drain

FIGURE 2. (a) Cross sectional view of the TFT and interconnects adopted
in this work (b) Linear transfer characteristics of a single TFT with
W = 320 µm and L = 15 µm at VDS = 0.1 V . Subset containing individual
TFTs, rectifiers and other circuits fabricated on a 125µm thick PEN flexible
substrate.

patterning is done by dry etching process in SF6 atmo-

sphere; The interlevel dielectric is 1µm thick parylene layer,

patterned using a dry etching process in O2 atmosphere;

On top of this layer, metal 3 is deposited: by sputtering

400 nm thick Mo, followed by dry etching process in SF6
atmosphere. The devices were annealed at 180◦C for 1

hour in air before source/drain deposition and at the end

of the process. The cross sectional schematic view of the

IGZO TFT and interconnects are presented in Fig. 2(a).

In order to minimize the parasitics due to interconnects

(overlap of gate to source/drain) and to further improve the

yield of the process for circuits operation with this tech-

nology, metal 3 (400 nm thick Mo) is being used. This

brings the additional advantage of achieving IGZO back-

channel surface passivation with the interlevel dielectric,

i.e., no extra processing steps are required to assure robust

operation of the TFTs. Inset of Fig. 2(b) shows a PEN sub-

strate containing isolated TFTs and various circuits including

rectifiers. It also demonstrates linear transfer characteristics

of the TFT with W = 320µm and L = 15µm. These

devices are showing a turn-on voltage of −0.5V, mobility of

12 cm2/V.s and on-off ratio exceeding 107. Small clockwise

hysteresis, concomitant with charge trapping phenomena at

dielectric/semiconductor interface, is noticed from the plot.
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Transistor performance is unaffected by bending radius of at

least 15mm [14].

III. CIRCUIT DESIGN

Four rectifier circuits are being considered in this work;

(i) Single ended (ii) Differential (iii) Cross-coupled and

(iv) Bridge. All these circuits are implemented with the

IGZO TFTs and their circuit schematics and micrographs

are presented in Figs. 3 and 4. In these circuits, the con-

ductive path during positive and negative half cycles are

being demonstrated by red dashed line and violet dotted

line, respectively, as can be noticed from Fig. 5. In single

ended implementation, the input capacitor (C1) blocks the dc

value and feeds only signal to diodes (D1 and D2). During

positive half cycle, D1 turns ‘ON’ and D2 turns off. The

load capacitor charges with the current flowing in the cir-

cuit and Vout is almost equal to one threshold voltage (VTH)

less than Vin, i.e., Vin − VTH , where VTH drop is due to

diode-connected TFT used for realizing D1. During the neg-

ative half cycle these diodes interchange their roles and C1

is connected to ground. When there is a no leakage path at

the output, the same voltage level at previous positive half

cycle is maintained at the output. The operating principle

can be adapted to the differential version implementation

(see Fig. 5(b)). This acts as a full wave rectifier. Especially

when there is finite resistive load, full wave rectifier gives

improved output compared to the single ended or half wave

counter part, as there is always a conductive path in the

circuit for both positive and negative half cycle of the input.

Same analysis can be applied to the cross-coupled and bridge

rectifiers. Their conductive paths for different inputs can be

observed in Fig. 5(c) and (d). Differential output in case

of bridge rectifier is almost 2(Vin - VTH), whereas, in the

cross-coupled design, one VTH drop is being replaced with

the overdrive voltage (VOD) of T1 or T2 (see Fig. 5(c)). By

making these TFTs wider, it is possible to reduce the over-

drive voltage and improve output dc compared to the bridge

rectifier.

IV. RESULTS AND DISCUSSION

All the measurements were carried out at normal ambi-

ent with the help of passive agilent oscilloscope probes

(10M�//15 pF) and fixed probe with keysight B1500A. The

frequency response and voltage transfer characteristics (out-

put dc voltage versus input ac voltage peak value) can be

noticed at 13.56MHz from Fig. 6. Expected VTH drop can

be observed from the voltage transfer characteristics, where

VTH variations are within ± 0.2V. For these circuits, TFTs

have a channel length of 15µm and widths are ranging from

80 to 320µm.

At higher frequencies (> 15MHz), the output voltage is

degraded significantly, since it is expected that the tran-

sistors cannot show proper functionality beyond their unity

gain current cutoff frequency [13]. At these high frequen-

cies, there is not enough time for the devices to form the

FIGURE 3. Rectifiers with different configurations: (a) Single ended circuit
schematic (b) Single ended micrograph (c) Differential rectifier circuit
schematic (d) Differential rectifier micrograph. All diodes in these
schematics are being implemented with diode-connected transistors as
shown in Fig. 3 (a).

FIGURE 4. Rectifiers with different configurations: (a) Cross coupled
rectifier circuit schematic (b) Cross-coupled rectifier micrograph (c) Bridge
rectifier circuit schematic (d) Bridge rectifier micrograph.

conductive channel in ‘ON’ state and discharge the com-

plete channel charge, when it moves to the ‘OFF’ state.

Nevertheless, operational yield of the rectifiers at NFC range

can be improved by decreasing the TFT’s channel length

and/or decreasing gate-to-source/drain overlaps [13]. Though

bridge rectifier is showing slightly higher voltage at the out-

put compared to other configurations due to nominal VTH
variations, by employing wider devices, cross-coupled con-

figuration can ensure improved output voltage since VTH
drop will be replaced by the VOD of the TFT. As the device

becomes wider, VOD can be close to zero volts. In fact,

by replacing the diode connected TFTs in Fig. 5(c), with
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FIGURE 5. Circuit operation during positive (conductive path denoted by
red line) and negative (conductive path denoted by violet line) half cycle of
the input: (a) Single ended (b) Differential (c) Cross-coupled [8] (d) Bridge
rectifier.

FIGURE 6. Rectifiers measured response: (a) Frequency response with an
input signal peak voltage of 4.5 V (b) Amplitude sweep when the input
signal frequency is 13.56 MHz.

cross-coupled TFTs, it is possible to eliminate voltage drop in

the circuit and output voltage can be equal to the peak value

of the input voltage, if there is no discharging path at the

output.

V. CONCLUSION

This work analysed different rectifiers from flexible sub-

strates for NFC applications. Expected behaviour can be

noticed from measured result at relatively low voltages to

ensure low-power operation, without requiring miniaturized

devices for 13.56MHz operation. Since all the rectifiers were

fabricated with the same processing steps and masks as the

standard oxide TFT fabrication process at low temperature,

this work opens a window for low-cost flexible RFID tags

that can be used in different applications ranging from item

level tracking to security.
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