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iNTRODUCTION 
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As part of the RLI0 Product Improvement Program (PIP), Oxidizer Heat Exchanger 

(OHE) stages 1, 2, and 3 were designed and fabricated during late 1983 and early 1984. The 

purpose of the OHE is to provide gaseous oxygen to the propellant injector for stable engine 

operation at tank head idle (THI) and pumped idle (PI) operating modes. The design of the OHE 

is reported in FR-18046-3 (Reference 1). Due to fabrication problems, the stage l-and-2 assembly 

was not delivered in time for engine testing. Tests performed on the stage l-and-2 assembly 

during fabrication revealed irreparable leakage in stage 2; stage 1 was subsequently separated 

from the assembly and modified to allow component level testing. Two OHE stage 3 units were 

individually mounted and run on the RLI0-IIB Breadboard Engine XR201-1 in February 1984, 

as reported in FR-18683-2 (Reference 2). The stage 3 engine testing revealed unexpectedly high 

pressure drop and low heat transfer, and an investigation was conducted to determine why the 

design performance goals were not met . 

Stage 1 and stage 3 sin 001 were individually mounted on a modified RLI0 component test 

stand and flowed to determine the performance characteristics of each unit. The second stage 3 

unit (sin 002) was not bench tested. The purpose of the testing was to determine why stage 3 

performance did not meet design goals during engine test and to evaluate the stage 1 concept of 

limiting heat transfer by use of insulation to separate the two propellants. It was also intended to 

supply empirical data to improve the analytical models used to evaluate heat exchanger 

performance. 

This report summarizes the OHE stages 1 and 3 rig testing, and includes the separation of 

the stage l-and-2 assembly and the remanifolding of stage 1. The OHE performance analysis and 

analytical model modifications for both stages are also presented. The flow tests were 

accomplished during the time period from 9 October 1984 to 12 November 1984. 
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The stage 1-and-2 assembly was received from the vendor in a semi-fmished condition after 

excessive leakage to the stage 2 insulation cavity was discovered. Since the stage 2 unit was 

unusable, stage 1 was removed from it. The stage 1 was designed as a low heat transfer heat 

exchanger to vaporize the oxidizer to approximately 5 percent quality during tank head idle 

operation. Complete vaporization was to be provided by the remaining two stages. The low heat 

transfer rate was to be obtained by providing an insulated cavity between the oxidizer and fuel 

passages. Atmosphere changes within the cavity (vacuum, gaseous helium, gaseous nitrogen) 

could also be used to further tailor the heat transfer to meet engine cycle requirements. Stage 2 

was of similar design, but with higher heat transfer to provide oxygen at 5 percent quality during 

pumped idle, with vaporization completed by the stage 3 unit. 

While the stage 1 core was exposed, the H2 and 02 flow passage cross section dimensions 

were measured to determine if any deviations from the original drawing specifications occurred 

during fabrication. Slight reductions in flow areas were found. Manifolds were salvaged from the 

stage 1-and-2 assembly, and modified to fit the stage 1 core to allow its individual flow. The 

remanifolded stage 1 heat exchanger is shown in Figures 1 and 2 . 

A detailed description of the stage l-and-2 assembly and stage 1 remanifolding process is 

presented in Appendix A. Surface roughness and cross sectional dimensions are presented in 

Appendix B. 

B. STAGE 3 

The stage 3 was designed as a high heat transfer unit to complete vaporization of the 

oxidizer from the stage 1-and-2 assembly. It is a compact crossflow heat exchanger intended to 

completely vaporize oxygen which enters at a quality of 5 percent or greater. 

The OHE stage 3 unit tested was PIN CKD 1952, SIN 001 and was built per layout 

L-238388, sheet 10. This unit was previously tested on engine XR201-1 on runs 11.01 through 

15.01 for a total of 499.8 seconds at tank head idle and 792.1 seconds at pumped idle. The 

stage 1-and-2 assembly was not run during this testing. The engine test results and a detailed 

description of the unit can be found in FR-18683-2 (Reference 2). 

Pressure taps were installed on each inlet and discharge manifold, after which the heat 

exchanger was proof tested to a pressure of 200 psig. Flow passage cross sectional dimensions and 

surface roughness of this unit were also determined. As with stage 1, area reductions were found. 

These data are presented in Appendix B. The stage 3 OHE is shown prior to installation of the 

pressure taps in Figures 3 and 4. 
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A. FLOWBENCH CONFIGURATION 
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OHE TESTING 
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The tests were conducted on the G-l flowbench, which is a liquid nitrogen flowbench used 

to test rocket engine components. The configuration was modified to provide the following: 

• Gaseous, in addition to liquid, nitrogen flow through the OHE O2 circuit 

• Heated gaseous nitrogen flow through the OHE hydrogen circuit 

• Insulated plumbing to achieve and maintain liquid flow 

• Capability to provide gaseous helium, vacuum, or gaseous nitrogen in the 

stage 1 insulation cavity. 

Flowbench modifications were minimized, and existing bench equipment and instrumenta­

tion were used wherever possible. Insulation was wrapped around the OHE units to prevent heat 

loss for more accurate heat balance calculations. The flowbench configuration is illustrated in 

Figure 5. Additional instrumentation was added to supplement the existing stand measurements 

and to provide for accuracy at both tank head idle and pumped idle flow levels. A brief discussion 

of instrumentation provisions is presented in Appendix C. 

Stage 1 is shown mounted in the stand in Figures 6 and 7, and stage 3 is shown in Figure 8. 

These photos were taken prior to insulation installation. 

B. RUN SUMMARY 

The stage 3 OHE was mounted in the test stand on 4 October 1984 and testing commenced 

on 9 October. The stage 1 unit was installed following that testing. Test of the stage 1 was 

concluded on 12 November 1984. 

Test points were chosen for each heat exchanger stage to characterize OHE performance at 

simulated tank head idle and pumped idle conditions. Twelve tests were made with gaseous 

nitrogen in the H2 circuit and liquid nitrogen in the 02 circuit of the stage 1 unit, while 9 runs 

were made with GN2 in both circuits. For the stage 3 unit, 26 runs were made, of which 16 were 

GN2-LN2 and 10 were GN2-GN2. A detailed tabulation of the runs is presented in Appendix D. 
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SECTiON j'Y 
PERFORMANCE ANAl VSiS 
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Performance analysis of heat exchanger rig test data was conducted at various times both 
during and after the runs. Preliminary reviews were performed by the Test Engineering, 
Performance, and Heat Transfer Groups. These prompted minor changes to the test program, 
the addition of some test points, and periodic checks of the equipment to assure accuracy. The 
majority of the post-run analysis was performed by the United Technologies Research 
Center/Optics and Applied Technology Laboratory (UTRC-OATL), supplemented by some 
limited data review by the P&W Heat Transfer Group. Rig test results were used to: a) identify 
the reason for the high pressure drop and low heat transfer found during engine test of stage 3; b) 
evaluate the stage 1 design concept; and c) to provide data for modifications to the Crossflow 
Heat Exchanger Analysis Program (CHEAP). This program was developed under Contract 
NAS3-22902 to analyze this crossflow heat exchanger design, as reported in Reference 1. The 
UTRC/OATL Report No. 85R-280251-0l contains the results oftha study to compare predicted 
and measured performance data and offers explanations for performance anomalies. The report 
is presented in its entirety in Appendix E. 

A. TEST RESULTS 

1. Stage 3 

Results of the stage 3 test analysis are summarized below. 

• It appears that oxygen circuit dryout of the LN 2 occurred during the high H2 
low 02 flow point, as overall heat transfer went down despite the high GN2 
flowrate in the H2 circuit, as shown in Figure 9. The dryout phenomenon, 
which occurs when a gas film forms on the passage walls due to a high 
temperature differential between the liquid and the hot wall, is discussed in 
Appendix E. 

• The maximum LN2 exit quality calculated during the tank head idle points 
was 0.47. 

• The maximum attainable GN2 flowrate of 0.7 Ibm/sec was not high enough 
to initiate dryout at simulated pumped idle, as shown in Figure 10. The total 
heat transferred is limited by the specific heat of GN2 which is much lower 
than that of the GH2 in the engine testing. 

• No flow instabilities were observed during testing. 

2. Stage 1 

Results of the stage 1 test analysis are summarized below. 

• As expected, helium in the insulation cavity provided greater heat transfer 
than nitrogen or vacuum, as shown in Figure 11. The difference in heat 
fluxes between nitrogen and vacuum atmospheres was not noticeable. This 
may have been due to a fluid leakage into the insulation cavity, as discussed 
in Appendix A. 

• The maximum LN2 exit quality calculated at the 02 discharge was 0.022. 

11 
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B. POST -TEST ANALYSIS 

Following the completion of the initial test analysis, the test results were further analyzed 

by UTRC to correlate measured data with predictions and to modify the prediction program to 

make it a better tool for future heat exchanger analysis. Modification included the change in 
passage geometry as mentioned earlier and addressed the dryout condition found in the early test 

analysis. The following is a summary of the results of that work. 

• The temperature changes across the core predicted by the CHEAP agreed 
well (within 10 percent) with the measured data for both hydrogen and 

oxygen circuits for stage 3 prior to program modifications . 

• The measured pressure drops during bench tests across the stage 3 heat 
exchanger agreed with predictions generally within 20 percent for higher 

Lll>'s (above approximately 0.75 psid). It is suspected that resolution of the 

instrumentation was partially responsible for discrepancies at the lower 

pressures. 

• The temperature changes across the stage 1 core predicted by modified 
CHEAP were not in agreement with the data measured during bench testing. 

The measured data indicate that more heat was being transferred from the 
hydrogen circuit to the oxygen circuit than predicted. This may have 

occurred in the form of thermal short circuits, such as flow panels contacting 

headers. It was also possible that insulation cavity infiltration by braze 

wicking or fluid leakage was rendering the FELTMETAL® less effective 
than originally designed. 

13 
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• The stage 1 pressure drops obtained during the bench tests were consistently 

higher than those predicted by the modified CHEAP analysis. Factors 

contributing to this condition include possible measurement error at the low 

pressure levels and the effects of the large discrepancies in predicted versus 

actual heat flux. 

• Modifications to the program for actual geometry and dryout occurrence 

resulted in accurate prediction for the stage 3 pumped idle engine runs of 

Reference 2. Limited dryout correlations did not allow accurate tank head 

idle predictions for engine runs. 

Although this analysis program was modified to closer predict the results of actual testing, 

in its present form it is limited to analysis of heat exchangers with this type of geometry only. 

Considerable modification would be required to make it useful for analysis of heat exchangers 

with different geometries (i.e., lanced or ruffled fins, or cross/counter flow). 

The report of the analytical program modifications and more detailed analysis of the testing 

is presented in Appendix E. An investigation into possible problems wIth stage 1, which 

contributed to the discrepancies between predicted and measured performance, showed possible 

thermal short circuitry due to flow panel shift during braze. This is also discussed in Appendix E. 

14 
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SECTION V 

CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

Pratt & Whitney 
FR-19134-3 

Conclusions derived from the testing of the stage 1 and 3 units and the fabrication problems 

encountered with the stage 1-and-2 assembly are presented in this section. 

• After modifications were made to the analytical model to account for actual 

heat exchanger geometry, the stage 3 unit thermal performance agreed with 

measured engine run performance for the pumped idle runs. 

• Inaccurate thermal performance predictions for tank head idle during engine 

runs is attributed to limited dryout correlations, which may not be accurate 

at tank head idle temperatures and pressures. 

• Dryout occurred in stage 3 during both tank head idle and pumped idle 

engine operation. 

• The higher-than-designed stage 3 pressure drops may be attributed at least 

in part to increased passage surface roughness and reduced flow area as 

shown in Figure B-1 due to collapsed and blocked passages. 

• Even after CHEAP program modifications, the stage 1 unit test data showed 

considerably more heat transfer than the analytical model predicted. 

Thermal short circuits in the form of headers contacting flow panels and 

possible leakage infiltration appear to be possible causes. 

• The analytical model was improved for predicting the performance of this 

type of heat exchanger. Inaccuracies still encountered after modifications 
may be attributed in part to the uncertainty of two-phase flow predictions. 

The analytical model is capable of predicting dryout, which is useful in 

identifying the associated low heat transfer and degradation in OHE 

performance. 

• The analytical model is useful for heat exchangers of this type of crossflow 

heat exchangers; however, it cannot readily be used for other types of heat 

exchangers with non-rectangular geometries, non-continuous fins, and 

mitered turns now being contemplated for this application. 

B. RECOMMENDATIONS 

• Future heat exchanger designs should avoid dryout due to the considerable 

decrease in thermal efficiency when this occurs. 

.. A heat exchanger design employing more conventional aluminum fabrication 

techniques, such as plate-fin, should be used. 

15 
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APPENDiX A 

OHE STAGE 1=ANDo2 ASSEMBLY AND STAGE '1 REWORK 

1. STAGE 1-AND-2 ASSEMBLY 

Pratt & Whitney 
FR-19I34-3 

Each unit consisted of a set of thermal skin flow panels arranged in a crossflow 

configuration and separated by layers of insulation designed to limit heat transfer between the 

two working fluids. Since the insulation was low density felt, the design allowed for changes in 

the insulation cavity atmosphere to provide variations in the rate of heat transfer. A diagram 

detailing the core configuration for each stage is shown in Figures A-I and A-2. 

Considerable difficulty was encountered during the assembly and brazing of the 

stage l-and-2 units due to the large number of detail parts and difficulty in maintaining braze 

clearances and preventing wicking of the braze into the insulation. Figures A-3 and A-4 show 

that the stage I core was successfully assembled and brazed. However, the stage 2 unit displayed 

incomplete braze joints and crushed panels after the initial braze attempt, as shown in 

Figures A-5 and A-S. After an attempt to rebraze the stage 2 core proved unsuccessful, the vendor 

pursued a salvaging process consisting of TIG welding all flow panel-header joints as illustrated 

in Figure A-7. The stages were then joined. Subsequent pressurization of the stage 2 insulation 

cavity revealed extensive leakage to the oxidizer and fuel manifolds. At this point, it was felt that 

all reasonable avenues of success had been exhausted, and a decision was made not to attempt 

any further repair. The stage l-and-2 assembly is shown as received partially assembled in Figure 

A-S. 

2. STAGE 1 REWORK 

In order to test the stage 1 unit individually, it had to be removed from the stage 2 core and 

remanifolded. This was accomplished by salvaging manifolds from stage 2, modifying them, and 

welding them in place as shown in Figure A-9. Also, a section of tubing was added to one of the 

02 flanges to make the flange separation the same as stage 3 to simplify test bench mounting. 

Pressure taps were drilled and bosses welded in place on each manifold. The unit was proof 

tested to 50 psig in both the 02 and H2 circuits and the insulation cavity revealed no leaks at 

4 psig internal pressure, which is the maximum pressure that could be applied to the cavity 

without deforming the outer 02 panels. 

3. STAGE 1 LEAKAGE 

Although the insulation cavity revealed no detectable leaks when it was pressurized to 4 

psig, it did collect leakage from the H2 and 02 circuits when these circuits were subjected to the 

scheduled higher pressures. Prior to initiating test sequence, GN2 leakage into the insulation 

cavity at test pressures was determined. This was done by separately pressurizing the H2 and 02 

circuits and measuring the leakage from the insulation cavity. Periodic leak checks were also 

made during the runs to monitor any leakage increases resulting from thermal shock. A summary 

of the results, shown in Table AI, revealed that thermal cycling was causing more leakage. To 

prevent the test fluids (LN2, GN2) from entering the insulation cavity during tests, the insulation 

cavity pressure was always maintained at a slightly higher level than the highest ~ or 02 circuit 

pressure. 
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Table AI. OHE 1st Stage Leak Check Summary 

Leakage at 45 psia Leakage at 45 psia 

0z Circuit Hz Circuit 
Insulation Cavity Insulation Cavity 

Date (seem) GNz (seem) GNz 

11/1/84 1150 400 
(prior to running) 

11/5/84 2850 700 

11/6/84 4814 1450 
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APPENDiX B 

Pratt & Whitney 
FR-19134-3 

OHE FLOW PASSAGE MEASUREMENT 

Due to the high pressure losses experienced during engine test of the stage 3 OHE, it was 

suspected that variations occurred in flow panel dimensions during braze of each OHE stage, 

causing the flow passage cross sectional area to be less than that specified by the drawing. 

Therefore, while the stage 1 core flow passages were exposed during the rework process, they 

were measured for cross sectional height. These are shown in Figure B-1 along with dimensions 

similarly taken for stage 3. Flow passage surface roughness and passage width were obtained by 

measuring detail flow panels left over from assembly, and are also presented in Figure B-l. 

Both stages showed a reduction in passage height of 0.005 inch. This is probably due to 

some crushing of the lands which may have occurred during braze. Although the surface 

roughness of the passages was not specified on the drawings, a roughness of 100 microinches was 

used in the analytical analysis of the OHE. These changes were incorporated into the OHE 

performance analysis which was modified after the testing was completed. 

All '\ 
1- B -I 

Typical °2 Flow Passage (Stage 1) 

Typical 02 and H2 Flow Passage (Stage 3). 

Stage 1 

02 Passages 

H2 Passages 

Surface Roughness 

Stage 3 

02 Passages 

H2 Passages 

Surface Roughness 

Measured 

Height 

Dimension A 

0.016 in. 

0.038 in. 

225 f.L in. 

0.016 in. 

0.016 in. 

225 f.L in. 

Width 

Dimension B 

0.078 in. 

0.078 in. 

0.078 in. 

0.078 in. 

Figure B-l. Flow Passage Cross Sectional Dimensions 

B-1 

ro 
I.. B .. I 

Typical H2 Flow Passage (Stage 1) 

Drawing 

Specification 

Height 

Dimension A 

0.021 in. 

0.043 in. 

0.021 in. 
0.02·1 in. 

None 

None 

Width 

Dimension B 

0.079 in. 

0.079 in. 

0.079 in. 

0.079 in. 
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APPENDIX C 

OHE DATA RECORDING 

Pratt &: Whitney 
FR-19134-3 

Instrumentation was installed on 1;he rig to provide sufficient accurate data for performance 

analysis. Instrumentation locations on the test rig are depicted in Figure C-l. An Accurex Model 

800 Datalogger was used to calculate GN2 orifice flows and to record and display data. 

Rosemount temperature probes were used where possible. Chromel alumel thermocouples were 

used elsewhere, although several were replaced with copper-constantan thermocouples when 

some temperature data appeared questionable after the first run. Flowrates were such that 

sufficient accuracy could be provided by existing stand liquid flowmeters and added gas 

measurement orifices. O-graph recordings of oxidizer circuit inlet and discharge pressures and 

flow were taken only during gas-liquid test points to check for possible oscillations due to 

unstable boiling. 
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APPENDIX D 

RUN SUMMARY 

pratt & Whitney 
FR-19134-3 

The OHE stage 1 and 3 test points were run as specified in Table D-1. Both pumped idle 

and tank head idle points were run for each unit, with ambient or heated nitrogen flowing 

through the OHE hydrogen circuit and liquid nitrogen flowing through the oxygen circuit. In 

addition, several tests were run with GN2 flow through both circuits to simplify heat transfer 

calculations and reduce uncertainties caused by two-phase flow. Flowrates were chosen based on 

XR201-1 engine run data and were adjusted to compensate for the substitution of nitrogen 

instead of actual engine fluids. The temperatures were chosen for gas-gas flows to provide 

sufficient differential temperature for heat transfer calculations. The OHE inlet and discharge 

pressures were controlled to provide required flowrates and maintain liquid flow if required 

Additions and adjustments to the originally intended test points and test bench 

configuration were made as required based on preliminary data reviews by the Heat Transfer and 

Performance Groups. In many instances, inlet pressures were raised to achieve required flows 

and to assure liquid at the ORE inlet. 

Preliminary analysis showed the stage 3 GN2-GN2 points run initially (points 13 

through 17) as having flow levels too low to provide useful heat transfer data. Those points were 

therefore rerun at higher flowrates, which required changing a portion of the H2 circuit supply 

line to larger ID plumbing to provide the additional flow capability. In addition, an enlarged 

calibrated orifice was installed in the O2 circuit before point No. 15 was run to provide additional 

high flow points. The orifice and increased ID plumbing remained in the stand for the stage 1 

tests, which were also run at flowrates higher than originally intended. 

A run summary is presented in Table D-l. 
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Test Point 

Stage 3 Gas-Liq 

Pumped Idle 1 

2 

3 
4 

5 

6 

Tank Head Idle 7 

8 

9 

t:J 10 
I 

11 ~ 

12 

Stage 3 Gas-Gas 

13 

14 

15 

16 

17 

13 Rerun 

14 Rerun 

15 Rerun 

16 Rerun 

17 Rerun 

High H2-Low O2 
Flow Point 

i 
-:--~_.J ~------' ~. L.J l---! 

I 

'-_--l ~~ 

Table DI. Run Summary 

Hydrogen Circuit OXJ:Q.en Circuit 

Hex Inlet Inlet 
Temperature GN2 Flow Pressure Hex Inlet LN2 Flow 

(ORl (lbLsecl (esia2 Tem2erature (lbLsec) 

632.3 0.329 47.7 150.6 4.292 

599.3 0.706 49.2 156.5 4.588 

577.9 0.586 52.0 154.7 3.381 
567.4 0.697 48.9 154.5 3.556 

629.2 0.317 42.5 154.7 2.623 

658.5 0.685 48.9 154.4 2.536 

526.4 0.167 19.9 155.9 0.955 
516.1 0.332 26.5 155.9 0.955 

514.5 0.168 25.5 156.5 0.812 

513.5 0.265 26.2 156.7 0.856 

512.7 0.265 26.2 157.4 0.669 

508.4 0.325 25.6 157.5 0.702 

719.9 0.014 24.4 525.2 

789.0 0.046 26.5 515.4 

807.6 0.051 25.4 509.2 

783.6 0.014 25.7 508.8 

805.8 0.046 23.8 524.0 

803.0 0.102 25.4 507.6 

692.5 0.304 23.7 505.0 
639.1 0.533 24.2 507.1 

775.0 0.098 24.4 505.7 
688.1 0.517 24.9 513.3 

688.1 0.586 49.8 158.6 0.710 

I : 

L-;.~~...----j 
I 

'-----' 

Inlet 
GN2 Flow Pressure 

(lbLsecl (l!.sia) 

103.8 

99.1 

101.8 

100.5 
90.4 

101.3 

41.9 
41.7 

39.4 

38.7 
39.7 

39.7 

0.013 50.2 

0.042 52.4 

0.050 50.4 

0.052 49.4 

0.0095 49.4 

0.097 49.8 

0.308 49.6 
0.522 49.8 

0.504 49.5 

0.093 48.9 

48.9 

___ L _ 
. ..-----. ! 

Insulation 
Cavity 

Atmosphere 
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Test Point 

Stage 1 Gas Liq 

Pumped Idle 18 

Tank Head Idle 19 

19a 

20 
20a 

21 
21a 
22 

t:J 23 , 
~ 

Stage 1 Gas-Gas 
24 

25 
27 

28 
29 

30 
31 

32 

33 
34 

18 Rerun 

, 
~ __ J 

i 
....... -_ .. , 

'-----,..---.,. 

Table Dl. 

Hydrogen Circuit 

Hex Inlet 

Temperature GN2 Flow 
(OR2 (lbLsec2 

634 732 Excursion 

o --+ Instability 

526.6 0.10 

524.9 0.10 

518.7 0.20 
524.0 0.20 

517.7 0.29 

514.9 0.29 
515.1 0.30 

516.6 0.30 

800.9 0.09 

642.2 0.30 
814.0 0.11 

635.9 0.30 

637.0 0.30 

639.8 0.29 
805.8 0.11 

810.9 0.10 

619.8 0.05 

556.7 0.05 

641 --+ 734 Excursion 

o --+ Instabilitl 

'------' 
i \ 
1.---1 

, 
L..._J ~---' 

Run Summary (Continued) 

Ox~c.en Circuit 

Inlet 

Pressure Hex Inlet LN2 Flow 
(esia2 Temeerature (lbLsec2 

43 155 6.037 

20.2 155.1 0.977 
20.1 153.1 1.987 

28.8 155.8 1.306 
28.7 153.5 1.976 

41.1 156.4 1.196 

40.9 154.1 2.019 

42.9 156.3 1.267 

40.8 155.9 1.206 

20.0 508.8 

41.6 504.4 
20.3 499.8 

41.3 510.9 

41.9 506.2 
41.3 504.9 
21.7 488.9 
21.2 483.8 

20.4 153.1 1.142 

19.8 152.2 1.119 

45 154 2.744 

L~) _L. 
v~> __ ._~_ ... / 

Inlet Insulation 

GN2 Flow Pressure Cavity 

(lbLsec) (/2.sial Atmos/2.here 

41 Helium 

45.5 Helium 

45.1 
46.2 Helium 

45.6 
47.2 Helium 

45.3 
46.1 Vacuum 

44.8 Nitrogen 

0.11 20.9 Helium 

0.30 30.7 Helium 

0.48 45.5 Helium 

0.10 19.7 Helium 

0.30 30.9 Vacuum 

0.30 30.8 Nitrogen 

0.08 15.8 Helium 

0.12 17.5 Helium 
43.2 Helium 

43.5 Vacuum 
(5 psia) 

42 Helium 

0786M "tI 

iii 
::I: 

J.:jSto 

~~ 
I-' ::J" o:Q _. 

I-' ... ' 
~::s 
~CD 
~'< 



1 
\ 

-1 

-) 
! 

--, 

\ 
,\ 

J 

-1 
I 

J 

l 
_J 

-1 
____ J 

J 
-1 
J 

-1 
_J 

I 
_J 

--

0785M 

APPENDIX E 

POST-TEST EXAMINATION AND ANALYSIS 

A. STAGE 1 EXAMINATION 

Pratt & Whitney 
FR-19134-3 

Due to discrepancies between the predicted and measured heat transfer rates for stage 1, 
short-circuiting past the insulation was suspected. After testing, the stage 1 was sectioned to 

examine the insulation cavity and the position of the flow panels. Figures E-l and E-2 show 
views of the two circuits. Although there was no apparent wicking of the braze filler into the 
insulation, many flow panels were touching the header of the other fluid, creating a short circuit 
around the insulation. This may be partially responsible for the discrepancies. 

O2 Manifold 

FD 302659 

Figure E-l. Stage 1 Heat Exchanger Section - H2 Flow Section 
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H2 Manifold 

Figure E-2. Stage 1 Heat Exchanger Section - 02 Flow Section 

B. UTRC/OATL HEAT EXCHANGER PERFORMANCE ANALYSIS 

Pratt & Whitney 
FR-19134-3 

FD 302660 

A study of the heat exchanger rig test data was performed by UTRCjOATL using the 
Crossflow Heat Exchanger Analysis Program (CHEAP) (Reference 3). The results are reported 
in UTRC Report No. 85R-280251cOl, which is included in its entirety in this appendix. The 
program was developed specifically to analyze stacked-plate crossflow heat exchangers. 
Modifications were made to the program to reflect actual flow passage geometry, ·which differed 
from designed geometry due to manufacturing variations. These differences included a reduction 
in flow passage cross sectional area and an increase in flow passage surface roughness. 
Representative points for comparison and analysis were chosen from the rig test data obtained. 

E-2 



~ 

-j 

-) 

\ _J 

l 
j 

l 
J 

-, 

I 
.J 

-] 

1 
_J 

1 
_J 

.\ 

•• _J 

0785M 

Pratt & Whitney 
FR-19134-3 

As part of the stage 3 performance analysis, tank head idie and pumped idle data from 

XR201-1 engine runs were included in the study. The engine test data used in the study was from 

the same stage 3 unit used in the rig tests. The program was structured such that changes in the 

thermal conductance of the stage 1 resistance layer could be made to reflect the presence of 

helium, nitrogen, or vacuum in the insulation. 

In the study, references are made to a condition known as "dryout." Dryout or film boiling 

occurs when the difference between the heat exchanger wall temperature and the saturation 

temperature of the working fluid (TWALL - TsAT) increases beyond a critical level (approxi­

mately 30 degrees for 02 and N2). At this level, the transfer of heat is severely impeded by a thin 

layer of gas along the heat exchanger hot wall. Additionally, more extensive correlations beyond 

the scope of this study would be necessary to accurately predict performance in the dryout 

regime. 
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A study to canpare predicted and measured performance data of the RUQ-rIB 

OOX Heat Exchanger using the Crossflow Heat Exchanger Analysis Program (CHEAP) 
(Reference 1), was performed. Where applicable, roodif1cat1ons to the program 
were incorporated to jmprove the accuracy of the existing correlat1ons. For 
canpar1son. Stage 1 and Stage 3 oxidizer heat exchanger (OHE) engine and bench 
test data were suppl1ed. The am arrangement consists of three IOOdul.ar stages, 
each opt1m1zed for one roode of operat1on. 'Ih1s arrangement is shown 
schematically in Figure 1. Based 00 comparisons made in this study (before and 

after program modif1cat1ons) between pred1cted and measured performance data, the 
occurrence of film bo1ling "dryout" was verified for the Stage 3 am eng1ne 

tests. The accuracy of the program modif1cations in predicting the occurrence 
of "dryout" was verif1ed but. if a IOOre accurate quant1tative assessment of heat 
nux and pressure drop is required within the film bo1ling flow reg:hne. the "1st 
order" approximat10ns nust be replaced with IOOre deta1led correlat1ons. '!be 
Stage 1 OBE measured performance results 1nd1cate tr..at fabr1cation errors 
occured, causing deviations fran the current heat exchanger desifgl permitting 
lOOSt of the heat to "short circuit" the 1nsulat100 rendering 1t ineffective. 
Modifying CHEAP to predict Stage 1 performance results to predict all hardware 

features and deviat10ns is not feas1ble. 

The CHEAP Program in its present conf1gurat100 was specif1cally developed to 
analyze stacked-plate (Thennal-Skj,nR) crossflow heat exchangers.as shown in 

Figure 2. The prograin allows for the add1ticn of 1nsulat1cn between the Thennal­
sJd.nfl plates. '!he feasib1l1ty of modifying CHEAP to analyze heat exchangers 

w1th plate/f.1n now panels, instead of 'lhennal-S~ plates. and plate/fin 
insulating cavit1es. 1nstead of the insulaticn currently being used (comb1na.t1on 
of SST fe1t1retal and an evacuating gas)>> has been. studied. Program lOOdificat1ons 
to include a plate/fin desis1l (heat exchanger and insulating cavity) is feas1b1e 
for standard (rectangular) crossf10w, counterflow. or parallel heat exchanger 
configurat1ons. However. the program is inadequately structured for 
modif1cat10ns to include non-standard ·plate/fin configurations with non­
rectangular geometries and m1tered turns (1.e. Ul1ted Aircraft Products. Inc. 
ox1dizer heat exchanger design). 
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Canparisons between the desig11 and as manufactured and tested passage 
configurations for the RLIO-IIB Gox Heat Exchangers are shown in Table 1. The 
"as-built" heat exchanger geometry was used for all performance predictions. 
The canparisons between predicted and measured perfomance data for the RLIO-IIB 
Stage I and Stage 3 oxidizer heat exchangers (OHE) are shown in Tables 2 through 
5. Measured perfonnance data were taken frun engine and bench tests utilizing 
Hydrogen (~), Oxygen ('1 ), and Ni trogen (~) as working fluids. Fran the 
canparison shown in Table 2 the occurrence of "dryout" (Transition frun rucleate 
to film boiling) was predicted during Stage 3 ORE engine testing. 'lhis 
prediction was made based m the small amount of heat transferred during testing 
canpared to that predicted using l1quid, two phase liquid. and gaseous film 
coefficient correlations. Low film coefficients (low heat fluxes) are associated 
with "dryout". As shown in Table 3 the heat transfer rate predictions showed 
excellent agreement with experimental results for Stage 3 ORE nitrogen flow bench 
tests. rue to the relatively small temperature differential between the wall and 
saturation temperatures in the ~ circuit and the prediction accuracy achieved 
without utilizing required "dryout" correlations. it is believed that "dryout" 

. did not occur in any of the ~ bench tests. 

Using experimental data presented in Reference 7. rrodifications to the CHEAP 
program have been nade to predict the occurrence of "dryout" and approximate the 
film coefficient associated with film boiling. With these modifications 
included. the predicted performance results for the Stage 3 OHE a'1gine tests were 
regenerated for the ~ I~ operation. A ccmparison between the CHEAP predicted 
and measured performance results is shown in Table 4. This canparison shows that 
the predicted heat transfer rates for the pumped idle tests (shown as AT error) 
are in excellent agreement with experimental results (within 5% in three of four 
engine test cases analyzed). The tank head idle heat transfer rates were not. in 
general, accurately predicted. This 1ndicates that the film coefficient 
approximations for film boiling are not valid over a wide range of flowrates and 
temperature differentials. The program does accurately predict the occurrence of 
"dryout". However, for the current configuration of the Stage 3 OHE, "dryout". 
is not a desirable condition because of the limited heat transfer capability; 
thus it' is reconmended that the program, in its present configuration. be used as 
a design tool to indicate that the inlet flow condition will cause "dryout" to 
occur. A "flag" to indicate the possible occurrence of "dryout" has been 
included in the program to be displayed with the predicted performance results. 
The performance results of a sample run which displays this flag is shown in 
Appendix-I. 

A comparison of the Stage 1 OHE ~ flow bench test predicted versus 
experimental results is shown in Table 5. An accurate prediction of heat 
transfer was not possible because an apparent "short circuited" heat flow path 
was present. The program did not accurately predict heat flux since it assumes 
(as designed) that all heat flows througp the insulation. This conclusion was 
made af'ter ccmparing three similar test C<."J3es (#28. #29. and #30). If all of the 
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heat were transferred through the insulation the heat !'lux would be proportional 
to the thermal conductivity of the insulation. In fact, however, all three rur$ 
exhibited nearly identical heat fluxes. 'Ih1s "short circuiting" problem is 
likely to occur in any type of desifgl where the housing and manifold are 
manufactured from a high thermal conductivity material (aluminum in this case) 
compared to the insulating material unless the flow panels can be isolated. This 
problem should be addressed in any or the alternative designs currently being 
considered. 

The CHEAP program in its present configuration was specifically developed to 
analyze stacked-plate (Thermal-Sk1.rit) crossflow heat exchangers as shown in 

Figure 2. The feasibility of modifying the Stage 3 OBE and Stage 1 OHE 
prediction programs to analyze a plate/fin heat exchanger which inco~rates (for 
Stage 1) fins between the hydrogen and oxygen flow panels, rather than the 
insulation currently being used has been studied. Program modifications to 
include a plate/fin design (heat exchar.ger and insulating cavity) is feaSible for 
the standard (rectangular) crossflow. counter flow, or parallel heat exchanger 
configurations. The program is inadequately structured for modifications to 
include non-standard plate/fin configurations with non-rec~ular gFOmetries and 
mitered turns (1.e. United Aircraft Products, Inc. desifgl). 
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The pr1Jre objective of this analysis has been to ccxnpare predicted and 
measured performance cla.ta of the RLl~Im OOX heat exchanger using the crossflow 
heat exchanger analysis program (Reference 1) and, if applicable, modify the 
program to improve the accuracy of existing correlations. Stage 1 and Stage 3 
oxidizer heat exchanger (OHE) engine and bench test data have been used to 

compare predicted versus measured performance results. The "dryout" boiling 
phenomenon has also been studied and approximations to better predict its 
occurrence and heat transfer characteristics have been included. Additionally. 
the feasibility of. modifying the Stage 3 and Stage 1 performance prediction 
program to include a plate/fin heat exchanger analYSis which incorporates fins 
between the hydrogen and oxygen flow panels for the Stage 1 OHE, instead of the 

existing insulation, was also studied. 

OOX Heat Exchanger Design 

The RLlO-Im OOX heat exchanger, as defined by Reference 2, consists of 
three modular stages. each opt1m1zed for one mode of operation. The oxygen flows 
through all three stages in series while the hydrogen flows through Stages 1 and 
2 in parallel and then through Stage 3. This arrangement is shown schematically 
in Fig. 1. In order to control flow stability during tank head idle and pumped 
idle conditions, insulation has been added between adjacent heat exchanger plates 
in Stages 1 and 2 to 11m1t the max1m.tm heat flux. '!his configuration is 
illustrated in Fig. 2. 

Stage l/Stage 3 OHE Test ConfiSurations 

In support of the preliminary design, the performance of the RLl~Im OOX 
heat exchanger was evaluated (Ref. 3) utilizing the crossflow heat exchanger 
analysiS program (CHEAP) developed by urRC. The tested configurations for the 
Stage 1 and Stage 3 OHE coolant passages (see Ref. 3) deviated from the 
preliminary design configurations. These deviations are shown in Table 1. The 
actual passage geometries represent a reduction in flow area fo~ both circuits of 

the StagF 1 and Stage 3 heat exchangers (Stage 1 OHE: 17%~ circuit and 22%-C2 
circuit, Stage 3 OHE: 22%-~ circuit and 22%~ circuit). 'the blocked passage 
estimate (Ref. 4) for the Stage 3 OHE represents an ir,significant portion of the 
total flow area (2.7%-~ circuit and .7%-~ circuit) and thus, its effect was 
neglected for this analysis. The input data portion of CHEAP was modified to 
include the actual passage ~try and surface roughness (friction factor) 
deviations. 

Initial. Stage 3 OHE Performance Predictions 

To verifY the predicted performance results for the Stage 3 OHE, engine and 
bench tests were performed. The working fluids for the engine tests were Oxygen 
(Oz) and Hydrogen (~). and the working fluid fOl~ the bench tests was Nitrogen 
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(~ ). With t.'1e CHEAP program lOOdifled to include the actual heat exchanger 
configuration. predicted performance data were generated us1ng inlet conditions 
specified in the test data (Ref. 5). 

A canparison of the performance results between CHEAP predicted and 
experimental results for the Stage 3 OHE engine tests is shown in Table 2. From 
the comparison, because of the significant error in predicted versus actual heat 
transfer rates (%Error(A T) J, it was apparent that roodifications to the program 
were required. It was determ1ned that the probable cause for the error was the 
absence of film boiling ("dryout") correlations in the program (Ref 1). 'Ibis 
phenomenon was neglected in the prel1m1nary analysis (Ref. 3) primarily because 
operating in the film boiling regime is avoided in IIDst cr'Yogenic heat exchanger 
applications due to the low film coefficients (low heat fluxes) associated with 
it. 

Before an attempt was made to modify the existing program, the CHEAP 
predicted and exper>1rnental performance results for the Stage 3 OHE Nitrogen flow 
bench tests were ccrnpared. 'Ibis ccrnparison 1.".l shown in Table 3. 'Ihe heat 
transfer rate predictions (% Errod.~ T)~) showed excellent agreement with 
exper1mental data. '!he predictions are within 10% (most cases below 3%) of the 

: measured data for nine of eleven test cases. '!be predictions for' test cases #13 
and #14 are 18.9% and 14.3%. respectively. -'lhese predictions are within the 
accuracy of the heat transfer (film coeffiCient) correlations utilized. IUe to 
the relatively small temperature differential between the wall and saturation 
temperatures in the Oz circuit (driving potential for "dryout") good prediction 
accuracy was achieved with the existing correlations. It is believed that 
"dryout" did not occur 11; any of the ~ bench tests. 

Small errors in pressure measurements and predictions for saturated (two 
phase) liquids can cause large temperature errors relative to the total 
temperature difference. For this reason, the ~ was not used to assess heat 
transfer prediction accuracy in this analysis. EVen though it was not used to 
assess prediction accuracy, the predicted temperature differential for the Oz 
circuit in test #1 was significantly smaller (% Error(A T) = 54.2%) than test 
results and requires explanation. A conservation of ener-gy (heat balance) 
analYSis revealed that for this case the measured data ""'as incorrect (heat flow 
into the Oz is about 2 t1mes higher than Hz) and the actual results should 
correspond to the predicted results. 

Also 'included in Table 4 are the percentage errors (% E (AP» between the 
predicted and measured pressure drops. It is believed that. for the data 
provided, the percentage errors are not truly representative. '!be resolution of 
the pressure transducers used in_the majority of cases was not fine enough to 
accurately measure values of pressure L~ the ~ of interest. With the 
exception of one case (Test #15-~ circuit) the prediction accuracy for pressure 
drops greater than 1.0 psia (both circuits) is w1thL~ acceptable values. 
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By accurately predicting the heat transfer rate for the Stage 3 OHE Nitrogen 
flo.or bench tests, the fundamental correlations utilized by CHEAP are ver1fied. 
'!his fact further substantiates the assumption that Vldryout" is occurring during 
the Stage 3 OHE engine tests. 

CHEAP Mod1fications - Film Boiling 

Mod1fying the CHEAP program to predict all possible film boiling conditions 

utilizing correlations such as those discussed :in Reference 6. was beyond the 
scope of this analysis. To yield approximate results. modifications have been 
implemented which include exper:1mental film boiling data (Ref. 7). U:ling this 
data, the occurrence of tldryout" can be accurately predicted, and an approximate 
film coefficient (and subsequently heat flux) associated with film boiling can be 
determined. 

'!he matiJm.ml temperature d1fferential IAT = T (wall) - T (saturation)] 
associated with the transition fran nucleate to film boiling. is the driving 
potential for "dryout" and occurs at an approx1mately constant critical heat flux 
level. Accompanying the boiling transition is a large reduction 1n film 
coefficient (heat flux). In Reference 7 plots of heat flux versus I::. T are 
presented. Fran this infonnation. the maximum wall minus saturation temperature 
d1fferential is determined to be approx1mately 300F for Oz and ~. In addition. 
the film coefficient as a function of hydraulic diameter for film boiling was 
f~ by utilizing the equation shown below. 

q = hl::.T 

BrU 

hr rt1-

Where "q" is heat flux and h represents the film coefficient for film 
boiling. '!he film coefficients. given as a function of hydraulic diameter. are 
shown below. 

Hydraulic Dia. (I1-I)' in. 

~ ( .004 

.004 < ~ ( .008 

.008 < ~ ( .020 
.• 020 < ~ ( .040 

.040 < I:H ( .400 

.400 < ~ 

BTU 
Film Coefficient(h) ftl' hr"F 

200.0 

155.0 
85.0 
46.0 
30.0 

23.5 

Excerpts fran the mod1fied program are shown in Appendix 2. Mod1fication #1 
is required to display a "flag" notifying that the ~ is operating in the film 
boiling regime ("Dryout is occurring"). Mod1fications #2 and #3 are required to 
approximate the film coefficient in the film bolling regime. Modifications #2 
and #3 are located in the single and two phase sections of the program, 
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respectively. Modification #4 allows the ~ ci.rcuit wall temperature to be 

displayed. Knowing the w-a.ll temperature is useful to determine how far the 
heat exchanger is being operated from the critical heat flux level. 

F1nal Stage 3 OEE Performance Predictions 

Utilizing the CHEAP program roodified to include film boiling approximations 
under "dr-yout" conditi<XlS, the performance results were regenerated from the 

Stage 3 OEE engine tests. A canparison between the CHEAP predicted and measured 
performance results is shown in Table 4. For three of the four p..nnped idle 
engine tests the heat nux (% ErrorCA T» was accurately predicted within 5%. '!be 
exact cause for the large differences in accuracies between test #'Zl5 (% Error 
CA T) ) and the other cases is unknown but considering the si.'lI11.arlties in inlet 
flow conditions, the accuracy of the measured data is suspect. Being able to 
accurately predict the heat flux for the pm!ped idle tests~ with the "dr-yout" 
appn> x1ma.tions being utilized. verifies the assumption that "dr-yout" occurred. 
during the engine tests and that the constant film coefficient approximations are 
valid for the p.nnped idle now conditions. 

Canpa.ring the tank head idle measured and predicted heat fluxes 
(%Error(A T», shown in Table 4, reveals that the film coefficient approximations 
for film boiling may not be valid over a wide range of conditions. Correlations, 
such as those presented in Reference 6, which include the effect of fluid 
velocity and subcooling on the critical heat flux and film coefficient will be 

required if an increase in prediction accuracy in this regime is desired. 
Pressure drop correlations associated with the dr-yout phenomenon were not 
included in this analysis. '!his fact and, as described above, the resolution of 
the test instrumentation are probable causes for not achieving good correlation 
with measured pressure drop data. '!he resolution. of the pressure transducer'S was 
not fine enO\.1871 to accurately measure values of pressure drop near zero. 

'!be Stage 3 ORE nitrogen flow bench tests performance results were also 
regenerated with the m:::rlified program. No change in predicted results were 
noticed because the critical heat flux was not exceeded. 

Stage 1 DEE Performance Predictions 

To verify the predicted performance results for the Stage 1 DEE, Nitrogen 
flow bench tests were performed. With the CHEAP program, roodified to include the 
actual heat exchanger configuration and film boiling correlations, predicted 
performance data were generated using inlet conditions and insulation thermal 
conductivities, specified in the test data (Ref. 5). Three thermal 
conductivities were specified corresponding to the gas type used to purge the 
insulating cavity. Stainless steel feltmetal occupied the remaii1.1rlS space for 
the three conditions specified. The three gases used were Hel1U'll; Vacuum, and 
NitrogF-n corresponding to thermal conductivities of .0526. .001175, and .01125 
BTU/hr-ft-°F, respectively. 
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A canparlson of the performance results between CHE.lW predicted and 
exper'1mental results for the Stage 1 OHE bench tests is shown in Table 5. '!he 
predicted heat nux IA T (Pred)] is consistently ITUch less than the actual heat 
nux [A T (Meas)]. An explanatioo for this difference can be fOln'ld by canpariilg 
test cases utilizing different insulations with s:1m1lar inlet conditions. Test 
cases #28, #~ and #30 (ref. 5) have s1milar inlet flow cood1tions, but have 
different insulation thermal conductivities. Test case #28 insulation is p.lrged 

with Helillll with a thermal conductivity approx1mately 45X greater than a Vacuum 
(Test case #29) and approx1mately 5X greater than Nitrogen {Test case #30). If 
all of the heat were conducted throl.l@.1 the lnsulaticn during testing (as 
designed). then the heat nux would have been proportional to the thermal 
conductivity of the insulation. '!he heat flux lAT (Meas)] fol' test case #28 is 

only 20% greater than test case #29 and 11% greater than #30. S1milarly, the 
heat flux for test case #30 should have been approximately ten times greater than 
that measured in test case #30 (based on thermal conductivities) but they were 
approx1mately the same. 

These results indicate that an additional heat path exists in parallel with 
the insulation "short cil'cuiting" the heat now. With aluminum being the flow 
panel a"ld hous:ing material, hav1r!g a thennal conductivity of 88.0 Bl'U/hr-ft-°F. 
as described in Reference 3, small contact areas would render any of the 
insulations considered in~ffectlve. Exam1n1ng the manufacturing technique for 
the Stage 1 OHE, contact between the hex plate/manif'old and hex plate/housing is 

possible by plate Slippage, braze material wicking between gaps. or a ccmbination 
of slippage and wicking. Hex plate/hex plate contact is also possible from braze 
material wicking. Another possible explanation for unexpected heat fluxes 
is insulation contam1nation with lTOisture (caused by ~eakage). Pressure drop 
canpar'isons are invalid for Stage 1 ORE tests considering the large discrepancies 
in predicted versus actual heat nux. 

Plate/Fin CHEAP Modification Feasibilitx 

'!he feasibility of roodifying the Stage 3 ORE and Stage 1 ORE prediction 
programs to analyze a plate/fin heat exchanger Which incorporates (for Stage 1) 
fins between the hydrogen and oxygen flow panels. rather than the insulation 
currently used has been studied. Modifying the CHEAP progrem to determine the 
effective conductance of a plate/fin corstruction (flow panel or insulating 
cavity) for' standard (rectangular) crossf'low. counterflow, or parallel 
configurations will require a ~latively small effor't. The effective conductance 
could be sene rated from a combination of film coeffiCient cort'elations defined 
for' flow across fins and basic conduction through the fins. The program is 

inadequately structured for roodifications to include configurations with non­
rectangular geometries with m:1.tered tums and combinations of crossflow. 
counter'flow. and parallel flow schemes such as those described in the United 
Aircr'aft Repor't (Project 4357, United Aircraft Products, L~c.). Critical heat 
exchanger sections could be analyzed with the program if a rectangular geometry 
could be assumed. 
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Table 1 Stage 1 and Stage 3 em: Passage Geanetry 
Deviations Fran Preliminary Design. 

PRELD'IDJARY IFSIGN 

srAGE 1 I srAGE 3 srAGE 1 

Passage Ht. in. .043 .021 .038 

Passage Ht. in. .021 .021 .016 

Passage Wt. in. .079 .079 .078 

Passage wt. in. .079 .079 .078 

I1la.tlcn Conductlv .041 MIA It 

, (Bl'U/ft-hr-OR) 

-face Roughness nO.Ot 100.0t 225.0 
-in.) 

Blocked Psgs. N/A N/A NONE 

Blocked Psgs. N/A N/A NONE 

AaI'UAL 

Pratt & Whitney 
FR-19134-3 

I srAGE 3 

.016 

.016 

.078 

.078 

N/A 

225.0 ' 

120 

25 

- - ----- -

* 3 Cases (Ref. Dynatech Test Report No. PRA-I02) 

1. Insulation in Helium - .0526 Bl'U/hr-ft-°R 
2. Insulation in !-~itrogen-.OOl175 II " " 

3. Insulation in Vacuum - .01125" II " 

t Assumed in Or1g1na.l Analysis (Ref. 2). 
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OPERATION r-DIE 

RUN NUMBER 
(ErR TIME) 

~ w (Ibm/sec) 

c Tin (OR) 

I 11 T (Measured) 

R I1T (Predicted) 

c % Error CAT) 
U 

I Pin (ps1a) 

T t:. P (Measured) 
I1P (Predicted) 
% Error (t:.P) 

Oz w (Ibm/sec) 

C Tin (OR) 

I t:. T (Measured) 

R 11 T (Predicted) 

C Exi t QuaU ty 

U (Predicted) 

I 
T Pin (ps1a) 

11 P (Measured) 
t:. P (Predicted) 

% Error CAP) 
-- -,~~---~-

L ;.~ ____ . 
I ' 
t, __ ---~ 

i 
l.~,-J L_,--, ~ 

I J 

\.......--.:, ~--,I 
, t __ -i 

L .... __ ~i 

Table 2 Performance Data Comparison of CHEAP (Unmodified Version) 

Predicted' am Experimental Results for Stage 3 OHE FlIgine 
Tests (Working Fluids - ~ and Oz ) 

TANK HF..AD IDLE PtMPEDIDLE 

13.01 14.01 15.01 15.01 11.01 13.01 15.01 
(125) (78) (118) (191) (275) (382) (399) 

.130 .079 .079 .143 .227 .189 .249 

864.3 944.0 813.5 . 827.1 606.1 697.2 656.7 
114.8 234.3 89.3 136.7 70.7 148.0 114.6 
303.3 310.3' 261.2 334.8 339.6 416.1 382.9 
164.0 32.4 192.5 144.9 380.3 181.0 234.1 

17.1 12.2 17.1 18.2 47.5 42.7 56.7 
5.66 4.77 5.84 5.12 3.39 2.75 4.14 
3.29 2.63 3.66 3.05 1.45 1.13 1.56 
41.9 114.9 37.3 40.4 57.2 58.9 62.6 

.588 .313 .570 .809 2.839 2.804 3.555 

179.5 173.6 178.1 176.3 179.9 176.5 175.1 
1.3 -1.3 -.6 .7 30.4 24.5 28.3 

541.0 614.7 503.5 453.7 61.9 70.9 83.7 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 

37.0 28.2 34.8 . 35.5 99.4 86.5 102.5 
1.62 .97 .74 -1.66 3.87 5.30 8.69 
1.76 .62 1.69 2.86 4.32 5.20 6.89 
8.6 36.1 128.4 273.5 11.6 7.9 20.7 

, Dryout Correlat1on Modlrlcations not Included 

15.01 
(573) 

.249 

648.5 
109.0 
379.5 
248.2 

55.0 
3.86 
1.59 
58.8 

3.473 

175.1 
27 .2 
51.0 

1.0 

99.1 
8.63 
6.48 

-24.9 

m 

, 

I 

-

_., .. L, .. 

U1 

:00 
I 

IV 
00 
o 
IV 
U1 .... 
I 
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~f.lO 
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OPERATION fvOIE 

'jEgl' l'ruMBER 1 

tJ (Ibm/sec) .329 

Hz Tin (OR) 632.3 
C Il T (Measured) 467.8 
I Il T (Predicted) 455.8 
R % E (11 T) 2.5 
c Pin (psia) 47.7 
U Il P (Measured) .022 
I IlP (Predicted) .16 
T % Error (Il P) 627.2 

a.z w (Ibm/sec) 4.316 
IN. QUALITY 0.0 

C Tin (OR) 145.5 
I Il T (Measured) 35.6 
R Il T (Predicted) 16.3 
c EXrl' QUAL. 0.0 
U Pin (peia) 103.7 
I Il P (Measured) .60 
T 6 P (Predicted) .72 

% Error (liP) 20.0 

TABIE 3 Perfonnance lata Canparison Of CHEAP (Unroodif1ed Version) 

Predicted AND Experimental Results For The St~ 3 OHE 
Bench Tests (Working Fluid - ~ ) 

NI'ffiOGEN FI.IJN BENCH 'lESl' CASES 

2 3 4 5 1 8 11 13 

.101 .586 .698 .317 .151 .332 .265 .098 
595.5 571.9 567.2 629.2 529.3 516.1 512.7 803.1 
433.7 394.3 405.7 ' 469.4 345.3 338.0 334.4 175.5 
403.8 391.6 377.0 443.2 354.1 337.6 333.1 208.7 

6.9 .68 7.1 5.6 2.5 .12 .09 18.9 
49.1 52.0 . 48.8 42.5 19.9 26.5 26.2 24.9 
.70 .29 .75 .14 . -0.9 0.0 -.05 .11 
.61 .40 .59 .16 .08 .27 .15 .12 

12.9 38.0 21.3 2.0 - - - 9.0 

4.582 3.360 3.540 2.620 0.0965 0.952 0.667 0.097 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 

148.0 146.2 146.0 145.9 146.9 147.2 149.2 507.4 
28.2 37.3 31.7 29.9 11.9 11.4 8.5 170.7 
28.4 31.2 31.1 26.9 10.4 10.2 1.4 210.9 
.021 .025 .047 0.0 .112 .31 .38 1.0 
98.4 101.4 100.5 90.4 41.3 41.7 39.7 49.8 
2.0 1.0 1.0 . .30 .10 .60 .30 .36 
1.7 1.0 1.26 .52 .24 .53 .34 .11 

15.0 0.0 29.2 73.3 140.0 11.7 13.3 69.4 

14 

.304 
694.5 
99.7 

100.3 
.60 

23.7 
.83 
.68 

18.1 

0.308 
1.0 

505.1 
100.2 
98.9 
1.0 

49.8 
.79 
.42 

46.8 

__ L. 

15 

.532 
639.1 
71.2 
81.4 
14.3 
24.3 
3.42 
1.42 
58.5 

0.577 
1.0 

501.1 
77.1 
14.9 
1.0 

49.8 
1.86 
1.79 
3.8 

00 
lJ1 
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TABlE 4 Performance rata Comparison of CHEAP (Modified Version) Predicted 
and Experimental Results For ORE Stage 3 Engine Tests 

(Work1ng Fluids - ~ and D.l ) 

OPERATION MOlE TANK HEAD IDIE PlMPEDIDIE 

RUN NUNBER 13.01 14.01 15,01 13.01 11,01 13,01 15.01 
(EDR TIME) (125) (78) , (118) , (191) (275) (382) (399) 

'w (Ibm/sec) .l30 .079 .079 .143 .227 .189 .249 

Tin (OR) 864.3 944.0 813.0 ' 827.1 606.1 697.2 656.7 
A T (Measured) 114.8 234.3 89.3 ' 136.7 70.7 148.0 114.6 
A T (Predicted) 263.4 277.8 224.4 273.6 106.3 150.3 110.8 
% Error (AT) '129.4 18.6 151.3 100.1 50.4 1.55 3.32 

Pin (psia) 17.1 12.2 17.1 18.2 47.5 42.7 56.7 
AP (Measured) 5.66 4.77 5.84 5.12 3.39 2.75 4.14 
t.P (Predicted) 3.38 2.71 3.47 3.24 1.74 1.63 2.31 
% Error (AP) 40.3 43.2 40.6 36.7 48.7 40.1 44.2 

'w (Ibm/sec) .588 .313 .570 .809 2.839 2.804 3.555 

Tin (OR) 179.5 173.6 178.1 176.3 175.9 176.5 175.1 
A T (Measured) 1.3 -1.3 -.6 .7 30.4 24.5 28.3 
AT (Predicted) 458.4 602.7 430.3 411.1 28.8 24.1 30.0 
Exit Quality 

(Predicted) 1.00 1.00 1.00 1.00 .23 .32 .38 

Pin (psia) 37.0 28.2 34.3 35.5 99.4 86.5 102.5 
A P (Measured) 1.62 .97 .74 -1.66 3.87 5.30 8.69 
A P (Predicted) 1.40 1.62 .59 1.91 1.15 1.77 1.59 
% Error CAp) 13.5 67.0 20.3 215.1 70.3 66.6 81.7 

, ••• _..........-.....J 

~~.~~ 573 

.249 

648.5 
109.0 
112.1 
2.84 

55.0 
3.86 
2.02 
47.7 

3.473 

175.1 
27.2 
29.4 

.20 

99.1 
8.63 
1.55 
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CI'ffiItrI(N IDE 

'lE31' l'U.ftR 19 

w (lJ:m/sec) .1<il6 
I} TIn (tR) s:!i.6 
c AT (!>msIJml) 180.5 
I A T(PniI1.ctOO) 10lt.O 
R %Emr ~T) 42.4 
c PIn (p31a) al.~ 

U AP(~) 2.921 
I AP(Prellctro) 1.74 
T % Fmr ~P) 40.4 

Kt(Imilat1m) 52.6 
I (RllJ/rr ft "F)xr"l 

lnsulation 
Medium 

;:, (lJ:m/sec) .9JII 
IN.QU\LITl 0.0 

~ Tin (tR) 155.1 
C AT~) n.o 
I A T(Prellct;OO) 4.0lt 
R EX. QrnLlTf .Oal 
C PIn (p31a) 45.26 
u II P (rrmrure:]) .179 
I II P(Prellct;OO) .43 
T % Emr ~P) 11K>. 2 
-- -~ 

2> 

.2>29 
5JB.5 

'llID1e 5 Perl'cmaroe Iht:a Q:nplr1an f$ (}FJP -(Mxi1f1ej Vers1m) 

Prellctai an ~ llrults Rr tre ~ 1 <IE 
ann'D:sts (W;xidrg F.l.u1ds - N

2
) 

NI!1RXEN FIDl BNlI 'OOl' CA'R3 

21 22 23 24 25 Zl ~ 

.3l)3 .:P51 .f1J5 .102 .3>3 .1(1) .3l) 
517.2 515.0 619.1 8:>1.1 ffJ7.8 &ii.8 616.3 

1JT.0· 100.1 68.9 ~.2 121.7 43.7 179.2 24.4 
59.5 41.7 l¥J.9 'i!JT.41 67.86 19.82 81.64 12.01 
56.6 ~.3 40.6 29.5 53.84 54.6 54.4 ~.8 

26.76 41.34 43.(1) al.26 al.21 43.25 al.15 41.76 
8.m 14.56 15.00 .742 5.252 al.04 5.31 19.92 
4.al 6.35 6.26 .52 2.~ 8.76 3.(1) 8.25 
52.2 56.4 58.3 29.9 44.8 56.3 42.6 58.6 

52.6 52.6 52.6 52.6 52.6 52.6 52.6 52.6 

Helium 

1.216 .'PJ 1.21.6 1.(~3 1.045 .278 .~15 .1(1) 
0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 

156.1 156.1 156.1 153.1 510.5 r:IJT.3 506.0 513.0 
9.7 10.1 10.7 9.6 l1l.4 49.0 35.1 66.1 

3.05 2.91 3.34 5.02 66.63 21.75 17.18 34.63 
.011 .022 .010 .002 1.00 - 1.00 1.00 1.00 

45.55 45.18 lJ6.13 43.07 al.29 29.07 43.9 al.1.6 
.217 .359 .722 .4:5 1.73 9.015 15.93 1.60 
.67 .rJ) .64 .JT .~ 5.2 10.33 .fJ{ 

~.8 64.3 11.4 12.9 43.4 42.7 35.4 l¥J.3 
---- -

29 

.3>1 
635.8 
2>.4 
.~ 

~.1 

41.72 
19.93 
8.29 
~.5 

1.18 

i1acuum 

.~ 

LO 
506.1 
18.1 
.J{ 

1.00 
1l.29 
10.11 
5.87 
41.9 

,---...-' 

3> 32 

.3l) .119 
639.5 811.0 
21.9 141.0 
3.~ 2>.5 
83.7 ~.5 

41.~ 21.49 
19.~ 5.003 
8.~ 3.84 I 

58.6 23.2 
I 

ll.3 ll.31 

N:ltrn"pn 

.3>6 .119 ' 
LO 1.0 

~.1 4/33.7 
19.3 1IB.1 
3.3 al.8 

1.00 1.00 
J).82 17.49 
10.03 2.412 
5.71 1.64 
43.1 32.0 
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o IN 
2 

RLIO lID GASEOUS OXYGEN 

HEAT EXCHANGER - TYPICAL STAGE 

~~g;:;;?~ 
--------.~ -------

~~~ 

H2 IN 

THEm-tAL SKIN GEOMETRY BLo\l-Ul> 

Pratt &. Whitney 
FR-19134-3 

..... - "2 PLATE 

I --- 02 PLATE 

I-=::~<~::~<;:::<~::~<::~~<::::~<::~:<~~:::: (TURNED 90°) 

E-21 



-1 
\ 

--1 

J 

1 
J 

J 

l 
] 

-1 
.~ 

1 
.J 

J 

0785M 

85R-280251-01 

APPElIDU: 1 

DRYOUT OCCURRENCE 

Pratt & Whitney 
FR-19134-3 

TCllr[RATUIl£ OISTRlnUTIO/l tlAP cox Il[Al [XClIl.llt;/Il-STAG/ !- I'UlII'11I llll ( ,r"p['UllfU'AI.. !u~ I 
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APPENDIX 2 

CHEAP PROGRAM MODIFICATIONS 

Pratt &. Whitney 
FR-19134-3 

o MODIFICATION #1 (INSERT AFTER CHP0820) 

OTFILH=THBH-TItU 2.10 .JO 1 
IFIDTFILH.LT.!O.OIGO TO 2050 
J\RlTnKK. Zll 1 I 

ZUl fORHATI • ................ u DRYOUT IS OCCURRIIIG "" ............ " ... I 

o ~fC-DInCATION #2 (INSERT AFTER CHP1l260) 

UI - ....... L"'O.-"Z".l.,J r-I~AI. N J 

IFIOT.lT.30.0IGO TO 341 
IFICOHYO.lE •• 004/12.01H8=200./3600. 
IFI COHYO.GT •• 004/1Z.0 • AtlO .COHYO. LE •• 008/12. IH8=lSS.0/3('00. 
If i CuRi D.G' •• 008; 12. D.AND.CUiliO .. LE .... OZUIIZ .. JliS-BS .. 073600 .. 

IFICOHYO.GT •• OZO/12 .0.AtI0.COHYO. LE •• 040/12. IIIB=46.0/3600. 
IFICOHYO.GT •• 040/12.0.ANO.CDHYO.LE •• 400/12. Ut8=30.0/!bOO. 
IFICOHYO.GT •• 400/12.0 1118:23.S/3600. 
llI.6h~AL--rJtJ 

o MODIFICATION #3 (INSERT AFTE~ CHF12160) 

OTaTHALLBI2.I,JI - TSATINI 
IFIOT.LT.30.IGO TO 360 
If I Cunl U.lt .. . OOiil'lZ-~-Olfl5CZDO~73DDU. 

IFI tOHYO.GT •• 004/12. O.AND .COHYO.LE •• 008/1:. )lI8=lSS.0/3000. 
IFICOHYO.GT •• 00S/IZ.O.ANO.COIIYO.LE •• 020/12. IIIB=6S.0/3000. 
IF! COIIVD.GT •• 020/12.0 .AtlD .COIIYO.I.E •• 040/12. 11;6=46 .0/3bOO. 
IF (Ca.hD.Gi ... O .. 0712.0.AlID.tDili'D.LE .. . 400/12 .. nI8=:.C.o7~c;at"-. -
IFI COHYO.GT •• 400/12.0 IIIB=23.5/3600. 
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APPENDIX 2 (cont'd) 

CHEAP PROGRAM MODIFICATIONS 

Pratt & Whitney 
FR-19134-3 

o MODIFICATION #4 

Z110 rOIlHt.TIlHI ,/10X. 'TEttPER,l.TURE DISTRIBUTION HAP , ,ZO"4 ,/. 
)(/1X,' I .J TA-IN TA-OUT TA-I1E.lN lB-IN' , 
,. IB-our la-HUN QUt;[I~-;;r:AlI' » 

)(/10X, 615X, 'OEG R' 1,16X, 'OEG R' 1 

C!IP079£O 
CHP07'!DO 
CIIP01910 
CHP07980 

HRlTEII:H,::1201 IO,.JO, TINIl,IO • .JDI, TO:JTll,II:J,.JDI, CIIP()(;O~O 

XTtIE,I./lII.IO • .JDI. CIIP080 .. 0 
>.1.&.'.12 ,IC ,JJ j, loUi' 2 .1D ,-10 1.IAtAU' Z ,1b ,JD i ,C!)'CI J.~ ,JD ., 1 ... ...i~\ tII~lIot,!,o 

ZIZD fORI1,1.T11X,ZI5,8f1D.31 CIIPO&OtO 
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