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�emagnetic properties of the C doped and C-Fe codoped TiO2 	lms fabricated by sol-gel and spin coating have been investigated
combining experiments and 	rst-principles calculations. All the samples exhibit the anatase crystal phase and the room temperature
ferromagnetism.�e values of the saturationmagnetizations are in the order of Fe-C codopedTiO2 > Fe-C codopedTiO2 (annealed
in O2) > C doped TiO2 > C doped TiO2 (annealed in O2). �e calculated net moment values are in the order of Fe-C codoped
TiO2 > C doped TiO2 with oxygen vacancies existing, in accord with the experimental results. �e hybridization of Fe 3d, C 2p,
and O 2p (nearest to the Fe defect) led to the spin split of Fe 3d, C 2p, and O 2p which contributed to the ferromagnetism.

1. Introduction

Diluted magnetic semiconductors (DMSs) are promising
candidates for the spin-polarized devices such as magne-
tooptical, nonvolatile storage and other spin logical devices
[1]. However, most of these DMSs have relatively low Curie
temperatures (��), reducing their practical usefulness. In
the recent decades, oxide diluted magnetic semiconductors
such as ZnO [2], SnO2 [3], and TiO2 [4] doped with mag-
netic transition metal elements have attracted considerable
attention, due to the discovery of room temperature (RT)
ferromagnetism (FM) in these systems. Several theoretical
investigations have been reported, most of which focus on
the cation vacancies in TiO2 bulk materials [5–10]. However,
recent studies showed that the unexpected RT FM is closely
related to the oxygen vacancies (Vos) instead of the cation
vacancies [11–17]. Vo is a type of defects in TiO2 which
can be manipulated relatively easily during the synthesis
processing [17]. Near the surface or in the bulk, Vos can lead
to ferromagnetism enabling a possible application for TiO2 as
a magnetic semiconductor in spintronics [18].

In TiO2 based DMSs, it is concluded that there are four
factors related to the observed ferromagnetism: the Vos,
cation vacancies, transition metal dopants, and the change of

titanium oxidation state (Ti3+) [16]. On the one hand, the Vos
can cause an obvious change in the band structure and make
a signi	cant contribution to the FM. On the other hand, the
transition metal elements which have unpaired d-electrons
can provide magnetic moment to the DMSs. In this paper, we
have investigated the electronic and magnetic properties of
transition metal (Fe), nonmetal C, and Vos codoped anatase
TiO2 (Ti31FeO62C) combining the experiments and the
	rst-principles calculations based on the density-functional
theory (DFT). �e experimental results are consistent with
the 	rst-principles calculations. �e magnetism induced by
the Fe and C (Fe-C) codoping is investigated being associated
with the VO defect electrons. �e connections between
doped Fe ions, C ions, and Vos are discussed to explain the
ferromagnetism observed in these materials.

2. Experiments and Calculations

�e C doped TiO2 	lms, C doped TiO2 	lms (annealed
in O2), Fe-C codoped TiO2 	lms, and Fe-C codoped TiO2
	lms (annealed in O2) were prepared by sol-gel and spin-
coating methods. A clear solution was prepared by reacting
tetrabutyl titanate (C16H36O4Ti) and nanotube carbon (C)
with a mixture of water and hydrochloric acid (HCl) in an
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ethanol (C2H5OH) diluted medium.�e C doped TiO2 	lms
were spin-coated on the 
uorine doped tin oxide (FTO)
substrates with the mentioned solution. A�er the prebaking
at 70∘C for 30min, these 	lms were annealed at 450∘C for
2 h in O2 gas and in air to obtain the C doped and the
Vos-decreased C doped TiO2 	lms, respectively. To get the
Fe-C codoped samples, iron nitrate hydrate was added into
deionized water; and the C doped TiO2 	lms were immersed
in the solution for 1 hour. Following the same procedure
as that for the C doped and the Vos-decreased C doped
TiO2 samples, the Fe-C codoped and the Vos-decreased Fe-C
codoped samples were prepared.

�e crystal structures were characterized by X-ray
di�raction (XRD, Bruker D8 Discover) with Cu K� radiation
(� = 1.54 Å). �e electronic structures were measured by
the X-ray photoelectron spectroscopy (XPS) and the binding
energy of the XPS spectra was calibrated with reference to
the C 1s peak at 284.6 eV. �e optical absorption spectra
in the wavelength range of 200–800 nm were measured
by using ultraviolet-visible near infrared spectrophotometer
(CARY5000, Varian) at RT under the di�use re
ection mode
with the integrating sphere. �e photoluminescence (PL)
spectra were conducted by using the 325 nm He–Cd laser
(20MW) as an excitation light source. �e magnetic prop-
erties were studied using a vibrating-sample magnetometer
(VSM) equipped in the physical property measurement sys-
tem (PPMS, QuantumDeign).�emagnetization loops were
recorded with the magnetic 	eld from −1 T to 1 T (T is the
abbreviation of Tesla) applied parallel to the samples surfaces.

First-principles calculations based on spin-polarized
density-functional theory and projector augmented wave
(PAW) pseudopotential technique are performed as imple-
mented within the Vienna Ab-Initio Simulation Package
(VASP) [19, 20]. �e generalized gradient approximation
(GGA-PBE) for the wave functions is used with a cuto� of
400 eV tomodel the exchange and correlation functional [21].
�e calculations have been carried out for three cases: (1) one
oxygen (O) atom is substituted by a Vo (Ti32O63); (2) two O
atoms are substituted by a Vo and a C atom (Ti32O62C); (3)
a titanium (Ti) atom and two O atoms are substituted by an
Fe atom, a VO, and a C atom (Ti31FeO62C). �e Monkhorst-
Pack scheme �-points grid sampling was set to be 2 × 2 ×
5 for the 95-atom anatase supercell. �e valence electrons
con	gurations for the O, C, Ti, and Fe are 2s2 2p4, 2s2 2p2, 3s2

3p6 3d2 4s2, and 3d3 4s2, respectively. All the atomic positions
are fully optimized until the atom forces drop below the value
0.02 eV/Å.

3. Results and Discussions

Figure 1 exhibits the XRD patterns of the C doped TiO2 	lms,
C doped TiO2 	lms (annealed in O2), Fe-C codoped TiO2
	lms, and Fe-C codoped TiO2 	lms (annealed in O2). It can
be seen that the XRD di�raction peaks of the undoped TiO2
	lm appearing around 25.3∘, 36.9∘, 37.8∘, 38.5∘, 48.0∘, 53.9∘,
55.0∘, 62.1∘, 62.6∘, 68.7∘, 70.2∘, and 75.0∘ are indexed to (101),
(103), (004), (112), (200), (105), (211), (213), (204), (116), (220),
and (215) of the anatase phase (JCPDS, number 21-1272); and
the XRD di�raction peaks at 26.7∘, 34.0∘, 51.7∘, and 65.8∘ are
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Figure 1: XRDpatterns of the C dopedA/F 	lms, C dopedA/F 	lms
(annealed in O2), Fe-C codoped A/F 	lms, and Fe-C codoped A/F
	lms (annealed in O2) on FTO substrates (A/F; A: anatase; F: ITO).

referred to as FTO (110), (101), (211), and (301). No signals of
impurities such as rutile, FeTiO3, or Fe cluster are detected. In
addition, for the C doped TiO2 	lms (annealed inO2) and Fe-
C codoped TiO2 	lms (annealed in O2), the XRD di�raction
peaks show a relative lower intensity and a wider full width at
half maximum (FWHM) comparing with the XRD data of C
doped TiO2 	lms and Fe-C codoped TiO2 	lms. �e average
particle sizes of all the 	lms were calculated and estimated
using Scherrer equation choosing the Brag angle at (101),
(004), and (200) di�raction peak. It is shown that the values
of average particle size are 24.5 nm and 26.8 nm, for the C
doped TiO2 	lms and Fe-C codoped TiO2 	lms, respectively.
A�er the sample was annealed inO2 gas, the values of average
particle size decreased to 18.2 nmand 23.6 nm for theCdoped
TiO2 	lms and Fe-C codoped TiO2 	lms. �e variation of
the particle size originates from the di�erence of the doped
element (Fe or C) and annealing gas (O2).

Figure 2 demonstrates the XPS core levels for O-1s, C-
1s, and Fe-2p of the Fe-C codoped TiO2 	lms. As it is
shown in Figure 2(a), the core level spectrum of O-1s is 	tted
with two peaks at 530.14 eV and 531.70 eV, attributed to O
1s in Ti-O linkages and Ti-O-C bonds of TiO2, respectively.
Figure 2(b) shows the core level spectrum of C-1s which can
be 	tted by four peaks at 284.84 eV, 286.71 eV, 283.6 eV, and
288.60 eV, respectively. �e peak of 284.84 eV clearly arises
from adventitious element carbon which also exists in the
case of pure TiO2 samples. �e peaks at 286.71 eV, 283.6 eV,
and 288.60 eV are attributed to C-O and C-Ti and COOH
binding, respectively. �erefore, multiple carbon species,
namely, substitutional and interstitial carbon atoms and
carbonate species, coexist in the lattice of TiO2. Figure 2(c)
reveals the Fe 2p core level XPS spectrum. Apparently, there
are two main peaks of Fe 2p3/2 and Fe 2p1/2 located at
710.71 eV and 724.52 eV, respectively, close to the binding

energy of Fe3+ ion which indicates the existence of Fe3+ [22].
It is noticed that there is no weak peak at binding energy

around 709 eV introduced by the contribution of Fe2+ ion in
the spectrum.
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Figure 2: XPS of core level signals of (a) O1s, (b) C 1s, and (c) Fe 2p of the Fe-C codoped TiO2.

Figure 3(a) illustrates the UV-Vis absorption spectra for
these samples, which exhibit the characteristic spectrum of
TiO2 with its fundamental absorption edge around 384 nm
(3.2 eV of band-gap energy). �e absorption edges of the C
doped TiO2 	lms, C doped TiO2 	lms (annealed inO2), Fe-C
codoped TiO2 	lms, and Fe-C codoped TiO2 	lms (annealed
in O2) are 387 nm, 370 nm, 399 nm, and 392 nm, with calcu-
lated band-gap energy of 3.20 eV, 3.35 eV, 3.11 eV, and 3.16 eV,
respectively, similar to those reported in [23, 24]. Comparing
with the samples annealed in O2 atmosphere, the absorption
edges of the C doped and Fe-C codoped TiO2 	lms both
shi�ed slightly toward the visible light range.�e values of the
band gap are in the following order: Fe-C codoped TiO2 >
Fe-C codoped TiO2 (annealing in O2) > C doped TiO2 >
C doped TiO2 (annealing in O2). �e spectrum of Fe-C
codoped sample yields the largest red shi� which indicates
the doping of Fe or C element may narrow the band gap.

Figure 3(b) presents the PL spectra of C dopedTiO2 	lms,
C doped TiO2 	lms (annealing in O2), Fe-C codoped TiO2
	lms, and Fe-C codoped TiO2 	lms (annealing in O2) at RT.
�e PL spectra are very sensitive to the stoichiometry and
surface states formaterials, which can provide information on
electronic and optical properties [25, 26]. All the PL spectra of
the specimens show two strong emission peaks at 468 nm and
480 nm,which are attributed to theVos [27, 28].�e emission
peaks corresponding to the defects are largely enhanced a�er
annealing in O2 gas.

Figure 4 shows the plots of magnetization (�) versus
applied magnetic 	eld (�) which demonstrate hysteresis
behaviour in all samples measured by a VSM with the
magnetic 	eld from −1 to 1 T at RT. �e values of the
saturation magnetization (��) are in the following order: the
C doped TiO2 (annealed in O2) < C doped TiO2 < Fe-C
codoped TiO2 (annealed in O2) < Fe-C codoped TiO2.
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Figure 3: (a) �e UV-Vis spectra and (b) PL spectra of the C doped TiO2 	lms, C doped TiO2 	lms (annealing in O2), Fe-C codoped TiO2
	lms, and Fe-C codoped TiO2 	lms (annealing in O2).
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In order to understand the origin of RT FM in the Fe-
C codoped TiO2 	lms, the 	rst-principles calculations are
performed. �e positions of VO, Ti, Fe, C, and O for VO-
Fe-C codoped TiO2 are the same as those of the VO doped
TiO2 and the VO-C codoped TiO2. Firstly, when there exists
only one Vo in the supercell, each Vo is assumed to donate
two electrons. �e result indicates that the two electrons
created by one Vo are shared by three equivalent Ti3+ ions
with up-spin of three di�erent directions, which is similar to

the results reported by Yang et al. [29]. �e calculated net
magnetic moment of the system is about 0.533��, which is
related to the denoted two electrons that occupy the three
neighboring Ti sites. �e second and the third scenarios are
VO-C codoped TiO2 (Ti32O62C) and VO-Fe-C codoped TiO2
(Ti31FeO62C), respectively.

Figure 5 shows the TDOS and PDOS of Vo-C codoped
TiO2 andVo-Fe-C codopedTiO2, respectively.�e calculated
band gaps using the GGA functional are about 2.09 eV for
the Vo-C codoped TiO2 and Vo-Fe-C codoped TiO2, which
is lower than the experimental value of 3.20 eV. However, the
reduced band gap has nearly no in
uence on the magnetic
state of C doped anatase TiO2 and Fe-C codoped TiO2.

Figure 5(a) shows the TDOS and PDOS of C 2p electrons
for Vo-C codoped TiO2 samples. It can be seen from Fig-
ure 5(a)I that there is no spin splitting around the Fermi level,
which illustrates that the Vo-C codoped TiO2 samples have
no magnetic property. For the PDOS of C 2p electrons (in
Figure 5(a)II) nearest to the Vo, there are also no exchange
splitting around the Fermi level between the spin-up and
spin-down states, lying within the band gap. With respect
to the local Cartesian coordinate, the up-spin and down-
spin of C 2	�, C 2	�, and C 2	� states are all occupied.
�is indicates that the two electrons, created by one Vo,
were trapped by the doped C atom. As a result, the valence

electrons con	guration for doped C atom is 1s2 2p6, which
produces 0 �� net magnetic moment.

Figure 5(b)I exhibits the TDOS for Vo-Fe-C codoped
TiO2 sample. It can be seen that a part splitting between
the spin-up and spin-down states around the Fermi level
is shown illustrating the existence of magnetism. For the
PDOS of Fe 3d electrons (in Figure 5(b)II), the Fe 3d states
are spin-polarized and lie within the band gap of Vo-Fe-C
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Figure 5: TDOS and PDOS for (a) V
O
-C codoped TiO2 and (b) V

O
-Fe-C codoped TiO2.

codopedTiO2.With respect to the local Cartesian coordinate,
the spin-up and spin-down states of Fe 3
�� are occupied,
while for Fe 3
��, Fe 3
��, and Fe 3
�2 the spin-up states
are occupied; for Fe 3dxy, only a few spin-down states are
occupied. Noticeably, there are no spin-up and spin-down
states of Fe 3
�2 occupied. �is indicates that each doped Fe
atom at the Ti site produces the net magnetic moments of
2.538 ��, and its electron con	guration can be resembled as

Fe3+ (3d5). For the PDOS of C 2p electrons (in Figure 5(b)III),
the C 2p states are spin-polarized and lie within the band gap
of Vo-Fe-C codoped TiO2.With respect to the local Cartesian
coordinate, the spin-up and spin-down states of C 2	� and
C 2	� are all occupied, while, for C 2	�, the spin-down C
2	� states are occupied and partly spin-up 2	� states are not;
as a result, the valence electrons con	guration for the doped

C atom is 1s2 2p5. �is indicates that each doped C atom at



6 Advances in Materials Science and Engineering

the O site produces −0.025�� netmagneticmoments. For the
PDOS of O 2p electrons (in Figure 5(b)IV), the C 2p states are
partly spin-polarized and lie within the band gap of Vo-Fe-C
codopedTiO2.With respect to the local Cartesian coordinate,
the spin-up and spin-down states of O 2	�, O 2	�, and C
2	� are all occupied, but the slightly spin-up states of O 2	�
appear around Fermi level energy; as a result, the valence

electrons con	guration for O atom is 1s2 2p6. �e calculated
net magnetic moment of O atom nearest to doped Fe atom is
0.075 ��.

To analyze the spin polarization induced by the doped Fe
atom and C atom, we calculated the spin density distribution
Fe and C atom. �e calculated results are that the magnetic
moment is mainly delocalized around the Fe atom, namely,
about 2.538�� on the Fe atom, about−0.025�� on theC atom,
about 0.079�� on the nearest-neighbor O atom, and about
0.029 �� on the second-neighbor O atom. �e calculated
result indicates that themagnetic orbital describing the doped
Fe, Vo, and C center extends to the second-nearest-neighbor
O atoms.One of the two electrons created by theVo is trapped
by the doped C atom, and the other one is shared by Fe, C,
and O atoms surrounding it. �e total magnetic moment is
3.216 �� for the Vo-Fe-C codoped TiO2.

Combining all the results presented above, we introduced
a defect electron based model for the observed ferromag-
netism. �e magnetic moment is associated with a Vo,

C2−/Vo/Ti4+, and C2−/Fe3+/Vo complex for Vo-C codoped
TiO2 and Vo-Fe-C codoped TiO2, respectively.�emagnetic
orbitals extend to nearest neighbor and second neighbor
around the complex. In the two models, the two electrons
denoted by Vo mediate the coupling of C2−/Vo/Ti4+ and

C2−/Fe3+/Vo complex, possessing the characteristics of 3d

electrons of Ti4+ and Fe3+, occupying C 2p site, partly O 2p

sites, and Fe3+ site. �is is the original signal of the C2− and
Fe3+, which also can be used to explain the reason that there
is only Ti4+ signal appearing in XPS spectra. �e value of
total magnetic moment for Vo-Fe-C codoped TiO2 and Vo-
C doped TiO2 is in the same order of�� for Fe-C codoped
TiO2 and C doped TiO2.

4. Conclusions

In summary, the RT FM properties of the C doped TiO2 	lms
and Fe-C codoped TiO2 	lms have been investigated. �e
values of the saturation magnetizations are in the order of
Fe-C codoped TiO2 > Fe-C codoped TiO2 (annealed in O2)
> C doped TiO2 > C doped TiO2 	lms (annealed in O2).
�e calculated net moment values are in the order of Fe-C
codoped TiO2 > C doped TiO2 with Vos existing, which are
in accord with the experimental results. �ese calculations
suggest the key factor for the formation of ferromagnetic
ordering is the Vo which contributes two electrons to the
doped C atom and neighboring O sites. �e hybridization
of Fe 3d, C 2p (nearest to the Fe atom), and O 2p (nearest
to the Fe defect) led to the spin splitting of Fe 3d, C 2p,
and O 2p which contributed to the magnetism. �e unique
characteristic of the defect electrons denoted by a Vo in Fe-
C codoped TiO2 and C doped TiO2 is that they provide

the means for the percolation of the magnetic complexes to
achieve magnetization in the Fe-C codoped samples.
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