Oxygen-Isotope, X-Ray-Diffraction and Scanning-Electron-Microscope Examinations of Authigenic-Layer-Silicate Minerals from Mississippian and Pennsylvanian Sandstones in the Michigan Basin

By K.F. Zacharias, D.F. Sibley, D.B. Westjohn, and T.L. Weaver

U.S. GEOLOGICAL SURVEY

**Open-File Report 93-103** 

Lansing, Michigan 1993



### U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director

For additional information write to:

District Chief U.S. Geological Survey 6520 Mercantile Way, Suite 5 Lansing, MI 48911 Copies of this report can be purchased from:

U.S. Geological Survey Books and Open-File Reports Section Box 25425 Federal Center Denver, CO 80225

#### CONTENTS

| Abstract                                                                         | 1 |
|----------------------------------------------------------------------------------|---|
| Introduction                                                                     | 1 |
| Oxygen-isotope, X-ray-diffraction, and scanning-electron-microscope examinations |   |
| References cited.                                                                |   |

#### **ILLUSTRATIONS**

| Figure 1. | Map showing Lower Peninsula of Michigan and locations of drill holes                                                                                                                                |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | TABLES                                                                                                                                                                                              |
| Table 1.  | Chemical and isotopic composition of ground water and locations of drill holes<br>in the Michigan Basin, Lower Peninsula of Michigan                                                                |
| 2.        | X-ray-diffraction analyses of authigenic-layer-silicate minerals from<br>Mississippian and Pennsylvanian sandstones in the Michigan Basin, Lower<br>Peninsula of Michigan                           |
| 3.        | Oxygen-isotope compositions of kaolinite and chlorite from Mississippian and<br>Pennsylvanian sandstones in the Michigan Basin, Lower Peninsula of<br>Michigan                                      |
| 4.        | Scanning-electron-microscope and energy-dispersive-spectroscopy<br>identification of authigenic-layer silicates from Mississippian sandstones in the<br>Michigan Basin, Lower Peninsula of Michigan |

# Multiply By To obtain meter (m) 3.281 foot liter (L) 3.785 gallon gram (g) 0.002205 pound

#### **CONVERSION FACTORS AND ABBREVIATIONS**

Temperature is given in degrees Celsius (°C), which can be converted to degrees Fahrenheit (°F) by use of the following equation:

 $F = 1.8(^{\circ}C) + 32$ 

Abbreviations related to water quality and to isotopic compositon of rock-core samples: Dissolved-solids concentration of water is given milligrams per liter (mg/L). Milligrams per liter is a unit expressing the concentration of chemical constituents in solution as weight (milligrams) of solute per unit volume (liter) of water. For concentrations less than 7,000 mg/L, the numerical value is the same as for concentrations in parts per million. Oxygen-isotope composition of rock-core samples is expressed as per mil (parts per thousand) differences in the measured isotopic ratios of the sample to Standard Mean Ocean Water (SMOW). The unit  $\delta^{18}$ O is the standard expression of the ratio of  $^{18}$ O to  $^{16}$ O.

#### **Other Abbreviations:**

| EDS  | Energy dispersive spectroscopy   |
|------|----------------------------------|
| RASA | Regional Aquifer-System Analysis |
| SEM  | Scanning electron microscopy     |
| XRD  | X-ray diffraction                |

#### OXYGEN-ISOTOPE, X-RAY-DIFFRACTION, AND SCANNING-ELECTRON-MICROSCOPE EXAMINATIONS OF AUTHIGENIC-LAYER-SILICATE MINERALS FROM MISSISSIPPIAN AND PENNSYLVANIAN SANDSTONES IN THE MICHIGAN BASIN

By K.F. Zacharias, D.F. Sibley, D.B. Westjohn, and T.L. Weaver

#### ABSTRACT

Oxygen-isotope compositions of authigenic-layer silicates (<2-micrometer fraction) extracted from Mississippian and Pennsylvanian sandstones in the Lower Peninsula of Michigan were determined. Petrographic and scanning-electron-microscope examinations, and X-ray diffractograms show that chlorite and kaolinite are the most common authigenic-layer silicates in Mississippian sandstones. The range of oxygen-isotope compositions of chlorite and kaolinite are +10.3 to +11.9 and +12.9 to +19.3 parts per thousand (per mil) (relative to Standard Mean Ocean Water), respectively. Kaolinite is the only authigeniclayer silicate common in Pennsylvanian sandstones (illite and chlorite are minor authigenic phases); isotopic compositions of kaolinite range from +16.8 to +19.0 per mil.

#### **INTRODUCTION**

Oxygen-isotope compositions of authigenic-layer silicates have been used in previous investigations to interpret compositional changes of pore fluids during basin evolution, as well as to interpret corresponding temperature regimes of sandstone reservoirs during mineral diagenesis (Longstaffe, 1986; Longstaffe, 1984; Longstaffe and Ayalon, 1987). The paragenetic sequence of authigenic minerals in sandstones of Mississippian and Pennsylvanian age in the Michigan Basin in the Lower Peninsula of Michigan has been identified (Westjohn and others, 1991). Layer silicates observed include, in order of deposition, early chlorite, kaolinite, and late-stage illite, which was the last authigenic mineral to precipitate. The same sequence of authigenic minerals was observed in Mississippian and Pennsylvanian sandstones that contain ground water having a large range of oxygen-isotope compositions (-15.7 to -1.8 per mil) and dissolved-solids concentrations (189 to 297,000 mg/L) (Dannemiller and Baltusis, 1990). It is unknown whether mineral phases are in isotopic equilibrium with pore water in sandstone aquifers. Knowledge of oxygen-isotope compositions of authigenic-layer silicates is needed to evaluate potential rock-water interactions.

Investigators with the U.S. Geological Survey's Michigan Basin Regional Aquifer-System Analysis program sampled Mississippian and Pennsylvanian sandstones from collections of diamond-drill cores to obtain information on authigenic-layer silicates in sandstones in the Michigan Basin. The suite selected for mineralogical and isotopic analyses includes the Marshall Sandstone of Mississippian age (18 samples, depths of 22 to 1,365 ft) and the Grand River and Saginaw Formations of Pennsylvanian age (8 samples, depths of 63 to 136 ft).

The purpose of this report is to publish oxygen-isotope data of authigenic chlorite and kaolinite extracted from Mississippian sandstones and authigenic kaolinite extracted from Pennsylvanian sandstones. The primary goal of the investigation is to provide solid-phase-isotope data for sandstones sampled from areas of the basin where dissolved-solids concentrations and isotopic compositions of ground water span the range known to exist in the basin.

#### OXYGEN-ISOTOPE, X-RAY-DIFFRACTION, AND SCANNING-ELECTRON-MICROSCOPE EXAMINATIONS

Mississippian and Pennsylvanian sandstones are bedrock aquifers in the Michigan Basin. Samples from these units were selected and prepared for scanning-electron-microscope (SEM) examinations, isotopic analyses, and X-ray-diffraction (XRD) analyses. The samples were selected from collections of cores (Michigan State University and University of Michigan core laboratories; U.S. Geological Survey core collection) drilled as part of hydrocarbon-exploration or hydrogeologic investigations. The locations of drill-hole sites are shown in figure 1 and listed in table 1 (all tables are at the end of the report).

Oriented-specimen mounts were prepared for XRD analyses according to methods outlined by Jackson (1979). As many as eight treatments are necessary to identify different layer-silicate minerals. These treatments include potassium saturation at 25, 300, and 550°C; magnesium saturation and ethylene glycol solvation; glycerol solvation; hydrazine intercalation; High Gradient Magnetic Separation, and deionized-water rinsing. Layer-silicate minerals were identified on the basis of characteristic basal reflections. The XRD data are summarized in table 2.

The High Gradient Magnetic Separation method of Tellier and others (1988) was used to concentrate paramagnetic (chlorite) and diamagnetic (kaolinite) minerals for isotopic analyses. Oxygen was extracted from kaolinite and chlorite separates for mass-spectrographic analyses by use of the bromine pentaflouride method of Clayton and Mayeda (1963). Oxygen-isotope compositions of authigenic chlorite and kaolinite extracts from Mississippian sandstones range from  $\pm 10.3$  to  $\pm 11.9$  and  $\pm 12.9$  to  $\pm 19.3$  per mil, respectively. Oxygen-isotope compositions of kaolinite extracts from the Pennsylvanian sandstones range from  $\pm 16.8$  to  $\pm 19.0$  per mil. Chlorite and illite are present in Pennsylvanian sandstones in insufficient quantities for isotopic analyses. The isotopic data are summarized in table 3.

SEM examinations of samples were combined with energy-dispersive-spectroscopy analyses to identify authigenic-layer-silicate minerals. Authigenic-layer-silicate minerals in Mississippian sandstones are chlorite, kaolinite, and illite (table 4). Paragenetic relations of authigenic-layer-silicate minerals were identified by use of petrographic and SEM examinations. Textural criteria were then used to identify growth relations among all authigenic minerals in the suite of sandstone samples (Westjohn and others, 1991). The paragenetic sequence of authigenic-layer silicates in Mississippian and Pennsylvanian sandstones is, in order of deposition, chlorite, kaolinite, and illite.

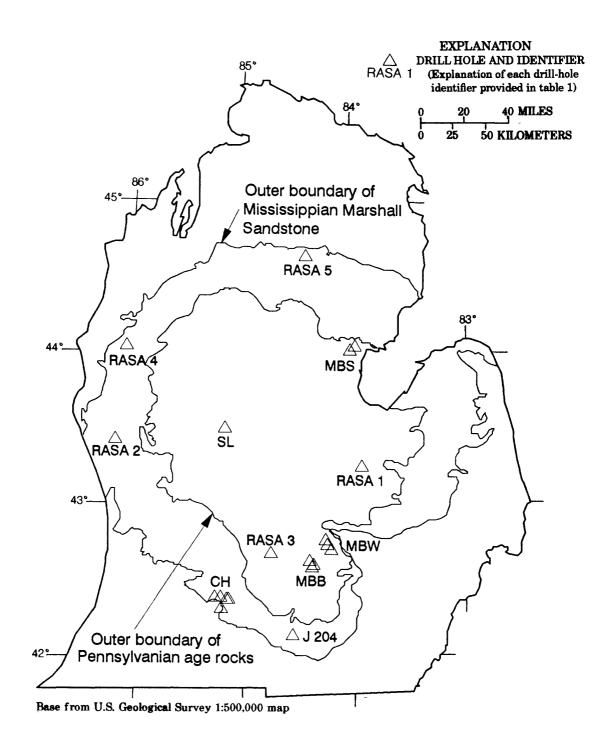



Figure 1.--Lower Peninsula of Michigan and locations of drill holes. (Geologic contacts modified from Martin, 1955.)

#### **REFERENCES CITED**

- Clayton, R.N., and Mayeda, O.K., 1963, The use of bromine pentaflouride in the extractions of oxygen from oxides and silicates for isotopic analysis: Geochemica et Cosmochimica Acta, v. 27, p. 43-52.
- Dannemiller, G.T., and Baltusis, M.A., 1990, Physical and chemical data for ground water in the Michigan Basin, 1986-89: U.S. Geological Survey Open-File Report 90-368, 155 p.
- Jackson, M.L., 1979, Soil chemical analysis--advanced course (2d ed), University of Wisconsin, Madison, Wis., 895 p.
- Longstaffe, F.J., 1986, Oxygen isotope studies of diagenesis in the basal Belly River Sandstone, Pembina I-pool, Alberta: Journal of Sedimentary Petrology, v. 56, p. 78-88.

1984, The role of meteoric water in diagenesis of shallow sandstones--stable isotope studies of Milk River aquifer and gas pool, southeastern Alberta, *in* McDonald, D.A., and Surdam, R.C., eds., Clastic diagenesis: American Association of Petroleum Geologists Memoir 37, p. 81-98.

- Longstaffe, F.J., and Ayalon, Avner, 1987, Oxygen-isotope studies of clastic diagenesis in the Lower Cretaceous Viking Formation, Alberta--implications for the role of meteoric water, in Marshall, D.J., ed., Diagenesis of sedimentary sequences: Geological Society (London) Special Publication 36, p. 277-296.
- Martin, H.M., 1955, A revision of the Centennial Geological Map of Michigan, in Martin, H.M. and Straight, M.T., compilers, An Index of Michigan Geology: Michigan Department of Conservation, Geological Survey Division Publication 50, 461 p.
- Savin, S.M., and Lee, M., 1988, Isotopic studies of phyllosilicates, *in* Bailey, S.W., ed., Hydrous phyllosilicates (exclusive of micas), Reviews in Mineralogy, v. 19, p. 189-223.
- Tellier, K.E., Hluchy, M.M., Walker, J.R., and Reynolds, R.C., 1988, Application of High Gradient Magnetic Separation (HGMS) to structural and compositional studies of clay mineral mixtures: Journal of Sedimentary Petrology, v. 58, p. 761-763.
- Western Michigan University, Department of Geology, College of Arts and Sciences, 1981, Hydrogeologic atlas of Michigan: U.S. Environmental Protection Agency Underground Injection Control Program Report, 35 pl., scale 1:500,000.
- Westjohn, D.B., Sibley, D.F., and Eluskie, J.A., 1991, Authigenic mineral paragenesis in Mississippian and Pennsylvanian sandstone aquifers in the Michigan Basin [abs.]: Geological Society of America Abstracts with Programs, v. 23, no. 5, p. 82.

**DATA TABLES** 

## Table 1.--Chemical and isotopic composition of ground water and locations of drill holes in the Michigan Basin, Lower Peninsula of Michigan

Drill-hole identifier: Prefix abbreviations indicate location. J204, Jackson County; CH, Battle Creek area, Calhoun County; RASA 1, Montrose area, Genesee County; RASA 2, Holton area, Muskegon County; RASA 3, Benton area, Eaton County; RASA 4, Sauble area, Lake County; RASA 5, Crawford County; SL, Six Lakes, Montcalm County; MBB, Bunkerhill area, Ingham County; MBS, Standish area, Arenac County; MBW, Williamston area, Ingham County.

Dissolved solids (mg/L): Measured dissolved-solids concentration of ground water, in milligrams per liter.

 $\delta^{18}$ O of ground water: Measured oxygen-isotope composition of ground water.  $\delta^{18}$ O is expressed as the relative difference in parts per thousand (per mil) between the  ${}^{18}$ O/ ${}^{16}$ O ratio in a sample and the ratio in Standard Mean Ocean Water (SMOW).

Location: Location of drill hole in township and range subdivision system. Sec #, section number; 1/4 sec, quarter section; T, township.

| Drill-ho         | ole       | Dissolved            | δ 18 <sub>0 of</sub> |            |         | Location |     |       |
|------------------|-----------|----------------------|----------------------|------------|---------|----------|-----|-------|
| identifi         | er        | solids (mg/L)        | ground water         | Sec#       | 1/4 of  | 1/4 sec  | Т   | Range |
|                  |           |                      | _                    |            | 1/4 sec |          |     |       |
|                  |           |                      | Mississippia         | n sandstor | nes     |          |     |       |
| *J 204           | $\otimes$ | 350                  | -9.5                 | 13         | SE      | NW       | 3S  | 2W    |
| *CH 101          | $\otimes$ | 350                  | -10.0                | 4          | NW      | NW       | 2S  | 7W    |
| *CH 105          | $\otimes$ | 350                  | -10.0                | 33         | NW      | SE       | 1S  | 7W    |
| *CH 107          | $\otimes$ | 350                  | -10.0                | 5          | NW      | NE       | 2S  | 7W    |
| *CH 130          | $\otimes$ | 350                  | -10.0                | 32         | SE      | SE       | 2S  | 7W    |
| *CH 139          | $\otimes$ | 350                  | -10.0                | 32         | SE      | SE       | 2S  | 7W    |
| RASA 1           |           | 98,700               | -7.8                 | 10         | SE      | SE       | 9N  | 5E    |
| RASA 2           |           | 45,600               | -12.8                | 30         |         | NE       | 12N | 15W   |
| RASA 3           |           | 4,500                | -8.2                 | 20         | SW      | SE       | 3N  | 4W    |
| RASA 4           |           | 81,400               | -10.3                | 23         |         |          | 19N | 14W   |
| RASA 5           |           | 1,930                | -13.2                | 12         | SW      | SW       | 25N | 2W    |
| *SL <sup>1</sup> |           | α <sub>207,000</sub> | $\beta_{+.5}$        | 9          | NE      | NW       | 12N | 7W    |
|                  |           |                      | Pennsylvania         | an sandsto | nes     | ****     |     |       |
| *MBB2            | $\otimes$ | 450                  | -9.0                 | 16         | NE      | NW       | 1N  | 2E    |
| *MBB4            | $\otimes$ | 450                  | -9.0                 | 27         | NE      | NW       | 1N  | 1E    |
| *MBB5            | $\otimes$ | 450                  | -9.0                 | 12         | NW      | SW       | 1N  | 1E    |
| *MBS2            | $\otimes$ | 1,800                | -10.0                | 6          | SW      | SE       | 18N | 5E    |
| *MBS3            | $\otimes$ | 500                  | -11.0                | 6          |         | SW       | 18N | 5E    |
| *MBW4            | $\otimes$ | 330                  | -10.0                | 8          | NE      | NE       | 3N  | 2E    |
| *MBW5            | $\otimes$ | 480                  | -10.0                | 1          | SE      | SE       | 3N  | lE    |
| *MBW6            | $\otimes$ | 630                  | -10.0                | 7          | NE      | NW       | 3N  | 1E    |

\*, denotes drill holes for which dissolved-solids concentrations and oxygen-isotope compositions of ground water are approximated from the measured values of ground water from nearby wells.
⊗, data from Dannemiller and Baltusis, 1990; α, data from Western Michigan University, 1981; β, data from Clayton and Mayeda, 1963.

<sup>1/</sup>Michigan Department of Natural Resources, Oil and Gas Permit 31497.

## Table 2.--X-ray-diffraction analyses of authigenic-layer-silicate minerals from Mississippian and Pennsylvanian sandstones in the Michigan Basin, Lower Peninsula of Michigan

Drill-hole identifier: Prefix abbreviations indicate location. J204, Jackson County; CH, Battle Creek area, Calhoun County; RASA 5, Crawford County; SL, Six Lakes, Montcalm County.

Treatments: Treatments applied to the < 2-micrometer fraction of samples. DI, deionized-water rinsing (air dried); GLY, glycerol solvation; HG, High Gradient Magnetic Separation; HZ, hydrazine intercalation; K25, potassium saturation at 25°Centigrade; K300, potassium saturation at 300°Centigrade; K550, potassium saturation at 550°Centigrade; MG, magnesium saturation and ethylene-glycol solvation.

Mineral: Minerals identified on the basis of characteristic basal reflections. C, chlorite; K, kaolinite; I, illite; S, smectite; I/S, illite/smectite interlayer; C/K, chlorite and (or) kaolinite (unable to differentiate, basal reflections overlap); I/K, illite and (or) kaolinite (unable to differentiate, basal reflections overlap).

I/Imax: I is the relative intensity of basal reflections (in percent), the largest peak, Imax, is 100 percent.

Basal reflections: Å, angstroms; -, no response at this wavelength (mineral not identified).

| Drill-hole<br>identifier | Depth<br>(feet) | Treat-<br>ment |         |     |     |     | Basal reflections |    |      |      |
|--------------------------|-----------------|----------------|---------|-----|-----|-----|-------------------|----|------|------|
|                          |                 |                |         | 18Å | 14Å | 10Å | 7Å                | 5Å | 3.5Å | 3.3Å |
| J 204                    | 25              | DI             | Mineral | -   | С   | I   | C/K               | I  | C/K  | I    |
|                          |                 |                | I/Imax  | -   | 5   | 18  | 100               | 5  | 70   | 25   |
|                          |                 | GLY            | Mineral | -   | С   | I/S | C/K               | Ι  | C/K  | Ι    |
|                          |                 |                | I/Imax  | -   | 15  | 25  | 100               | 5  | 55   | 10   |
|                          |                 | HG             | Mineral | -   | -   | Ι   | K                 | Ι  | K    | Ι    |
|                          |                 |                | I/Imax  | -   | -   | 3   | 100               | Ι  | 80   | 10   |
|                          | HZ              | Mineral        | -       | -   | I/K | -   | Ι                 | K  | I    |      |
|                          |                 |                | I/Imax  | -   | -   | 100 | -                 | 3  | 70   | 10   |
|                          | 33              | DI             | Mineral | -   | С   | I   | C/K               | Ι  | C/K  | Ι    |
|                          |                 |                | I/Imax  | -   | 10  | 15  | 100               | 5  | 60   | 20   |
|                          |                 | HG             | Mineral | -   | -   | Ι   | K                 | I  | Κ    | Ι    |
|                          |                 |                | I/Imax  | -   | -   | 8   | 100               | 5  | 70   | 25   |
|                          | 52              | DI             | Mineral | -   | С   | Ι   | C/K               | Ι  | C/K  | I    |
|                          |                 |                | I/Imax  | -   | 5   | 20  | 100               | 5  | 50   | 25   |
|                          |                 | HG             | Mineral | -   | -   | Ι   | K                 | Ι  | K    | I    |
|                          |                 |                | I/Imax  | -   | -   | 15  | 100               | 5  | 60   | 20   |
|                          | 61              | DI             | Mineral | -   | С   | Ι   | C/K               | I  | C/K  | Ι    |
|                          |                 |                | I/Imax  | -   | 5   | 10  | 100               | 5  | 70   | 15   |
|                          |                 | HG             | Mineral | -   | -   | Ι   | K                 | Ι  | Κ    | I    |
|                          |                 |                | I/Imax  | -   | -   | 10  | 100               | 5  | 70   | 15   |
|                          |                 | HZ             | Mineral | -   | -   | I/K | -                 | Ι  | K    | I    |
|                          |                 |                | I/Imax  | -   | -   | 100 | -                 | 5  | 70   | 20   |
|                          |                 | K25            | Mineral | -   | С   | Ι   | C/K               | I  | C/K  | I    |
|                          |                 |                | I/Imax  | -   | 5   | 20  | 100               | 5  | 70   | 20   |
|                          |                 | K300           | Mineral | -   | С   | Ι   | C/K               | I  | C/K  | Ι    |
|                          |                 |                | I/Imax  | -   | 5   | 20  | 100               | 10 | 60   | 15   |
|                          |                 | K550           | Mineral | -   | С   | Ι   | С                 | Ι  | С    | I    |
|                          |                 |                | I/Imax  | -   | 50  | 100 | 10                | 20 | 2    | 40   |
|                          |                 | GLY            | Mineral | -   | С   | I   | C/K               | Ι  | C/K  | I    |
|                          |                 |                | I/Imax  | -   | 10  | 10  | 100               | 5  | 80   | 20   |
|                          |                 | HG             | Mineral | -   | -   | I   | K                 | I  | K    | I    |
|                          |                 |                | I/Imax  | -   | -   | 12  | 100               | 5  | 40   | 10   |

| Drill-hole | Depth  | Treat-        | Mineral | , , , , , , , , , , , , , , , , , , , |            |     | Basal             |    |      |          |
|------------|--------|---------------|---------|---------------------------------------|------------|-----|-------------------|----|------|----------|
| identifier | (feet) | ment          | I/Imax  | 18Å                                   | 14Å        | 10Å | reflections<br>7Å | 5Å | 3.5Å | 3.3Å     |
| J 204      | 61     | HZ            | Mineral | -                                     | -          | IK  | -                 | I  | K    | <u> </u> |
| . 201      | 01     | 112           | I/Imax  | _                                     | -          | 100 | -                 | 5  | 60   | 10       |
|            | 81     | DI            | Mineral | -                                     | С          | I   | C/K               | I  | C/K  | I        |
|            | 0.     | 21            | I/Imax  | -                                     | 10         | 15  | 100               | 5  | 70   | 30       |
|            |        | HG            | Mineral | -                                     | -          | I   | K                 | Ĩ  | ĸ    | I        |
|            |        |               | I/Imax  | -                                     | -          | 5   | 100               | 5  | 55   | 10       |
| CH101      | 22     | DI            | Mineral | -                                     | С          | I   | C/K               | I  | C/K  | I        |
|            |        |               | I/Imax  | -                                     | 10         | 15  | 100               | 5  | 65   | 25       |
|            |        | GLY           | Mineral | -                                     | С          | Ι   | C/K               | I  | C/K  | Ι        |
|            |        |               | I/Imax  | -                                     | 5          | 20  | 100               | 5  | 50   | 20       |
|            |        | HG            | Mineral | -                                     | -          | Ι   | K                 | I  | K    | Ι        |
|            |        |               | I/Imax  | -                                     | -          | 10  | 100               | 5. | 60   | 25       |
|            |        | HZ            | Mineral | -                                     | -          | I/K | -                 | Ι  | K    | I        |
|            |        |               | I/Imax  | -                                     | -          | 100 | -                 | 10 | 50   | 20       |
|            | 60     | DI            | Mineral | -                                     | С          | I   | C/K               | I  | C/K  | I        |
|            |        |               | I/Imax  | -                                     | 20         | 30  | 100               | 10 | 55   | 40       |
|            | 90     | DI            | Mineral | -                                     | C          | I   | C/K               | Ĩ  | C/K  | I        |
|            |        |               | I/Imax  | -                                     | 15         | 30  | 100               | 15 | 100  | 35       |
| CH105      | 60     | DI            | Mineral | -                                     | С          | I   | C/K               | I  | C/K  | Ι        |
|            |        |               | I/Imax  | -                                     | 15         | 25  | 100               | 10 | 80   | 35       |
|            | 90     | DI            | Mineral | -                                     | С          | Ι   | C/K               | I  | C/K  | I        |
|            |        |               | I/Imax  | -                                     | 20         | 10  | 100               | 10 | 60   | 30       |
|            | 120    | DI            | Mineral | -                                     | С          | Ι   | C/K               | Ι  | C/K  | Ι        |
|            |        |               | I/Imax  | -                                     | 25         | 25  | 100               | 15 | 70   | 35       |
| CH107      | 25     | DI            | Mineral | -                                     | С          | I   | C/K               | I  | C/K  | I        |
|            |        |               | I/Imax  | -                                     | 15         | 30  | 100               | 15 | 100  | 35       |
|            |        | GLY           | Mineral | -                                     | С          | I   | C/K               | Ι  | C/K  | Ι        |
|            |        |               | I/Imax  | -                                     | 30         | 25  | 100               | 15 | 65   | 40       |
|            |        | HG            | Mineral | -                                     | -          | Ι   | K                 | Ι  | K    | Ι        |
|            |        |               | I/Imax  | -                                     | -          | 15  | 100               | 5  | 60   | 30       |
|            |        | HZ            | Mineral | -                                     | -          | I/K | -                 | I  | K    | Ι        |
|            |        |               | I/Imax  | -                                     | -          | 100 | -                 | 10 | 40   | 20       |
|            | 90     | $\mathbf{DI}$ | Mineral | -                                     | С          | Ι   | C/K               | Ι  | C/K  | Ι        |
|            |        |               | I/Imax  | -                                     | 15         | 25  | 100               | 15 | 65   | 35       |
|            | 120    | $\mathbf{DI}$ | Mineral | -                                     | С          | Ι   | C/K               | I  | C/K  | Ι        |
|            |        |               | I/Imax  | -                                     | <b>2</b> 0 | 25  | 100               | 20 | 80   | 40       |
|            | 197    | DI            | Mineral | -                                     | С          | Ι   | C/K               | Ι  | C/K  | Ι        |
|            |        |               | I/Imax  | -                                     | 10         | 25  | 100               | 15 | 60   | 40       |
| CH 130     | 60     | DI            | Mineral | -                                     | С          | I   | C/K               | I  | C/K  | I        |
|            |        |               | I/Imax  | -                                     | 30         | 35  | 100               | 20 | 70   | 35       |
|            | 90     | DI            | Mineral | -                                     | С          | Ι   | C/K               | Ι  | C/K  | Ι        |
|            |        |               | I/Imax  | -                                     | 15         | 30  | 100               | 15 | 60   | 35       |
|            | 120    | DI            | Mineral | -                                     | С          | Ι   | C/K               | Ι  | C/K  | Ι        |
|            |        |               | I/Imax  | -                                     | <b>2</b> 0 | 40  | 100               | 20 | 80   | 40       |
| CH 139     | 60     | DI            | Mineral | -                                     | с          | Ι   | C/K               | I  | C/K  | Ι        |
|            |        |               | I/Imax  | -                                     | 10         | 25  | 100               | 20 | 80   | 30       |

Table 2.--X-ray-diffraction analyses of authigenic-layer-silicate minerals from Mississippian and Pennsylvanian sandstones in the Michigan Basin, Lower Peninsula of Michigan--Continued

|            | Drill-hole Depth<br>identifier (feet) |      | Treat-    | Mineral<br>I/Imax |          |     |     | Basal reflections |      |      |  |
|------------|---------------------------------------|------|-----------|-------------------|----------|-----|-----|-------------------|------|------|--|
| Identifier |                                       | ment | I/ IIIIax | 18Å               | 14Å      | 10Å | 7Å  | 5Å                | 3.5Å | 3.3Å |  |
| CH 139     | 90                                    | DI   | Mineral   | -                 | <u> </u> | I   | C/K | I                 | C/K  | I    |  |
|            | ,,,                                   | 51   | I/Imax    | -                 | 30       | 40  | 100 | 20                | 80   | 35   |  |
|            | 120                                   | DI   | Mineral   | -                 | C        | I   | C/K | I<br>I            | C/K  | I    |  |
|            | 120                                   |      | I/Imax    | -                 | 20       | 30  | 100 | 20                | 80   | 40   |  |
|            |                                       |      | Dintar    |                   | 20       | 50  | 100 | 20                | 00   |      |  |
| RASA 5     | 514                                   | DI   | Mineral   | -                 | С        | Ι   | C/K | Ι                 | C/K  | Ι    |  |
|            |                                       |      | I/Imax    | -                 | 10       | 15  | 100 | 5                 | 65   | 25   |  |
|            |                                       | HG   | Mineral   | -                 | -        | I   | K   | Ι                 | K    | I    |  |
|            |                                       |      | I/Imax    | -                 | -        | 10  | 100 | 5                 | 55   | 20   |  |
|            |                                       | HZ   | Mineral   | -                 | -        | I/K | -   | I                 | K    | Ι    |  |
|            |                                       |      | I/Imax    | -                 | -        | 100 | -   | 5                 | 45   | 15   |  |
|            | 524                                   | DI   | Mineral   | -                 | С        | Ι   | C/K | Ι                 | C/K  | I    |  |
|            |                                       |      | I/Imax    | -                 | 5        | 15  | 100 | 5                 | 20   | 25   |  |
|            |                                       | HG   | Mineral   | -                 | -        | Ι   | K   | I                 | K    | Ι    |  |
|            |                                       |      | I/Imax    | -                 | -        | 10  | 100 | 5                 | 60   | 20   |  |
|            |                                       | K25  | Mineral   | -                 | С        | Ι   | C/K | Ι                 | C/K  | Ι    |  |
|            |                                       |      | I/Imax    | -                 | 5        | 20  | 100 | 5                 | 70   | 20   |  |
|            |                                       | K300 | Mineral   | -                 | С        | Ι   | C/K | Ι                 | C/K  | I    |  |
|            |                                       |      | I/Imax    | -                 | 5        | 20  | 100 | 10                | 60   | 20   |  |
|            |                                       | K550 | Mineral   | -                 | С        | Ι   | С   | Ι                 | С    | Ι    |  |
|            |                                       |      | I/Imax    | -                 | 50       | 100 | 10  | 20                | 5    | 40   |  |
|            |                                       | MG   | Mineral   | S                 | С        | Ι   | C/K | Ι                 | C/K  | Ι    |  |
|            |                                       |      | I/Imax    | 10                | 15       | 25  | 100 | 5                 | 65   | 20   |  |
|            | 526                                   | DI   | Mineral   | _                 | С        | Ι   | C/K | Ι                 | C/K  | I    |  |
|            |                                       |      | I/Imax    | -                 | 5        | 15  | 100 | 5                 | 70   | 20   |  |
|            |                                       | HG   | Mineral   | -                 | -        | I   | K   | I                 | K    | I    |  |
|            |                                       |      | I/Imax    | -                 | -        | 10  | 100 | 5                 | 50   | 20   |  |
|            |                                       | HZ   | Mineral   | -                 | -        | I/K | -   | I                 | ĸ    | Ĩ    |  |
|            |                                       |      | I/Imax    | -                 | -        | 100 | -   | 5                 | 40   | 15   |  |
| 01         | 1000                                  | DI   |           |                   | 0        | -   |     | -                 |      | _    |  |
| SL         | 1280                                  | DI   | Mineral   | -                 | C        | I   | C/K | I                 | C/K  | I    |  |
|            |                                       | 01 W | I/Imax    | -                 | 10       | 15  | 100 | 5                 | 55   | 25   |  |
|            |                                       | GLY  | Mineral   | -                 | C        | Ι   | C/K | Ι                 | C/K  | Ι    |  |
|            |                                       |      | I/Imax    | -                 | 10       | 10  | 100 | 5                 | 50   | 15   |  |
|            |                                       | HG   | Mineral   | -                 | -        | I   | K   | Ι                 | K    | Ι    |  |
|            |                                       |      | I/Imax    | -                 | -        | 10  | 100 | 5                 | 60   | 20   |  |
|            |                                       | HZ   | Mineral   | -                 | -        | I/K | -   | I                 | K    | I    |  |
|            |                                       |      | I/Imax    | -                 | -        | 100 | -   | 10                | 40   | 10   |  |
|            | 1286                                  | DI   | Mineral   | -                 | С        | Ι   | C/K | Ι                 | C/K  | Ι    |  |
|            |                                       |      | I/Imax    | -                 | 10       | 15  | 100 | 10                | 70   | 25   |  |
|            |                                       | GLY  | Mineral   | -                 | С        | Ι   | C/K | Ι                 | C/K  | I    |  |
|            |                                       |      | I/Imax    | -                 | 10       | 20  | 100 | 10                | 60   | 20   |  |
|            |                                       | HG   | Mineral   | -                 | -        | Ι   | K   | Ι                 | K    | Ι    |  |
|            |                                       |      | I/Imax    | -                 | -        | 15  | 100 | 10                | 50   | 20   |  |
|            |                                       | HZ   | Mineral   | -                 | -        | I/K | -   | Ι                 | K    | Ι    |  |
|            |                                       |      | I/Imax    | -                 | -        | 100 | -   | 10                | 45   | 20   |  |
|            | 1304                                  | DI   | Mineral   | -                 | С        | Ι   | C/K | Ι                 | C/K  | I    |  |
|            |                                       |      | I/Imax    | -                 | 10       | 20  | 100 | 10                | 60   | 25   |  |
|            |                                       | GLY  | Mineral   | -                 | С        | Ι   | C/K | Ι                 | C/K  | Ι    |  |
|            |                                       |      | I/Imax    | -                 | 10       | 10  | 100 | 5                 | 70   | 25   |  |

Table 2.--X-ray-diffraction analyses of authigenic-layer-silicate minerals from Mississippian and Pennsylvanian sandstones in the Michigan Basin, Lower Peninsula of Michigan-Continued

| Drill-hole | Depth  | Treat- | Mineral |         |     |     | Basal             |     |      |      |
|------------|--------|--------|---------|---------|-----|-----|-------------------|-----|------|------|
| identifier | (feet) | ment   | I/Imax  | 18Å     | 14Å | 10Å | reflections<br>7Å | 5Å  | 3.5Å | 3.3Å |
| SL         | 1304   | HG     | Mineral | -       | -   | I   | K                 | I   | K    | I    |
| 01         |        |        | I/Imax  | -       | -   | 10  | 100               | 5   | 50   | 30   |
|            |        | HZ     | Mineral | -       | -   | I/K | -                 | I   | K    | I    |
|            |        |        | I/Imax  | -       | -   | 100 | -                 | 10  | 40   | 20   |
|            | 1306   | DI     | Mineral | -       | С   | I   | C/K               | I   | C/K  | I    |
|            |        |        | I/Imax  | -       | 20  | 25  | 100               | 10  | 70   | 35   |
|            |        | GLY    | Mineral | -       | c   | I   | C/K               | I   | C/K  | I    |
|            |        |        | I/Imax  | -       | 20  | 30  | 100               | 10  | 50   | 40   |
|            | 1306   | HG     | Mineral | -       | -   | Ι   | K                 | I   | K    | I    |
|            |        |        | I/Imax  | -       | -   | 10  | 100               | 5   | 60   | 30   |
|            | 1318   | DI     | Mineral | -       | С   | Ι   | C/K               | I   | C/K  | I    |
|            |        |        | I/Imax  | -       | 10  | 20  | 100               | 10  | 55   | 25   |
|            |        | HG     | Mineral | -       | -   | Ι   | K                 | I   | K    | I    |
|            |        |        | I/Imax  | -       | -   | 25  | 100               | 10  | 65   | 40   |
|            | 1334   | DI     | Mineral | -       | С   | Ι   | C/K               | Ι   | C/K  | I    |
|            |        |        | I/Imax  | -       | 10  | 15  | 100               | 5   | 60   | 30   |
|            |        | GLY    | Mineral | -       | С   | Ι   | C/K               | I   | C/K  | I    |
|            |        |        | I/Imax  | -       | 5   | 15  | 100               | 5   | 65   | 25   |
|            |        |        | HG      | Mineral | -   | -   | I                 | C/K | I    | C/K  |
|            |        |        | I/Imax  | -       | -   | 5   | 100               | 5   | 50   | 5    |
|            |        | HZ     | Mineral | -       | -   | -   | C                 | -   | C    | -    |
|            |        |        | I/Imax  | -       | -   | -   | 100               | -   | 60   | -    |
|            | 1359   | DI     | Mineral | -       | С   | Ι   | C/K               | -   | C/K  | I    |
|            |        | 51     | I/Imax  | -       | 10  | 20  | 100               | 5   | 60   | 25   |
|            |        | GLY    | Mineral | -       | Ċ   | I   | C/K               | Ī   | C/K  | I    |
|            |        | 001    | I/Imax  | -       | 20  | 25  | 100               | 5   | 60   | 30   |
|            |        | HG     | Mineral | -       | -   | -   | C/K               | -   | C/K  | I    |
|            |        | 110    | I/Imax  | -       | -   | -   | 100               | -   | 50   | 20   |
|            |        | HZ     | Mineral | -       | -   | -   | C                 | -   | C    | -    |
|            |        |        | I/Imax  | -       | -   | -   | 100               | -   | 60   | -    |
|            | 1365   | DI     | Mineral | -       | С   | I   | C/K               | Ι   | C/K  | I    |
|            |        |        | I/Imax  | -       | 10  | 15  | 100               | 5   | 55   | 30   |
|            |        | GLY    | Mineral | -       | Ĉ   | Ī   | C/K               | I   | C/K  | I    |
|            |        |        | I/Imax  | -       | 20  | 20  | 100               | 10  | 60   | 20   |
|            |        | HG     | Mineral | -       | -   | -   | C/K               | -   | C/K  | -    |
|            |        |        | I/Imax  | -       | -   | -   | 100               | -   | 60   | -    |
|            |        | HZ     | Mineral | -       | -   | -   | C                 | -   | C    | -    |
|            |        |        | I/Imax  | -       | -   | -   | 100               | _   | 50   | _    |

Table 2.--X-ray-diffraction analyses of authigenic-layer-silicate minerals from Mississippian and Pennsylvanian sandstones in the Michigan Basin, Lower Peninsula of Michigan-Continued

•

.

Table 3.--Oxygen-isotope compositions of kaolinite and chlorite from Mississippian and Pennsylvanian sandstones in the Michigan Basin, Lower Peninsula of Michigan

Drill-hole identifier: Prefix abbreviations indicate location. Mississippian sandstones denoted by J204, CH, RASA 5, and SL prefixes. CH, Battle Creek area, Calhoun County; J204, Jackson County; RASA 5, Crawford County; SL, Six Lakes, Montcalm County. Pennsylvanian sandstones denoted by MBB, MBS, and MBW prefixes. MBB, Bunkerhill area, Ingham County; MBS, Standish area, Arenac County; MBW, Williamston area, Ingham County.

 $\delta^{18}$ O SMOW (‰): Oxygen-isotope compositions, in parts per thousand (per mil), as related to Standard Mean Ocean Water:

by a kaolinite-water equilibrium fractionation factor (Savin and Lee, 1988),

 $10^3 \ln\alpha$  (kaolinite-water) = 10.6 (10<sup>3</sup>/T) + 0.42 (10<sup>6</sup>/T<sup>2</sup>) -15.337;

or by a chlorite-water equilibrium fractionation factor (Savin and Lee, 1988),  $10^3 \ln \alpha$  (chlorite-water) = 11.545 + 1.455 ( $10^3/T$ ) + 4.077 ( $10^6/T^2$ ) - 0.831 ( $10^9/T^3$ ) + 0.075( $10^{12}/T^4$ ), where  $\alpha$  is the oxygen isotope fractionation factor, and T is temperature, in degrees centigrade.

Oxygen yield ( $\mu$ mol/mg): Estimate of sample purity. Pure kaolinite yields approximately 17.4  $\mu$ mol/mg of oxygen, converted to CO<sub>2</sub>; pure chlorite yields approximately  $\mu$ mol/mg of oxygen, converted to CO<sub>2</sub> (\*J.P. Girard, Case Western Reserve University, written commun., 1992).

Size (µm): Size fraction of clay mineral separates used for isotopic analysis, in micrometers.

| Drill-hole | Depth  | δ <sup>18</sup> 0 | Yield            | Size  | Minerals  |
|------------|--------|-------------------|------------------|-------|-----------|
| identifier | (feet) | SMOW              | (µmol/mg)        | (µm)  | analyzed  |
|            |        | (‰)               |                  |       |           |
|            |        | Mississ           | sippian sandston | ies   |           |
| J204       | 25     | 18.19             | 16.68            | 1-2   | kaolinite |
|            | 25     | 17.51             | 15.14            | 0.3-1 | kaolinite |
|            | 33     | 17.98             | 14.58            | 1-2   | kaolinite |
|            | 52     | 18.87             | 16.80            | 1-2   | kaolinite |
|            | 61     | 18.55             | 15.73            | 1-2   | kaolinite |
|            | 70     | 18.01             | 15.14            | 1-2   | kaolinite |
|            | 70     | 17.83             | 15.10            | 1-2   | kaolinite |
|            | 81     | 12.85             | 12.14            | 1-2   | kaolinite |
| CH 101     | 22     | 18.16             | 16.21            | 1-2   | kaolinite |
| CH 107     | 25     | 17.98             | 15.29            | 1-2   | kaolinite |
| RASA 5     | 514    | 19.00             | 16.52            | 1-2   | kaolinite |
|            | 524    | 18.91             | 15.07            | 1-2   | kaolinite |
| **         | 524    | 18.20             | 14.67            | 1-2   | kaolinite |
|            | 526    | 19.33             | 16.80            | 1-2   | kaolinite |

Minerals analyzed: Minerals extracted for isotopic analysis.

Table 3.--Oxygen-isotope compositions of kaolinite and chlorite from Mississippian and Pennsylvanian sandstones in the Michigan Basin, Lower Peninsula of Michigan--Continued

| Drill hole | Depth  | δ <sup>18</sup> 0 | Yield            | Size | Minerals  |
|------------|--------|-------------------|------------------|------|-----------|
| identifier | (feet) | SMOW              | (µmol/mg)        | (µm) | analyzed  |
|            |        | (‰)               |                  |      | -         |
| SL         | 1280   | 18.27             | 15.45            | 1-2  | kaolinite |
|            | 1286   | 18.25             | 15.69            | 1-2  | kaolinite |
|            | 1304   | 18.20             | 15.63            | 1-2  | kaolinite |
|            | 1306   | 18.08             | 15.51            | 1-2  | kaolinite |
|            | 1334   | 10.63             | 13.45            | 1-2  | chlorite  |
| **         | 1334   | 10.33             | 13.82            | 1-2  | chlorite  |
|            | 1359   | 11.21             | 11.67            | 1-2  | chlorite  |
| **         | 1359   | 11.20             | 13.66            | 1-2  | chlorite  |
|            | 1365   | 11.89             | 11.56            | 1-2  | chlorite  |
| **         | 1365   | 11.85             | 12.14            | 1-2  | chlorite  |
|            |        | Pennsylv          | vanian sandstone | S    |           |
| MBB2       | 76     | 16.81             | 15.66            | 1-2  | kaolinite |
| MBB4       | 64     | 17.39             | 15.97            | 1-2  | kaolinite |
| MBB5       | 63     | 17.16             | 15.61            | 1-2  | kaolinite |
| MBS2       | 136    | 17.10             | 15.68            | 1-2  | kaolinite |
| MBS3       | 64     | 19.03             | 15.87            | 1-2  | kaolinite |
| MBW4       | 97     | 17.73             | 15.69            | 1-2  | kaolinite |
| MBW5       | 85     | 16.91             | 15.61            | 1-2  | kaolinite |
| MBW6       | 97     | 17.57             | 15.53            | 1-2  | kaolinite |

**\*\*** Denotes duplicate analysis

Table 4.--<u>Scanning-electron-microscope and energy-dispersive-spectroscopy identification of</u> <u>authigenic-layer silicates from Mississippian sandstones in the Michigan Basin, Lower Peninsula</u> <u>of Michigan</u>

Drill-hole identifier: Prefix abbreviations indicate location. J204, Jackson County; CH, Battle Creek area, Calhoun County; RASA 1, Montrose area, Genesee County; RASA 2, Holton area, Muskegon County; RASA 3, Benton area, Eaton County; RASA 4, Sauble area, Lake County; RASA 5, Crawford County; SL, Six Lakes, Montcalm County.

| Drill-hole | Depth  |          | Mineral   | ,      |
|------------|--------|----------|-----------|--------|
| identifier | (feet) | chlorite | kaolinite | illite |
| J 204      | 25     | -        | A         | x      |
|            | 33     | -        | Α         | x      |
|            | 41     | -        | Α         | x      |
|            | 52     | -        | Α         | x      |
|            | 61     | х        | Α         | х      |
|            | 70     | х        | Α         | x      |
|            | 82     | Α        | Α         | х      |
|            | 91     | Α        | x         | x      |
|            | 101    | Α        | x         | х      |
| CH 101     | 25     | -        | А         | -      |
|            | 41     | -        | Α         | -      |
|            | 49     | -        | x         | x      |
|            | 55     | -        | х         | х      |
|            | 60     | х        | х         | -      |
|            | 62     | -        | Α         | х      |
|            | 90     | Α        | -         | х      |
|            | 120    | Α        | -         | х      |
| CH 105     | 33     | -        | x         | x      |
|            | 57     | -        | Α         | х      |
|            | 61     | х        | -         | х      |
|            | 85     | х        | -         | x      |
|            | 125    | Α        | -         | х      |
| CH 107     | 25     | -        | Α         | x      |
|            | 40     | -        | Α         | х      |
|            | 62     | х        | x         | x      |
|            | 88     | х        | -         | х      |
|            | 120    | х        | -         | х      |
| CH 130     | 35     | -        | А         | Α      |
|            | 46     | -        | x         | -      |
|            | 56     | х        | -         | х      |
|            | 90     | х        | -         | х      |
|            | 111    | х        | -         | x      |

Mineral: A, abundant; x, present, but not abundant; -, not identified.

| Table 4Scanning-electron-microscope and energy-dispersive-spectroscopy identification of |
|------------------------------------------------------------------------------------------|
| authigenic-layer silicates from Mississippian sandstones in the Michigan Basin, Lower    |
| Peninsula of MichiganContinued                                                           |

| Drill-hole | Depth      | Mineral  |           |        |
|------------|------------|----------|-----------|--------|
| identifier | (feet)     | chlorite | kaolinite | illite |
| СН 139     | 35         | -        | x         | x      |
|            | 50         | -        | х         | -      |
|            | 56         | x        | -         | x      |
|            | 60         | х        | -         | х      |
|            | 85         | х        | -         | х      |
|            | 123        | Α        | -         | x      |
| RASA 1     | 487        | -        | А         | x      |
|            | 500        | -        | Α         | х      |
|            | 520        | -        | Α         | x      |
| RASA 2     | 432        | -        | А         | x      |
|            | 459        | х        | A         | x      |
|            | 465        | x        | A         | x      |
|            | 405        |          | A         |        |
|            | 485        | x        | A         | X      |
|            | 483<br>505 | x<br>x   | A         | X      |
|            | 505<br>525 | x        | A         | x<br>x |
|            | 525        | 4        |           | Α      |
| RASA 3     | 490        | -        | Α         | x      |
|            | 500        | x        | x         | х      |
|            | 525        | Α        | -         | x      |
|            | 600        | Α        | -         | -      |
| RASA 4     | 560        | -        | x         | -      |
|            | 578        | -        | Α         | x      |
|            | 594        | -        | х         | x      |
|            | 606        | х        | х         | x      |
|            | 616        | х        | х         | х      |
|            | 624        | -        | -         | Α      |
|            | 632        | x        | -         | x      |
| RASA 5     | 502        | А        | Α         | х      |
|            | 514        | A        | x         |        |
|            | 520        | A        | A         | Α      |
|            | 524        | A        | x         | x      |
|            | 526        | A        | x         | x      |
|            | 531        | A        | x         | Â      |
|            | 533        | A        | x         | x      |
|            | 587        | A        | x         | x      |
|            | 591        | A        | -         | x      |
|            | 599        | A        | _         | x      |

| Table 4Scanning-electron-microscope and energy-dispersive-spectroscopy identification of |
|------------------------------------------------------------------------------------------|
| authigenic-layer silicates from Mississippian sandstones in the Michigan Basin, Lower    |
| Peninsula of MichiganContinued                                                           |

| Drill-hole | Depth  |          | Mineral   |        |
|------------|--------|----------|-----------|--------|
| identifier | (feet) | chlorite | kaolinite | illite |
| RASA5      | 607    | Α        | -         | x      |
|            | 617    | Α        | -         | Α      |
| SL         | 1276   | -        | А         | х      |
|            | 1280   | -        | x         | x      |
|            | 1285   | -        | х         | x      |
|            | 1286   | -        | Α         | Α      |
|            | 1287   | -        | Α         | Α      |
|            | 1304   | -        | Α         | Α      |
|            | 1306   | -        | Α         | х      |
|            | 1318   | х        | Α         | х      |
|            | 1330   | Α        | Α         | х      |
|            | 1334   | Α        | -         | х      |
|            | 1347   | Α        | -         | -      |
|            | 1353   | Α        | -         | х      |
|            | 1359   | Α        | -         | х      |
|            | 1365   | Α        | -         | х      |