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Abstract 

Background:  Optimal oxygen targets in patients resuscitated after cardiac arrest are uncertain. The primary aim of 
this study was to describe the values of partial pressure of oxygen values (PaO2) and the episodes of hypoxemia and 
hyperoxemia occurring within the first 72 h of mechanical ventilation in out of hospital cardiac arrest (OHCA) patients. 
The secondary aim was to evaluate the association of PaO2 with patients’ outcome.

Methods:  Preplanned secondary analysis of the targeted hypothermia versus targeted normothermia after OHCA 
(TTM2) trial. Arterial blood gases values were collected from randomization every 4 h for the first 32 h, and then, every 
8 h until day 3. Hypoxemia was defined as PaO2 < 60 mmHg and severe hyperoxemia as PaO2 > 300 mmHg. Mortality 
and poor neurological outcome (defined according to modified Rankin scale) were collected at 6 months.

Results:  1418 patients were included in the analysis. The mean age was 64 ± 14 years, and 292 patients (20.6%) 
were female. 24.9% of patients had at least one episode of hypoxemia, and 7.6% of patients had at least one episode 
of severe hyperoxemia. Both hypoxemia and hyperoxemia were independently associated with 6-month mortality, 
but not with poor neurological outcome. The best cutoff point associated with 6-month mortality for hypoxemia 
was 69 mmHg (Risk Ratio, RR = 1.009, 95% CI 0.93–1.09), and for hyperoxemia was 195 mmHg (RR = 1.006, 95% CI 
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Background
Cardiac arrest is a major cause of mortality and mor-
bidity, and over the last years [1, 2], attention has risen 
toward the levels of oxygenation to achieve as an essential 
determinant of secondary brain injury and worsened out-
comes [3]. Mechanical ventilation is commonly required 
to avoid hypoxemia [4], which is a well-known cause 
of anoxic brain injury promoting secondary brain and 
reperfusion-related damage [5, 6]. Recent literature has 
also focused on the role of hyperoxemia in critically ill 
patients [7–10]. Supplemental oxygen can correct hypox-
emia, thereby supporting cell function, metabolism, and 
limiting organ dysfunction. However, it might have det-
rimental effects on patients’ outcomes through different 
pathophysiological mechanisms, such as the production 
of reactive oxygen species and free radicals yielding sec-
ondary damage due to reperfusion injury [11–17]. Stud-
ies exploring the role of hypo- and hyperoxemia after 
cardiac arrest are not conclusive. They present several 
heterogeneities in terms of study design, sample size and 
outcome definition, as well as inconsistent results, espe-
cially when compared to the preclinical cardiac arrest 
models [8, 18–21].

We therefore performed a secondary analysis of the 
Targeted Hypothermia versus Targeted Normother-
mia after Out-of-Hospital Cardiac Arrest (TTM2) trial 
that included Out-of-Hospital Cardiac Arrest (OHCA) 
patients. The aim was to assess the oxygen targets, the 
incidence of episodes of hypoxemia and hyperoxemia in 
the first 72  h of mechanical ventilation, and their asso-
ciation with patients’ 6-months outcome (mortality and 
neurological status).

Methods
This was a pre-planned secondary analysis of the TTM2 
trial, which was an international, multicenter randomized 
controlled trial comparing the effects of normothermia 
(temperature ≤ 37.5 °C), versus hypothermia (target 33 °C 
until 28  h after randomization, and then rewarming to 
37 °C) [22, 23]. This sub-analysis was conducted accord-
ing to the Strengthening the Reporting of Observational 

Studies in Epidemiology (STROBE) reporting guidelines 
[24] (Additional file  1: Table  S1). Ethical approval was 
obtained in the coordinating center and in each par-
ticipating center as well as informed consent accord-
ing to local regulations. This sub-study was conducted 
in accordance with the principles of the Declaration of 
Helsinki, and the Medical Research Involving Human 
Subjects Act (WMO) and was approved on the 23rd of 
February 2017 by the TTM2 steering committee (https://​
ttm2t​rial.​org/​subst​udy-​propo​sals). The protocol of the 
analysis was published [22]. No further ethical approval 
was necessary for the development of this study.

Objectives and definitions
The primary aim was to describe the arterial partial 
pressure of oxygen (PaO2) values observed in OHCA 
patients in the first 72  h of mechanical ventilation and 
the occurrence of episodes of hypo/hyperoxemia. As 
previous studies have considered arterial oxygen thresh-
olds of < 60  mmHg and > 300  mmHg when evaluating 
associations between oxygen exposure and outcome [7, 
8, 18, 25], we pre-specified that we would initially evalu-
ate the same thresholds, and then, we aimed to calculate 
the “best” threshold of hypo/hyperoxemia associated 
with poor outcome. For primary analysis, three patients’ 
groups according to conventional thresholds were 
defined: (1) hypoxemia with one or more episodes of 
PaO2 levels < 60 mmHg; (2) normoxemia (including mild-
moderate hyperoxemia, with PaO2 levels between 60 and 
300 mmHg; and (3) severe hyperoxemia with one or more 
PaO2 levels > 300 mmHg. The secondary objectives were 
to assess: (1) the association between hypo/hyperoxemia 
during the first 72 h of mechanical ventilation with mor-
tality and neurological outcome at 6-months; (2) the best 
threshold of hypo/hyperoxemia associated with mortality 
and poor neurological outcome; (3) the cumulative effect 
of the “dose” (oxygen exposure over time, PaO2-Area 
Under the Curve, AUC) of hypo/hyperoxemia on mor-
tality and poor neurological outcome at 6-months; 4) the 
effect of PaO2 on outcome according to randomization in 
the normothermia versus hypothermia group.

0.95–1.06). The time exposure, i.e., the area under the curve (PaO2-AUC), for hyperoxemia was significantly associated 
with mortality (p = 0.003).

Conclusions:  In OHCA patients, both hypoxemia and hyperoxemia are associated with 6-months mortality, with an 
effect mediated by the timing exposure to high values of oxygen. Precise titration of oxygen levels should be consid‑
ered in this group of patients.

Trial registration: clinicaltrials.gov NCT02​908308, Registered September 20, 2016.

Keywords:  Cardiac arrest, Hypoxemia, Hyperoxemia, Mortality, Neurological outcome
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Inclusion and exclusion criteria
Inclusion criteria of the TTM2 trial were patients 
18  years of age or older admitted to the hospital after 
OHCA of non-traumatic or unknown cause with a return 
of spontaneous circulation (ROSC) requiring ICU admis-
sion and mechanical ventilation. Exclusion criteria were 
the following: unwitnessed OHCA with an initial rhythm 
of asystole, an interval from ROSC to screening over 
180  min, temperature on admission < 30  °C, obvious or 
suspected pregnancy, intracranial bleeding at admis-
sion [22, 23]. For this sub-analysis, we further excluded 
patients who had no available data on PaO2 in the first 
24 h from hospital admission.

Data management and collection
Details on the study procedure and patients’ clinical 
management have been previously described [22, 23]. 
Ventilatory management was performed according to 
local practice. Patients’ data were collected at hospital 
admission, during the intensive care unit (ICU)-stay, at 
ICU-discharge, at hospital-discharge, and at 6-month fol-
low-up [22, 23]. Data collected included patients’ demo-
graphic characteristics, pre-cardiac arrest comorbidities 
(including Charlson comorbidity index [26]), location, 
timing, type and management of cardiac arrest, clinical 
presentation (presence of shock, ST-elevation myocardial 
infarction—STEMI), data on ventilator settings/param-
eters (tidal volume—VT, positive end-expiratory pres-
sure—PEEP, respiratory rate—RR, fraction of inspired 
oxygen—FiO2, plateau pressure—Pplat, peak pres-
sure—Ppeak, compliance of respiratory system—Crs), 
and arterial blood gases (ABG) values (pHa, PaO2, par-
tial pressure of carbon dioxide—PaCO2, base excess) and 
clinical outcomes. Ventilatory settings and ABG values 
were collected from randomization every 4 h for the first 
32 h, and then, every 8 h until day 3 (72 h).

Clinical outcome measures
Clinical outcome measures were mortality and patients’ 
neurological outcome at 6-month follow-up, the lat-
ter evaluated through the Modified Rankin Scale (mRS). 
The mRS score for neurologic disability is a 7 categories 
scoring system, ranging from no symptoms (score 0) to 
patient’s death (score 6), where poor neurological out-
come is defined as a score ranging from 4 to 6. Follow-
up data were obtained by study participants through 
telephone interview, postal questionnaire, or a face-to-
face visit. Responses were obtained from patients or 
from a next of kin in cases of impaired cognitive capacity, 
which could prevent patient interview.

Statistical analysis
At baseline, data on patient characteristics, ventilator 
settings, and ABG were presented as means ± stand-
ard deviation, or medians [interquartile range (IQR)] 
for continuous variables, or as percentages for the cat-
egorical ones. The comparisons of means, medians, and 
frequencies among the three categories for PaO2 were 
carried out using one-way ANOVA, Kruskal–Wallis’ 
test, and chi-square test, respectively. When building a 
regression model, the process of variable selection com-
prised an initial model with: (1) patients’ clinical char-
acteristics (age, sex, body mass index—BMI, height, 
Charlson comorbidity index, state of shock at admis-
sion, and STEMI diagnosis on admission); (2) onsite-
related cardiopulmonary resuscitation (CPR) related 
variables (ROSC time, bystander CPR, OHCA physical 
location, initial cardiac rhythm, witnessed OHCA); (3) 
treatment variables from the original trial (randomiza-
tion arm and tympanic temperature at admission); and 
(4) ABG values and (5) ventilatory settings parameters. 
From this initial set of covariates, a more parsimoni-
ous model was developed by backward elimination 
using a multivariable fractional polynomial (FP) proce-
dure [27]. The linearity assumption of continuous vari-
ables was tested, and the variable transformed with the 
appropriate FP when the assumption was not met. Risk 
estimates from the Cox regression and logistic regres-
sion models were expressed as hazard ratios (HRs) and 
Odds ratios (ORs) with 95% confidence intervals (95% 
CI), respectively. If PaO2/PaO2-AUC (as continuous) 
were modeled with a FP, their association with the end-
point was instead depicted through a graph where the 
HR/OR on the y-scale is plotted against the continuum 
of the marker.

The independent association between baseline PaO2 
(or PaO2 groups-PaO2_class) with 6-months mortality 
was evaluated with Cox regression analysis. As a sen-
sitivity analysis, the area under the receiving operator 
curve (ROC) curve of all PaO2 values (PaO2-AUC) was 
calculated for each patient and tested in a Cox regres-
sion for mortality, which was built considering the 
repeated measures of PaO2 as a single time point rep-
resenting the numerical integration of PaO2 values and 
the time between measurements. Therefore, PaO2-AUC 
represents a sequential (cumulative) integration over 
time of all PaO2 preceding values obtained during the 
first 72 h since ICU admission. Because we were inter-
ested exploring the prognostic value of PaO2-AUC 
on hypoxemia and hyperoxemia, an interaction with 
PaO2_class was included in the Cox regression model.

A 2-sided p value of < 0.05 was the threshold used for 
significance in all analyses. Stata 16.1 was used for data 
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clean-up, preparation, and statistical analysis. Further details 
on statistical methods are presented in the Additional file 1.

Results
Characteristics of the patients in the whole population
From a total of 1861 patients included in the TTM2 
trial, 443 patients were excluded due to missing values in 
PaO2 in the first 24 h, leaving a sample of 1418 patients 
(Table  1, Additional file  1: Tables S2, S3). The median 
age was 65 [IQR = 55–74] years, and 292 (20.6%) were 
female. At 6-month follow-up, 696 (49.1%) patients were 
dead, and 740 (55.9%) had poor neurological outcome. 
Additional file 1: Table S2 and S3 present patients’ clini-
cal characteristics, outcome measures, and ventilator set-
tings, respectively, and according to the different classes 
of PaO2.

PaO2 distribution and the occurrence of episodes of hypo/
hyperoxemia
At admission, the median PaO2 value in the overall pop-
ulation was 108  mmHg [IQR = 83–163]. Seventy-nine 
patients (5.6%) presented a PaO2 < 60  mmHg (median 
PaO2 = 51  mmHg [IQR = 39.7–56.2]); 100 (7.1%) 
patients a PaO2 > 300 mmHg (median PaO2 = 363 mmHg 
[IQR = 330–433]); and 1239 (87.4%) patients had a PaO2 
between 60 and 300 mmHg (median PaO2 = 108 mmHg 
[IQR = 85.5–148.5]). PaO2 trajectories over the 72  h 
study period are shown in Additional file  1: Figure S1. 
Over the study period, 24.9% of patients had at least 
one episode of PaO2 < 60  mmHg and 7.6% of patients 
had at least one episode of PaO2 > 300  mmHg, Fig.  1. 
In most cases, patients had 1 or 2 episodes over the 
first 72  h, whereas more than 2 episodes were less fre-
quent. The incidence rates (number of episodes per 

Table 1  Baseline patients’ characteristics, comorbidities, pre-hospital settings/interventions of the overall population and stratified 
according to oxygen values

Data are reported as median (interquartile range, IQR) and number (percentage, %). Legend: n = number of patients, BMI, body mass index, IBW, ideal body weight, 
ROSC, return of spontaneous circulation, CPR, cardio-pulmonary resuscitation, TTM, target temperature management

Overall
(n = 1418, 100.0%)

PaO2 < 60 mmHg
(n = 79, 5.6%)

PaO2 60–300 mmHg
(n = 1239, 87.4%)

PaO2 > 300 mmHg
(n = 100, 7.1%)

p value

Baseline patient characteristics

Age, years, median (IQR) 65 (55; 74) 66 (57; 75) 65 (55; 74) 66 (56; 74) 0.415

Gender, female, n (%) 292 (20.6) 13 (16.5) 250 (20.2) 29 (29.0) 0.071

Height, cm, median (IQR) 175 (170; 180) 176 (170; 180) 175 (170; 180) 170 (165; 179) 0.005

Weight, kg, median (IQR) 80 (73; 90) 85 (80; 93) 80 (73; 91) 80 (70; 88) 0.001

BMI, kg/m2, median (IQR) 26.3 (24.1; 29.7) 27.4 (25.0; 30.6) 26.3 (24.1; 29.7) 26.1 (23.3; 28.4) 0.021

Chronic comorbidities

Hypertension, yes, n (%) 504 (35.5) 25 (31.6) 449 (36.2) 30 (30.0) 0.115

Diabetes mellitus, yes, n (%) 266 (18.8) 15 (19.0) 234 (18.9) 17 (17.0) 0.896

Myocardial infarction, yes, n (%) 230 (16.2) 14 (17.7) 201 (16.2) 15 (15.0) 0.244

Percutaneous coronary intervention, yes, n (%) 210 (14.8) 14 (17.7) 181 (14.6) 15 (15.0) 0.130

Coronary artery bypass graft, yes, n (%) 112 (7.9) 7 (8.9) 98 (7.9) 7 (7.0) 0.219

Heart failure, yes, n (%) 145 (10.2) 9 (11.4) 127 (10.3) 9 (9.0) 0.206

Charlson comorbidity index, points, median (IQR) 4.0 (2.0; 5.0) 4.0 (3.0; 6.0) 4.0 (2.0; 5.0) 4.0 (2.3; 5.8) 0.517

Pre-hospital setting/interventions

Location of cardiac arrest, n (%)

Home 741 (52.3) 42 (53.2) 638 (51.5) 61 (61.0)

Public place 509 (35.9) 27 (34.2) 452 (36.5) 30 (30.0)

Other 168 (11.8) 10 (12.7) 149 (12.0) 9 (9.0) 0.474

Witnessed cardiac arrest, yes, n (%) 1295 (91.3) 71 (89.9) 1131 (91.3) 93 (93.0) 0.753

Bystander performed CPR, yes, n (%) 1148 (81.0) 63 (79.7) 1007 (81.3) 78 (78.0) 0.696

Type of rhythm, n (%)

Not shockable 390 (27.5) 24 (30.4) 331 (26.7) 35 (35.0)

Shockable 1028 (72.5) 55 (69.6) 908 (73.3) 65 (65.0) 0.558

Time of ROSC, minutes, median (IQR) 25 (17; 39) 25 (19; 39) 25 (17; 39) 25(18.3; 35.8) 0.558

TTM randomization treatment, n (%)

Normothermia 712 (50.2) 46 (58.2) 615 (49.6) 51 (51.0) 0.330

Hypothermia 706 (49.8) 33 (41.8) 624 (50.4) 49 (49.0)
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person in the 72  h follow-up) for PaO2 < 60  mmHg and 
PaO2 > 300 mmHg were 0.42 (95% CI 0.39–0.45) and 0.08 
(95% CI 0.07–0.10), respectively.

The association between hypo‑ and hyperoxemia 
with 6‑months mortality
Figure 2 presents the adjusted PaO2 trajectories accord-
ing to survival status. PaO2 values decreased significantly 
until the 40th hour and then, leveled-off afterward both 
in survivors and non-survivors. The differences between 
the two trajectories according to survival status were sta-
tistically significant up to the first 32 h of measurement 
(omnibus p value = 0.007). Higher PaO2 values were 
associated with better survival. The Kaplan–Meier curve 
(Additional file  1: Figure S2) suggested a trend toward 
better survival in the normoxemia group, compared to 
both the hypoxemia and severe hyperoxemia groups, 
although not statistically significant. At multivariable 
Cox regression, PaO2 followed a U-shape risk profile, 
demonstrating that both hypo- and hyperoxemia were 

independently associated with higher mortality rates 
(omnibus p value = 0.0006; Fig. 3).

Definition of the “best” threshold of hypoxemia 
and hyperoxemia associated with 6‑months mortality
Figure  4 shows the “best” threshold of hypoxemia and 
hyperoxemia for the prediction of 6-month mortality in 
our cohort. The best cut-off point for hypoxemia was a 
PaO2 of 69 mmHg (Risk Ratio = 1.009, 95% CI 0.93–1.09) 
and for hyperoxemia was a PaO2 of 195  mmHg (Risk 
Ratio = 1.006, 95% CI 0.95–1.06). The characteristics of 
the patients according to the best thresholds calculated 
are shown in Additional file  1: Table  S4–S6. At admis-
sion, 165 patients (11.6%) presented with hypoxemia 
(median value 60 mmHg [IQR = 51.7–65.2]), 263 (18.5%) 
with hyperoxemia (273  mmHg [IQR = 231.7–342.7]), 
and 990 patients (69.8%) with normoxemia (105 mmHg 
[IQR = 87–133]). Over the study period, 55.9% of patients 
had at least one episode of hypoxemia and 21.7% had 
at least one episode of hyperoxemia, and in most cases 

Fig. 1  Frequency distribution of arterial partial pressure of oxygen (PaO2) classes (conventional thresholds). Number of hypoxemia 
(PaO2 < 60 mmHg) or severe hyperoxemia (PaO2 > 300 mmHg) episodes per patient during the first 72 h after intensive care unit admission. This 
figure was based on all patients included in the cohort, with a percent distribution as follow: Episodes of Hypoxemia = 0 (n = 1372 (75.01%), 1 
(n = 304 (16.62%), 2 (n = 88 (4.81%), 3 (n = 39 (2.13%), 4 + (n = 26 (1.42%). Episodes of Hyperoxemia = 0 (n = 1689 (92.35%), 1 (n = 130 (7.11%), 2 
(n = 9 (0.49%), 4 (n = 1 (0.05%)
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patients experienced only 1 or 2 episodes of hypoxemia 
and/or hyperoxemia over the first 72  h of mechanical 
ventilation. The incidence (number episodes per person 
in the 72  h follow-up) for hypoxemia and hyperoxemia 
considering the best thresholds was 1.34 (95% CI 1.29–
1.40) and 0.26 (95% CI 0.24–0.29), respectively (Fig. 5).

Dose of oxygen and interaction between oxygen values 
and TTM2‑arms.
Additional file 1: Figure S3 shows the hypoxemia and hyper-
oxemia mortality risk difference considering the expo-
sure over time or “dose” of oxygen defined as PaO2-AUC. 
PaO2-AUC for hyperoxemia showed to be associated with 
higher mortality risk as compared to normoxemia (interac-
tion p value = 0.0039).

Additional file  1: Figure S4 shows the interaction 
between PaO2 and TTM2-arms (hypothermia versus 
normothermia). No difference was observed on the effect 
of PaO2 on mortality between the TTM2-randomization 

groups (interaction p value = 0.997). HRs of hypoxemia 
and hyperoxemia on mortality for the hypothermia 
group were 1.07 (95% CI 0.58–1.98; p = 0.82), and 1.38 
(95% CI 0.82–2.32; p = 0.22), respectively.

The association between hypo‑ and hyperoxemia 
with neurological outcome
No differences were observed in the trajectories of PaO2 val-
ues in the first 72 h according to poor and good neurologi-
cal status (omnibus value p = 0.35). Also, the distribution of 
the mRS score was not different among PaO2 classes (Addi-
tional file 1: Figure S5, p = 0.55). At multivariate analysis, no 
significative association with poor neurological outcome 
(mRS = 4–6) was observed (omnibus value, p = 0.63), even 
considering separately mRS 4 and 5 (Additional file 1: Fig-
ure S6). Accordingly, we were not able to find a best cut-off 
point for neurological outcome (Additional file 1: Figure S7).

Fig. 2  Adjusted hourly trajectories of partial pressure of oxygen according to 6-month survival status. Left panel shows the predicted partial 
pressure of oxygen (PaO2) trajectories according to survival status. Right panel shows the PaO2 differences between survivors and non-survivors at 
each time point. For this analysis, mixed regression model included a random intercept on patients ID and a random coefficient on the time variable 
(time elapsed between measurements). These predicted trajectories were adjusted for TTM2 randomization arms, age (year), gender, Charlson 
comorbidity index, state of shock at admission, return to spontaneous circulation-ROSC- time, initial cardiac rhythm (shockable vs non-shockable), 
witnesses of cardiac arrest, respiratory rate (breath/min), plateau pressure (cmH2O),positive end expiratory pressure (cmH2O), arterial partial pressure 
of carbon dioxide, PaCO2 (mmHg), pH, Base excess (mEq/L), and fraction of inspired O2 (%). Right panel confirmed that the differences between 
these two trajectories (survivors/non-survivors) are statistically significant up to the first 32 h of measurement (omnibus p value = 0.0074). ICU, 
Intensive Care Unit
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Discussion
In a large cohort of OHCA patients included in an inter-
national multicenter randomized clinical trial, we found 
that: (1) hypoxemia and severe hyperoxemia events are 
uncommon after OHCA, considering the conventional 
thresholds suggested in the literature; (2) the “best” cut-
off values of oxygen associated with the risk for mortal-
ity were a PaO2 below 69 mmHg and above 195 mmHg; 
with the use of these cut-offs, the incidence of episodes 
of hypoxemia and hyperoxemia markedly increased; (3) 
hypoxemia and hyperoxemia are independently associ-
ated with 6-months mortality but not with neurological 
outcome; the time-exposure (or “dose”) of hyperoxemia 
was associated with 6-months mortality; and 4) these 
results were consistent across the group of randomiza-
tion (normothermia or hypothermia).

To the best of our knowledge, this is the largest pro-
spective study exploring the targets of oxygen as well as 
the association of hypoxemia and hyperoxemia with out-
come in a homogeneous population of OHCA patients. 
We believe that our results are relevant and confirm 
not only the important effects of hypoxemia but also of 
hyperoxemia on 6-months mortality. In addition, we 

identified new thresholds of PaO2 which are at risk for 
poor outcome.

Several studies highlighted the importance of main-
taining appropriate ventilation targets and levels of PaO2 
in OHCA patients [27]. Post-cardiac arrest syndrome 
includes a number of pathophysiological mechanisms 
such as brain edema, reperfusion injury and oxidative 
stress, which can lead to neuronal damage and brain 
injury [28]. Hypoxemia caused by cardiac arrest yields to 
an alteration of cerebral metabolism, neuronal cell injury 
and death [7, 29].

The occurrence of hypoxemia and hyperoxemia is vari-
able in the literature, with overall incidence of about 19% 
for hypoxemia [7] and between 3 and 60% for hyperox-
emia [7, 25, 30]. Considering the conventional thresh-
olds, the incidences of episodes of hypoxemia and severe 
hyperoxemia in our study were compatible with previ-
ous literature. The use of new “best” thresholds for oxy-
genation compared to traditional ones led to a marked 
increase in the number of patients exposed to at least one 
episode of hypoxemia or hyperoxemia.

The PaO2 threshold responsible for the onset of 
hypoxic neuronal damage is not completely defined, and 

Fig. 3  Arterial partial pressure of oxygen (PaO2) mortality risk profile. In this Cox regression, PaO2 was modeled with a fractional polynomial (FP) of 
second degree FP [0–1], and included the following covariates: TTM2 randomization group, tympanic temperature at admission, age (years), gender, 
Charlson comorbidity index, cardiac arrest witnessed, time to return to spontaneous circulation, ROSC (min), bystander performed cardiopulmonary 
resuscitation, CPR, shockable rhythm, cardiac arrest location (home, public place, other), shock diagnosis on admission, ST-Elevated myocardial 
infarction (STEMI) diagnosis on admission, respiratory rate (breath/min), positive end-expiratory pressure, arterial partial pressure of carbon dioxide 
(PaCO2) (mmHg), pHa, and Base excess (mEq/L), Driving pressure (cmH20), and mechanical power (J/min). Along the PaO2 continuum, values before 
and after its median (108.7 mmHg and used as reference—see vertical line in red) were statistically associated with mortality if the 95% confidence 
interval (CI) did not cover the y-line of 1 (horizontal line in red)
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it is generally considered at 60 mmHg [31–34]. This value 
could underestimate the risk of hypoxemia in the OHCA 
population as the “best” lower threshold associated with 
increased mortality was found at PaO2 of 69 mmHg.

Although recommendations suggest to give the maxi-
mum feasible inspired oxygen during CPR [8, 18, 35] 
to avoid hypoxemia [36, 37], recent evidence suggests a 
possible harmful effect also of hyperoxemia after OHCA 
[38]. A systematic review reported higher mortality in 
hyperoxemic compared to normoxemic patients with 
cardiac arrest and extracorporeal life support, but not 
in other groups of patients [39]. Another recent meta-
analysis of observational studies [40] showed that severe 
hyperoxemia (PaO2 > 300  mmHg) was associated with 
worse outcome, especially if hyperoxemia occurred 
during the first 36 h after cardiac arrest. However, high 
heterogeneity was found among the studies included in 
the meta-analysis, regarding the threshold of oxygen 
adopted, patient selection, the use of TTM, outcome 
measurement, methods of analyzing blood gas and often 
lack a pre-defined sampling protocol [20, 21, 41]. Many 
studies just considered PaO2 values in the very early 
phases from ROSC [42], did not evaluate the duration 
of hyperoxemia (the dose), had limited sample sizes, or 
had retrospective designs or prospective design with a 

post hoc analysis [7, 8, 18, 43]. In the present preplanned 
study, both hypoxemia and hyperoxemia as well as the 
dose (AUC) of hyperoxemia over time were associated 
with mortality. This implies that the pathophysiologi-
cal effect of hyperoxemia importantly depends not only 
on the intensity, but also on the duration of the expo-
sure to high oxygen values. Also, the best upper thresh-
old of PaO2 associated with the risk for mortality was 
above 195  mmHg. This point is of critical importance 
and makes our results unique, potentially explaining why 
in previous studies using the conventional threshold of 
300  mmHg a non-consistent association with outcome 
was found [41, 44–46]. We hypothesize that the risk for 
hyperoxemia might have been underestimated consider-
ing the traditional thresholds, and that in the post-ROSC 
phase clinicians should pay attention in the titration of 
oxygen to lower levels than thought before.

Different oxygen targets have been proposed by tri-
als on oxygen [47–49], and the recent BOX trial [49], 
which compared 2 targets of PaO2 68–75  mmHg vs 
98–105  mmHg, showed similar incidence of death or 
severe disability or coma among groups, suggesting that 
question remains especially about the higher target of 
oxygen to be applied in this population, which requires 
further investigation.

Fig. 4  Relative distribution analysis for the definition of the best cut-off of arterial partial pressure of oxygen (PaO2) associated with mortality. 
Best cutoff point along the continuum of the marker that separated survivors versus non-survivors at the end of the follow-up. In this analysis, 
the quantile (or proportion) distribution of the marker survivors (plotted on the x-axis plus the corresponding marker values at the top) is plotted 
against the proportion ratio of the marker distribution for non-survivors
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When splitting the patients according to the use of 
hypothermia and normothermia, no statistically dif-
ferences were found in outcome between the two 
groups, thus suggesting that temperature 33  °C does 
not improve oxygen tolerance and could further explain 
the lack of protective effect of hypothermia [23]. The 
fact that hypoxemia and hyperoxemia were not asso-
ciated with poor neurological outcome (mRS 4 and 
5) might be explained by different factors. Firstly, the 
scale used to evaluate neurological disability does not 
specifically account for specific cognitive dysfunction; 
further, neurological outcome may be affected by many 
different post-acute factors such as systemic complica-
tions or secondary brain damage during the ICU stay, 
in the hospital, or during rehabilitation. In particular, 
despite we used a robust statistical model which took 
in consideration several confounding factors, oxygen 
derangements might be a marker for systemic clini-
cal events that can lead to an increase in mortality, i.e., 
pneumonia, sepsis, without a definitive effect on neuro-
logical outcome.

Limitations
This study has several limitations. Firstly, although this 
was a preplanned secondary analysis of the TTM2 trial, 
this is an observational study, and our results should be 
regarded as hypothesis-generating, and we cannot make 
any causality statements from our results. A randomized 
clinical trial will be in fact necessary to confirm our find-
ings, with the aim to explore the effect of oxygen more 
deeply on neurological outcome and the interaction of 
oxygen derangements with systemic factors.

Secondly, we hypothesized that oxygen pressure in-
between PaO2 measurement was linear, and we were not 
able to account for short-term variations of PaO2. Nev-
ertheless, the present study includes the highest number 
of available data on PaO2 measures with serial measure-
ments. Third, although this was a preplanned study, some 
information is lacking in eCRF, and some data are miss-
ing in the database. Finally, the conventional thresholds 
used in this analysis were adopted according to robust 
observational studies, but these values present impor-
tant heterogeneity in the literature [18, 25, 47], with no 

Fig. 5  Frequency distribution of arterial partial pressure of oxygen (PaO2) classes (according to best threshold). Numbers of hypoxemia/
hyperoxemia episodes per patient during the first 72 of mechanical ventilation. This figure was based on all patients included in the cohort, with a 
percent distribution as follow: Episodes of Hypoxemia = 0 (n = 805 (44.01%), 1 (n = 439 (24.00%), 2 (n = 239 (13.07%), 3 (n = 142 (7.76%), 4 + (n = 204 
(11.05%). Episodes of Hyperoxemia = 0 (n = 1431 (76.90%), 1 (n = 339 (18.53%), 2 (n = 43 (2.35%), 3 (n = 10 (0.55%), 4 + (n = 6 (0.33%)
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definitive conclusions regarding the optimal oxygen tar-
gets, especially for the higher threshold of oxygen. The 
ongoing Mega-ROX trial [48] is exploring two different 
levels of oxygen mainly based on SpO2 and a recently pub-
lished RCT [49], compared 2 targets of PaO2 with higher 
target of 98–105 mmHg. Our results can pave the way to 
the definition of further RCTs and better define the best 
thresholds of oxygenation to be applied in this population.

Conclusions
In mechanically ventilated patients after out of hospital 
cardiac arrest, we found novel “best” cutoff values of oxy-
gen associated with the risk for mortality at PaO2 below 
69  mmHg and above 195  mmHg; with the use of these 
cut-offs, episodes of hypoxemia and hyperoxemia are 
common in this population. Both hypoxemia and hyper-
oxemia are associated with higher 6-months mortality, 
and this may be mediated by the timing exposure to high 
values of oxygen. More cautious titration of oxygen lev-
els should be considered in this group of patients until 
stronger evidence is available.
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